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Abstract—The integration of renewable energy (RE) as an
alternative power source for cellular networks has been deeply
investigated in literature. However, RE generation is often as-
sumed to be deterministic; an impractical assumption for realistic
scenarios. In this paper, an efficient energy procurement strategy
for cellular networks powered simultaneously by the smart grid
(SG) and locally deployed RE sources characterized by uncertain
processes is proposed. For a one-day operation cycle, the mobile
operator aims to reduce its total energy cost by optimizing the
amounts of energy to be procured from the local RE sources
and SG at each time period. Additionally, it aims to determine
the amount of extra generated RE to be sold back to SG. A
chance constrained optimization is first proposed to deal with
the RE generation uncertainty. Then, two convex approximation
approaches: Chernoff and Chebyshev methods, characterized
by different levels of knowledge about the RE generation, are
developed to determine the energy procurement strategy for
different risk levels. In addition, their performances are analyzed
for various daily scenarios through selected simulation results. It
is shown that the higher complex Chernoff method outperforms
the Chebyshev one for different risk levels set by the operator.

Index Terms—Cellular networks, chance constrained opti-
mization, convex approximation, renewable energy generation
uncertainty.

I. INTRODUCTION

Over the last decade, mobile traffic has grown rapidly due

to the emergence of various mobile devices applications that

enjoyed widespread popularity and usage in addition to the

rise of the internet-of-things (IoT) concept [1]. From 2010 to

2014, global mobile data traffic has increased by 12 times and

is also expected to reach, by 2020, 10 times as much as the

global mobile traffic in 2014 [2], [3]. However, this growth is

envisioned to demand much higher energy consumption than

today’s level and hence it negatively affects the environment

due to the increase of carbon dioxide (CO2) emission [4]. In

fact, CO2 emissions are also expected to increase by a growth

of 6% every year through 2020 [5]. Therefore, a pressing
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need to reduce CO2 emissions of wireless cellular networks

is imposed [6].

The next generation power grid, known as smart grid (SG),

enables the use of developed information technologies through

which it efficiently delivers power to its customers [7]. The

power management within SG is performed such that various

economical and environmental goals are met via the reduction

of greenhouse gas emissions and the optimal adjustment of

the supplied power depending on the customers’ needs [8]. It

offers the possibility to deliver electricity more cost-effectively

with enabling the active involvement of the customers in the

procurement decision [9]. Furthermore, it enables the con-

sumer to sell the extra energy generated locally to the market

and allows the massive integration of intermittent renewable

energy (RE) sources such as wind, solar, and hydro [10]–[12].

This is in accordance with the objectives of the International

Energy Agency aiming to accelerate the exploitation of these

alternative sources to reach 31% of the total power generation

by 2035 [13].

Integrating RE sources as alternative way to power cellular

networks has been deeply investigated in the literature [14]–

[16]. The introduction of RE generators such as solar panels,

wind turbines, etc, at the base station (BS) site offers to

mobile operators the possibility to obtain green and low cost

electricity. It also reduces its dependence on external energy

retailers and help downward pressure on energy prices. The

management of energy procurement from SG has also been

widely discussed in literature. In this scenario, RE sources are

either assumed to be owned by the mobile operator itself or

by an external entity [17]–[19]. An optimization framework

combining the BS on/off switching strategy with the energy

procurement management has been proposed in [17]. In [18], a

multi-stage energy allocation problem and a multi-BSs energy

balancing problem are developed to achieve on-grid energy

savings. In [19], the energy procurement from SG is optimized

based on average statistics of the network. A stochastic geom-

etry based approach is developed to determine the average

energy requirement of the networks and optimize the demand

side management (DSM) accordingly. The obtained results had

shown significant CO2 reductions and cost savings can be

achieved thanks to the introduction of RE and the optimization

of the DSM of cellular networks from SG. However, most

of these studies have assumed deterministic RE generation

models which are not applicable in practical scenarios mainly

the ones requiring pre-planned RE management or aiming at



estimating energy cost at the future. Indeed, power generation

from renewable sources is generally random in time and

space due to various environmental factors [20]. For instance,

photovoltaic energy depends on the amount of solar irradiance,

the size of the solar panel, the shadow level, and energy

conversion efficiency, etc. Hence, the BSs powered by RE

sources may sometimes have an excess of energy while at

other times, they may be energy deficient. Hence, handling this

uncertainty in the energy management framework for cellular

networks presents an important challenge that has received

interests in literature [14], [21]–[24]. The authors of [23],

[24], for instance, have employed stochastic programming

for adaptive power management under various uncertainties

including renewable power generation. However, their pro-

posed approach is only suitable when the distribution of the

uncertainty parameter is discrete. Moreover, even for dis-

crete distributions, the complexity of their approach increases

as the number of possible outcomes increases. Some other

studies, such as [21] and [22], have investigated the energy

management from another perspective with the objective to

optimize the resource allocation while taking into account

hybrid energy sources including RE ones. Transmit power and

carrier allocation schemes are developed in order to optimize

communication utility metrics such as throughput maximiza-

tion while considering uncertainty of the RE generation. In this

paper, however, we are dealing with the energy procurement

of cellular networks powered by uncertain RE sources and

conventional electricity with the objective to minimize the cost

of energy procurement [25].

