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1 Introduction and summary

Since the dawn of Seiberg-Witten era [1, 2], it has been recognized [3] that there is close
connection between 4d N = 2 systems and completely integrable Hamiltonian systems. In
particular, Donagi and Witten [4] explained that for each 4d N = 2 supersymmetric field
theory there exists a complex integrable systems encoding its Coulomb branch physics. Fol-
lowing [5] we will call such a complex integrable system a Seiberg-Witten integrable system.

There are no known systematic ways to identify the Seiberg-Witten integrable system
for a given 4d N = 2 theory. Nevertheless, there have been two main effective approaches
in this regard. In the first approach, one tries to match known many-body or spin chain
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integrable systems with particular 4d N = 2 theories. There are several notable examples
along this line. For instance, 4d N = 2 pure YM theory with simple gauge algebra G
corresponds [6] to the twisted affine Toda chain of type (Ĝ(1))∨, where (Ĝ(1))∨ is the
Langlands dual of the untwisted affine Kac-Moody algebra Ĝ(1). Another example [7, 8]
is the elliptic Calogero Moser system of AN−1 type which describes the Seiberg-Witten
solution of 4d N = 2∗ theories with gauge group SU(N) or U(N); this type of matching
has been generalized to arbitrary simple gauge groups (with G2 as a potential exception) [9].
It is also proposed [10, 11] that the inhomogeneous sl2 XXX spin chain provides solutions
to 4d N = 2 SU(Nc) gauge theories with Nf ≤ 2Nc fundamental hypermultiplets. See the
survey [12] for these and further connections.

A second approach identifies Seiberg-Witten integrable systems for a large class of
4d N = 2 supersymmetric field theories as Hitchin systems on Riemann surfaces with
tame/wild ramified punctures. This class of 4d N = 2 supersymmetric field theories are
known as class-S theories [13]. A precursor to this approach is the M-theory solution to
certain 4d N = 2 quiver gauge theories engineered with D4-NS5-D6 brane systems [14].

These two approaches — matching to known integrable systems or to Hitchin systems
— have some overlap. For instance, it is known that the elliptic Calogero Moser system of
type AN−1 can be interpreted as the SU(N) Hitchin system on a torus with a puncture [15].
However, for a majority of Hitchin systems there are no explicitly known many-body or
spin chain integrable systems.

In this and upcoming work [16], we will follow the line of the first approach to identify
the Seiberg-Witten systems for several series of 4d N = 2 superconformal field theories
which all admit F-theory constructions. A common feature shared by those theories is
that their Coulomb branch chiral rings are given by the rings of symmetric polynomials
with respect to certain complex reflection groups [17].1 On general grounds all the relevant
complex reflection groups also need to satisfy various physical constraints including Dirac
quantization and electric-magnetic duality which implies the relevant complex reflection
groups must be crystallographic — which means that there exists an invariant full-rank
lattice preserved by the complex reflection group. All such crystallographic groups have
been classified [19, 20].

Generalizations of elliptic Calogero-Moser systems — known as crystallographic elliptic
Calogero-Moser systems — have been constructed for all crystallographic complex reflection
groups [21]. Our proposal is that these are candidates for Seiberg-Witten geometries. A
nice feature of these integrable systems is that their full set of parameters matches the mass
deformations of classes of 4d N = 2 quantum field theories. For instance, we identify the
elliptic Calogero-Moser systems attached to the crystallographic complex reflection groups
of type G(m, 1, N) with m = 2, 3, 4, 6 as Seiberg-Witten integrable systems for 4d N = 2
rank N D4 and E6, E7, E8 theories [22–24]. Those theories belong to the the category of
class-S theories, therefore their Seiberg-Witten integrable systems admit Hitchin system
construction [25–27].

1We refer the reader to the appendix in [18] for a nice account of complex reflection groups aimed at
physicists.
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In this paper we will focus on the G(2, 1, N) case, which are also known as the In-
ozemtsev system [28], which corresponds to 4d N = 2 USp(2N) gauge theory with one
antisymmetric and four fundamental hypermultiplets. Since G(2, 1, N) is the complexi-
fication of the Weyl group W (BN ) ≡ W (CN ) and depends on an elliptic modulus, it is
natural to guess that it describes the Coulomb branch of a superconformal gauge theory
with USp(2N) or Spin(2N+1) gauge group. What is surprising is that, on the one hand,
the Inozemtsev system has no direct Lie-algebraic interpretation, and on the other hand
the Inozemtsev systems has the right pattern of couplings to match exactly with a single
class of 4d N = 2 gauge theories, namely, the USp(2N) superconformal theories with one
antisymmetric and Nf = 4 fundamental hypermultiplets.

Since the USp(2N) Nf = 4 theory admits class-S description, the Inozemtsev system
should be equivalent to an SU(2N) Hitchin system on the orbicurve T 2/Z2, and we of-
fer such an interpretation. Furthermore, the Seiberg-Witten solutions for the particular
USp(2N) gauge theories are given in explicit form via an M5 brane construction in [29].
The equivalence of the Seiberg-Witten solutions with the Inozemtsev system is not at all
obvious. In this work we check their equivalence for the rank N = 1, 2 cases. We find that
we need to modify some choices made in [29] in the M5 brane construction of the Seiberg-
Witten curve in order to achieve an algebraically transparent matching to the integrable
system.

Our recognition of the Inozemtsev system as a Seiberg-Witten integrable system has
some independent interest. Specifically, one may be able to utilize the gauge theory de-
scription to extract exactly solvable observables by various powerful techniques including
semi-classical methods, supersymmetric localization, the gauge-Bethe correspondence, and
the AGT correspondence, and relate them to the Inozemtsev system.

This paper is organized as follows. In section 2 we discuss various aspects of Inozemtsev
system, and introduce the Lax representation following [30, 31]. Among other things, we
give an interpretation of the Inozemtsev system as a Hitchin system on the four-punctured
sphere. In section 3, after recalling some general properties of the series of USp(2N) Nf = 4
theories, we describe the realization of their Coulomb branch physics in terms of M5 brane
curves. In section 4 we describe the transformation from the spectral curves and canonical
one-form of the Inozemtsev system in the N = 1 and N = 2 cases to the Seiberg-Witten
curves and differentials explicitly, along with the variable and parameter matching. We
include an appendix which summarizes some relevant elliptic functions and identities and
outlines the derivation of the N = 2 spectral curve of the Inozemtsev system.

2 Inozemtsev system

2.1 Hamiltonian description

The Inozemtsev system, also known as the Calogero-Moser-Sutherland system of BCN -
type, is described by the Hamiltonian [28]:

h2 =
N∑
j=1

(p2
j − u(qj))− 2g2

N∑
j<k

(℘(qj − qk) + ℘(qj + qk)) , (2.1)
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where ℘(q) is the Weierstrass ℘-function with periods 1, τ and

u(q) =
3∑
r=0

g2
r℘(q + ωr) , (ω0, ω1, ω2, ω3) =

(
0, 1

2 ,
1 + τ

2 ,
τ

2

)
. (2.2)

Here (pi, qi), i = 1, . . . , N represent the momenta and positions of N interacting particles on
the line, subject to an external field with potential −u(q). Note that we have four coupling
constants g0,1,2,3 in the N = 1 case and one additional coupling constant g in the N ≥ 2
cases. It is customary to assume, in the repulsive regime, that the couplings g2 and g2

r are
real negative. For our purposes, however, this is not important, as we consider this system
on the complexified phase space C2N with the standard (holomorphic) symplectic structure.
As such, it has the underlying symmetry associated with the complex crystallographic
group generated by the translations qj 7→ qj + 1, qj 7→ qj + τ together with the arbitrary
permutations and sign changes of qj . This corresponds to the group [G(2, 1, N)]τ1 in the
classification [19].

