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Abstract. Paleoclimatic records provide valuable informa-
tion about Holocene climate, revealing aspects of climate
variability for a multitude of sites around the world. How-
ever, such data also possess limitations. Proxy networks are
spatially uneven, seasonally biased, uncertain in time, and
present a variety of challenges when used in concert to il-
lustrate the complex variations of past climate. Paleocli-
matic data assimilation provides one approach to reconstruct-
ing past climate that can account for the diverse nature of
proxy records while maintaining the physics-based covari-
ance structures simulated by climate models. Here, we use
paleoclimate data assimilation to create a spatially complete
reconstruction of temperature over the past 12 000 years us-
ing proxy data from the Temperature 12k database and out-
put from transient climate model simulations. Following the
last glacial period, the reconstruction shows Holocene tem-
peratures warming to a peak near 6400 years ago followed
by a slow cooling toward the present day, supporting a mid-
Holocene which is at least as warm as the preindustrial. Sen-
sitivity tests show that if proxies have an overlooked sum-
mer bias, some apparent mid-Holocene warmth could actu-
ally represent summer trends rather than annual mean trends.
Regardless, the potential effects of proxy seasonal biases are
insufficient to align the reconstructed global mean tempera-
ture with the warming trends seen in transient model simula-
tions.

1 Introduction

Paleoclimate research is typically conducted in two ways: by
extracting information from natural archives of past climate,
called climate proxies, and by simulating past climate with
models. These two methods have complementary strengths,
as proxies provide location-specific data about climate, while
models can be used to explore spatial and dynamical rela-
tionships in the broader climate system. Here, we use pa-
leoclimate data assimilation to synthesize information from
both approaches into a spatially complete reconstruction of
Holocene temperature (approximately the past 11 700 years).

Compared to the last deglaciation and contemporary
global warming, the Holocene is a relatively stable period of
climate with temperatures similar to the preindustrial period.
Spanning from 11.7 thousand years ago (ka) to the present,
the Holocene presents an opportunity to study natural climate
variations over thousands of years, illuminating climate vari-
ability over timescales much longer than the relatively short
instrumental record. The Holocene has been relatively well
sampled by proxy records, resulting in extensive collections
of global data amassing records of temperature (Kaufman
et al., 2020a), stable water isotopes (Konecky et al., 2020),
speleothems (Comas-Bru et al., 2020), temperature of the
common era (PAGES2k Consortium, 2017), and more.

Proxy records provide information specific to certain lo-
cations, time periods, temporal resolutions, seasons, and cli-
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mate variables. This presents a multi-faceted but incomplete
perspective on past climate. To gain a larger-scale perspective
– and to help account for biases in individual proxy records
– it is desirable to synthesize these data into global, hemi-
spheric, or spatial reconstructions of past climate variations.
However, large-scale synthesis remains an ongoing challenge
in paleoclimate research. Any method that computes global
quantities based on location-specific observations must make
assumptions about how observed data relates to unknown re-
gions or unsampled climate quantities.

Addressing this challenge, paleoclimate data assimilation
provides an intuitive way of fusing paleoclimate informa-
tion from proxy data with climate physics, usually provided
by a climate model “prior” in online (e.g., Goosse et al.,
2012) or offline (e.g., Steiger et al., 2014; Hakim et al.,
2016) approaches. Networks of paleoclimate archives, called
proxy data, provide temporal information across multiple
sites, while the climate models help quantify missing infor-
mation in space using model dynamics and spatial relation-
ships, making the necessary inferences between known data
(i.e., the temporal evolution of climate at a given location)
and unknown data (missing values in space, infilled using cli-
mate model relationships) (e.g., Hakim et al., 2016; Steiger
et al., 2018). Output from climate models is used to quan-
titatively connect proxy locations to other climate variables
throughout the globe. In theory, this means that data assimi-
lation can be used to reconstruct the complete climate system
based on available information. However, the method should
be most skillful for variables that are both (1) closely related
to assimilated proxy data and (2) have broad spatial covari-
ances (Steiger et al., 2017). Therefore, reconstructions are of-
ten constrained to a subset of climate variables. The goal of
paleoclimate data assimilation is to transform a set of proxy
records into a spatially complete and multivariate perspective
on climate through time.

Data assimilation-based reconstructions of past climate
have nearly all been confined to the common era (e.g., Bhend
et al., 2012; Goosse et al., 2012; Steiger et al., 2014, 2018;
Hakim et al., 2016; Tardif et al., 2019; Erb et al., 2020;
Neukom et al., 2019a, b). Data assimilation has also been
used to infer the mean temperature of the last glacial max-
imum (LGM) from a global collection of sediment cores
(Tierney et al., 2020), and very recently to produce a recon-
struction from the LGM to the present (Osman et al., 2021).
Here, we use data assimilation to reconstruct Holocene tem-
perature using a new multi-timescale reconstruction method-
ology that seeks to assimilate each proxy record using
timescale-appropriate spatial covariance patterns instead of
using patterns calculated on a single timescale (cf., Tierney
et al., 2020; Osman et al., 2021). Compared to Osman et
al. (2021), we also incorporate a larger proxy database that
contains both oceanic and terrestrial proxy records. The in-
clusion of land proxies is a major difference compared to Os-
man et al. (2021), which focused only on marine sediments.

2 Methods

In paleoclimatic data assimilation, proxy records provide
data about past climate at specific locations, seasons, and for
different spans of time. Relationships from climate models
are used to connect the proxy data to the rest of the globe
within a physically consistent framework. This process re-
quires: (1) a proxy database complete with relevant metadata,
(2) climate model output that realistically quantifies climate
relationships for the timeframes of interest, (3) proxy calibra-
tions or proxy system models (PSMs) that relate proxy quan-
tities (e.g., δ18O, tree-ring width) to climate quantities (e.g.,
temperature), and (4) the update equations of data assimila-
tion that propagate pointwise information spatially to the rest
of the climate system (e.g., Steiger et al., 2014; Hakim et al.,
2016). These four components are described below.

2.1 The proxy database

The Temperature 12k proxy database consists of 1319
temperature-sensitive proxy records from 679 locations
across the world (Kaufman et al., 2020a). Each record con-
sists of a time series of data from a specific location along
with relevant metadata. We use a slightly updated version
of the database (v1.0.2), which contains 713 lake sediment,
359 marine sediment, 193 peat, 26 glacial ice, 13 speleothem,
10 midden, 3 wood, and 2 ground ice records. To ensure that
proxy records provide sufficient Holocene climatic informa-
tion, each record generally covers at least 4000 years, has a
temporal resolution of at least 400 years, and has age control
points at least every 3000 years over the past 12 000 years
(Kaufman et al., 2020a). The dataset contains metadata about
location, inferred seasonality, uncertainty, and several other
variables; the units of more than 95 % of the records are al-
ready calibrated to temperature in degrees Celsius. The Tem-
perature 12k dataset has previously been used to compute
index reconstructions of mean temperature anomalies for lat-
itude bands and the global mean (Kaufman et al., 2020b).

The Temperature 12k database presents a spatially diverse
and multifaceted perspective on Holocene temperature, but
also possesses limitations. It has uneven spatial coverage,
with large areas of the Southern Hemisphere undersampled
compared to the Northern Hemisphere. Many of the records
are seasonally biased, with 34 % interpreted to record sum-
mer temperature and 20 % interpreted to record winter tem-
perature (Kaufman et al., 2020a). Additionally, the Temper-
ature 12k data have uncertainties in the magnitude, timing,
and interpretation of the records, which is typical for pa-
leoclimate data. Temperature magnitude uncertainty in the
database is quantified for each record as the root mean square
error (RMSE) based on archive type, measured proxy, and
seasonality (Kaufman et al., 2020a), ranging from 1.1 to
3 ◦C. These values, after being converted to mean square er-
ror, are incorporated into the data assimilation so that records
with larger uncertainties are given less weight in the recon-
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Figure 1. Median temporal resolution all 1276 calibrated proxies in the Temperature 12k database during the period 0–12 000 yr BP. Archive
types are stacked from most common to least common.

struction. For this work, we exclude records that are not cal-
ibrated to temperature, lack uncertainty estimates, or do not
overlap with the chosen 3–5 ka reference period. Addition-
ally, we do not include seasonal records when an annual
record is available for the same location, as in past work
(Kaufman et al., 2020b). Of the 1319 proxy records in the
Temperature 12k database, 1276 are calibrated to tempera-
ture and 711 are used in the data assimilation. The majority
of the excluded records are seasonal records at locations that
also have annual records. Recent work has shown that data
assimilation may perform better when given a large database
of proxy records that has been filtered for climate relevance
(Franke et al., 2020). The Temperature 12k database consists
of Holocene proxy records selected for their temperature sen-
sitivity (Kaufman et al., 2020a).

Regarding temporal resolutions, median resolutions of cal-
ibrated proxy records in the Temperature 12k database range
from 1 to 700 years over the past 12 000 years, with almost
two-thirds of the records having a median resolution finer
than 200 years over that period (Fig. 1). Since the database
lacks precise information about the duration of each data
point, we assume that each proxy record contains contigu-
ous data, with each data point representing an average of the
period between data midpoints. This assumption represents
one endmember within a range of possibilities and, because
not all proxy datasets are sampled contiguously, this assump-
tion effectively transfers some higher-frequency variability to
lower frequencies (though we expect this effect to be small).

2.2 Climate model data

Paleoclimatic data assimilation fuses proxy data with infor-
mation from climate models and requires a collection of cli-
mate states drawn from a single simulation or multiple sim-
ulations. This ensemble of model states provides two pieces
of information. First, it provides an initial range of climate

anomalies for the period of interest, which is later updated
through comparison with proxy data. Second, the model en-
semble is used to compute covariances between different lo-
cations, seasons, and climate variables. These covariances al-
low the method to infer remote climate anomalies based on
the location-specific climate data from proxy data. Because
these model data represent our knowledge of the climate sys-
tem before assimilating proxy data, it is known as the model
“prior”.

A good model prior should be relevant to the period of in-
terest, accurately capture realistic relationships in the climate
system, and be long enough to quantify these relationships
on paleoclimate-relevant timescales. For Holocene climate,
we draw prior climate states from two transient Holocene
model simulations. The first simulation is a PMIP4 HadCM3
transient climate simulation of the past 23 ka. This simu-
lation (also used by Snoll et al., 2022) follows the PMIP4
protocol for the last deglaciation, version 1 (Ivanovic et al.,
2016), using the ICE-6G_C VM5a ice sheet reconstruction
(Peltier et al., 2015) and the BRIDGE version of HadCM3
(Valdes et al., 2017), specifically HadCM3B-M2.1dD. The
land-sea mask, bathymetry, and ice mask are updated at 500-
year intervals for the period studied here, in accordance with
the temporal resolution of ICE-6G_C. Orographic changes
are applied by linearly interpolating at annual resolution be-
tween the ICE-6G_C time steps. This provides smooth evo-
lution of surface orography and thus reduces the propensity
for sudden climate shocks that can occur if only making
these changes at 500-year (or less frequent) intervals, espe-
cially at times of rapid deglaciation (Gregoire et al., 2012,
2016). As recommended by the PMIP4 protocol, freshwater
forcing from melting ice was computed from a high resolu-
tion (30 arcsec) network drainage model of ICE-6G_C (e.g.,
Wickert, 2016) following the method employed by Ivanovic
et al. (2017, 2018). Orbital forcing and radiatively active
gases (CO2, N2O, CH4) evolve smoothly, interpolating at an-
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nual resolution between any lower-resolution time steps of
the PMIP4 last deglaciation forcing dataset. This model sim-
ulation is from the latest generation of transient simulations
spanning the period. The direct climate output has undergone
light spatial smoothing to account for a minor checkerboard
pattern that developed. The second model simulation used in
the prior is the TraCE-21ka simulation, which is an earlier
transient simulation spanning from the last glacial maximum
to present day and has been described in past work (Liu et
al., 2009).

In the data assimilation, the outputs from both the
HadCM3 and TraCE-21ka simulations are averaged to
decadal resolution and used together in a multi-model en-
semble prior. The latitude by longitude resolution for the
models is 2.5◦ by 3.75◦ for HadCM3 and ∼ 3.71◦ by 3.75◦

for TraCE-21ka, but both have been regridded to 2.8125◦

by 3.75◦ so they can be used together. The mean of the 3–
5 ka period was removed from each model. We composed
the prior as all decades within a 5010-year window that was
centered, to the degree possible, on the decade to be recon-
structed, resulting in a shifting collection of 1002 decades
(i.e., 501 decades from two models). The 5010-year length
of this window is arbitrary, but was chosen to be long enough
to encompass numerous model states and short enough to al-
low distinct changes as orbital forcing and boundary condi-
tions evolved through the Holocene. The use of decadal res-
olution speeds up the data assimilation (compared to annual
resolution) and is already equal to or higher than the median
resolution of the vast majority (99 %) of datasets in the Tem-
perature 12k database. Of the 1276 calibrated records, only
11 have a median resolution that is decadal or finer in the past
12 000 years, although 165 records have minimum resolu-
tions finer than decadal during this period (Fig. 1). Maintain-
ing decadal resolution also allows for high-resolution proxy
data such as ice cores to inform the data assimilation on much
shorter timescales than previous Holocene data assimilation
efforts. While this approach results in a climate reconstruc-
tion which is nominally decadal, users should not treat the
reconstruction as if it contains robust decadal information;
instead, the information content of the reconstruction is de-
pendent on the assimilated records. Decadal resolution has
been utilized with the goal of retaining high-resolution in-
formation where possible, despite the fact that most of the
proxies are lower resolution.