The objective of this study is to determine the amount of

energy to be procured by each BS belonging to the cellular

network from each energy source, namely; the fossil fuel

source existing in SG and the RE generated locally. Moreover,

in case of excess of RE generation, we aim to determine

the extra amount of RE to be sold to the electrical grid in

order to compensate the energy cost. A time-varied scenario

is taken into consideration in the proposed energy procurement

framework in the sense that the procurement at a given time

period depends on the variation of the SG price, the RE

generation during the whole operation cycle, and the storage

capacity at the BS level. The objective is to make accurate

procurement decision in order to minimize the cost of total

energy. For instance, if we assume that during any time slot the

operator knows the RE generation in future time slots will be

low, then the optimization framework will be inclined towards

conserving the use of energy from the battery in the current

time slot in order to save it for the future and vice versa.

Hence, the proposed approach offers the possibility for mobile

operators to pre-plan the use of the available RE over future

time slots. This allows them to predict the cost of the network

energy consumption according to the traffic profile of their

networks and to adjust their energy procurement according

to the RE availability and the variation of SG prices. In this

paper, we propose to deal with the randomness of the RE

generation by formulating chance constrained optimization

problems. However, this probabilistic approach could yield

either to non-convex constraints or introduce some difficul-

ties regarding their evaluations. To avoid such problems, we

employ conservative convex approximation approaches. Two

methods are applied: the Chernoff- and the Chebyshev-based

approaches. The former assumes the knowledge of the moment

generating functions (MGFs) of the RE random variables

(RVs) whereas the latter is only based on the knowledge of the

first and second moments of the RE distribution. Moreover,

for a given confidence level, we investigate which of these

methods is efficient in terms of energy procurement decision.

More precisely, while both approaches are constructed such

that a given confidence level is satisfied, we identify the more

conservative method that procures the energy less efficiently

than the other one. Selected simulation results analyzing the

effect of the uncertainty and comparing the Chernoff- and

the Chebyshev-based approaches are provided for various

scenarios.

The paper is organized as follows. The system model is

described in Section II. In Section III, the problem formulation

based on the chance constrained optimization approach is

presented. In Section IV, convex approximations of the formu-

lated problem are investigated using Chernoff and Chebyshev

approximations. Selected simulation results using these two

approaches are presented in Section V for different scenarios.

Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a cellular network consisting of N BSs as il-

lustrated in Fig. 1. We aim to optimize the energy procurement

at each BS level for one-day operation cycle divided into T
time intervals of duration ∆t. We denote the energy procured

by the mobile operator to power its BS n ∈ {1, ..., N} from an

external retailer during time period i ∈ {1, ..., T} by q1i,n. The

corresponding unit price at the ith time period is denoted by

c1i . This price can vary during the day depending on a certain

strategy followed by the energy retailer. Moreover, each BS

has its own internal retailer, i.e., RE generator, that produces

an amount of energy, denoted by Q0
i,n, which is assumed

to be free of charge. We assume that each internal retailer

has a maximum storage capacity C̄n. The amount of energy

procured by a BS n at the ith time period from its own internal

retailer is denoted by q0i,n. As the cellular network is inter-

connected to the SG, we consider that each BS n has the

ability to sell an amount of energy q̃0i,n to the SG at each time

period i at a given price c0i . Without loss of generality, we

assume that c0i is strictly less than c1i for all i ∈ {1, ..., T}.

The average energy consumption at time period i of BS n
is denoted by Ei,n and can be expressed as follows [26]:

Ei,n =
(

aPuN̄n,i + b
)

∆t, (1)

where a is a factor that scales with the radiated power due to

amplifier and feeder losses, b models an offset of site power

which is consumed independently of the average transmit

power, Pu is the consumed power per unit of traffic that we

assume to be fixed and uniform, and N̄n,i is the average traffic

profile corresponding to the nth BS and during the ith time

period and is given by:

N̄n,i =
1

∆t

∫ i∆t

(i−1)∆t

Nn(t)dt, (2)



Fig. 1: Energy management for cellular networks powered by

SG and locally deployed RE sources.

where Nn(t) is the traffic profile of the nth BS.

The energy procurement decision is centrally managed by a

smart control center (SCC) collecting all needed information

from the network’s BSs and the SG as shown in Fig. 1. More

precisely, after receiving data from the different actors, such

as energy price strategy of the smart grid, RE information, BS

energy consumption, etc., the SCC determines the amount of

energy to be procured by each BS during the whole operation

cycle.