The Inozemtsev system is known to be completely integrable in Liouville’s sense, which
means that it admitsN independent Poisson-commuting Hamiltonians h2, h4, . . . , h2N . The
higher Hamiltonians are of the form h4 = ∑

i<j p
2
i p

2
j+. . ., h6 = ∑

i<j<k p
2
i p

2
jp

2
k+. . ., etc., up

to lower degree terms. Explicit expressions for h2k are available for the quantum case [32]
from which the classical Hamiltonians are easily obtained. For instance, in the N = 2 case
the quartic Hamiltonian can be taken as

h4 =
(
p1p2 + g2℘(q1 − q2)− g2℘(q1 + q2)

)2

− u(q1)p2
2 − u(q2)p2

1 + u(q1)u(q2)

+ (u(q1) + u(q2))
(
g2℘(q1 − q2) + g2℘(q1 + q2)

)
− 2g2

3∑
i=0

g2
i ℘(q1 + ωi)℘(q2 + ωi) . (2.3)

2.2 Lax matrix

As another manifestation of the integrability of the model (2.1), it admits a Lax repre-
sentation, i.e., a pair of matrix-valued functions L,A : C2N → Mat(2N,C) such that the
Hamiltonian dynamics takes the form d

dtL = [L,A]. An immediate corollary is that the
quantities tr(Lk), as well as the eigenvalues of L, are constants of motion, which means that
L remains isospectral for all t. Originally, Inozemtsev constructed in [28] a Lax pair of size
3N × 3N (see also [33]); other Lax pairs of smaller size have since been found [9, 30]. We
will use the Lax matrix of size 2N ×2N from [30]. To write it down, we need the functions
σα(x) and vα(x) := ∑3

r=0 grσ
r
2α(x) whose definition and basic properties are given in the

appendix. We have:

L =
N∑
i=1

(piEi,i − piEi+N,i+N + vα(qi)Ei,i+N + vα(−qi)Ei+N,i) (2.4)

+ g
N∑
i 6=j

(
σα(qij)Ei,j + σα(q+

ij)Ei,j+N + σα(−q+
ij)Ei+N,j + σα(−qij)Ei+N,j+N

)
,
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where Ei,j are the elementary matrices, and qij , q+
ij are the shorthand notation for qi − qj

and qi + qj , respectively. This Lax matrix L contains an auxiliary parameter α, usually
referred to as the spectral parameter, so we may write L(α) to emphasize this dependence.
We remark that the above expression for L follows closely ([31], (5.15)). It corresponds, in
a different notation, to (3.37) and (3.39) in [30].

As a function of α, the Lax matrix L has the following important properties.

1. Periodicity:
L(α+ 1) = L(α) , L(α+ τ) = CL(α)C−1 , (2.5)

where C =
[
D 0
0 D−1

]
with D = diag(e2πiq1 , . . . , e2πiqN ).

2. Symmetry:

L(−α) = −ML(α)M−1 , where M =
[

0 IN
IN 0

]
. (2.6)

3. L has simple poles at the half-periods: L ∼ Li(α − ωi)−1 + O(1) near α = ωi. The
residues Li are

Li = −g∨i

[
0 IN

IN 0

]
(i = 1, 2, 3) , (2.7)

L0 = (g − g∨0 )
[

0 IN
IN 0

]
− gT , (2.8)

where T is the 2N × 2N matrix with 0’s along the main diagonal and 1’s elsewhere,
and g∨i are the dual parameters,

g∨0
g∨1
g∨2
g∨3

 = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



g0
g1
g2
g3

 . (2.9)

Note that the residues Li are semi-simple (diagonalizable), with

Li ∼ diag
(
−g∨i , . . . ,−g∨i︸ ︷︷ ︸

N times

, g∨i , . . . , g
∨
i︸ ︷︷ ︸

N times

)
for i = 1, 2, 3 , (2.10)

L0 ∼ diag
(
− g∨0 − 2(N − 1)g, −g∨0 + 2g, . . . ,−g∨0 + 2g︸ ︷︷ ︸

N−1 times

, g∨0 , . . . , g
∨
0︸ ︷︷ ︸

N times

)
. (2.11)

In [30], the Lax pair L,A was constructed by an ad hoc method, and only for the Hamil-
tonian flow corresponding to the quadratic Hamiltonian h2. A more general conceptual
method for calculating L,A was suggested in [31]. It uses elliptic Dunkl operators [21, 34]
and, apart from reproducing the above L, it allows to construct a Lax partner A for each
of the commuting Hamiltonian flows. This means that L remains isospectral under each
of the flows governed by h2, h4, . . . , h2N , cf. ([31], Prop. 5.6). As a result, the quanti-
ties fi = tr(Li) Poisson-commute with each of h2k, hence fi is a function of h2, . . . , h2N .
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Taking into account (2.5), we conclude that each of the functions fi = tr(Li) is a polyno-
mial in h2, . . . , h2N whose coefficients are elliptic functions of α. Hence, the characteristic
polynomial of L can be written as

det(L− kI) = k2N + a1k
2N−1 + · · ·+ a2N , (2.12)

where ai are polynomials in h2, . . . , h2N , elliptic in the spectral parameter.

2.3 Spectral curve

This puts us in the familiar setting of complex completely integrable systems. Namely, the
level sets of N Poisson-commuting Hamiltonians h2, . . . , h2N define a Lagrangian fibration
π : C2N → CN . In addition to that, we have a family of spectral curves

f(k, α) := det(L(α)− kI) = 0 . (2.13)

parametrized by the coordinates h2, . . . , h2N on the base of the fibration π. Each spectral
curve (2.13) is a 2N -sheeted branched covering of the base elliptic curve Γ = C/(Z + τZ),
with (k, α) viewed as coordinates on the cotangent bundle T ∗Γ. The curve (2.13) comes
with a meromorphic differential, obtained by restriction from the canonical 1-form kdα on
T ∗Γ, and a line bundle L (eigen-bundle of L).