Because the prior climate states are taken from a moving
window, both the mean climate and the spatial and seasonal
covariance patterns change through the Holocene. Slowly
evolving covariance patterns are realistic, so it is appropriate
to account for this in the prior. For example, orbital forcing
alters seasonal and latitudinal insolation patterns throughout
the Holocene. Additionally, the melting of remnant ice sheets
alters spatial climate patterns, particularly on and near the ice
sheets. The use of temperature states taken from a moving
window allows time-varying relationships to be represented
in the prior.

The choice of a time-varying (e.g., Osman et al., 2021) or
time-constant (e.g., Hakim et al., 2016) prior is an important
consideration in offline data assimilation. Whether the prior
varies in time or not, the temporal evolution of the model
prior will influence the reconstructed climate, so it should
be chosen carefully. A time-varying prior, as used here, may
impart some aspects of its temporal evolution onto the fi-
nal reconstructed climate. To test how the reconstructed cli-
mate is affected by the model prior and other methodological
choices, alternate experimental designs are explored in Ap-
pendix B.

2.3 Proxy calibrations

In data assimilation, proxy records must be quantitatively
compared to model values in the same units. This can be
done using empirical methods such as linear regression (e.g.,
Hakim et al., 2016), physically based proxy system models
(e.g., Dee et al., 2016; Tierney et al., 2020), or other ap-
proaches. In the work presented here, most of the Temper-
ature 12k proxy records have already been calibrated to tem-
perature (Kaufman et al., 2020a), so we rely on those pre-
vious proxy calibrations rather than a proxy system model-
ing (PSM) approach. The use of physically based PSMs is a
focus of ongoing and future work, as discussed in Sect. 4.4.

2.4 Multi-timescale data assimilation

Data assimilation is a mathematical technique for optimally
combining observations (here proxy data) with prior infor-
mation, typically from a model. The model is a climate model
that provides an initial, or prior, state estimate that can be up-
dated in a Bayesian sense based on the information from the
proxies and error estimates of both the proxies and the prior.
The prior may contain any climate model variables of interest
and the updated prior, called the posterior, is a probabilistic
estimate of the true climate state given the observations and
the error estimates. The basic data assimilation state update
equations (e.g., Kalnay, 2003) are given by

xa = xb+K
[
y−H (xb)

]
, (1)

where K is the Kalman gain matrix, which can be written as

K= cov(xb,H (xb)) [cov(H (xb) ,H (xb))+R]−1, (2)

and cov represents a covariance expectation. The matrix xb is
the prior (or “background”) estimate of the state and the ma-
trix xa is the posterior (or “analysis”) state and represents the
ensemble reconstruction. Observations or proxies are con-
tained in the matrix y, and the observations are estimated by
the prior through H(xb), which is an operator that maps xb
from the state space to the observation space (e.g., converts
climate model variables to measured proxy quantities). Note
that here we assimilate only proxies that have already been
converted to units of degrees Celsius, so our H(xb) is sim-
ply an ensemble of temperature values from xb at the same
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locations, seasons, and temporal resolutions as the proxy
records. The difference between y and H(xb) represents the
new information added by the proxies. From the first term of
Eq. (2), we see that K is fundamentally a spatial covariance
matrix that spreads the information added by the proxies,
y−H(xb), to all variables in the prior xb. R is a positive and
diagonal error covariance matrix for the proxies, where each
diagonal element is the error term for each proxy. As the val-
ues of R become large, corresponding to higher proxy uncer-
tainties, R comes to dominate the matrix inverse in Eq. (2),
which, because it is positive and diagonal, leads to a K that
approaches zero; thus, in a high proxy-uncertainty scenario,
xb is modified only slightly. In a low proxy-uncertainty sce-
nario, the opposite situation occurs, the new proxy informa-
tion is weighted more heavily, and xb is modified more sub-
stantially. The data assimilation process involves computing
the above equations, which “updates” the prior xb to arrive
at the posterior state xa for each timestep. For paleoclimate
data assimilation, the reconstruction consists of xa computed
for each fundamental time step of the reconstruction (e.g.,
every decade of the Holocene). As in Steiger et al. (2018),
Eqs. (1) and (2) are implemented using a square root ensem-
ble Kalman filter outlined in Whitaker and Hamill (2002).
See Steiger et al. (2014) and Steiger and Hakim (2016) for
detailed interpretations of the data assimilation update equa-
tions.

As noted earlier, many of the proxy records in the Tem-
perature 12k database are interpreted to represent sum-
mer or winter temperature. While proxy seasonality bi-
ases are poorly accounted for in many compositing meth-
ods, seasonal biases of individual records are accounted for
here. This is done through the model-based estimate of the
proxy H(xb), which is computed using the same seasonality
as the proxy (using seasonality information in the metadata
of each record, which is generally represented as a span of
months). Because H(xb) is computed for the same season as
the proxy, the Kalman gain matrix (Eq. 2) quantifies the re-
lationship between the seasonal proxy quantity and annual
mean climate in the prior xb. This allows the seasonal proxy
record to help reconstruct annual mean climate.

Here, we expand from the multi-timescale data assimi-
lation approach developed by Steiger and Hakim (2016).
Multi-timescale data assimilation is distinguished from
single-timescale data assimilation (used by all previous
data-assimilation-based paleoclimate reconstructions) in that
multiscale proxy data are assimilated using timescale-
appropriate covariances rather than covariances calculated
at a single uniform resolution (e.g., Badgeley et al., 2020;
Osman et al., 2021). Such a multiscale approach allows us
to utilize covariances across timescales to update the re-
construction (Steiger and Hakim, 2016). This is important
in a scenario where, for example, high-frequency and low-
frequency covariances between locations differ or even op-
pose each other. Also, a multiscale reconstruction approach
can reduce the chances of obscuring high-resolution climate

signals in the proxy data because it does not impose a single
“sampling” timescale on all proxy data regardless of their
true time resolution.

Here, we update the methodology of Steiger and
Hakim (2016) by modifying two components: (1) we have
a different technique for creating and structuring the multi-
timescale prior, xb, as well as H(xb); (2) we additionally
employ a simultaneous square-root Kalman filter (all obser-
vations at a given time step are assimilated simultaneously)
instead of a sequential square-root Kalman filter. These pri-
marily technical modifications result in an algorithm that is
faster and requires far less memory storage (a major limiting
factor in the Steiger and Hakim, 2016 algorithm) to com-
plete the reconstruction. We note that, given the same inputs,
simultaneous and sequential assimilation techniques produce
identical ensemble means and only minor differences in en-
semble spread.

In this multi-timescale data assimilation approach, the re-
constructions are performed off-line at a predetermined base
timescale, here decadal resolution, though the algorithm is
general and can apply to any base timescale (e.g., annual
or centennial). To process all proxy data to decadal resolu-
tion, we first average any sub-annual data, then generate val-
ues for every missing year using nearest-neighbor interpo-
lation (i.e., values are repeated for nearby years which lack
data), and finally bin these annual values to decadal means.
As stated earlier, this processing makes the assumption that
proxy data is continuous (unless NaNs are present) and es-
sentially spreads lower-resolution values to a decadal resolu-
tion. A uniform temporal resolution is necessary to perform
the data assimilation, but information about the time resolu-
tion of each proxy data point is retained and proxy data is
assimilated using timescale-appropriate covariances.

The prior xb is composed of base timescale averaged cli-
mate states, taken from a climatically representative climate
model simulation (or simulations, described previously).
H(xb) is pre-computed for each proxy over the full set of
temporal resolutions contained within that proxy time series;
the time averages for H(xb) are computed such that the cen-
ter years of xb and H(xb) are the same (or half a time step
away for a span of an even number of time steps). For ex-
ample, suppose that xb is composed of 10 year-averaged cli-
mate states and a proxy has values that are decadal means
or multi-decadal means of different lengths; we pre-compute
multiple ensembles of H(xb) for this proxy: one ensemble
uses 10 year-averages of climate model data and the oth-
ers use multi-decadal means computed with box averages of
decades centered to the degree possible on the same decades.
Relationships between the ensembles of H(xb) and xb quan-
tify how proxy estimates (at the same location, season, and
timescale as the proxy data) relate to decadal-mean climate
everywhere else.

The data assimilation update equations are then computed
for each base time step in turn, assimilating all proxies that
have values spanning a given time step. For proxies with
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a resolution lower than the base timescale, the proxy value
will be assimilated repeatedly for all the base time steps it
spans (e.g., a value spanning the years 1000 to 1050 BP will
be assimilated at each decadal time step within that time
range); thus, this repeated assimilation updates the entire
period that a proxy value represents in base time step seg-
ments. The reconstruction code uses the pre-computed H(xb)
which applies for the particular time average of a given proxy
value. Depending on the time resolution of a proxy data
point, H(xb) values can represent time averages ranging from
10 years (our chosen base resolution) to 1000 years. Because
of our use of center referencing and temporal averages of
up to 1000 years, no ensemble members will be centered on
decades more recent than 500 years before present in the sim-
ulations. The temporal resolution is capped at 1000 years to
prevent the loss of additional ensemble members at the mod-
ern end of the simulation.

In summary, the data assimilation is performed sepa-
rately for each decade. For proxy observations that represent
decadal data, decadal covariances are used to propagate the
climate signal from that location to everywhere else in the
climate system. For proxy observations with lower tempo-
ral resolution, the data is first “spread” to decadal resolution.
Then, for each decade, covariances between lower-resolution
temperature and decadal temperature are used to translate the
climate signal from the proxy data to the decadal resolution
of the reconstruction. This attempts to quantify how informa-
tion from a lower-resolution climate signal at the proxy loca-
tion can inform decadal climate elsewhere. In our approach,
assimilating higher-resolution proxies should provide more
local information, while assimilating longer-term mean con-
ditions should have a broader spatial impact.

In theory, the multi-timescale approach offers two advan-
tages compared to binning at a lower temporal resolution:
first, it prevents high-resolution proxy data from being av-
eraged out, as discussed in Sect. 2.2; second, it allows indi-
vidual data points to inform the climate reconstruction us-
ing covariances based on different timescales. Accordingly,
the multi-timescale methodology is used in this paper to re-
construct Holocene temperatures. A drawback of this method
is some added methodological complexity. Additionally, the
lower-resolution features of the reconstructed temperature do
not differ strongly compared to a reconstruction using lower-
resolution bins (Appendix B5).

3 Results

3.1 Proxy network analysis

The Temperature 12k dataset contains 1319 proxy time se-
ries and substantial metadata and has been described and
synthesized into global means in past work (Kaufman et al.,
2020a, b). 1276 of these proxy records have been calibrated
to degrees Celsius, and 711 are used in the data-assimilation-
based reconstruction. To visualize this data-rich network, cal-

Table 1. Percentage of records with given temperature trends.
Linear regression slopes are calculated for the periods 12–6 and
6–0 ka and the percentage of records which fall into each cat-
egory are listed. “Flat” refers to records that fail the Wald test
for slopes significantly different from 0 at the 0.05 level, using
a t-distribution. The 1276 calibrated records are considered, with
587 annual records, 427 summer records, and 262 winter records.
Records with fewer than 5 points in a given period are excluded
from that period, which accounts for no more than 20 % of records
in each category. Percentages may not sum to 100 due to rounding.

12–6 ka 6–0 ka

Warming Cooling Flat Warming Cooling Flat

All 49.6 14.4 36.0 15.3 40.9 43.7
Annual 53.7 12.2 34.2 15.9 38.5 45.5
Summer 45.3 16.2 38.5 11.7 48.2 40.1
Winter 46.9 16.6 36.5 19.9 34.5 45.6

ibrated proxy records are plotted from north to south, with
each proxy represented as a color-coded line (Fig. 2). This
perspective allows the entire database to be visualized at a
glance, although it ignores fundamental aspects of the data
such as longitude and seasonality.

The calibrated proxy records show considerable spa-
tial and temporal variability, but some consistent patterns
emerge. The early Holocene is cold in most records, with
many records showing warming toward the mid-Holocene.
Maximum preindustrial temperatures typically occur around
6–7 ka in the Northern Hemisphere, with the late Holocene
showing cooler temperatures. There is also considerable spa-
tial and temporal variability, some of which may represent
genuine temperature variability while some may represent
noise. To quantify temperature trends in the data, we perform
a linear regression of the original proxy data using a Wald
Test and a t-distribution with p ≤ 0.05 to determine signifi-
cance (Table 1). Using this metric, more proxy records show
significant warming as opposed to cooling from 12 to 6 ka
(49.6 % warming vs. 14.4 % cooling), while more records
show significant cooling than warming from 6 to 0 ka (40.9 %
cooling vs. 15.3 % warming).