III. PROBLEM FORMULATION

In this section, we formulate the optimization problem

aiming to maximize the mobile operator’s profit P given as

follows:

P =

T
∑

i=1

N
∑

n=1

(

c0i q̃
0
i,n − c1i q

1
i,n

)

. (3)

This profit represents the summation of the individual profit

of each BS during the one-day operation cycle. Note that

P corresponds to the revenue due to the energy exchange

with the SG and can be negative depending on the amount

of energy to be sold or bought. This maximization problem

should be carried out under three constraints. i) The mobile

operator has to fulfill the energy consumption constraint at

each time period for all BSs. ii) For each BS n and time

period i, the total summation up to the time period i of the

amounts of energy consumed from the internal retailer, q0j,n,

and the energy sold to the SG, q̃0j,n, where j ∈ {1, ..., i},

cannot exceed the generated energy of the internal retailer up

to the ith time period. This means that at each time period i,
the used RE cannot exceed the amount of energy generated

up to that time minus the amount of energy consumed in the

previous time periods. (iii) Finally, for each internal retailer,

the amount of the stored energy should not exceed the capacity

C̄n. In a nutshell, the maximization problem can be expressed

as follows:

maximize
q̃0
i,n

,q0
i,n

,q1
i,n

T
∑

i=1

N
∑

n=1

(

c0i q̃
0
i,n − c1i q

1
i,n

)

(4)

subject to q0i,n + q1i,n = Ei,n, ∀i, n, (5)

i
∑

j=1

(

q0j,n + q̃0j,n
)

≤

i
∑

j=1

Q0
j,n, ∀i, n, (6)

i
∑

j=1

Q0
j,n −

i
∑

j=1

(

q0j,n + q̃0j,n
)

≤ C̄n, ∀i, n, (7)

q0i,n, q̃
0
i,n, q

1
i,n ≥ 0, ∀i, n. (8)

Note that from constraint (7), we adopt a use and store

strategy in the sense that the available energy from the internal

retailer is used before being stored. It is also worth noting

that the above optimization problem is separable such that it

can be solved for each BS independently. This is because we

assume that there is no dependence, among all BSs, in the

procurement decision. This assumption is made because the

traffic of each cell is independent from the other cells and the

RE locally generated at each BS site is independent from what

is generated at the other BS sites. Scenarios where dependence

among BSs will be considered in the future extensions of this

work. Thus, the mobile operator aims to solve for each BS n,

where n ∈ {1, ..., N}, the following problem:

maximize
q̃0
i,n

,q0
i,n

,q1
i,n

T
∑

i=1

(

c0i q̃
0
i,n − c1i q

1
i,n

)

(9)

subject to q0i,n + q1i,n = Ei,n, ∀i, (10)

i
∑

j=1

(

q0j,n + q̃0j,n
)

≤

i
∑

j=1

Q0
j,n, ∀i, (11)

i
∑

j=1

Q0
j,n −

i
∑

j=1

(

q0j,n + q̃0j,n
)

≤ C̄n, ∀i, (12)

q0i,n, q̃
0
i,n, q

1
i,n ≥ 0, ∀i. (13)

The resolution of the previous maximization problem could

be easily performed through linear programming algorithms

[27]. However, from a practical point of view, the RE genera-

tion is not deterministic due to, for instance, the randomness

of wind and solar power generations. Thus, it is more practical

to model the energy generated by each internal retailer by a

random variable (RV).

In the presence of uncertainty in Q0
i,n, the second

and third constraints of the maximization problem for-

mulated earlier become random quantities and hence, the

optimization problem has to be modified. Chance con-

strained optimization is a probabilistic approach that we

can opt for in order to solve the maximization prob-

lem. By defining q = {q̃0i,n, q
0
i,n, q

1
i,n}i∈{1,...,T},n∈{1,...,N}

and Q0 = {Q0
i,n}i∈{1,...,T},n∈{1,...,N} and denoting

by fi,n(q,Q
0) =

∑i

j=1 q
0
j,n + q̃0j,n −

∑i

j=1 Q
0
j,n and

gi,n(q,Q
0) =

∑i

j=1 Q
0
j,n −

∑i

j=1 q
0
j,n + q̃0j,n − C̄n, the

chance constrained optimization problem can be formulated



as follows: ∀n ∈ {1, ..., N}

maximize
q̃0
i,n

,q0
i,n

,q1
i,n

T
∑

i=1

(

c0i q̃
0
i,n − c1i q

1
i,n

)

(14)

subject to (10), (13),

P
(

∩i{fi,n(q,Q
0) ≤ 0, gi,n(q,Q

0) ≤ 0}
)