So far this looks parallel to the case of the usual Calogero-Moser system [35]. Motivated
by [15, 36, 37], one should think of the matrix-valued 1-form Φ := L(α)dα as a Higgs field of
some kind, so let us sketch such an interpretation. First, instead of considering Φ over the
elliptic curve Γ, it is more natural to take into account the symmetry (2.6). It implies that

f(−k,−α) = f(k, α) (2.14)

and so the spectral curve can be viewed as a branched covering of the Riemann sphere
Γ/Z2, with the Z2 acting by α 7→ −α. Indeed, if we multiply f(k, α) by (℘′(α))2N , we get

f̃ := (℘′(α))2Nf(k, α) = det(℘′(α)L(α)− k℘′(α)I) = det(L̃− yI) , (2.15)

where L̃ = ℘′(α)L and y = k℘′(α). A quick check confirms that L̃ is regular at α = ωr,
r = 1, 2, 3, and that L̃(−α) = ML̃(α)M−1. Therefore, the expression (2.15) is a polynomial
in y, whose coefficients are even elliptic functions with the only singularity at α = 0. As a
result, the spectral curve (2.13) acquires polynomial form

f̃(x, y) = 0 , where x = ℘(α) , y = k℘′(α) . (2.16)

Using x = ℘(α) as the coordinate on Γ/Z2, we also obtain Φ = Ldα = (℘′(α))−1Ldx. The
properties of L tell us that such Φ should be viewed as a Higgs field on the Riemann sphere
with four marked points, more precisely, on an orbicurve CP1 of type (2, 2, 2, 2). Recall [38]
that Hitchin systems on orbicurves can also be viewed as parabolic Hitchin systems, with
(conjugacy classes of) the residues of Φ at the marked points being associated with the
values of the moment map, cf. [5, 37]. Therefore, the formula (2.4) should be interpreted
as a parametrization, by pi, qi, of the corresponding 2N -dimensional symplectic leaf of

– 6 –
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a parabolic SL(2N,C) Hitchin system on the Riemann sphere with four marked points
ei = ℘(ωi), i = 0, 1, 2, 3. This provides an interpretation of the Inozemtsev system as a
Hitchin system. Note that this is different from the approach of [39]. Note also that the
pattern (2.10)–(2.11) of the residues of Φ at the marked points is in good agreement with
the SCFT picture (see section 3.2 below). Also, as is explained below in section 2.5, the
genus of the spectral curve equals N , which is as expected from both the Hitchin-system
and the M5-brane perspectives.

Let us also recall that starting from a moduli spaceM of Higgs bundles, the nonabelian
Hodge correspondence and Riemann-Hilbert map associate toM two other moduli spaces,
of local systems and of monodromy data (known as de Rahm and Betti models, see [40]
for a nice overview). For our case, these two other incarnations can be found in [41, 42],
see also [33, 43–46] for further links between the Inozemtsev system and isomonodromic
deformations.

2.4 Spectral curves for N = 1 and N = 2

Here we present explicit equations for the spectral curves (2.13) in the cases of N = 1 and
N = 2. We write equations in terms of the variables k, α. They will be matched to M5
brane curves in section 4.

2.4.1 N = 1 curve

For N = 1, the Lax matrix is (cf. [33])

L =
[

p vα(q)
vα(−q) −p

]
. (2.17)

Using (A.8), we find:

detL = −p2 − vα(q)vα(−q) = −p2 + u(q)− u∨(α) , (2.18)

where u∨(α) is the dual version of (2.2), defined above in (2.28). Hence, the spectral
curve (2.13) takes the form

f(k, z) = k2 − h2 − u∨(α) = 0 , (2.19)

with h2 = p2 − u(q) viewed as a complex parameter. Multiplying this by (℘′(α))2 and
using x = ℘(α), y = k℘′(α) we obtain y2 = ℘′2(α) (h2 + u∨(α)). Using (4.2) it is easy to
see that the right-hand side is a quartic polynomial in x = ℘(α) (it reduces to a cubic if
g∨0 = 0). For generic h2, the curves are smooth of genus 1.

The Lagrangian fibration π : C2 → C is by the level sets p2−u(q) = h2. Singular fibers
correspond to the stationary values of the Hamiltonian, i.e. to the equilibria (p, q) = (0, q0)
with u′(q0) = 0. Then we can find that for a number of l ≥ 1 generic couplings gi,
the number of stationary values of h2 is l + 2, in agreement with the Seiberg-Witten
geometry [2]. Indeed, the function u′(q) = ∑3

i=0 g
2
i ℘
′(q + ωi) is odd elliptic of order 3l,

therefore it has 3l zeros; the genericity assumption ensures that the multiplicity of each
zero is always one. Then 4− l zeros are given by the half-periods, for which the values of
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h2 are distinct. Furthermore, the other 4l− 4 zeros come in pairs (q,−q) so give the same
stationary value of h2. Thus, the number of singular fibers (or stationary values of h2) is
(4− l) + (4l − 4)/2 = l + 2, as claimed.

2.4.2 N = 2 curve

For N = 2, the Lax matrix is

L =


p1 gσα(q12) vα(q1) gσα(q+

12)
gσα(−q12) p2 gσα(q+

12) vα(q2)
vα(−q1) gσα(−q+

12) −p1 gσα(−q12)
gσα(−q+

12) vα(−q2) gσα(q12) −p2

 (2.20)

= P


p1 vα(q1) gσα(q12) gσα(q+

12)
vα(−q1) −p1 gσα(−q+

12) gσα(−q12)
gσα(−q12) gσα(q+

12) p2 vα(q2)
gσα(−q+

12) gσα(q12) vα(−q2) −p2

P−1 ,

where

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (2.21)

The N = 2 case is the first case with non-zero “antisymmetric mass” (related to the
coupling g). If we let g = 0, we find that the Lax matrix reduces to two 2× 2 blocks, each
having the form of a N = 1 Lax matrix. Similarly, the general 2N × 2N Lax matrix in the
g → 0 limit reduces to N diagonal 2 × 2 blocks. Subsequently, in this limit the spectral
curve is reducible, as it becomes a product of N copies of the N = 1 curve.

The N = 2 spectral curve is given by

0 = (k2 − u∨)2 − h2(k2 − u∨) + h4 (2.22)

− 4g2
(
℘(α)(k2 − u∨) + g∨0 ℘

′(α)k + 2(g∨0 )2℘(α)2 + ℘(α)
3∑
r=1

(g∨r )2℘(ωr)
)
,

where u∨ := u∨(α) and h2, h4 represent the values of two commuting Hamiltonians.
The derivation of (2.22) is outlined in appendix B.

2.5 Behaviour near marked points

In order to make a connection with the analysis of the Seiberg-Witten curve in section 3.2,
it will be useful to look more closely at the singularities of the Lax matrix (2.4). This will
also allow us to confirm that the genus of the spectral curves equals N , as expected.

Expanding L at half-periods gives

L =
∑
j≥−1

L
(j)
i (α− ωi)j , i = 0, 1, 2, 3 , (2.23)

– 8 –
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for some L
(j)
i ∈ Mat(2N,C) independent of α, with L

(−1)
i being the residue matri-

ces (2.7)–(2.8). The property (2.6) implies that

ML
(j)
i + (−1)jL(j)

i M = 0 , M =
[

0 IN
IN 0

]
. (2.24)

Now consider the 2N sheets of the spectral curve det(L − kI) = 0 near one of the half-
period α = ω1,2,3. From (2.10), we know that locally we can label these sheets so the roots
k1, . . . , k2N near α = ωi behave as follows:

(k1, . . . , k2N ) ∼ 1
α− ωi

(
−g∨i , . . . ,−g∨i︸ ︷︷ ︸

N times

, g∨i , . . . , g
∨
i︸ ︷︷ ︸

N times

)
+ regular terms . (2.25)

Series expansions for each kr(α) can be worked out recursively, as a perturbation series,
together with the eigenvectors vr(α) such that

L(α)vr(α) = kr(α)vr(α) , vr(α) =
∑
j≥0

v(j)
r (α− ωi)j , (2.26)

for a certain “initial” eigenbasis v(0)
r of the residue matrix L(−1)

i . Since the residue matrix
L

(−1)
i commutes with M for all i = 0, 1, 2, 3 (for i 6= 0 it is simply proportional to M),

the eigenvectors v(0)
r are also eigenvectors of M , and so half of them satisfy Mv

(0)
r = v

(0)
r ,

with Mv
(0)
r = −v(0)

r for the other half. The additional symmetry (2.24) of the Lax matrix
imposes extra constraints, which result in the following:

1. Near α = ωi, each eigenvalue kr(α) is odd, i.e. it changes sign under α 7→ 2ωi − α.

2. The terms of the series for the eigenvector vr(α) satisfy Mv
(j)
r = ±(−1)jv(j)

r , with
the sign ± determined by the initial eigenvector v(0)

r .