The dataset possesses both spatial and seasonal bi-
ases, however, so summary statistics should not be taken
as straightforward indicators of global mean tempera-
ture trends. An important consideration when examining
Holocene temperatures is the possible effect of seasonal bi-
ases in proxy data, which is especially important considering
time-varying external climate forcings over the Holocene.
Changes in aspects of Earth’s orbit, for instance, redistribute
incoming solar radiation between seasons and latitudes, pro-
ducing different trends in insolation for different seasons and
locations. From the early Holocene to present day, North-
ern Hemisphere insolation has decreased substantially in the
summer, increased in the winter, and remained relatively sta-
ble for the annual mean (Fig. 3). Climate feedbacks, which
can amplify or diminish the climate response to climate forc-
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Figure 2. Temperature anomalies from calibrated records. Relative temperatures (◦C) for 1263 calibrated proxy records in the Temperature
12k database. Records are interpolated to decadal resolution using a nearest-neighbor interpolation method (described in Sect. 2.4) and
arranged from north to south. The 3–5 ka mean is removed from each record, and the 13 records that do not have data between 3–5 ka show
no data. Black lines indicate the timing of the warmest decade for each 30◦ latitude band, calculated by standardizing all records within each
latitude band and finding the warmest mean where at least 25 % of the proxy records have values. The y axes show how many records are
displayed (left) and indicate the approximate latitudes of the records (right).

ings (Erb et al., 2013), may further modify seasonal signals,
so care must be taken not to misinterpret a seasonal proxy
signal as an annual mean. When using metadata to sepa-
rate records by season, many proxy records of all seasons
show warming in the early Holocene and cooling in the late
Holocene, although most of these records are in the North-
ern Hemisphere (Fig. 4). Interestingly, summer records have
the highest percentage of time series with clear late Holocene
cooling (48.2 %), while annual and winter records have a plu-
rality of time series without significant trends (only 38.5 % of
annual and 34.5 % of winter records show cooling; Table 1).
This is somewhat consistent with insolation forcing. In data
assimilation, the use of a time-varying prior helps account for
changing relationships between seasonal proxy signals. Ad-
ditionally, sensitivity tests conducted in Sect. 3.3 can be used
to evaluate the extent to which our seasonal interpretation of
proxy records can affect the final reconstruction.

In addition to showing general temperature patterns, these
overview figures illustrate the predominance of Northern
Hemisphere records (over half of the time series are in the
Northern Hemisphere mid-latitudes) and the truncation of
many records near 11 ka, a result of the processing conducted
for a previous pollen proxy synthesis effort (Marsicek et al.,
2018). Many other aspects of the database, such as proxy

type, longitude, season, uncertainty, and other metadata, are
not shown. Additional analysis of the proxy database can be
found in recent publications (Kaufman et al., 2020a, b), and
the proxy data can be visualized online at lipdverse.org.

3.2 The past 12 000 years

We now assimilate the Temperature 12k proxy database. The
model prior uses decadal climate anomalies from two mod-
els, the transient HadCM3 and TraCE-21ka simulations. Be-
cause the prior uses climate states from a moving 5010-
year window, the mean and the covariance patterns change
through time (Fig. 5). Starting from this prior, we assimi-
late the Temperature 12k proxy records to produce a spatially
complete reconstruction of Holocene temperature from 12 ka
to the present.

Reconstructed global mean temperature warms rapidly at
the end of the last glacial period, with ∼ 1.2 ◦C warming
from 12 to 10 ka (Fig. 5). The temperature shift near 11 ka
is likely a result of the rapid increase in proxy coverage at
that moment. After 10 ka, warming continues at a slower
pace, with peak warmth occurring around 6.4 ka, followed
by a gradual cooling toward present day. Note that some re-
constructed values in the early to mid-Holocene are warmer
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Figure 3. Modeled hemispheric insolation and temperature in different seasons. Insolation (W m−2, dashed) and temperature (◦C, solid)
from the HadCM3 deglacial simulation, averaged for the annual mean (black), June–August (red), and December–February (blue) for the
(a) Northern Hemisphere and (b) Southern Hemisphere. Throughout this paper, original monthly data are used from models, with no adjust-
ment to account for the calendar effect (Joussaume and Braconnot, 1997).

than the climate states in the model prior, demonstrating
that reconstructed values can exceed the limits of the prior
if proxy values support such anomalies. Proxy coverage is
highest near 3–4 ka (∼ 700 records) and lowest before 11 ka
(∼ 300 records). The relatively fast 20th century warming
seen in the instrumental temperature record is not captured
by the reconstruction due to the coarse temporal resolution
of the assimilated records (having a median resolution of
∼ 150 years) and the decrease in proxy coverage toward the
present day.

Spatially, the reconstruction shows warming in the first
half of the Holocene over almost the entire globe, with some
of the largest values over the regions of disappearing ice
sheets in the Northern Hemisphere (Fig. 6a). Changes are
generally larger over continents than over the ocean and tend
to be larger over the Northern Hemisphere than the Southern
Hemisphere, although in pseudoproxy tests, the skill of the
reconstructed temperature is reduced in the Southern Hemi-

sphere relative to the Northern Hemisphere (Appendix A).
For the latter half of the Holocene, temperatures decrease
in most of the Northern Hemisphere, with notable excep-
tions in regions of India and northern Africa, where stronger
mid-Holocene monsoons may have allowed for a cooler mid-
Holocene climate (Brierley et al., 2020; Fig. 6b). South-
ern Hemisphere temperature changes are small in the late
Holocene, perhaps due to the relative lack of proxy data in
that region.

To better understand the temporal and spatial characteris-
tics of the Holocene reconstruction – and to further explore
the complexity of the underlying proxy network – we here
compare the reconstructed climate to the proxy records that
inform it. This proxy/reconstruction comparison helps illus-
trate how the multifaceted proxy data is transformed into a
spatially complete product.

Temperature trends are first compared for the reconstruc-
tion and individual proxies in the data-rich regions of North
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Figure 4. Temperature anomalies for calibrated proxy records separated by seasonal metadata. (a–c) Maps of proxy record locations, sepa-
rated by season. (d–f) Relative temperatures of calibrated records, as in Fig. 2, separated by season.

America and Europe (Fig. 7). Notably, the reconstructed tem-
perature anomalies are more spatially uniform than those
seen in the proxy records themselves. Proxy records are di-
verse and sometimes contradictory, with temperature trends
that vary substantially, even over short distances. These spa-
tially diverse climate signals are impossible to fully match
using the relatively coarse spatial resolution of the data as-
similation (2.8125◦ latitude by 3.75◦ longitude). Addition-
ally, the data assimilation is constrained by the model’s spa-
tial covariance pattern, which prohibits unrealistically large

changes over short distances. Consequently, the data assim-
ilation product often serves as an effective compromise be-
tween opposing and high-amplitude anomalies in a region.
A side effect of this compromise is that the reconstructed
temperature often cannot match the large positive and neg-
ative anomalies of proxies in the region. Resolving the cause
of this apparent spatial variability in the proxy database –
whether it represents real spatial differences, proxy inter-
pretation uncertainty, age model uncertainty, or some other
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Figure 5. Reconstructed global mean temperature. (a) Global mean
temperature in the prior (gray) and reconstruction (blue). Lines
show the ensemble mean and colored bands show the 1σ and full
ranges of the ensemble. The reconstruction uses 3–5 ka as the ref-
erence period, as most records overlap with that period. (b) The
temporal proxy coverage, showing the number of assimilated ob-
servations at each time step.

source of uncertainty – should continue to be a research pri-
ority.

To compare the temperature reconstruction and proxy
records in a different way, the reconstructed zonal mean is
compared to annual proxy values binned into half-degree lat-
itude bands (Fig. 8). This helps reveal the extent to which
the reconstruction matches – or fails to match – the com-
plex spatial and temporal patterns of the proxy data. The
Holocene Reconstruction shows some clear similarities to
the annual mean proxy data, with the coldest temperatures
in the early Holocene and the warmest temperatures later.
Again, the Holocene reconstruction is more spatially and
temporally homogeneous than the data. The reconstruction
shows the warmest temperatures close to 6 ka in the Northern
Hemisphere mid and high latitudes, where proxy coverage is
densest, but more recent in the tropics and Southern Hemi-
sphere. Reconstructed temperature anomalies are largest in
the northern mid- and high latitudes as well as the Antarc-
tic region, with relatively small temperature anomalies in the
tropics and southern mid-latitudes. Part of the reduced South-
ern Hemisphere signal may be indicative of the real climate,
as the Southern Hemisphere has larger oceans and is more
remote from changes in Northern Hemisphere ice sheets, al-
though the relative lack of sufficient proxy data in the South-
ern Hemisphere likely also contributes to this result.

3.3 Possible influence of proxy seasonal biases

Changes in Earth’s orbit affect Holocene insolation trends
differently in different seasons (Fig. 3). Since the early to
mid-Holocene, insolation in the Northern Hemisphere has
substantially decreased in summer, increased in winter, and

Figure 6. Temperature trends. Temperature trends (◦C kyr−1) at
every location for the periods (a) 12 to 6 ka and (b) 6 to 0 ka. Dots
show locations of assimilated proxy records during each period.
Note the different scales between the two panels.

stayed relatively stable in the annual mean. These seasonal
insolation trends affect seasonal temperature, with warmer
early to mid-Holocene temperatures in Northern Hemisphere
summer and colder temperatures in winter relative to the an-
nual mean in the HadCM3 transient simulation (Fig. 3). In
the Southern Hemisphere, a similar but opposite insolation
pattern occurs, but seasonal temperatures are less impacted
due to the large ocean basins.

The existence of differing seasonal temperature trends
highlights the need to accurately diagnose seasonal biases
in proxy records. If summer biased proxy records are as-
sumed to represent annual means, for example, reconstructed
temperatures may show too much early- to mid-Holocene
warmth. If winter biased proxies are used instead, the op-
posite is true.

Data assimilation accounts for proxy seasonality directly
by transforming seasonal proxy values into annual means
using covariance relationships between seasonal and an-
nual values in the model prior. To do this, the method re-
quires accurate seasonality metadata for assimilated prox-
ies. If metadata about proxy seasonality is inaccurate, then
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Figure 7. Temperature trends in the reconstruction and proxy records for North America and Europe. Temperature trends (◦C kyr−1) over
the periods (a) 12 to 6 ka and (b) 6 to 0 ka, like Fig. 6. Trends in assimilated proxy records are shown as colored symbols, with shapes
indicating the seasonality of the proxy (circle: annual; upward-pointing triangle: summer; downward-pointing triangle: winter). Records are
only plotted if they have data covering at least half of the time period. Note the different color bars in the two panels.

season-specific temperature trends may still bias the final re-
construction.

In our main reconstruction, we use seasonality metadata
from the Temperature 12k database. Assimilated proxies are
prescribed to be 78 % annual, 21 % summer, and 1 % winter.
To explore the extent to which incorrect seasonality metadata
could bias results, we run three additional experiments. In the
first experiment, all proxies are assumed to represent sum-
mer values: June–August in the Northern Hemisphere and
December–February in the Southern Hemisphere. In the sec-
ond experiment, all proxies are assumed to represent winter
values in their respective hemispheres. In the final experi-
ment, proxy values are assumed to represent annual means.
The proxy data are not modified; we only change how assim-
ilated proxy data are translated into the annual mean recon-
structed temperature.

In the “summer” experiment, reconstructed annual mean
temperatures become cooler in the early to mid-Holocene,
with a value of 0.02 ◦C at the mid-Holocene (compared to
0.09 ◦C in the default experiment) (Fig. 9). This reduction
in early- to mid-Holocene temperature is consistent with ex-
pectations for the Northern Hemisphere, where summer tem-

peratures were relatively warm in the early to mid-Holocene.
When accounting for this possible bias, the reconstructed an-
nual mean temperature in the early to mid-Holocene becomes
cooler. In comparison, the “winter” experiment – which as-
sumes that all proxies represent winter values in their respec-
tive hemispheres – produces an opposite response: account-
ing for the relative cold of the early- to mid-Holocene win-
ter produces an annual mean reconstruction that is warmer
during that period, with a mid-Holocene anomaly of 0.17 ◦C,
nearly twice that of the default experiment. In both the “sum-
mer” and “winter” experiments, changes to global mean tem-
perature trends are more affected by anomalies in the North-
ern Hemisphere than the Southern Hemisphere because, de-
spite similar but opposite insolation patterns in the Southern
Hemisphere, seasonality changes in that region are damped
due to large oceans (Fig. 3).

These results show that our perception of Holocene trends
can be influenced by assumptions about proxy seasonal-
ity. If proxy records have an undiagnosed summer bias,
some of the mid-Holocene warmth in climate reconstruc-
tions may simply represent summer warmth. On the other
hand, if proxy records have an undiagnosed winter bias,
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Figure 8. Comparison of annual records and zonal mean Holocene reconstruction. (a) Annual Temperature 12k proxy records binned into
0.5◦ latitude bands, showing temperatures relative to 3–5 ka. (b) Zonal mean annual temperatures in the Holocene reconstruction. Panel (a) is
like Fig. 2, but only annual records are selected and they are binned by latitude and averaged when multiple records occupy the same latitude
band. Panel (a) does not represent zonal means, whereas (b) shows the zonal mean of the reconstruction. Black lines or dots show the timing
of the warmest period, calculated by standardizing all latitude bands and finding the warmest mean of each 30◦ latitude zone, where at least
25 % of the bands have values.