≥ η,
(15)

where 0 ≪ η < 1 is a confidence measure which is

generally selected to be close to 1 in order to guarantee a safe

network operation. To facilitate the resolution of the previous

maximization problem, a more conservative approach can be

considered instead. In fact, (15) can be re-written and upper-

bounded ∀ n ∈ {1, ..., N} as follows:

P
(

∪i{{fi,n(q,Q
0) > 0} ∪ {gi,n(q,Q

0) > 0}}
)

≤
∑

i

P
(

fi,n(q,Q
0) > 0

)

+ P
(

gi,n(q,Q
0) > 0

)

. (16)

Let ξi,n and νi,n be positive numbers satisfying
∑

i (1− ξi,n)+
∑

i (1− νi,n) = 1−η , ∀n ∈ {1, ..., N}, then,

a conservative approximation of the optimization problem

(14)-(15) can be given as follows: ∀n ∈ {1, ..., N}

maximize
q̃0
i,n

,q0
i,n

,q1
i,n

T
∑

i=1

(

c0i q
0
i,n − c1i q

1
i,n

)

(17)

subject to (10), (13),

P
(

fi,n(q,Q
0) ≤ 0

)

≥ ξi,n, ∀i, (18)

P
(

gi,n(q,Q
0) ≤ 0

)

≥ νi,n, ∀i. (19)

It is worth mentioning that this probabilistic approach cannot

be easily solved and requires the knowledge of a lot of

information about the RE generation which are not always

available in practice. For example, it necessitates the knowl-

edge of the distributions of the sum of RVs that are out

of reach in many practical scenarios. In this case, the use

of Monte Carlo (MC) method to check the feasibility of a

given point may be costly especially for values of ξi,n or

νi,n that are close to one. Moreover, it may happen that

the feasible set, under these probabilistic constraints, is not

convex. Hence, this leads to serious numerical problems and

makes the optimal solution difficult to find. Therefore, we

propose to focus on convex approximation approaches that

yield tractable constraint expressions and ensure the convexity

of the feasible set.

IV. CONVEX APPROXIMATIONS

In this section, we present the convex approximation ap-

proach [28] in its general form and then, we extend our

analysis with the study of two examples namely; Chernoff

and Chebyshev-based approaches. Let φ : R → R a

nonnegative, nondecreasing, and convex function satisfying

φ(z) > φ(0) = 1 for all z > 0. Then, for each i ∈ {1, ..., T}
and n ∈ {1, ..., N}, it follows that for all α > 0:

P
(

fi,n(q,Q
0) > 0

)

≤ E

[

φ

(

fi,n(q,Q
0)

α

)]

(20)

and

P
(

gi,n(q,Q
0) > 0

)

≤ E

[

φ

(

gi,n(q,Q
0)

α

)]

. (21)

Hence, we deduce that if the right-hand sides of (20) and (21)

are lower bounded by 1− ξi,n and 1− νi,n, respectively, then

the constraints in (18) and (19) will be satisfied. Moreover, it

was shown in [28] that the previous statement could be further

strengthened by:

inf
α>0

(

αE

[

φ

(

fi,n(q,Q
0)

α

)]

− α(1− ξi,n)

)

≤ 0

=⇒ P
(

fi,n(q,Q
0) > 0

)

≤ 1− ξi,n (22)

and

inf
α>0

(

αE

[

φ

(

gi,n(q,Q
0)

α

)]

− α(1− νi,n)

)

≤ 0

=⇒ P
(

gi,n(q,Q
0) > 0

)

≤ 1− νi,n. (23)

Thus, a conservative approximation of the optimization prob-

lem (17)-(19) is given as follows [28]: ∀n ∈ {1, ..., N}

maximize
q̃0
i,n

,q0
i,n

,q1
i,n

T
∑

i=1

(

c0i q̃
0
i,n − c1i q

1
i,n

)

(24)

subject to (10), (13),

inf
α>0

(

αE

[

φ

(

fi,n(q,Q
0)

α

)]

− α (1− ξi,n)

)

≤ 0, ∀i,

(25)

inf
α>0

(

αE

[

φ

(

gi,n(q,Q
0)

α

)]

− α (1− νi,n)

)

≤ 0, ∀i.

(26)

The feasible set of this maximization problem is included

in the one of (17)-(19). Thus, its optimal objective function

is upper bounded by the optimal objective function of (17)-

(19). Moreover, given that the objective function is linear and

the fact that all constraints in the optimization problem (9)-

(13) are affine functions for each realization of the generated

energy of each internal retailer, it was shown in [28] that (24)-

(26) is a convex problem. Hence, the resolution of (24)-(26)

can be easily performed using convex optimization algorithms

such as the interior-point method. Furthermore, the constraints

(25) and (26) are given by tractable expressions for particular

choices of the function φ(·). In the following two subsections,

two choices of the function φ(·) are presented.