An important corollary of the first property is that the regular terms in (2.25) are in fact
of order O(α−ωi). Then by squaring the spectral variable k and shifting it appropriately,
all the poles can be cancelled. In particular,

z ∼ 1
(α− ωi)2

(
0, . . . , 0︸ ︷︷ ︸
2N times

)
+ regular terms (i = 1, 2, 3) , (2.27)

where we have defined

z := 1
4
(
k2 − u∨ + constant

)
, u∨ =

3∑
i=0

(g∨i )2℘(α+ ωi) . (2.28)

The factor of 1/4 and the constant in (2.28) are for later convenience.
The same analysis for α ∼ 0 gives that

(k1, . . . , k2N ) ∼ 1
α

(
− g∨0 − 2(N − 1)g, 2g − g∨0 , . . . , 2g − g∨0︸ ︷︷ ︸

N−1 times

, g∨0 , . . . , g
∨
0︸ ︷︷ ︸

N times

)
+O(α) , (2.29)
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and so by squaring and shifting it appropriately all but one of the 2N poles there can be
cancelled. In particular,

z̃ := z + g

x

(
y + 1

2g
∨
0 x

2
)
∼ 1
α2

(
Ng(g∨0 + (N − 1)g), 0, . . . , 0︸ ︷︷ ︸

2N−1 times

)
+ regular terms , (2.30)

where we have defined

x := ℘(α) ∼ 1
α2 , y := 1

4k℘
′(α). (2.31)

Eq. (2.30) indicates that the coefficients of the spectral curve written in the (x, y, z̃) vari-
ables (as an N -fold cover of the sphere parametrized by x) can only have simple poles at
x =∞, while (2.27) indicates that if they are written in the (x, y, z) variables they will be
regular away from x = ∞. In fact this observation will play an important role in finding
the change of variables needed to match the spectral curve to the Seiberg-Witten curve,
discussed in section 3.2.

We can now calculate the genus of the spectral curve (2.16). We follow the same
method as in [35]. First, consider the curve ΓN (2.13) and denote its genus by g. Then
2g − 2 = ν, where ν is the number of the branch points of ΓN viewed as a covering of the
elliptic curve Γ. This is the number of zeros of ∂f/∂k on ΓN ; it also equals the number of
poles of ∂f/∂k. The poles occur precisely at 2N points of ΓN above each of the half-periods
α = ωi. Locally, we can factorize f(k, α) into a product of factors k− kr(α). For example,
near α = ω1,2,3 we have

f(k, α) =
N∏
r=1

(
k + g∨i

α− ωi
+ br(α)

) 2N∏
r=N+1

(
k − g∨i

α− ωi
+ br(α)

)
, (2.32)

where the br(α) are of order O(α − ωi). By differentiating this equation with respect to
k, we find that ∂f/∂k has a simple pole on each of the 2N sheets above ωi. A similar
analysis near α = 0 shows that ∂f/∂k has there a pole of order 2N − 1 on one sheet,
poles of order 3 on N − 1 sheets, and simple poles on the remaining N sheets. This gives
2g − 2 = 3× 2N + (2N − 1) + 3× (N − 1) +N = 12N − 4, so g = 6N − 1.

The curve Γ′N (2.16) is obtained from ΓN by taking a quotient by the involution
(k, α) 7→ (−k,−α). Thus, ΓN can be viewed as a 2-sheeted covering of Γ′N , branched at the
fixed points of the involution. These are precisely the points above the half-periods, so there
are 8N of them. Denoting by g′ the genus of Γ′N , we get 12N−4 = 2g−2 = 2(2g′−2)+8N ,
from which g′ = N , as claimed.

2.6 Modular property

The Lax matrix and the spectral curve exhibit a modular behaviour under SL(2,Z)-action.
To state the result, recall that the Lax matrix L depends on the modular parameter τ , the
spectral parameter α, 2n variables pi, qi, and the coupling constants g and g0,1,2,3. Take
γ =

(
a b
c d

)
∈ SL(2,Z) and define L′ to be the Lax matrix with the variables changed to τ ′,
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α′, etc., in the following way:

τ ′ = aτ + b

cτ + d
, α′ = (cτ + d)−1α , (2.33)

p′i = (cτ + d)pi , q′i = (cτ + d)−1qi , (2.34)
g′ = g , g′0 = g0 , g′r = gπγ(r) for r = 1, 2, 3 .

(2.35)

Here in the last formula we denote by πγ the permutation of {1, 2, 3} determined by the
group homomorphism (A.10). With this notation, we have:

L′ = (cτ + d)QLQ−1 , (2.36)

where Q =
[
R 0
0 R−1

]
and R = diag

(
exp(− 2πic

cτ+dαq1), . . . , exp(− 2πic
cτ+dαqN )

)
.

The formula (2.36) is obtained in a straightforward way from the modular properties
of the functions σα(x) and vα(x) given in the appendix. If we introduce k′ = (cτ + d)k,
then we also have

det(L′ − k′I) = (cτ + d)2N det(L− kI) . (2.37)

The physical interpretation of these properties on the QFT side is the SL(2,Z) S-duality
mixed with the Spin(8) triality (see section 3.1 below).

3 USp(2N) Nf = 4 superconformal field theory

We consider the family of 4d N = 2 superconformal field theories consisting of USp(2N)
gauge theories with Nf = 4 hypermultiplets in the fundamental representation and (for
N ≥ 2) Na = 1 hypermultiplets in the traceless antisymmetric two-index tensor represen-
tation.

3.1 Field theory properties

We list some long-established properties of these theories.

• They are a family of interacting 4d N = 2 SCFTs labelled by a positive integer N ,
which we call the rank of the Nf = 4 theory. As SCFTs, they are invariant under
the 4d N = 2 superconformal group SU(2, 2|2).