Figure 9. Global mean temperature composites created using dif-
ferent assumptions for proxy seasonality. “author_interp” is the de-
fault experiment, where proxy seasonality metadata from the Tem-
perature 12k proxy database are used. In the other experiments, all
proxies are assimilated as if they represent annual, summer, or win-
ter means. Temperature anomalies are shown relative to 0–1 ka.

mid-Holocene warmth could be greater than reconstructions
show. That said, even in these extreme scenarios where all
proxies are assumed to represent either summer or winter
anomalies, reconstructed mid-Holocene temperatures only
differ by a couple of tenths of a degree – not nearly enough to

match the cold mid-Holocene anomalies present in transient
climate simulations (−0.56 ◦C in HadCM3 and −0.29 ◦C in
TraCE-21ka). Therefore, proxy seasonality biases can poten-
tially explain part of the Holocene temperature “conundrum”
(Liu et al., 2014), but by no means all of it.

4 Discussion

4.1 Regional comparison with proxy data

To explore the spatial and temporal patterns of the recon-
struction in more depth, time-varying temperature anomalies
are explored in North America and Europe. These regions
are well covered by proxy records and, since they are lo-
cally forced by the shrinking Laurentide and Fennoscandian
ice sheets, they present worthwhile targets for closer anal-
ysis. Reconstructed North American temperatures are aver-
aged into millennial means spanning the past 12 ka and are
plotted alongside ice sheet anomalies and annual mean proxy
values binned to the same grid as the reconstruction (Fig. 10).
This comparison allows us to examine how the proxy records
are translated into the final spatiotemporal temperature re-
construction. Additionally, the ice sheet reconstruction (ICE-
6G_C; Peltier et al., 2015) allows us to evaluate the recon-
structed temperature patterns against a clear spatial forcing.
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Figure 10. Temperature and ice sheets in North America. Millennial anomalies for reconstructed temperature (shaded, ◦C), gridded annual
mean proxy records (dots, ◦C), and ice sheets from the ICE-6G_C reconstruction (contours, 500 m interval; Peltier et al., 2015). All values,
including ice sheets, are shown for 1000-year means relative to the period 3000–5000 yr BP. Proxy values are binned and averaged to the
same spatial resolution as the data assimilation for clarity. Summer- and winter-biased proxy records – which make up 21 % and 1 % of
the assimilated records, respectively – are not shown, as seasonal records are not directly comparable to the annual reconstruction. The
temperature reconstruction is based on proxy values and model covariances, without knowing the specific timing of ice sheet changes.

As noted previously, the temperature reconstruction shows
some agreement with the proxy data but also shows greater
spatial uniformity. Widespread cold anomalies exist over
North America at 11–12 ka, which reduce in extent and mag-
nitude as the Laurentide ice sheet shrinks. During 9–11 ka,
reconstructed warmth over part of northern Canada is likely
caused by the assimilation of warm proxies in nearby west-
ern North America, but is probably incorrect due to the pres-
ence of the Laurentide ice sheet in that region. By 7–8 ka,
the effect of the ice sheet appears to be relatively local. By
6–7 ka, cool temperatures have largely disappeared despite
some ice remaining in northeast Canada according to the
ICE-6G_C ice sheet reconstruction (Peltier et al., 2015). No
proxy records exist for temperatures over extinct ice sheets,
so temperatures in those regions are inferred based on avail-
able records and covariance patterns from the model prior.

In Europe, cool temperatures prevail until around 8 ka,
past the end of the Fennoscandian ice sheet (Fig. 11). After-
ward, temperatures over Scandinavia reach a peak from 5–
7 ka before gradually cooling toward pre-industrial tempera-
tures. Reconstructed temperatures in the Greenland Sea show

pronounced warmth during 9–11 ka and afterward, which ap-
pears to be informed by several records on Svalbard and
the waters west and south of Svalbard. The two sediment
core foraminifera records from the Fram Strait west of Sval-
bard (MSM5/5-723-2 and MSM5/5-712-2; Fig. 4f and g of
Werner et al., 2016) reflect subsurface (100 m depth) temper-
atures and are likely influenced by increased Atlantic Water
advection as well as the summer insolation peak and limited
sea-ice extent across this region during the Early Holocene
(Werner et al., 2016). If they do not correspond with surface
temperatures, it may be beneficial to remove these records
(and similar ones) from future data assimilation.

In both the North American and European regions, proxy
data show a greater diversity of signals compared to the
larger-scale patterns of the reconstruction. Data assimilation
represents a best-fit solution given the model, the data, and
their uncertainties.
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Figure 11. Temperature and ice sheets in Europe. Millennial anomalies for reconstructed temperature (shaded, ◦C), gridded annual mean
proxy records (dots, ◦C), and ice sheets from the ICE-6G_C reconstruction (contours, 500 m interval), as in Fig. 10.

4.2 Northern Hemisphere cooling at 8.2 ka

Evidence from proxy records indicates the existence of
a brief cold event near the North Atlantic region around
8200 years ago (Alley et al., 1997; Thomas et al., 2007;
Morrill et al., 2013), possibly caused by freshwater influx
in the North Atlantic. This event, which has also been stud-
ied in models (Tindall and Valdes, 2011; Morrill et al.,
2014; Matero et al., 2017), represents a pronounced multi-
decadal climate event that is (at least partially) captured in
our Holocene reconstruction. Because of its short timescale
and relative age, it is a worthwhile target for further explo-
ration.

In our reconstruction, global mean temperature shows a
brief cold excursion for ∼ 100 years near 8.2 ka (Fig. 12).
Spatially, the coldest temperatures in the reconstruction oc-
cur above the Laurentide ice sheet, with moderate cooling
over the Northern Hemisphere mid- and high latitudes and
mild warmth in parts of the Southern Hemisphere, particu-
larly near Antarctica. This temperature pattern is generally

consistent with data syntheses and climate model experi-
ments for the 8.2 ka event (Morrill et al., 2013), which sug-
gests that the multi-timescale assimilation technique can rea-
sonably reconstruct short-term phenomena, even when only a
small fraction (24 %) of the assimilated records have the res-
olution to meaningfully contribute. Although the pattern is
generally consistent with previous reconstructions and simu-
lations, there are some key differences. Generally, maximum
8.2 ka event cooling is thought to have occurred in the North
Atlantic (Morrill et al., 2013), in part due to the hypothe-
sis that the event is driven by freshwater forcing in the region
(e.g., Matero et al., 2017). Our reconstruction does show sub-
stantial cooling in the North Atlantic, but the maximum cool-
ing occurs further west, near the remnants of the Laurentide
ice sheet. This is likely due to our methodology, which uses a
prior drawn from a moving 5010-year-long window centered
on each decade of this event – a period of large changes in
the remnant Laurentide ice sheet over the present-day Hud-
son Bay. Additionally, the method has no information about
the exact timing of freshwater forcing events. For data as-
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Figure 12. Cooling at 8.2 ka. (a) Reconstructed temperature anomalies (◦C) for (a) the global mean, (b) spatial patterns for the 8.2 ka event
in the reconstruction (shading) and proxies (symbols), and (c) global and regional means at the 8.2 ka event calculated across ensemble
members. The periods used for the calculations used in (b, c) are shown in (a), with the anomaly period shown in blue and the reference
periods shown in red. Proxies are only shown in (b) if they have at least one value in each of the three periods shown in (a), which is 169 of the
711 assimilated proxies. Proxy seasonality is annual (circles), summer (upward-pointing triangles), or winter (downward-pointing triangles).
The spatial extents of the Greenland and Europe regions in (c) are shown in (b). In (c), all ensemble members are shown for the global mean
while a randomly selected group of 100 ensemble members are shown for the other two regions.

similation to better capture the spatial details of the 8.2 ka
event, it may need more specific information about the cli-
mate forcing; however, doing so may bias the result to the
expected response, which is also problematic.

Although the temporal pattern is similar, the amplitude
of the cooling reconstructed by data assimilation is less
than previous estimates. For example, cooling in the Green-
land and European regions (−0.47 and −0.12 ◦C, respec-
tively; Fig. 12c) is less than those seen in proxy-only studies
(e.g.,−2.2 and−1.1/−1.2 ◦C, respectively, in Morrill et al.,

2013). This is an expected result, as (in comparison to Mor-
rill et al., 2013) no effort was made to align the event across
age-uncertain records. Age uncertainties in proxy records are
often larger than the duration of short events, and assimi-
lation of temporally displaced records will mask or dimin-
ish the true extent of the event. This difficulty has been ad-
dressed in other studies through the alignment of age models
(e.g., Thomas et al., 2007) or by searching for climate excur-
sions within a larger multi-century window (e.g., Morrill et
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al., 2013), but this still poses a problem for data assimilation,
which has so far not been used with proxy age alignment.

Ultimately, the 8.2 ka event provides a useful test case for
exploring the utility and limitations of paleoclimate data as-
similation, and provides food for thought for future studies.
Adjustments in the model prior, the age models of proxy
data, or the temporal resolution of the reconstruction (e.g.,
Osman et al., 2021) may help account for these issues, but
the exact design of these solutions is left to future work.

4.3 Comparison with past reconstructions

Previous reconstructions of Holocene temperature have em-
ployed an assortment of reconstruction techniques, with
many showing peak warmth in the early to mid-Holocene and
a clear cooling toward present day (Kaufman et al., 2020b;
Marcott et al., 2013; Shakun et al., 2012). This contrasts with
transient model simulations, which show warming through-
out the Holocene (Liu et al., 2014). Two exceptions to this
pattern were published recently. The first, which reconstructs
sea surface temperatures between 40◦ S and 40◦ N, attempts
to remove a possible seasonal bias by examining proxy trends
during the last interglacial (Bova et al., 2021), resulting in
a 40◦ S–40◦ N sea surface temperature reconstruction which
warms throughout the Holocene. The other study uses data
assimilation based on marine sediments to reconstruct spa-
tial temperature anomalies since the Last Glacial Maximum,
also resulting in warming through the Holocene (Osman et
al., 2021).

The mid-Holocene temperature anomaly in those recon-
structions, calculated as the difference between the millennia
centered on 6 and 0.5 ka, is 0.54 ◦C for Marcott, 0.44 ◦C for
Kaufman, −0.27 ◦C for Bova, and −0.17 ◦C for Osman. For
comparison, the Holocene reconstruction presented in this
paper has a mid-Holocene anomaly of 0.09 ◦C (Fig. 13), fit-
ting between these previous reconstructions. Mid-Holocene
warmth is present in 88 % of the ensemble members, with the
other 12 % showing colder anomalies when comparing the
means of these millennia. While not all ensemble members
show warmth, these mid-Holocene temperatures are notable
because they emerge when using a time-varying prior with
a predominantly colder mid-Holocene. In other words, the
initial baseline climate state (from the models) has a colder
mid-Holocene, but the proxy data is strong enough that a
cold mid-Holocene is not supported in the final reconstruc-
tion (Fig. 5).

Mid-Holocene warmth is also seen in the collection of all
calibrated records (Fig. 2), annual mean records (Fig. 4), and
aggregate proxy record statistics (Table 1). It is possible that
the proxy database does not give a representative picture of
global temperature, which could result from errors in proxy
calibrations, errors in the attributed seasonality of records, or
a bias resulting from the spatial non-uniformity of the proxy
network. The effect of errors in proxy calibrations is difficult
to gauge but, provided that such errors are not too consistent

Figure 13. Comparison of Holocene temperature reconstructions.
The Holocene temperature reconstruction using data assimilation
(black; this study) compared to other proxy or DA-based recon-
structions: Shakun (dark blue; Shakun et al., 2012), Marcott (light
blue; Marcott et al., 2013), Kaufman (green; Kaufman et al.,
2020b), Bova (olive; Bova et al., 2021), and Osman (red; Osman
et al., 2021). All curves represent global means except for the Bova
curve, which represents sea surface temperatures between 40◦ S and
40◦ N (these quantities are not directly comparable but are plot-
ted together for convenience). The mean or median (lines) and 1σ
uncertainty values (shaded) are shown for all reconstructions, and
the 95 % range is also shown for the new Holocene reconstruction.
The Temperature 12k reconstructions consist of five different recon-
structions made using different methodologies but are here plotted
together. Reconstructions are plotted relative to recent values, ex-
cept for the Shakun reconstruction, which has been aligned to the
Marcott reconstruction for their period of overlap, although such
alignment is largely arbitrary.

across proxy types, this should be somewhat ameliorated by
the diversity of proxy types in the Temperature 12k database.
Proxy seasonality was explored in Sect. 3.3, and past work
has suggested that their effect should be limited (Kaufman et
al., 2020a). As for spatial biases in the proxy network, data
assimilation helps account for that directly by using proxy
data together with spatial covariance patterns to infer data in
poorly sampled regions. However, biases could be introduced
by limitations of the data assimilation approach, so a more
spatially complete dataset would be beneficial.