A. Chernoff Bound-Based Approach

In this section, we apply the above conservative convex

approximation using φ(x) = exp (x), x ∈ R. This is known as

the Chernoff bound. Assume that, for each BS n ∈ {1, ..., N},

the RVs {Q0
i,n}

T
i=1 are independent and Mi,n(·) are their

corresponding MGFs. The maximization problem (24)-(26) is



given by: ∀n ∈ {1, ..., N}

maximize
q̃0
i,n

,q0
i,n

,q1
i,n

T
∑

i=1

(

c0i q̃
0
i,n − c1i q

1
i,n

)

(27)

subject to (10), (13),

inf
α>0

(

α exp

(

∑i

j=1

(

q0j,n + q̃0j,n
)

α

)

i
∏

j=1

Mj,n

(

−
1

α

)

− α (1− ξi,n)
)

≤ 0, ∀i, (28)

inf
α>0

(

α

i
∏

j=1

Mj,n

(

1

α

)

exp

(

−

∑i

j=1

(

q0j,n + q̃0j,n
)

+ C̄n

α

)

− α (1− νi,n)
)

≤ 0, ∀i. (29)

The main feature of the above optimization problem is that it

only depends on the individual MGFs of the RE generation

RVs for each internal retailer and at each time period. More

precisely, it does not need the knowledge of the distribution

of the sum
∑i

j=1 Q
0
j,n which is difficult to obtain in general.

As it was mentioned before, the above Chernoff approxi-

mation is an explicit convex optimization problem [28]. More-

over, the constraints (28) and (29) are efficiently computable

using convex optimization algorithms [27].

B. Chebyshev Bound-Based Approach

In this section, we discuss the second approach based on

the Chebyshev bound with φ(x) = [max (x+ 1, 0)]
2
. Note

that with this choice of φ(·), the evaluation of the expectations

in (25) and (26) might be a difficult task and requires often

the use of MC method. In order to avoid the high complexity

incurred by the use of MC computation, we employ a more

conservative choice of φ(·) corresponding to φ(x) = (x+ 1)
2
.

Note that this choice violates the nondecreasing property

that φ(·) should have in order to prove the convexity of

the approximate optimization problem (24)-(26). However,

given that the constraints in the original problem (9)-(13)

are affine for each realization, we can easily prove that, in

this particular case the optimization problem (24)-(26) is still

convex provided the convexity and the non-negativity of φ(·).
Interestingly, for this particular choice of φ(·), the constraints

in (25) and (26) could be further simplified [28]. In fact, with

φ(x) = (1+x)2, the left-hand side terms of the constraints in

(25) and (26) have the following expressions:

αE

[

φ

(

fi,n(q,Q
0)

α

)]

− α (1− ξi,n)

=
E
[

f2
i,n(q,Q

0)
]

α
+ 2E

[

fi,n(q,Q
0)
]

+ ξi,nα, (30)

and

αE

[

φ

(

gi,n(q,Q
0)

α

)]

− α (1− νi,n)

=
E
[

g2i,n(q,Q
0)
]

α
+ 2E

[

gi,n(q,Q
0)
]

+ νi,nα. (31)

After simple manipulations, the optimal values of α solving

(30) and (31) are, respectively, expressed as follows:

α∗
i,n =









E

[

(

∑i

j=1

(

q0j,n + q̃0j,n
)

−
∑i

j=1 Q
0
j,n

)2
]

ξi,n









1

2

,

(32)

and

α∗
i,n =









E

[

(

∑i

j=1 Q
0
j,n −

∑i

j=1

(

q0j,n + q̃0j,n
)

− C̄n

)2
]

νi,n









1

2

.

(33)

Thus, upon plugging these values in (25) and (26), the
approximate optimization problem (24)-(26) is re-written as:
∀n ∈ {1, ..., N}

maximize
q̃0
i,n

,q0
i,n

,q1
i,n

T
∑

i=1

(

c
0

i q̃
0

i,n − c
1

i q
1

i,n

)

(34)

subject to (10), (13),

E

[

i
∑

j=1

(

q
0

j,n + q̃
0

j,n

)

−

i
∑

j=1

Q
0

j,n

]

+



ξi,nE





(

i
∑

j=1

(

q
0

j,n + q̃
0

j,n

)

−

i
∑

j=1

Q
0

j,n

)2








1

2

≤ 0, ∀i, (35)

E

[

i
∑

j=1

Q
0

j,n −

(

i
∑

j=1

(

q
0

j,n + q̃
0

j,n

)

)

− C̄n

]

+



νi,nE





(

i
∑

j=1

Q
0

j,n −

i
∑

j=1

(

q
0

j,n + q̃
0

j,n

)

− C̄n

)2








1

2

≤ 0, ∀i.