• The Nf = 4 SCFTs have an exact SL(2,Z) S-duality. This means that each theory
has a one-complex-dimensional conformal manifold given by the upper half complex
plane modulo SL(2,Z) Möbius transformations. Though the center of SL(2,Z) acts
trivially on the conformal manifold, it acts non-trivially as charge conjugation in the
field theory. Around a special point on the conformal manifold the theory admits
a weakly-coupled Lagrangian description in terms of USp(2N) gauge theory with
4 fundamental and 1 antisymmetric hypermultiplets. The weak coupling limit of
the complex gauge coupling constant τ parameterizing the conformal manifold is
Im(τ)→∞.
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• The internal global “flavor” symmetry is Spin(8) for N = 1 and Spin(8) × SU(2)
for N ≥ 2, under which the four fundamental hypermultiplets (the same as eight
fundamental half-hypermultiplets) transform in the (8v, 1) representation, and the
antisymmetric hypermultiplet in the (1, 2) representation. Correspondingly, there is
a space of N = 2-preserving mass deformations given by the complexified weight
space of Spin(8)× SU(2). Introduce mass (or deformation) parameters (m1, . . . ,m4)
for Spin(8) and M for SU(2) as linear coordinates on this parameter space such
that mi is the complex mass of the i-th fundamental hypermultiplet, and M the
mass of the antisymmetric hypermultiplet.2 The principal congruence subgroup
Γ(2) ⊂ SL(2,Z) of the S-duality group acts trivially on the Spin(8) masses, while
the quotient SL(2,Z)/Γ(2) ' S3 transforms the mass parameters by the Spin(8)
“triality” outer automorphism [2, 47]. The antisymmetric mass is invariant under
S-duality transformations.

• The operator content of an Nf = 4 theory can be organized in terms of the unitary
representations of its global symmetry SU(2, 2|2) × Spin(8) × SU(2). In particular,
with respect to SU(2, 2|2) there are various sectors of supersymmetry-protected BPS
operators, for instance, Coulomb branch operators and Higgs branch operators. The
condensate of the scalar components in the N = 2 multiplets of BPS operators
parameterize moduli spaces of N = 2 invariant vacuum states.

• The moduli space of vacua consists of various branches each of which is locally a
metric product of a Coulomb factor and a Higgs factor, with complex dimension
nC and quaternionic dimension nH , respectively. Conventionally, the branch with
maximal nC is called the Coulomb branch and the branch with maximal nH the Higgs
branch. The rankN Nf = 4 theory has a Coulomb branch with (nC , nH) = (N,N−1)
and a Higgs branch with (nC , nH) = (0, 6N−1). The N−1 quaternionic dimensional
Higgs factor of the Coulomb branch comes from the components of the antisymmetric
hypermultiplet carrying zero weight with respect to the USp(2N) gauge algebra.

• The vector multiplet of the Lagrangian theory contains a scalar field Φ in the adjoint
representation. The Coulomb branch coordinate ring is freely generated by ui :=
tr(∧2iΦ) with i = 1, 2, . . . , N , corresponding to the primitive Casimir elements of
USp(2N). The Coulomb branch coordinate ring is graded by the scaling dimension, so
the weight of ui is 2i. Since the Coulomb branch chiral operators are BPS operators,
this description of the Coulomb branch chiral ring is true at all points of the conformal
manifold, not just at the weak coupling point.

We are interested in the geometry of the Coulomb branch. The low energy effective
U(1)N gauge theory on the Coulomb branch is encoded in the special Kähler geometry [48]
of the Coulomb branch. The N − 1 massless neutral hypermultiplets on the Coulomb
branch decouple in the low energy limit, so will be ignored.

2We use an unconventional normalization for the mass such that our masses m are related to the
canonically normalized masses m̃ by m̃ =

√
2 m.
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On general grounds [4] a Coulomb branch special Kähler geometry is equivalent to a
classical complex completely integrable Hamiltonian system. In particular, the Coulomb
branch is the N -complex-dimensional manifold of the action variables of the integrable
system. The matrix of low energy U(1)N complex gauge couplings gives the period matrix
of a complex torus of dimension N , so the Coulomb branch parameterizes a family of
complex tori, giving the angle variables of the integrable system. The complex tori are also
endowed with principle polarization coming from the Dirac pairing on the U(1)N electric-
magnetic charge lattice, and hence are abelian varieties. The total space of this family of
abelian varieties is a complex symplectic variety, the complex phase space of the integrable
system, with holomorphic symplectic form ω.

The next subsection describes the total space geometry by way of a holomorphic family
Σ of genus-N Riemann surfaces over the Coulomb branch, along with a meromorphic one-
form λ on the fibers whose poles have constant residues. (Σ, λ) are called the Seiberg-
Witten curve and one-form in the physics literature. The abelian variety fibers of the
integrable system are the Jacobian tori of the Riemann surfaces, and the symplectic form is
ω = dλ. Thus we will match the field theory Coulomb branch geometry to the Inozemtsev
system by matching the Seiberg-Witten curve and one-form to the spectral curve and
canonical one-form of the integrable system.

3.2 Seiberg-Witten curve

The USp(2N) Nf = 4 SCFTs can be constructed as the low energy effective theory of type
IIA superstrings in the presence D4, NS5, D6, and O6− branes generalizing the construction
of [14]. The M-theory lift of the D6 and O6− IIA brane configuration [49] is a specific choice
of complex structure of a (T 2×C)/Z2 hyperkähler orbifold background. The M-theory lift
of the D4 and NS5 branes is a single M5 brane intersecting the background except over
points of T 2 corresponding to NS5 branes. This intersection is the Seiberg-Witten curve,
and the restriction of the holomorphic hyperkahler form to the curve is the Seiberg-Witten
one-form. This is the spectral curve of a Hitchin system on the orbifolded torus with
punctures [49].

The deformations of this orbifold background and M5 brane curve corresponding to
turning on the Spin(8) fundamental masses and the SU(2) antisymmetric mass was worked
out in [29]. The connection to a Hitchin system is no longer apparent in this description.
We will describe this solution for the USp(2N) Nf = 4 Coulomb branch in more detail
shortly in preparation for showing its equivalence to the spectral curve of the Inozemtsev
system. But first, we make a few comments on two other string constructions of the
USp(2N) Nf = 4 theories.

These theories naturally arise as the world volume theories on a stack of N parallel D3
branes probing an F-theory singularity of (I∗0 , D4) type — i.e., an O7− plane coinciding
with four D7 branes [50–53]. But it is not known how to turn on the antisymmetric mass
M deformation in the F-theory construction.

These theories also admit a class-S construction via a 6d (2, 0) A2N−1 SCFT compact-
ified on a sphere C with four punctures all of type [N,N ]. This construction only makes
manifest an SU(2)4 subgroup of the Spin(8) flavor group, and does not make the antisym-
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metric SU(2) flavor factor or its associated mass deformation apparent [25]. C is identified
with T 2/Z2 with the four punctures corresponding to the four Z2 orbifold fixed points. The
antisymmetric hypermultiplet appears upon taking an appropriate zero-area limit of C [54],
and [27] showed that by modifying the type of one puncture to be [N,N − 1, 1], the theory
manifests the antisymmetric SU(2) flavor symmetry. The class-S construction realizes the
integrable system underlying the Coulomb branch geometry as a Hitchin system [55].

The matching to the M5 brane curve, presented below, gives strong evidence that the
Hitchin system associated with the above class-S construction can be identified with the
Inozemtsev system.

In the rest of this section we review the M5 brane construction [29] of the SW curve
for the USp(2N) Nf = 4 theory. The main ingredients in this construction are:

• The USp(2N) theory with the Spin(8) mass deformation is realized by embedding
one complex dimension of the M5 brane world volume in a complex surface, Q0. Q0
carries a hyperkähler structure — from which the SW 1-form is derived — and is a
deformation of a (T 2 × C)/Z2 orbifold. This surface can be thought of (we will be
more precise below) as fibered over T 2/Z2.

• The intersection with the M5 brane then gives a curve which projects to an N -fold
cover of T 2/Z2 minus one of the orbifold points. At the missing orbifold point the
M5 brane is not transverse to Q0; we will call this point the “pole” of the M5 brane.