Osman et al. (2021) suggested that over-weighting sparse
Southern Hemisphere proxy records may explain some of
the mid-Holocene warmth seen in global proxy composites,
but this explanation only accounts for part of the apparent
warmth, so additional work is needed to reconcile proxy and
model Holocene trends. Other uncertainties should be ex-
plored, and the uncertainty range displayed for our Holocene
reconstruction in Fig. 13 is certainly an underestimate as un-
certainties related to proxy record age models, proxy season-
ality metadata, and other sources are not represented. Ac-
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counting for these areas of uncertainty in the future may help
explain the large amounts of spatial diversity even among
nearby records in the proxy database (e.g., Figs. 2 and 7).

Some reconstructions have similarities in either the
methodology or the underlying data. Our data assimilation
approach, for example, uses the same proxy records as the
Kaufman composites (with minor updates included in v1.0.2
of the database): we use the Temperature 12k database but
omit seasonal records when an annual mean proxy record is
available for the same archive. If all eligible proxy records
are used instead, the reconstructed climate looks largely the
same. The Kaufman composites also use a collection of five
different compositing techniques (Kaufman et al., 2020b), all
of which differ from the data assimilation method. Like the
Kaufman reconstructions, the present Holocene reconstruc-
tion shows maximum temperatures in the mid-Holocene,
though to a smaller degree.

The present reconstruction uses many of the marine sed-
iments used in the Osman et al. (2021) reconstruction, al-
though we use calibrated versions of these records while
Osman uses the raw data together with PSMs. Note that
while the Osman et al. (2021) reconstruction shows warming
through the Holocene, the source of this apparent Holocene
warming remains unclear given that both the underlying ma-
rine sediment proxy records (Fig. 7 in Osman et al., 2021)
and the mid-Holocene simulations used in the model prior
are either warmer or comparable to preindustrial. Without
knowing why that reconstruction shows late Holocene warm-
ing, it is difficult to explain differences between these two
reconstructions.

To compare 40◦ S–40◦ N ocean temperature, as used in
the Bova reconstruction, to global mean temperature, we
calculate both quantities in our new Holocene reconstruc-
tion, using air temperatures rather than SSTs. Temperatures
over these two domains are highly correlated in our recon-
struction, but changes in 40◦ S–40◦ N ocean temperatures are
only ∼ 57 % as large as global mean changes, owing to the
large magnitude of temperature changes at higher latitudes
(Fig. 6). The use of the 40◦ S–40◦ N ocean domain results in
a mid-Holocene temperature anomaly of 0.01 ◦C in our main
reconstruction.

Recent work has reported improved data assimilation skill
by reducing the estimates of proxy uncertainty, which forces
the data assimilation to rely more on the proxy informa-
tion than the prior distribution (Tierney et al., 2020; Osman
et al., 2021). As a sensitivity test, we repeat our data as-
similation using proxy uncertainty values arbitrarily reduced
to 20 % of their original values, which is the mean reduc-
tion used in past work (Tierney et al., 2020; Osman et al.,
2021). In our reduced uncertainty experiment, reconstructed
mid-Holocene warmth rises from 0.09 to 0.17 ◦C, bringing it
closer to the Kaufman and Marcott reconstructions but fur-
ther from the Bova and Osman reconstructions. Addition-
ally, mid-Holocene warmth is clearer in this experiment, with
only 1 % of the ensemble members showing cooler values at

the mid-Holocene compared to the past millennium. This is
one of many sensitivity experiments we explore in Appendix
B; although the parametric and methodological choices have
important impacts, a cooler mid-Holocene is generally not
supported by our reconstruction.

4.4 Caveats and future work

Future improvements in paleoclimate data assimilation may
come from a variety of sources. Using a model prior which
replicates the climate system’s true complexity has the poten-
tial to provide the most gains, and improvements in the global
proxy network should also provide clear benefits. Both of
these topics are explored in Appendix A. Additional proxy
metadata, such as clear indications of whether data points
represent contiguous or discrete observations, should also
aid paleoclimate data assimilation as well as paleoclimate
research in general. Such metadata would help researchers
understand whether a proxy record with centennial resolu-
tion, for example, represents contiguous centennial means as
opposed to annual or decadal means sampled at centennial
resolution. An extreme data point might represent an impor-
tant climate event if it represents a long time period, while
the same observation may be less remarkable if it only rep-
resents a single year.

Additionally, the source of apparently conflicting signals
among proxy records must be better understood. Even in
well-sampled regions, proxy records present an assortment
of diverse signals that cannot all be matched within the data
assimilation framework. The sources of these diverse climate
signals – whether they result from proxy calibration uncer-
tainties, unaligned age models, proxy seasonality biases, or
something else – is a question for future research.

In the Temperature 12k database, the vast majority of
proxy records were calibrated to temperature, providing a
useful link between proxy measurements and modeled quan-
tities. Assimilating calibrated temperatures allowed us to in-
clude a large collection of diverse datasets and leverage the
expertise of the original authors who performed the inverse
temperature calibration. Nevertheless, the exclusion of PSMs
is also a limitation of the study. Many of the calibrations
are an oversimplification of the proxy–climate relationships,
in that they are univariate, non-mechanistic, or both. PSMs
allow more mechanistic and multivariate relationships be-
tween climate and proxy observations and are a key value
proposition of the data assimilation methodology. We plan
to include PSMs in future work, which will allow for as-
similation of proxy types which are generally not calibrated
to temperature, such as many hydroclimate records. Many
PSMs require an isotope-enabled model in the prior. Long
simulations with isotope-enabled models are currently rare;
however, the collection of isotope-enabled simulations span-
ning the Holocene is growing, which will facilitate the use
of PSMs in future work (e.g., He et al., 2021). At present,
PSMs exist for proxy types including δ18O of ice cores,
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speleothems, coral, and wood (Dee et al., 2015), δ18O and
δD of lake sediments and leaf waxes (Dee et al., 2018; Ko-
necky et al., 2019), and the δ18O, Mg/Ca, TEX86, and Uk37
of marine sediments (e.g., Tierney et al., 2019). In ongoing
work, we are expanding on the pseudoproxy framework test-
ing physically based PSMs in data assimilation presented in
Dee et al. (2016) to examine whether the reconstruction skill
is improved via the use of PSMs.

For shorter-term goals, additional sampling of uncertain-
ties for proxy records (e.g., uncertainties in proxy calibra-
tion, age model, seasonality, and more) and model priors
(through the use of additional models or alternate prior de-
sign) would be beneficial. Accounting for age uncertainties
would smooth the climate reconstruction somewhat and may
affect the results of Sect. 4.2. This will be explored in future
work. Additionally, as more proxies are compiled into large,
machine-readable databases, Holocene data assimilation can
be expanded to reconstruct additional variables such as pre-
cipitation. Through future development of the methodology,
paleoclimate data assimilation is well positioned to help sci-
entists infer data about climate fields or regions where little
proxy evidence exists.

5 Conclusions

The Temperature 12k proxy database provides considerable
information about Holocene temperatures (Kaufman et al.,
2020a). Analysis of this database shows general warming in
the early Holocene, maximum warmth in the mid-Holocene,
and a cooling toward the present day, a pattern which has
been shown in past global mean temperature reconstructions
(Kaufman et al., 2020b). To reconstruct spatially complete
changes, regions without local proxy data must be inferred
based on existing proxy records, which is here accomplished
using paleoclimate data assimilation.

This is the first implementation of a multi-timescale paleo-
climate data assimilation methodology using real proxy data.
By assimilating the data at high temporal resolution using
timescale-appropriate covariances, we avoid a key assump-
tion required in other approaches, allowing the method to re-
construct high-resolution changes that would otherwise be
obscured. This potential was realized in the reconstruction of
a cold anomaly at 8.2 ka, which was reconstructed with spa-
tial and temporal patterns that are generally consistent with
previous results.

On longer timescales, the global mean Holocene re-
construction generally shows peak preindustrial Holocene
warmth during the mid-Holocene, consistent with the proxy
data. The mean reconstructed mid-Holocene temperature
anomaly was 0.09 ◦C relative to the past millennium, which
is cooler than previous reconstructions (Marcott, Kaufman)
but warmer than recent reconstructions that do not simulate
a mid-Holocene thermal maximum (Bova, Osman). Our as-
similation framework also allowed us to test the impact of

seasonality explicitly. Summer biases, even when imposed
on all records, cannot explain the discrepancy between the
proxies and the model simulations. Spatially, the reconstruc-
tion shows cold temperatures in regions where the Lauren-
tide and Fennoscandian ice sheets have been reconstructed,
adding support for the reconstruction’s skill in these well-
sampled regions.

By merging paleoclimate data with information from cli-
mate models, paleoclimate data assimilation can infer spa-
tially complete climate from incomplete data, a key bene-
fit for exploring past climate. The present paper examines
Holocene temperature, but as more proxy data are com-
piled into large machine-readable databases, new long cli-
mate simulations are run, and the data assimilation method-
ology is further refined, this approach is well suited to clari-
fying our perspective on more climate variables and time pe-
riods in the past. Reconstructions of past climate help reveal
the characteristics of natural variability, which is the back-
drop against which current climate change is rapidly occur-
ring.

Appendix A: Pseudoproxy tests and
proxy/reconstruction agreement

A1 Pseudoproxy tests

To explore our data assimilation approach, the method is
tested using alternate data extracted from a “known” climate.
Specifically, temperature data are selected from a variety of
locations in a transient model simulation and processed to
create a collection of time series records akin to a proxy net-
work, called “pseudoproxies” (Smerdon, 2012). While pseu-
doproxies do not contain real data about past climate, they
represent a deliberately limited perspective on a known cli-
mate that is useful for exploring the skill of a reconstruc-
tion methodology under controlled conditions. In the pri-
mary pseudoproxy experiment conducted in this paper, pseu-
doproxies use the same locations, seasonalities, and tempo-
ral characteristics as the real Temperature 12k proxy records
but use temperature values from the closest grid cells of a
Holocene simulation. To account for uncertainty, white noise
is generated with a standard deviation equal to the metadata’s
RMSE uncertainty value for each record. This white noise is
added to each pseudoproxy time series after averaging the
selected model data into the same temporal windows as the
original proxy record.

Several pseudoproxy experiments are run to verify the data
assimilation approach. In the primary test case, pseudoprox-
ies are generated from the TraCE-21ka transient simulation
and the transient HadCM3 simulation is used as the prior, en-
suring that the pseudoproxies and prior are not derived from
the same model data. This differs from the primary data as-
similation experiment, where we use both climate models in
the prior. Since the TraCE-21ka simulation is used as the
“real” climate, these pseudoproxy experiments test the ability
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Figure A1. Temporal and spatial agreement in a pseudoproxy experiment. Temperature pseudoproxies are generated from the TraCE-
21ka simulation and reconstructed using data assimilation with HadCM3 as the prior. (a) Annual global mean temperature in the prior,
reconstruction, and model. (b) Correlation between the reconstruction and model temperatures at every location. Locations of pseudoproxies
are shown as dots in panel (b) and have the same spatial and temporal coverage as the Temperature 12k proxy database.

of the data assimilation to reconstruct known climate states
in a fashion similar to real reconstructions where the proxies
are derived from nature.

The TraCE-21ka transient simulation shows increasing
global mean temperature throughout the Holocene. This fea-
ture is replicated in the reconstruction (Fig. A1) with a
Pearson correlation coefficient of 0.98 between the recon-
structed and “true” global mean temperature. Temporal cor-
relations between the reconstruction and model are relatively
high across most locations, especially the data-dense regions
of Europe and the United States (Fig. A1b). In the most
pronounced region of difference – the Southern Ocean off
the coast of West Antarctica – the reconstruction produces
warmer temperatures in the early Holocene rather than the
colder temperatures present in the model. This is one loca-
tion where the covariance patterns in the simulations used for
the pseudoproxies (TraCE-21ka) and the prior (HadCM3) di-
verge. In the HadCM3 simulation, this region correlates pos-
itively with only ∼ 18 % of the rest of the world, while it
correlates positively with ∼ 98 % of the rest of the world in
TraCE-21ka. If the TraCE-21ka simulation is considered the
true climate, then the differences between models represent

model bias. Without any local data in that region, the recon-
structed temperature trend is dictated by these biased covari-
ances. Several other regions of mismatch also stem from dif-
ferences in the covariance patterns of the two models.

To better understand the reasons behind these mismatches,
several more pseudoproxy experiments are conducted. The
new experiments implement improvements in two key as-
pects of the underlying data: a spatially consistent pseudo-
proxy network (Exp. 2), an “unbiased” prior (Exp. 3), and
both (Exp. 4).