(36)

Under the independence of {Q0
i,n}

T
i=1 for each n ∈ {1, ..., N},

we clearly observe that the previous approximate maximiza-

tion problem depends only on the first and second moments

of the RVs Q0
i,n. Let µi,n = E

[

Q0
i,n

]

and σ2
i,n = Var

[

Q0
i,n

]

,

then, by using the multinomial formula [29, Prop. 4.10],

the maximization problem is expressed as follows: ∀n ∈



{1, ..., N}

maximize
q̃0
i,n

,q0
i,n

,q1
i,n

T
∑

i=1

(

c0i q̃
0
i,n − c1i q

1
i,n

)

(37)

subject to (10), (13),
i
∑

j=1

(q0j,n + q̃0j,n)−

i
∑

j=1

µj,n+



ξi,n





∑

k1+...+ki=2

(

2

k1, ..., ki

)

∏

1≤j≤i

E

[

X
kj

j,n

]









1

2

≤ 0, ∀i,

(38)

i
∑

j=1

µ0
j,n −

i
∑

j=1

(q0j,n + q̃0j,n)− C̄n+



νi,n





∑

k1+...+ki=2

(

2

k1, ..., ki

)

∏

1≤j≤i

E

[

Y
kj

j,n

]









1

2

≤ 0, ∀i,

(39)

where Xj,n = q0j,n + q̃0j,n −Q0
j,n, Yj,n = Q0

j,n − q0j,n − q̃0j,n −
C̄n/i, and

E
[

Xk
j,n

]

=
{

q0j,n + q̃0j,n − µ0
j,n k=1,

(q0j,n + q̃0j,n)
2 − 2µj,n(q

0
j,n + q̃0j,n) + µ2

j,n + σ2
j,n k=2,

(40)

and

E
[

Y k
j,n

]

=










µ0
j,n − q0j,n − q̃0j,n − C̄n

i
k=1,

(q0j,n + q̃0j,n + C̄n

i
)2 − 2µj,n(q

0
j,n + q̃0j,n + C̄n

i
) k=2.

+µ2
j,n + σ2

j,n

(41)

The term
(

n
k1,k2,..,km

)

is the multinomial coefficient defined

as:
(

n

k1, k2, .., km

)

=
n!

k1!k2!...km!
. (42)

Compared to the Chernoff-based approach, the Chebyshev-

based approach exhibits less implementation complexity. This

is because the constraints in the Chebyshev-based approach are

given by explicit expressions, whereas the ones corresponding

to the Chernoff-based approach are themselves the outputs of

the minimization problems given in (28) and (29). Regarding

their efficiency in making energy procurement decisions, the

Chebyshev-based approach presents a lack of information

about the uncertainty of the RE generation compared to the

Chernoff-based approach. More precisely, it is only based on

the knowledge of the first and second moments of the RE

generation, whereas the latter one is based on the knowledge

of the MGFs of the RE distributions. Thus, it is expected

that the Chernoff-based approach will exhibit much higher

performances than those of the one based on Chebyshev

approximation in terms of energy procurement. The last state-

ment will be confirmed in the following section.

V. RESULTS AND DISCUSSION

In this section, we apply the two conservative convex

approximations described in the previous section to optimize

the energy procurement for one-day operation cycle. Given

that the formulated optimization problem is separable in the

sense that it can be solved for all BSs one by one, we restrict

our analysis to the case of N = 1. This will facilitate the

interpretation of the developed results. Hence, the subscript n
can be dropped in all of the previous notations.

The simulation parameters are given as follows. A one-day

operation cycle is divided into 6 time periods, each of 4 hours

(∆t = 4). Note that this choice is only made to facilitate the

analysis of the simulation results. The energy costs c0 and c1,

and the consumed energy E are considered as Heaviside step

functions. The energy costs c0 and c1 are chosen such that

c0i is strictly less than c1i for each time period. Moreover, the

consumed energy E follows, at each time period, the model

in (1) with parameters a = 2.6, Pu = 1 W, and b = 56 W.

The RE generation Q0
i at a given time period i is chosen to be

uniformly distributed in the interval [mi,Mi] and independent

from the generation of the other time periods. The average

of Q0
i follows the wind energy model in [30] and is equal

to 1
2ρAV 3

uCp∆t with air density ρ = 1.225 kgm−3 , blade

swept area A = π m2, wind speed V 3
u which varies at each

time interval, and conversion coefficient Cp = 0.12. For a

given confidence measure η, the parameters ξi and νi satisfy

ξi = νi = 1− 1−η
2T , for all i ∈ {1, ..., T}. This choice is mainly

motivated by the fact that the mobile operator accords the

same confidence level to all constraints. Such a choice would

be the most fair choice in the sense that it enables mobile

operators to deal with all of the constraints in a similar manner

by according to them the same risk level. The simulation

parameters are summarized in Table I

TABLE I: Simulation parameters

1 2 3 4 5 6

Ei (Wh) 360 380 520 650 570 460

c0i 1 1 1.3 1.3 1.3 1

c1i 1.25 1.25 1.5 2 1.75 1.25

mi (Wh) 300 300 700 600 400 400

Mi (Wh) 400 400 800 700 500 500

As a first experiment, we plot in Fig. 2 the amounts

of energy procured from the RE q0i , sold to the SG q̃0i ,

and procured from the SG q1i using the Chernoff and the

Chebyshev convex approximation approaches in the presence

of uncertainty. In the same figure, these quantities are also

plotted in the deterministic setting, i.e., the RE generation Q0
i

is deterministic and equals to mi+Mi

2 for each time period.