• The SU(2) mass deformation, M , is realized by further deforming the background
surface to QM . Following the discussion of the analogous deformation of the elliptic
model in [14], describe QM by two charts to Q0, one including the fibers above a
neighborhood of a chosen point p ∈ T 2/Z2, and the other encompassing the rest of
the surface. The two coordinate patches are isomorphic to the corresponding patches
of Q0, and the M deformation is realized by requiring that the transition map is a
shift of the fiber coordinate which has a pole with residue proportional to M at p.
We call this transition map the “M shift”. Changing p and the form of the transition
map but keeping M fixed does not change the complex structure of QM .

• The M5 brane curve for the mass-deformed USp(2N) Nf = 4 SCFT is then locally a
degree-N polynomial in the fiber coordinate on QM whose coefficients have at most
a simple pole over a chosen orbifold point of T 2/Z2.

The form of the SW curve for the USp(2N) Nf = 4 (and many other closely related)
SCFTs found in [29] followed this procedure with the M shift at a point p not equal to
one of the orbifold points of T 2/Z2. Both the form of the spectral curve of the Inozemtsev
system as well as the above-mentioned S-class construction (where one of the four punctures
is modified to capture the M deformation) suggest that they will most easily match the
form of the SW curve if the point p of the M shift should be taken to coincide with one
of the orbifold points. This involves a slight modification of the construction of [29] which
we now explain.
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3.2.1 Background surface

We start with the orbifold (T 2 × C)/Z2. Think of T 2 × C as an affine bundle over T 2

and let v ∈ C be the fiber coordinate. Write the complex torus T 2 as a curve η2 =∏4
i=1(x − eiw) in weighted projective space, [w : x : η] ∈ P2

(1,1,2). Note that SL(2,C)
transformations of (w, x) do not change the complex structure of T 2, but change the ei by
Möbius transformations. The Z2 identification on C × T 2 is (v, w, x, η) ' (−v, w, x,−η).
Using the invariant coordinates on the orbifold, y = vη, z = v2 (w and x unchanged), the
orbifolded background space is given by the surface y2 = z

∏4
i=1(x− eiw).

The (T 2 × C)/Z2 orbifold has a four-parameter deformation into a complex surface
Q0 with the same asymptotic structure. The mass-deformed orbifold surface Q0 and SW
1-form are [29]

λ = y(wdx− xdw)
P

, P :=
∏
i

(x− eiw),

y2 = zP +Q, Q :=
∑
j

µ2
jw

∏
k 6=j

[(x− ekw)(ej − ek)], (3.1)

where i, j, k ∈ {0, 1, 2, 3}. Note that we still have [w : x : y] ∈ P2
(1,1,2). The deformation

parameters, µi, turn out to be related to the fundamental masses by [29]

µ0 = 1
2(m1 +m2), µ1 = 1

2(m1 −m2), µ2 = 1
2(m3 +m4), µ3 = 1

2(m3 −m4). (3.2)

The topology of Q0 can be pictured by noting that the z = constant “sections” are
tori, and the x = ξw (ξ = constant) “fibers” are generically 2-sheeted covers of the z-plane
branched over the point z = −Q/P . But when x = eiw the fiber becomes two disconnected
copies of the z-plane, S±j :=

{
x = ejw, y = ±µjw2∏

k 6=j(ej − ek), ∀z
}
. The existence

of these “double fibers” over the Weierstrass points in the deformed orbifold will play a
central role in what follows. From the point of view of the IIA string theory D4/NS5/O6−
brane construction, the generic x = ξw fibers correspond to possible loci of (the M theory
lift of) an NS5 brane, while the S±j curves correspond the possible loci of “half” NS5 branes
“stuck” at an O6− orientifold plane.

To get closer to the form of the integrable system spectral curve, we will specialize (3.1)
to Weierstrass form where the Weierstrass points are placed at e0 = ∞ and ∑3

j=1 ej = 0.
Then the Q0 surface and 1-form become

λ = y(wdx− xdw)
wP̃

, P̃ :=
∏
i

(x− eiw) = x3 + s2w
2x− s3w

3,

y2 = (zw + µ2
0x)P̃ + w2Q̃, Q̃ :=

∑
j

µ2
jεj

∏
k 6=j

(x− ekw). (3.3)

where now indices only take the three values i, j, k ∈ {1, 2, 3}, and we have defined the
useful combinations

s2 :=
∑
j<k

ejek, s3 :=
∏
j

ej , εj :=
∏
k 6=j

(ej − ek). (3.4)
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Note that the equations for the disjoint fibers over the Weierstrass points become

S±∞ := {w = 0, y = ±µ0x
2, ∀z}, and S±j := {x=ejw, y=± µjεjw2, ∀z}. (3.5)

Now we discuss the M deformation with the shift put at a branch point. To motivate
the construction, we first review, following [14], the corresponding deformation of the
unorbifolded T 2 ×C background, η2 = P . Put the M shift at the Weierstrass point w = 0
(which is x =∞ in the w = 1 patch) by defining the transition map,

ṽ = v +M
η

wx
, (3.6)

where ṽ is the fiber coordinate of a chart over a neighborhood of the w = 0 point of the T 2.
This transition map has a pole with residue M over w = 0, so describes a one-parameter
complex deformation of T 2 × C with parameter M . This is because the deformations of
the affine bundle T 2 × C are classified by H1(T 2,OT 2) which is 1-dimensional, so there is
just a single deformation parameter, and furthermore this cohomology group vanishes if a
point is deleted from T 2.

In our case Q0 is not an affine bundle, but is a deformation of a Z2 orbifold of the
this affine bundle. This leads to the expectation (for which we do not have a rigorous
justification) that there is still only a single complex deformation preserving the asymptotic
structure. We can find a description of this deformation simply by orbifolding the M shift
given in (3.6), or more generally, by defining the transition map to be any shift of the “fiber”
(z) coordinate with a pole over the Weierstrass point w = 0 with residue proportional toM .

The Z2 orbifold action identifies ṽ ↔ −ṽ, so we define invariant coordinates z̃ = ṽ2,
ỹ = ṽη. Then (3.6) gives the transition map

ỹ = y +M
P̃

x
, z̃ = z + 2M y

wx
+M2 P̃

wx2 , (3.7)

in a neighborhood of the w = 0 fiber of (C× T 2)/Z2. Thus y is shifted by a term regular
at w = 0 (in the x = 1 patch), while z is shifted by a double pole at w = 0 plus single pole
and regular terms. (Recall that in local coordinates around w = 0 — i.e.,

√
w in the x = 1

patch — y has a simple zero and w−1 a double pole.)
So far this has all been in the undeformed orbifold. To go to the Q0 surface where the

orbifold is deformed by turning on the µi masses, it was argued in [29] that (3.7) does not
change, since one simply shifts z → z + Q

P and the same for z̃. In Weierstrass form this
applies without change; just rewrite Q

P = µ2
0
x
w + Q̃

wP̃
.

But (3.7) has a qualitatively different pole structure at w = 0 in Q0 than in the un-
deformed orbifold. In the undeformed orbifold y ∼

√
w was the local coordinate vanishing

at w = 0, but in the deformed orbifold w = 0 is no longer a branch point for y; instead y
has two solutions, giving two disjoint curves over w = 0, denoted by S±∞ in (3.5). In the
neighborhood of S±∞ the transition map (3.7) has a pair of distinct simple poles along S±∞
rather than a single double pole.