For Exp. 2, we generated pseudoproxies from the TraCE-
21ka simulation on a 10◦ by 10◦ latitude–longitude grid (n=
648 pseudoproxies). Seasonal and temporal preferences are
also removed, with each pseudoproxy representing decadal
climate with no seasonal preference and covering the en-
tire 12 ka time period, with the same amount of noise added
to each pseudoproxy. Using this new pseudoproxy network,
correlations are slightly improved and the coefficient of effi-
ciency (CE, which is a measure of the fraction of variance
captured by the reconstruction, Nash and Sutcliffe, 1970)
is greatly improved in many regions (Fig. A2). These re-
sults demonstrate how a proxy network with better spatial
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Figure A2. Spatial skill of pseudoproxy experiments. Spatial correlations (R) and coefficients of efficiency (CE) for four different pseudo-
proxy experiments. Global mean values, calculated as the area-weighted mean of the spatial values, as given above each map. Each experi-
ment uses HadCM3 as the prior but differ in the model used to generate the pseudoproxies (Exps. 1, 2: TraCE-21ka; Exps. 3, 4: HadCM3)
and the spatial, temporal, and seasonal characteristics of the pseudoproxies (Exps. 1, 3: as in Temperature 12k; Exps. 2, 4: uniform proxy
network). When pseudoproxies are based on the Temperature 12k network, they use the spatial, temporal, and seasonal characteristics as the
real proxy records (Npseudoproxies = 711). When pseudoproxies are generated on a uniform 10◦ by 10◦ grid, they are all annual means and
cover the entire Holocene with decadal resolution (Npseudoproxies = 648). More details about these experiments are given in Table B1.

coverage and no temporal or seasonal over-representations
can improve the reconstruction skill. Regardless, some re-
gions still show errors in the reconstruction. In particular, the
Southern Ocean off the coast of West Antarctica still shows
negative correlations, suggesting that the presence of local
pseudoproxies is not enough to overcome the influence of a
large number of remote pseudoproxies with “incorrect” co-
variances to this region. The influence of long-distance co-
variances could be diminished or eliminated through the use

of covariance localization, in which the reconstruction is only
informed by records within a prescribed radius. Covariance
localization has been used in prior work (e.g., Osman et al.,
2021; Tierney et al., 2020), and is explored further in Ap-
pendix B.

To test the effect of an unbiased prior, Experiments 3 and 4
use the transient HadCM3 simulation for both the pseudo-
proxies and the prior. This ensures that the prior covariances
match the “true” state covariances, and thus there are no
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Figure A3. Agreement between proxy records and reconstructed proxy values. Distributions of (a) Pearson’s correlation coefficient, (b) co-
efficient of efficiency (CE), and (c) root mean square error for each calibrated proxy compared to reconstructed temperature at the same
location and season. Comparisons are made on a decadal timescale. Distributions show assimilated records (red) and records which were
omitted due to a lack of uncertainty values (n= 44, blue). Median values are shown as vertical lines.

model biases. Experiment 3 uses the Temperature 12k proxy
distribution while experiment 4 uses the uniform proxy net-
work, as in Exp. 2. Both experiments show substantial im-
provement in correlation and CE values, indicating the im-
portance of an unbiased prior. These experiments show that
having an unbiased prior is more important than having a
uniformly sampled and seasonally unbiased proxy network
(cf. Exp 3 vs. 2), but the use of both modifications (Exp. 4)
produces the best results. The importance of realistic prior
covariances has been shown in past work (Dee et al., 2016;
Amrhein et al., 2020).

Improvements in either the proxy network or model real-
ism should aid future paleoclimate reanalyses. On the topic
of model realism, no model is perfect, so we use climate
states from two simulations in the main data assimilation ex-
periment to diminish the impact of single-model biases. In
the future, the inclusion of more simulations may better em-
phasize robust multi-model covariance patterns while prop-
erly accounting for uncertainty when models disagree, and
past work has supported this approach (Parsons et al., 2021).

Further improvements in the proxy network or model realism
are beyond the scope of the current work, but will be the nat-
ural byproduct of future efforts to improve climate models
and proxy databases. Even without such improvements, the
relative skill of the pseudoproxy experiment (Fig. A1) sup-
ports the use of data assimilation for reconstructing spatial
Holocene temperatures, with the caveat that shortcomings in
the proxy network and the model prior reduce the accuracy
of the results. Note that the prior in each of these experiments
is allowed to change through time, so the prior inherits low-
frequency variability from the underlying model. However,
if a time-constant prior is used instead, these general results
still hold true.

A2 Proxy records vs. the reconstruction

To quantify how well the Holocene reconstruction (discussed
in the main paper) agrees with the Temperature 12k proxy
database that informs it, we reconstruct temperature time se-
ries at the same locations and seasonalities as the original
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Figure A4. Comparison of proxy and reconstructed anomalies in space and time. (a) Proxy (symbols) and annual mean reconstructed (back-
ground) temperature for the period 6000–6010 yr BP vs. 3000–5000 yr BP. (b) Proxy values vs. reconstructed records for 6000–6010 yr BP
vs. 3000–5000 yr BP. (c) The mean of proxy records through time compared to the mean of reconstructed records through time. The (d) slope
and (e) correlation between proxy records and reconstructed records through time. Reconstructed records are calculated using the data
assimilation method for temperature at the same location and seasonality as the real proxy records.

proxy records. These “reconstructed records” are compared
to the original proxy time series using three different skill
metrics: Pearson’s correlation coefficient (R), coefficient of
efficiency (CE), and root mean square error (RMSE), calcu-
lated separately for each of the 711 assimilated records as
well as 44 unassimilated records which lacked uncertainty
values (Fig. A3). Dissimilarities among nearby proxy records
(see Fig. 7) will degrade the apparent skill of the data assimi-
lation, as the relatively low-resolution reconstruction will not
match such apparent spatial complexity.

Correlation values between the proxies and reconstructed
proxies are mostly positive, showing that the general patterns
of change are captured, but median CE values are slightly
below zero. For CE, values below 0 are generally considered

to represent a lack of skill. If change in skill between the
reconstruction and the prior is examined instead, the 1CE
values are slightly positive: 0.15 for assimilated proxies. As
stated earlier, the pronounced spatial diversity of the proxy
data complicates efforts to match all records simultaneously.

To visualize spatial inconsistencies, the reconstruction and
input proxy data are shown for an example decade along
with summary metrics plotted through time (Fig. A4). For
the chosen decade, proxy data have a much larger range of
anomalies than the reconstructed records, showing that the
method cannot match all the records at once and instead finds
a middle ground consistent with covariances in the model
prior. Consistent with this, the mean of the proxy records
matches the mean of the reconstructed records relatively well
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through time, although the reconstructed proxies have less
mid-Holocene to present cooling, likely due to the warm-
ing trend in the prior (Fig. 5). The small values of regres-
sion slopes indicate that the reconstruction does a poor job
matching the spatial diversity of the proxy signals (Fig. A4d).
Correlation values range from ∼ 0.1 to ∼ 0.5 through time,
with better correlation in the early Holocene when the cli-
mate anomalies are large (Fig. A4e). It is worth noting that
these metrics are all calculated for climate anomalies rela-
tive to 3–5 ka, as opposed to absolute climate values shown
in past work (Osman et al., 2021). If the values were calcu-
lated for absolute values instead, which include Earth’s natu-
ral latitudinal temperature gradients, the match would appear
far better.

Appendix B: Alternate experimental designs

The pseudoproxy tests in Appendix A.1 explored improve-
ments in the proxy network and the accuracy of the model
prior. To help account for single model biases, we use two
models in the prior and recommend testing the inclusion of
additional transient model simulations as they become avail-
able. Beyond this, additional improvements in model physics
and proxy data acquisition will require considerable future
effort and are beyond the scope of this paper. However, other
changes can be made to the experimental design. These op-
tions are explored in this section, providing a testbed for fu-
ture improvements in the data assimilation methodology. In
many cases, the philosophy of the current paper was to use
the simpler approach for the “default” reconstruction, laying
a baseline for future improvements.

We test alternate experimental designs using both real data
(Figs. B1 and B2) and pseudoproxies (Fig. B3). Five aspects
of the experimental design are explored: the use of a constant
vs. time-varying prior, the use of covariance localization, the
effect of modifying the proxy uncertainty values, the choice
of model(s) in the prior, and the use of a 200-year binned
proxy approach.

B1 Time-constant vs. time-varying prior

When using a time-varying prior, as in this paper, the prior
consists of a changing collection of model states to account
for slow changes in the mean and covariance patterns of the
climate system (e.g., Osman et al., 2021). When using a time-
constant prior, on the other hand, the prior consists of the
same model states at every time step, ensuring that all tempo-
ral variability is derived from the assimilated proxy records
(e.g., Hakim et al., 2016).

To explore the influence of changes in the prior using real
proxy data, two new data assimilation experiments are run
for comparison with the default experiment (Fig. B1). In the
first new experiment, prior climate states are selected from
a 5010-year moving window, as in the main experiment, but
the mean of the prior ensemble is set to 0 at every time step.

Figure B1. Holocene reconstruction with different priors. Recon-
structions using three different options for the prior: (a) the default
time-varying prior, which consists of a moving 5010-year window
with the mean of 3–5 ka removed; (b) a time-varying prior consist-
ing of a moving 5010-year window with its mean removed at ev-
ery time step; and (c) a time-constant prior consisting of all climate
states centered on 0.5 to 12.5 ka with its mean removed. In all cases,
the prior uses climate states from both the HadCM3 and TraCE-
21ka transient simulations. Bands represent the 1σ (dark shading)
and full (light shading) ranges of the ensemble members. To aid
comparison, the mean of the reconstruction in (a) is plotted in black
in panels (b) and (c). The reconstruction in panel (a) is the primary
reconstruction analyzed in this paper, as also shown in Fig. 5.

This represents a middle ground between a time-varying and
a time-constant prior, as the covariance patterns can change
but the mean state does not. In the other experiment, the prior
is identical for every time step, consisting of all climate states
centered on 0.5 to 12.5 ka.

Compared to the default reconstruction, anomalies in these
two new reconstructions are warmer in the early Holocene
(Fig. B1). Since assimilation is a mix of model data and
proxy data, it is unsurprising that a warmer prior would pro-
duce a warmer reconstruction during this period. It is espe-
cially notable that the reconstruction has positive anomalies
between∼ 6–8 ka in all three cases, providing more evidence
for mid-Holocene warmth. Mean mid-Holocene warmth in
these three experiments is 0.09, 0.11, and 0.14 ◦C, respec-
tively. These results demonstrate the potential effects of the
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Figure B2. Global mean temperatures from different experiments.
Reconstructed global mean temperature from (a) the default exper-
iment as well as experiments using (b) a 25 000 km localization
radius, (c) a 20 000 km localization radius, (d) a 15 000 km local-
ization radius, (e) 20 % of the original uncertainty values, (f) the
HadCM3 prior, (g) the TraCE-21ka prior, (h) proxies binned to 200-
year resolution, and (i) proxies binned to a 200-year resolution as
well as a 25 000 km localization radius. The mean of the default ex-
periment is plotted in black over the other experiments for compar-
ison. Shading shows the full range of ensemble members for each
reconstruction. The reference period of each reconstruction is 3–
5 ka. Experimental options are listed in Table B2.

prior on the final reconstruction, but also show that the ma-
jor climate trends are not overly influenced by this choice.
If these experimental designs are tested using pseudoproxy
data, the time-varying prior generally performs better than
either of these constant-mean experimental designs (compare
Exps. 1, 5, and 6 in Table B1 and Figs. A2 and B3).

Whether a time-constant or a time-varying prior is used,
it is worth considering how the prior influences the final re-
construction (e.g., Fig. B1). The use of a time-varying prior
may produce a reconstruction which preferentially resem-
bles prior trends, while a time-constant prior may produce
a flatter reconstruction. Additionally, while a time-constant
prior ensures that all time-varying signals in the reconstruc-
tion originate from the proxy data, the lack of information
about changing boundary conditions may bias results. On the
other hand, a time-varying prior may limit the size of the
prior ensemble, as climate states must be drawn from a mov-
ing window rather than from a broader expanse of model out-
put. This last drawback, however, has been mitigated in the
current work by the use of multiple models, providing twice
the number of climate states to the prior and potentially di-
minishing single-model biases.

As a final note, if data assimilation is conducted using a
time-varying prior, desired analyses should be conducted on
both the prior and the reconstruction to see what information
was already present in the model prior. Otherwise, features
thought to be based on proxy data may simply originate from
the original model simulations. To the degree possible, data
assimilation should be conducted multiple times using alter-
nate priors to test the sensitivity of results, as has been done
here.

B2 Covariance localization

In this paper’s main experiment, all proxy records have the
potential to influence the reconstruction across the Earth,
with the length of that influence determined by the climate
model’s covariance structures. Covariance localization, on
the other hand, reduces or eliminates the influence of long-
range covariances and forces the reconstruction to rely more
on local proxy records. This is done by applying a localiza-
tion radius such that a given proxy can only influence the
reconstruction within a certain distance-weighted area. The
length of this localization radius is fundamentally arbitrary,
and multiple lengths are generally tested to find a length
that minimizes the errors of selected reconstruction criteria
(Tardif et al., 2019; Tierney et al., 2020; Osman et al., 2021).
In our pseudoproxy tests, Exp. 7 uses a localization radius of
25 000 km, as in the Last Millennium Reanalysis (Tardif et
al., 2019) (Fig. B3, Table B2). The localization method uses
a Gaspari–Cohn function (Gaspari and Cohn, 1999; Tardif et
al., 2019) to reduce the influence of proxy data on locations
distant from the proxy itself, reducing to 0 outside of the lo-
calization radius, as in the LMR project (Tardif et al., 2019).