The confidence level in this experiment is η = 0.9, whereas

the capacity of storage C̄ is chosen to be equal to 2000 Wh.

The storage constraint is relaxed in this simulation to more

focus on the procurement management over the cycles, the

impact of C̄ is studied in Fig. 4.

From this figure, we distinguish three different regimes. In

the first two time periods, the three approaches have the same

procurement strategy by procuring all the required energy from

the SG. This observation is expected for two reasons. First,
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Fig. 2: Energy Procurement with η = 0.9 , C̄ = 2000 Wh,

and simulation parameters in Table I. Deterministic approach

in blue with square marker, Chernoff-based approach in red

with circle marker, and Chebyshev-based approach in green

with asterisk marker.

given that the price set by the SG in the next three time periods

is higher than that of the first two periods (see Table I), the

three approaches try to save the energy generated from the RE

source so they can consume it in the next three time periods.

Second, the price with which the mobile operator sells the

energy to the SG will increase as well in these three periods.

This also explains why the three approaches are saving energy

so that they can sell a part of it to the SG in the next three time

periods. The two previous statements are clearly confirmed in

the next regime (from 8 h to 20 h). In fact, the generated RE

in these three periods and the stored quantities of the previous

two time periods are used to fulfill the energy requirement.

Moreover, the three approaches sell the remaining RE in these

three time periods since the corresponding prices are attractive.

Finally, in the remaining time period, the three approaches

behave again similarly. In fact, as the quantity of RE was

used in the previous time periods, these approaches will fulfill

the energy requirement by consuming all the RE generated at

this time period and buy the remaining quantity from the SG.

Fig. 2 also reveals that the energy procurement strate-

gies of both Chernoff and Chebyshev approaches are more

conservative compared to that of the deterministic case. In

other words, with the risk level that corresponds to 10%
in this experiment, the Chernoff and the Chebyshev-based

approaches become more risk-aware than the deterministic

approach in the sense that they are consuming less amount

of RE. However, it should be noted that the high performance

of the deterministic approach has to be balanced with its high

risk, which must be bigger than 10%, of being over estimating

the real generation of the RE. For the sake of illustration, the

energy generated from the RE source in the whole period is
∑6

i=1
mi+Mi

2 = 3000 Wh in the deterministic case, whereas

only 2800 Wh and 2285 Wh have been employed by Chernoff

and Chebyshev approaches, respectively, in order to meet the

risk requirement.

Furthermore, Fig. 2 shows that out of the two conservative
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Fig. 3: Energy Procurement with η = 0.7, C̄ = 2000 Wh,

and simulation parameters in Table I. Deterministic approach

in blue with square marker, Chernoff-based approach in red

with circle marker, and Chebyshev-based approach in green

with asterisk marker.

convex approximations, it is the Chernoff approach that has

a more efficient energy procurement strategy. More precisely,

while both approaches satisfy the 10% risk level requirement,

the Chernoff-based approach procures a bigger amount from

the RE source than the Chebyshev one. For instance, it is clear

from Fig. 2 that, in the period between 8 h and 20 h, the latter

approach sells less amount of energy than that of the former.

Moreover, in the last period, the amount of energy bought

from the SG in addition to the one procured from the RE

source using the Chernoff-based approach are, respectively,

less and higher than the ones obtained with the Chebyshev-

based approach. Finally, another interesting result exhibited

in Fig. 2 is that the amount of RE used by the Chebyshev

approach in the whole period i.e., 2285 Wh, is less than the

minimum amount of RE which is
∑6

i=1 mi = 2700 Wh.

The reason of this under estimation is related to the little

amount of information that the Chebyshev-based approach

knows about the RE distribution. Such a failure is avoided by

the Chernoff approach because of its perfect knowledge about

the RE distribution. The last statement goes in favor towards

the efficiency of the Chernoff-based approach compared to

the Chebyshev one. As a second experiment, we aim to study

the effect of the risk level on the energy procurement of

Chernoff- and Chebyshev-based approaches. To this end, we

plot in Fig. 3 the same results shown in Fig. 2 but with

η = 0.7. The simulation parameters are the same as in the

previous experiment. In this setting, we clearly observe that

both Chernoff- and Chebyshev-based approaches are procuring

the energy more efficiently than in the previous experiment.