Although the form of the M shift given in (3.7) is perfectly valid, the form of the re-
sulting M5 brane curves do not match to those of the Inozemtsev system in an algebraically
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simple way. Confident that there is only a single complex deformation Q0 → QM , we can
modify (3.7) to any other convenient transition map which has a simple pole in z̃ at w = 0.

The property (2.30) of the spectral curve indicates that z̃ should be chosen to have
only a single pole at w = 0 (x =∞). A simple transition map which does this is

ỹ = y, z̃ = z + 2M (y + µ0x
2)

wx
. (3.8)

since (3.8) behaves near w = 0 as

z̃ =

(1 + M
µ0

)z + 2µ0M
x
w at S+

∞

(1− M
µ0

)z at S−∞,
(3.9)

so has a simple pole only along the S+
∞ fiber over w = 0, and is regular along the S−∞ fiber.

We will see below that this transition map gives an M5 brane curve which is eas-
ily matched to the Inozemtsev system spectral curve. Indeed, comparing (2.28), (2.30)
and (2.31) to (3.8) already indicates how most of the variables and parameters of the
integrable system will have to be matched to those of the SW curve.

3.2.2 M5 brane curve

We now have a choice of placing of a stuck NS5 brane at w = 0 at either the S+
∞ or

the S−∞ fiber. This choice gives two different forms of the curve upon turning on the
M deformation since it gives different regularity conditions in the shifted z̃ coordinates
depending on whether the stuck brane coincides with the shift pole or not. However, once
again the property (2.30) of the spectral curve indicating that there should be only a single
pole dictates that the stuck NS5 brane should be placed at the S+

∞ fiber to coincide with
the position of the M shift pole.

Before turning on theM deformation, the M5 brane curve of [29] in the Q0 background
specialized to the case of the USp(2N) Nf = 4 theory has the form 0 = zN +A(w, x, y, z)
where A is a polynomial in z of order N − 1, homogeneous of weight 0 in (w, x, y), and can
have a simple pole along either the S+

∞ or the S−∞ fiber over w = 0. This comes from the IIA
brane construction where N is the number of D4 branes (after orbifolding) corresponding
to the rank of the gauge group and the pole at w = 0 is a single stuck NS5 brane. A linear
basis of functions of (w, x, y) homogeneous of weight 0 with at most a simple pole at w = 0
is {1, x/w}. Thus A can be written more explicitly as

0 = zN +A0(z) + x

w
A1(z) (3.10)

where A0,1 are arbitrary polynomials of order N−1 in z. Since the curve is allowed to have
a pole only along either S+

∞ or S−∞, but not along both, and since x
w has a pole along both,

we must, in fact, have that A1(z) ≡ 0. Thus, when M = 0 the USp(2N) Nf = 4 curve
is generically N disjoint sections of Q0 corresponding to the N roots of the polynomial
zN + A0(z). This reflect the well-known fact — reviewed at the beginning of the next
section — that when M = 0 the Coulomb branch of the theory is the N -fold symmetric
product of the rank-1 Coulomb branch.
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We now turn on the antisymmetric mass deformation parameter M by using the tran-
sition map (3.8). Concretely, the curve for the shifted model is like the curve for the
non-shifted model (3.10) except that we should now allow singularities only S+

∞ in a coor-
dinate patch covering w = 0 with coordinates (w, x, y, z̃) related to (w, x, y, z) by (3.8).

Since we are only adding poles at w = 0, and the only functions of weight zero in
(w, x, y) with poles only there are (x/w)α and (y/w2)(x/w)α for non-negative α, the general
form of the curve in the z patch will be

0 = F := zN +
∞∑
a=0

w2Aa + yEa
w2

(
x

w

)a
(3.11)

where the Aa and Ea are arbitrary polynomials of order N − 1 in z.
Though (3.11) is a correct general form for the curve, the infinite sum of pole terms

is intimidating. It is not too hard to bound the number of pole terms that can contribute
by using the condition that there is only at most a first-order pole at w = 0 in the shifted
z̃ variable. Under the transition map (3.8), z̃ = z + yP1 + P1, where Pa refers to a generic
rational function of w with poles of up to order a at w = 0 (work in the x = 1 patch).
Using the fact that y2 ∼ zP0 + P0, one can recursively eliminate all higher powers of y in
z̃` ∼ z` + · · · to find that

z̃` . z` +
`−1∑
a=1

z`−a(P2a + yP2a−1). (3.12)

The . sign means that we have pole orders bounded by the terms on the right. In the
z̃ coordinate the curve is to have at most a simple pole at w = 0, so will have the form
z̃N + ∑N−1

`=0 z̃`P1. Substituting (3.12) into this then shows that in the z coordinate the
highest-order poles are of the form

F . zN +
N−1∑
`=0

∑̀
a=0

z`−a(P2a+1 + yP ′2a) ∼ zN +
N∑
`=1

zN−`(P2`−1 + yP ′2`−2), (3.13)

where by P ′a we mean the usual ath-order pole for a 6= 0, but P ′0 ≡ 0. Comparing to (3.11)
then implies that the curve is

0 = zN +
N∑
`=1

zN−`
( 2`−1∑
a=0

Aa`
xa

wa
+

2`−2∑
a=0

Ea`
yxa

wa+2

)
. (3.14)

Note that (3.12) and thus (3.14) does not give the optimal bound on the order of the poles
appearing in the curve, but instead just gives a reasonable upper bound. This is not a big
deal since any “extra” terms will be set to zero upon demanding only a simple pole appear
in the z̃ patch.

The coefficients in (3.14) are determined by demanding the correct pole behavior after
shifting to the z̃ variable. Concretely, make the inverse change of coordinates (3.8) in the
curve by substituting z → z̃ − 2M(y + µ0x

2)/(wx) in (3.14). The 5 brane curve (3.14) in
the x = 1 patch becomes in terms of the (3.8) shifted variables

0 =
(
z̃ − 2My + µ0

w

)N
+

N∑
`=1

(
z̃ − 2My + µ0

w

)N−`( 2`−1∑
a=0

Aa`
wa

+
2`−2∑
a=0

yEa`
wa+2

)
. (3.15)
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Expand this around w = 0 keeping only pole terms z̃`w−a and z̃`yw−a for a > 0. We do this
by using iteratively that y2 = (z̃w− 2M(y+µ0) +µ2

0)P̃ +w2Q̃, with P̃ = 1 + s2w
2− s3w

3,
and Q̃ = ∑

j µ
2
jεj
∏
k 6=j(1− ekw) to reduce all terms to either z̃w−a or z̃yw−a.

Motivated by the form of the spectral curve of the integrable system, as discussed
above, we choose the to put the stuck 5 brane at S+

∞. This means that the Aa` and Ea`
coefficients are determined by requiring that all second- and higher-order poles along S±∞
and the simple poles along S−∞ cancel in the z̃ variables. Only a simple pole along S+

∞ is
allowed, corresponding to the stuck brane.