When applied to real proxy data, a localization radius of
25 000 km produces a climate reconstruction similar to the
main experiment in many ways (Fig. B2). Skill metrics show
that the new reconstruction matches proxy records slightly
better in some respects, with a median correlation to assimi-
lated proxies of 0.37 rather than the 0.35 in the default exper-
iment. Because the use of a localization radius can diminish
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Figure B3. Spatial skill of more pseudoproxy experiments. Spatial correlations (r) and coefficients of efficiency (CE) for four additional
pseudoproxy experiments, as in Fig. A2. Experiments are the same as the default experiment but use a localization radius and/or a time-
varying prior. Exp. 5 uses a time-varying prior 5010 years long, as in the main experiment, but with the mean value set to 0 for every period.
Exp. 6 uses a time-constant prior consisting of all climate states centered on 0.5 to 12.5 ka. Exp. 7 uses a localization radius of 25 000 km.
Exp. 8 uses a time-varying prior of 3010 years, rather than 5010 years as used in the default experiment. More details about these experiments
are given in Table B1.

the influence of proxy data, our reconstructions using a local-
ization radius (Fig. B2b–d) more closely resemble the prior,
with slightly cooler mid-Holocene temperatures and larger
uncertainty bands.

While the use of a localization radius improves the recon-
struction in some regards, the method also poses some chal-
lenges. As stated above, a localization radius can diminish
the potential impact of proxy data, giving more weight to
the temporal evolution of the model prior. Additionally, a lo-
calization radius arbitrarily diminishes the influence of long-

distance climate relationships which may be valid, instead re-
lying more on individual (potentially noisy) proxies in data-
poor regions. On the other hand, covariance localization pre-
vents data-rich regions from having an outsized influence on
the global climate reconstruction, which may be beneficial.
Since the use of covariance localization presents a mix of
benefits and drawbacks, it is not used for the main recon-
struction but is shown in alternate reconstructions (Fig. B2).
Additionally, covariance localization is available as an option
in the released code. When using a covariance localization,
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Table B1. Skill metrics for pseudoproxy tests. Skill metrics for the pseudoproxy experiments shown in Figs. A2 and B3. Metrics are
calculated between the reconstruction results and the original model data that the pseudoproxies are built from. Metrics are the correlation (R)
coefficient of efficiency (CE) calculated for global mean temperature values (GMT) or calculated for temperature at every location and then
averaged using an area-weighted mean (spatial). All these experiments use HadCM3 as the prior model. Boxes with dashes indicate that a
setting is the same as the experimental design of Exp. 1.

Exp. Pseudoproxy Distribution Changing Loc. RGMT CEGMT Rspatial CEspatial
model prior radius

1 TraCE-21ka Temp 12k Yes, 5010 yr None 0.98 0.95 0.62 −0.01
2 – Basic grid – – 0.99 0.96 0.66 0.21
3 HadCM3 – – – 0.99 0.98 0.84 0.73
4 HadCM3 Basic grid – – 0.99 0.99 0.87 0.77
5 – – Yes, 5010 yr w/ constant mean – 0.97 0.70 0.47 0.02
6 – – No – 0.97 0.92 0.67 −0.24
7 – – – 25 000 km 0.98 0.96 0.64 0.06
8 – – Yes, 3010 yr – 0.98 0.95 0.64 −0.08

Table B2. Experimental design of data assimilation reconstructions. Settings of different reconstructions: the model(s) used in the prior, the
time-varying or time-constant construction of the prior, the localization radius, the scaling of the proxy uncertainties, the approach to proxy
resolution (multi-timescale or binned), and the figures where each experiment can be seen. Dashes signify values that are the same as the
default experiment.

Exp. Prior model Changing prior Loc. radius Uncertainty Proxy Figs.
scaling resolution

Default HadCM3 and TraCE Yes, 5010 yr window None None Multi-timescale 5–13, A3, A4, B1, B2
Constant mean – Yes, 5010 yr window w/ constant mean – – – B1
Constant prior – No – – – B1
25 K locrad – – 25 000 km – – B2
20 K locrad – – 20 000 km – – B2
15 K locrad – – 15 000 km – – B2
20 % R – – – 20 % of default – B2
HadCM3 prior HadCM3 – – – – B2
TraCE-21ka prior TraCE-21ka – – – – B2
200 yr res – – – – 200 years B2
200 yr res, 25 K locrad – – 25 000 km – 200 years B2

we use a serial proxy assimilation rather than simultaneous
proxy assimilation (Whitaker and Hamill, 2002) for simplic-
ity. Serial and simultaneous assimilation approaches produce
nearly identical results (for our default experiment, ensemble
means are the same and ensemble members differ by no more
than 0.05 ◦C). The use of a 25 000 km localization radius pro-
duces a slight improvement in several of our metrics, so, with
more testing, it might be a useful change to our experimental
design.

B3 Proxy uncertainties

In data assimilation, proxy records with larger uncertainties
have less impact on the final reconstruction. The Tempera-
ture 12k database has uncertainty estimates for each record,
but these values are based on proxy type and may not be ac-
curate. First, these uncertainty values represent uncertainty
of absolute temperature values rather than relative values, so
they may be too large for our relative temperature reconstruc-
tion. On the other hand, it is possible that some aspects of
uncertainty were overlooked. Recent work found improved

skill by scaling uncertainty values to 20 % of their original
values on average (Tierney et al., 2020; Osman et al., 2021).
To explore the effect of modified uncertainty, MSE values
are here similarly reduced to 20 % of the original values
(Fig. B2e). These reduced uncertainties produce larger tem-
perature anomalies, with an average mid-Holocene tempera-
ture anomaly of 0.17 ◦C as opposed to 0.09 ◦C in the original
experiment.

Post-hoc scaling of uncertainty values to improve recon-
struction skill has been done in other data assimilation work
(Osman et al., 2021; Tierney et al., 2020), but this should be
done with care. Ideally, uncertainty values should be record
specific to account for individual considerations of each
record. However, the size of the Temperature 12k database,
as well as difficulties in determining record-specific uncer-
tainties, place this beyond the scope of the current work. The
use of a smaller, curated selection of proxy records is another
approach but may limit spatial coverage of the data assimila-
tion (King et al., 2021).
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Table B3. Skill metrics of pseudoproxy tests – choice of prior model. Skill metrics for pseudoproxy experiments, as in Table B1, but exploring
the effect of changes in the model used to generate pseudoproxies and the model(s) used in the prior. For the “2-model” experiments, the
two models used in the prior are the models not used to construct the pseudoproxies (e.g., if HadCM3 is used to construct the pseudoproxies,
TraCE-21ka and Famous are used in the 2-model prior). Asterisks indicate the highest values for each set of pseudoproxies for the precision
shown, with ties allowed.

Exp. Pseudoproxy Prior RGMT CEGMT Rspatial CEspatial
model model

1 HadCM3 TraCE 0.96∗ 0.90 0.60∗ −0.62∗

9 HadCM3 Famous 0.93 0.87 0.51 −1.08
10 HadCM3 2-model 0.96∗ 0.92∗ 0.58 −0.84
11 TraCE HadCM3 0.98∗ 0.95∗ 0.62 −0.01∗

12 TraCE Famous 0.95 0.89 0.57 −0.57
13 TraCE 2-Model 0.97 0.93 0.66∗ −0.02
14 Famous HadCM3 0.94∗ 0.86∗ 0.45 0.14
15 Famous TraCE 0.94∗ 0.84 0.47∗ 0.15
16 Famous 2-Model 0.94∗ 0.86∗ 0.46 0.17∗

B4 Choice of model for prior

Another consideration is the use of different model simula-
tions in the prior. We use both the HadCM3 and TraCE-21ka
transient simulations in this paper, but sensitivity tests can
be run using just one of these models (or other models) as
the prior. The prior influences both the initial range of cli-
mate states and the relationships between locations, seasons,
and variables, so the choice of model simulation affects how
proxy anomalies are translated to the rest of the climate sys-
tem.

Here, pseudoproxy experiments are conducted using
single-model or two-model priors. To avoid giving any ex-
periment an unrealistic advantage, the model used to generate
the pseudoproxies in an experiment is never included in the
prior. Therefore, to generate independent pseudoproxy data
for a two-model prior, we also use a third simulation: the FA-
MOUS 10x accelerated transient simulation (Smith and Gre-
gory, 2012). The use of an accelerated timescale may affect
prior covariances, so the FAMOUS simulation is not used
more broadly in this paper and is only used here out of ne-
cessity. In these pseudoproxy experiments, the reconstruction
is compared to the “true” climate using several metrics: cor-
relation and coefficient of efficiency of both the global mean
temperature and spatial temperatures (Table B3). In these ex-
periments, the HadCM3, TraCE-21ka, and two-model priors
all perform relatively well. We use the two-model prior in
the main experiment because the use of multiple models pro-
vides the prior with more initial climate states and should
diminish single-model biases. Recent work has found that
multi-model priors are well suited to data assimilation (Par-
sons et al., 2021).

When assimilating real proxy data, global mean tempera-
ture reconstructions using the HadCM3 or TraCE-21ka prior
share many similarities with the default two-model experi-
mental design (Fig. B2), indicating that global mean temper-

ature is not overly dependent on the particular characteristics
of the model prior. As with the other experiments discussed
above (Figs. B1–B3), these experiments touch on areas for
potential future improvement in Holocene data assimilation.

B5 The use of multi-timescale vs. binned data
assimilation

In the default experimental design, this paper uses a multi-
timescale approach to data assimilation. By using covari-
ances between low- and high-resolution timescales, the
method attempts to properly account for the temporal infor-
mation of proxies. An alternate approach, which has been
used in past work (Osman et al., 2021), is to bin proxy data
to a uniform timescale. Since the mean temporal resolution
of the Temperature 12k proxy dataset is near 200 years,
we bin all proxy data into 200-year intervals, using a near-
est neighbor interpolation method to span intervals between
proxy data points. Using this approach, the data assimilation
produces a reconstruction that is approximately a smoothed
version of the default multi-timescale experiment, with a re-
duced uncertainty band (Fig. B2). If correlations are calcu-
lated for temperature at every location between this experi-
ment and the default experiment regridded to 200-year reso-
lution, the global mean of these correlation values is 0.96. If
a 10-year bin is used instead (effectively a single-timescale
version of the default experiment), its mean spatial correla-
tion with the default experiment is also 0.96. Additional com-
parison metrics should be calculated to determine the full ef-
fects of a multi-timescale approach, which is left to future
work.

Code availability. The code to compute the Holocene
reconstruction is written in Python and is available
at https://doi.org/10.5281/zenodo.7419527 (Erb et al.,
2022a). Newer versions of the code may be found at
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https://github.com/Holocene-Reconstruction/Holocene-code
(Erb et al., 2022b).

Data availability. The complete Holocene reconstruction is avail-
able on Zenodo at https://doi.org/10.5281/zenodo.6426332
(Erb et al., 2022c). Model and proxy data used in cre-
ating the Holocene reconstruction can be found at
https://doi.org/10.5281/zenodo.7407116 (Erb et al., 2022d).
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E., Peros, M., Pienitz, R., Płóciennik, M., Porinchu, D., Potito,
A., Rees, A., Reinemann, S., Roberts, S., Rolland, N., Salonen,
S., Self, A., Seppä, H., Shala, S., St-Jacques, J.-M., Stenni, B.,
Syrykh, L., Tarrats, P., Taylor, K., van den Bos, V., Velle, G.,
Wahl, E., Walker, I., Wilmshurst, J., Zhang, E., and Zhilich, S.:
A global database of Holocene paleotemperature records, Sci-
ent. Data, 7, 1–34, https://doi.org/10.1038/s41597-020-0445-3,
2020a.

Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Som-
mer, P. S., Heiri, O., and Davis, B.: Holocene global mean sur-
face temperature, a multi-method reconstruction approach, Sci-
ent. Data, 7, 1–13, https://doi.org/10.1038/s41597-020-0530-7,
2020b.

King, J. M., Anchukaitis, K. J., Tierney, J. E., Hakim, G. J.,
Emile-Geay, J., Zhu, F., and Wilson, R.: A data assimilation ap-
proach to last millennium temperature field reconstruction us-
ing a limited high-sensitivity proxy network, J. Climate, 1–6,
https://doi.org/10.1175/jcli-d-20-0661.1, 2021.

Konecky, B., Dee, S. G., and Noone, D. C.: WaxPSM: A forward
model of leaf wax hydrogen isotope ratios to bridge proxy and
model estimates of past climate, J. Geophys. Res.-Biogeo., 124,
2107–2125, https://doi.org/10.1029/2018JG004708, 2019.