Such an observation is expected since the bigger the risk level

is, the higher the profit is. More precisely, by increasing the

risk level, the amounts of RE, that the two approaches are

expecting to be generated, will certainly increase and hence,

their energy procurement strategy will be more efficient. For

instance, in the period between 8 h and 20 h, the Chernoff

and the Chebyshev methods sell more quantities of RE than



in the previous experiment. Moreover, to fulfill the energy

requirement, the two approaches use more quantity from

the RE source in the last time period. Note also that the

Chernoff-based approach outperforms again the Chebyshev-

based approach. From a mobile operator point of view, the

confidence parameter η is very important in the procurement

decision. Indeed, in the case of error in the estimation of the

RE generation at a given time period, the corresponding BS

will not be completely powered and hence, some users will

not be served due to the lack of power which leads to a high

outage rate. In this case, the mobile operator has to increase the

confidence level in order to meet its BS’s power requirement

and guarantee the safe network operation by buying extra

energy from the electrical grid. In the considered scenarios

given in Fig. 2 and Fig. 3 and following the Chernoff-based

approach, increasing the confidence level from 0.7 to 0.9, will

cause approximately a loss of 22.74%, as the profit goes from

−117.26 to −143.92.

We aim now to analyze the implementation complexity

of the two proposed convex approximations. To this end,

we provide in Table II the computational time given by the

Chernoff- and the Chebyshev-based approaches for two values

of the confidence level η. As expected, the Chebyshev-based

approach exhibits less complexity than the Chernoff-based

method. As it was mentioned before, this is due to the fact

that the constraints of the Chebyshev optimization program

are explicitly given whereas the constraints in the Chernoff-

based optimization problem are themselves the outputs of

other optimization problems.

TABLE II: Complexity Analysis

Chebyshev Chernoff

η cpu time Profit cpu time Profit

0.9 5.61 -883.91 382.89 -143.91
0.7 5.13 -456.64 335.48 -117.26

However, as explained previously, the previous statement

has to be balanced with the efficiency of the Chernoff-based

approach compared to the Chebyshev method in terms of

energy procurement decision.

In the last experiment, we investigate the effect of varying

the amount of consumed energy and the capacity of storage

C̄ on the energy procurement. More precisely, we vary the

amount of the consumed energy E in Table I via multiplying

it by a factor β. Then, we plot in Fig. 4 the profit given by the

deterministic and the Chernoff approaches as a function of β
for three different values of C̄. We observe, from this figure,

that the profit is a decreasing function of β. This is because

the smaller the energy consumption is, the less (and/or the

higher) the amounts of energy bought from (and/or sold to)

the SG are. Moreover, we distinguish two regimes regarding

the impact of varying the storage capacity on the profit. For

small values of β, i.e., between 0.8 and 1.2, we point out that

the profit is approximately the same for the three values of C̄.

Then, as β increases, the impact of C̄ becomes clearly obvious.

In fact, as the consumed energy increases, the optimization

program tries to save as much as RE so it can use it in the

period between 8 h to 20 h where the prices set by the SG are

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
−3000

−2500

−2000

−1500

−1000

−500

0

500

1000

β

P
ro

fi
t

 

 

Strorage Capacity= 1500

Strorage Capacity= 1000

Strorage Capacity= 500

No Uncertainty

Uncertainty

Fig. 4: Daily profit versus the amount of energy consumed

by the cellular networks for different values of the storage

capacity. The confidence level is η = 0.7 and the simulation

parameters are in Table I.

high. Hence, increasing the storage capacity when the energy

consumption is high will certainly enhance the profit. Note

also that the Chernoff-based approach is more sensitive to C̄
than the deterministic setting.

VI. CONCLUSIONS

In this paper, we developed an energy procurement frame-

work for cellular networks for uncertain renewable energy

generation. We formulated a profit optimization problem based

on chance constrained optimization to handle the renewable

energy randomness. We employed a conservative convex ap-

proximation approach to the chance constrained problem to

make its resolution more tractable. We proposed two convex

approximation methods based on the Chebyshev and the

Chernoff bounds. In the simulation results, we investigated

the energy procurement process given by first the determin-

istic setting (i.e., without uncertainty) and second by the

Chebyshev- and the Chernoff-based approaches (i.e., in the

presence of uncertainty). It was shown that with the Chernoff-

based approach, the cellular networks procure energy more

efficiently than with the Chebyshev-based approach. Moreover,

it was shown that the risk level and the amount of consumed

energy have significant impacts on the mobile operator’s pro-

curement decision during the whole cycle. A possible future

work is to enable a dependence among the base stations in

the procurement decision. For instance, it may be interesting to

allow the base stations to exchange with each other the surplus

of renewable energy generated locally. It is also interesting

to complement the current work by integrating optimized

resource allocation scheme aiming at minimizing the network

energy consumption while maintaining the required quality of

service.
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