Konecky, B. L., McKay, N. P., Churakova (Sidorova), O. V., Comas-
Bru, L., Dassié, E. P., DeLong, K. L., Falster, G. M., Fischer, M.
J., Jones, M. D., Jonkers, L., Kaufman, D. S., Leduc, G., Mana-
gave, S. R., Martrat, B., Opel, T., Orsi, A. J., Partin, J. W., Sayani,
H. R., Thomas, E. K., Thompson, D. M., Tyler, J. J., Abram, N.
J., Atwood, A. R., Cartapanis, O., Conroy, J. L., Curran, M. A.,
Dee, S. G., Deininger, M., Divine, D. V., Kern, Z., Porter, T. J.,
Stevenson, S. L., von Gunten, L., and Iso2k Project Members:
The Iso2k database: a global compilation of paleo-δ18O and δ2H
records to aid understanding of Common Era climate, Earth Syst.
Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-
2020, 2020.

https://doi.org/10.5194/cp-18-2599-2022 Clim. Past, 18, 2599–2629, 2022

https://github.com/Holocene-Reconstruction/Holocene-code
https://github.com/Holocene-Reconstruction/Holocene-code
https://doi.org/10.5281/zenodo.6426332
https://doi.org/10.5281/zenodo.7407116
https://doi.org/10.5194/cp-16-1061-2020
https://doi.org/10.1007/s00382-012-1297-0
https://doi.org/10.1038/nature11257
https://doi.org/10.1002/2016GL070356
https://doi.org/10.1002/2016JD024751
https://doi.org/10.1038/s41467-021-26106-0
https://doi.org/10.1038/s41467-021-26106-0
https://doi.org/10.5194/gmd-9-2563-2016
https://doi.org/10.1002/2016GL071849
https://doi.org/10.1029/2017PA003308
https://doi.org/10.1029/96JD01989
https://doi.org/10.1038/s41597-020-0445-3
https://doi.org/10.1038/s41597-020-0530-7
https://doi.org/10.1175/jcli-d-20-0661.1
https://doi.org/10.1029/2018JG004708
https://doi.org/10.5194/essd-12-2261-2020
https://doi.org/10.5194/essd-12-2261-2020


2628 M. P. Erb et al.: Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation

Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R.,
Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W.,
Brook, E. J., Erickson, D., Jacob, R., Kutzbach, J. E., and
Cheng, J.: Transient simulation of last deglaciation with a new
mechanism for bolling-allerod warming, Science, 325, 310–314,
https://doi.org/10.1126/science.1171041, 2009.

Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B.
L., Timmermann, A., Smith, R. S., Lohmann, G., Zheng,
W., and Elison Timm, O.: The Holocene temperature co-
nundrum, P. Natal. Acad. Sci. USA, 111, E3501–E3505,
https://doi.org/10.1073/pnas.1407229111, 2014.

Marcott, S. a., Shakun, J. D., Clark, P. U., and Mix,
A. C.: A reconstruction of regional and global tempera-
ture for the past 11,300 years, Science, 339, 1198–1201,
https://doi.org/10.1126/science.1228026, 2013.

Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L.,
and Brewer, S.: Reconciling divergent trends and millen-
nial variations in Holocene temperatures, Nature, 554, 92–96,
https://doi.org/10.1038/nature25464, 2018.

Matero, I. S. O., Gregoire, L. J., Ivanovic, R. F., Tindall, J. C., and
Haywood, A. M.: The 8.2 ka cooling event caused by Lauren-
tide ice saddle collapse, Earth Planet. Sc. Lett., 473, 205–214,
https://doi.org/10.1016/j.epsl.2017.06.011, 2017.

Morrill, C., Anderson, D. M., Bauer, B. A., Buckner, R., Gille, E. P.,
Gross, W. S., Hartman, M., and Shah, A.: Proxy benchmarks for
intercomparison of 8.2 ka simulations, Clim. Past, 9, 423–432,
https://doi.org/10.5194/cp-9-423-2013, 2013.

Morrill, C., Ward, E. M., Wagner, A. J., Otto-Bliesner, B. L.,
and Rosenbloom, N.: Large sensitivity to freshwater forcing lo-
cation in 8.2 ka simulations, Paleoceanography, 29, 930–945,
https://doi.org/10.1002/2014PA002669, 2014.

Nash, J. E. and Sutcliffe, J. V.: River Flow Forecasting
Through Conceptual Models Part I – A Discussion of Prin-
ciples, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-
1694(70)90255-6, 1970.

Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and
Werner, J. P.: No evidence for globally coherent warm and cold
periods over the preindustrial Common Era, Nature, 571, 550–
554, https://doi.org/10.1038/s41586-019-1401-2, 2019a.

Neukom, R., Barboza, L. A., Erb, M. P., Shi, F., Emile-Geay, J.,
Evans, M. N., Franke, J., Kaufman, D. S., Lücke, L., Rehfeld,
K., Schurer, A., Zhu, F., Brönnimann, S., Hakim, G. J., Henley,
B. J., Ljungqvist, F. C., McKay, N., Valler, V., and von Gun-
ten, L.: Consistent multi-decadal variability in global tempera-
ture reconstructions and simulations over the Common Era, Nat.
Geosci., 12, 643–649, https://doi.org/10.1038/s41561-019-0400-
0, 2019b.

Osman, M. B., Tierney, J. E., Zhu, J., Tardif, R., Hakim, G. J.,
King, J., and Poulsen, C. J.: Globally resolved surface temper-
atures since the Last Glacial Maximum, Nature, 599, 239–244,
https://doi.org/10.31223/X5S31Z, 2021.

PAGES2k Consortium: A global multiproxy database for tempera-
ture reconstruction of the Common Era, Scient. Data, 4, 170088,
https://doi.org/10.1038/sdata.2017.88, 2017.

Parsons, L. A., Amrhein, D. E., Sanchez, S. C., Tardif, R., Brennan,
M. K., and Hakim, G. J.: Do multi-model ensembles improve re-
construction skill in paleoclimate data assimilation?, Earth Space
Sci., 8, e2020EA001467, https://doi.org/10.1029/2020ea001467,
2021.

Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy
constrains ice age terminal deglaciation: The global ICE-
6G_C (VM5a) model, J. Geophys. Res.-Solid, 120, 450–487,
https://doi.org/10.1002/2014JB011176, 2015.

Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A.
C., Liu, Z., Otto-Bliesner, B., Schmittner, A., and Bard, E.:
Global warming preceded by increasing carbon dioxide con-
centrations during the last deglaciation, Nature, 484, 49–54,
https://doi.org/10.1038/nature10915, 2012.

Smerdon, J. E.: Climate models as a test bed for climate reconstruc-
tion methods: Pseudoproxy experiments, Wiley Interdisciplin.
Rev.: Clim. Change, 3, 63–77, https://doi.org/10.1002/wcc.149,
2012.

Smith, R. S. and Gregory, J.: The last glacial cycle: Transient
simulations with an AOGCM, Clim. Dynam., 38, 1545–1559,
https://doi.org/10.1007/s00382-011-1283-y, 2012.

Snoll, B., Ivanovic, R. F., Valdes, P. J., Maycock, A. C.,
and Gregoire, L. J.: Effect of orographic gravity wave
drag on Northern Hemisphere climate in transient simula-
tions of the last deglaciation, Clim. Dynam., 59, 2067–2079,
https://doi.org/10.1007/s00382-022-06196-2, 2022.

Steiger, N. and Hakim, G.: Multi-timescale data assimilation for
atmosphere–ocean state estimates, Clim. Past, 12, 1375–1388,
https://doi.org/10.5194/cp-12-1375-2016, 2016.

Steiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S.,
and Roe, G. H.: Assimilation of time-averaged pseudo-
proxies for climate reconstruction, J. Climate, 27, 426–441,
https://doi.org/10.1175/JCLI-D-12-00693.1, 2014.

Steiger, N. J., Steig, E. J., Dee, S. G., Roe, G. H., and Hakim, G.
J.: Climate reconstruction using data assimilation of water iso-
tope ratios from ice cores, J. Geophys. Res., 122, 1545–1568,
https://doi.org/10.1002/2016JD026011, 2017.

Steiger, N. J., Smerdon, J. E., Cook, E. R., and Cook, B. I.:
A reconstruction of global hydroclimate and dynamical vari-
ables over the Common Era, Nat. Scient. Data, 5, 180086,
https://doi.org/10.1038/sdata.2018.86, 2018.

Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb,
M. P., Emile-Geay, J., Anderson, D. M., Steig, E. J., and
Noone, D.: Last Millennium Reanalysis with an expanded proxy
database and seasonal proxy modeling, Clim. Past, 15, 1251–
1273, https://doi.org/10.5194/cp-15-1251-2019, 2019.

Thomas, E. R., Wolff, E. W. Mulvaney, R., Steffensen, J. P.,
Johnsen, S. J., Arrowsmith, C., White, J. W. C., Vaughn, B., and
Popp, T.: The 8.2 ka event from Greenland ice cores, Quaternary
Sci. Rev., 26, 70–81, 2007.

Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L., and Thiru-
malai, K.: Bayesian calibration of the Mg/Ca paleothermome-
ter in planktic foraminifera, Paleoceanogr. Paleoclim., 34, 2005–
2020, https://doi.org/10.1029/2019PA003744, 2019.

Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J.,
and Poulsen, C. J.: Glacial cooling and climate sensitivity revis-
ited, Nature, 584, 569–573, https://doi.org/10.1038/s41586-020-
2617-x, 2020.

Tindall, J. C. and Valdes, P. J.: Modeling the 8.2 ka event us-
ing a coupled atmosphere-ocean GCM, Global Planet. Change,
79, 312–321, https://doi.org/10.1016/j.gloplacha.2011.02.004,
2011.

Clim. Past, 18, 2599–2629, 2022 https://doi.org/10.5194/cp-18-2599-2022

https://doi.org/10.1126/science.1171041
https://doi.org/10.1073/pnas.1407229111
https://doi.org/10.1126/science.1228026
https://doi.org/10.1038/nature25464
https://doi.org/10.1016/j.epsl.2017.06.011
https://doi.org/10.5194/cp-9-423-2013
https://doi.org/10.1002/2014PA002669
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1038/s41586-019-1401-2
https://doi.org/10.1038/s41561-019-0400-0
https://doi.org/10.1038/s41561-019-0400-0
https://doi.org/10.31223/X5S31Z
https://doi.org/10.1038/sdata.2017.88
https://doi.org/10.1029/2020ea001467
https://doi.org/10.1002/2014JB011176
https://doi.org/10.1038/nature10915
https://doi.org/10.1002/wcc.149
https://doi.org/10.1007/s00382-011-1283-y
https://doi.org/10.1007/s00382-022-06196-2
https://doi.org/10.5194/cp-12-1375-2016
https://doi.org/10.1175/JCLI-D-12-00693.1
https://doi.org/10.1002/2016JD026011
https://doi.org/10.1038/sdata.2018.86
https://doi.org/10.5194/cp-15-1251-2019
https://doi.org/10.1029/2019PA003744
https://doi.org/10.1038/s41586-020-2617-x
https://doi.org/10.1038/s41586-020-2617-x
https://doi.org/10.1016/j.gloplacha.2011.02.004


M. P. Erb et al.: Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation 2629

Valdes, P. J., Armstrong, E., Badger, M. P. S., Bradshaw, C.
D., Bragg, F., Crucifix, M., Davies-Barnard, T., Day, J. J.,
Farnsworth, A., Gordon, C., Hopcroft, P. O., Kennedy, A. T.,
Lord, N. S., Lunt, D. J., Marzocchi, A., Parry, L. M., Pope, V.,
Roberts, W. H. G., Stone, E. J., Tourte, G. J. L., and Williams,
J. H. T.: The BRIDGE HadCM3 family of climate models:
HadCM3@Bristol v1.0, Geosci. Model Dev., 10, 3715–3743,
https://doi.org/10.5194/gmd-10-3715-2017, 2017.

Werner, K., Müller, J., Husum, K., Spielhagen, R. F., Kandiano,
E. S., and Polyak, L.: Holocene sea subsurface and surface wa-
ter masses in the Fram Strait – Comparisons of temperature
and sea-ice reconstructions, Quaternary Sci. Rev., 147, 194–209,
https://doi.org/10.1016/j.quascirev.2015.09.007, 2016.

Whitaker, J. S. and Hamill, T. M.: Ensemble Data Assim-
ilation without Perturbed Observations, Mon. Weather
Rev., 130, 1913–1924, https://doi.org/10.1175/1520-
0493(2002)130<1913:EDAWPO>2.0.CO;2, 2002.

Wickert, A. D.: Reconstruction of North American drainage basins
and river discharge since the Last Glacial Maximum, Earth Surf.
Dynam., 4, 831–869, https://doi.org/10.5194/esurf-4-831-2016,
2016.

https://doi.org/10.5194/cp-18-2599-2022 Clim. Past, 18, 2599–2629, 2022

https://doi.org/10.5194/gmd-10-3715-2017
https://doi.org/10.1016/j.quascirev.2015.09.007
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.5194/esurf-4-831-2016

	Abstract
	Introduction
	Methods
	The proxy database
	Climate model data
	Proxy calibrations
	Multi-timescale data assimilation

	Results
	Proxy network analysis
	The past 12000 years
	Possible influence of proxy seasonal biases

	Discussion
	Regional comparison with proxy data
	Northern Hemisphere cooling at 8.2ka
	Comparison with past reconstructions
	Caveats and future work

	Conclusions
	Appendix A: Pseudoproxy tests and proxy/reconstruction agreement
	Appendix A1: Pseudoproxy tests
	Appendix A2: Proxy records vs. the reconstruction

	Appendix B: Alternate experimental designs
	Appendix B1: Time-constant vs. time-varying prior
	Appendix B2: Covariance localization
	Appendix B3: Proxy uncertainties
	Appendix B4: Choice of model for prior
	Appendix B5: The use of multi-timescale vs. binned data assimilation

	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