3.2.3 The rank-1 SW curve

Specializing to rank N = 1, there is no M deformation, and the M5 brane curve (3.10)
becomes simply

0 = z +A01. (3.16)

We can use this to eliminate z in the (3.3) to give the an elliptic curve in Weierstrass form
for the SW curve. We recall here for later convenience the expressions for the Q0 surface
and 1-form written in the w = 1 patch coordinates,

y2 = (z + µ2
0x)P̃ + Q̃, λ = ydx

P̃
, (3.17)

where

P̃ :=
3∏
i=1

(x− ei), Q̃ :=
3∑
j=1

µ2
jεj

∏
k 6=j

(x− ek). (3.18)

3.2.4 The rank-2 SW curve

At rank N = 2 the coefficients in the general M5 brane curve (3.14) are determined by the
procedure described below equation (3.15). For N = 2 the highest power of y appearing
in (3.15) is 2, and only a single iteration of using the Q0 surface equation to reduce the power
of y is needed. As a result the constraints on the coefficients are not overly complicated,
though it is still useful to use a computer algebra system to solve the constraints. The
result is that the M5 brane curve is (written in the w = 1 patch coordinates)

0 = z2 +A01z +A02 − 4M2zx− 8M2µ0(y + µ0x
2). (3.19)

The intersection of (3.19) with the Q0 surface (3.17) and the restriction of the one-form to
this intersection then give a genus-2 SW curve and associated meromorphic 1-form.

4 Matching spectral curve to M5 brane curve

The Coulomb branch of the USp(2N) Nf = 4 theory is isomorphic as a complex space
(though not as a metric space) to CN with coordinates given by the gauge invariant
vacuum expectation values ui := tr(∧2iΦ), i = 1, 2, . . . , N which have scaling dimen-
sions 2, 4, . . . , 2N at the conformal point. The Coulomb branch of the massless the-
ory has the same complex structure as the classical moduli space. At a generic point
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on the Coulomb branch of the massless theory, the adjoint vev can be diagonalized,
Φ = diag(±φ1,±φ2, · · · ,±φN ), in which case ui = ei(φ2

1, φ
2
2, · · · , φ2

N ), i = 1, 2, . . . , N ,
where ei is the i-th elementary symmetric polynomial. As long as the antisymmetric mass
vanishes, the matrix of U(1)N complex gauge couplings is diagonal, τij = δijτ(φ2

i ).
In the case when all the masses vanish, τ(φ2

i ) = τ , i.e., has the same constant value.
We thus have the same abelian variety with period matrix τij = δijτ at all points on the
Coulomb branch except the origin. The singular fiber above the origin is given by the
orbifold T 2N/G(2, 1, N) ' CN/([Z+ τZ)N oG(2, 1, N)]. Then the total space of Coulomb
branch is identical to the phase space of the Inozemtsev system with zero couplings.

Thus for vanishing masses the field theory Coulomb branch geometry is correctly de-
scribed by the Inozemtsev system. In the remainder of this section we present parameter
and variable identifications for the rank N = 1 and N = 2 cases, showing that the M5
brane SW curve and 1-form and the spectral curve and 1-form of the Inozemtsev system
coincide for non-vanishing masses (deformation parameters). We stop at N = 2 because
the matching of parameters becomes increasingly complicated for larger values of N .

4.1 The N = 1 case

Recall that the N = 1 spectral curve is given by (2.19), and the one-form by λ = kdα.
Introduce coordinates (x, y) related to (k, α) by

x = ℘(α), y = 1
4℘
′(α)k, (4.1)

where the prime means derivative with respect to α. These definitions were motivated
in (2.31) by the pole structure of the spectral curve. We then find, using the Weierstrass
℘-function identities

(℘′(α))2 = 4
3∏
i=1

(℘(α)− ei), ℘(α+ ωi) = ei +
∏3
j 6=i(ei − ej)
℘(α)− ei

, (4.2)

where

ei := ℘(ωi), i = 1, 2, 3, (4.3)

that the spectral curve and one-form become

y2 = 1
4(h2 + γ)

3∏
i=1

(x− ei) + 1
4(g∨0 )2x

3∏
i=1

(x− ei) + 1
4

3∑
i=1

(g∨i )2
3∏
j 6=i

(x− ej)(ei − ej),

kdα = ydx∏3
i=1(x− ei)

, (4.4)

where γ := ∑3
i=1(g∨i )2ei. These are easily seen to coincide with the SW curve and 1-form

given in (3.16) and (3.17) with the parameter identifications

µ2
i = 1

4(g∨i )2, A01 = −1
4(h2 + γ). (4.5)
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4.2 The N = 2 case

Recall that the BC2 spectral curve is given by (2.22). With the same change of vari-
ables (4.1) as in the BC1 case, which matched the 1-forms, the BC2 curve becomes

(k2 − u∨)2 − h2(k2 − u∨) + h4 − 4g2
(
x(k2 − u∨) + 4g∨0 y + 2(g∨0 )2x2 + xγ

)
= 0. (4.6)

Recall that u∨ := ∑3
r=0(g∨r )2℘(α + ωr) and γ := ∑3

r=1(g∨r )2er. Then with the parameter
identifications

µ0 = 1
2g
∨
0 , µ2

i = 1
4(g∨i )2 for i ∈ {1, 2, 3}, M2 = 1

4g
2,

A01 = −1
4(h2 + 2γ), A02 = 1

16(h4 + γh2 + γ2),

z = 1
4(k2 − u∨ + γ), (4.7)

and using the Weierstrass identities (4.2), we find the spectral curve becomes the pair of
equations

y2 = (z + µ2
0x)P̃ + Q̃,

0 = z2 + z
(
A01 − 4M2x

)
+
(
A02 − 8M2µ2

0x
2
)
− 8M2µ0y, (4.8)

which coincides with the M5 brane curve (3.19) and background surface (3.17). Note that
the definition of z (up to a constant shift) was already motivated in (2.28) by the pole
structure of the spectral curve.
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A Elliptic functions and identities

We use the following functions

σrα(x) = ϑr+1(x− α)ϑ′1(0)
ϑr+1(x)ϑ1(−α) , r = 0, 1, 2, 3 , (A.1)

where ϑ1,2,3,4(x|τ) are the Jacobi theta functions. A summary of their main properties can
be found in [56]; in particular, we have

σrα(x+ ω) = e2πiα∂τωσrα(x) for ω ∈ Z + τZ . (A.2)
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(Here we use the shorthand notation ∂τ (a + bτ) = b.) We also denote σ0
α(x) simply by

σα(x), that is,

σα(x) = ϑ1(x− α)ϑ′1(0)
ϑ1(x)ϑ1(−α) . (A.3)

The functions (A.1) are related to each other by translations by the half-periods
(ω0, ω1, ω2, ω3) =

(
0, 1

2 ,
1+τ

2 , τ2

)
:

σrα(x) = e2πiα∂τωrσα(x− ωr). (A.4)

For given coupling parameters g0,1,2,3, we further define

vα(x) = vα(x; g0, g1, g2, g3) =
3∑
r=0

grσ
r
2α(x). (A.5)

Note the properties

σ−α(−x) = −σα(x) , v−α(−x) = −vα(x) , (A.6)

and the following identities:

σα(−x)σα(x) = ℘(α)− ℘(x), (A.7)

vα(−x)vα(x) =
3∑
r=0

(
(g∨r )2℘(α+ ωr)− (gr)2℘(x+ ωr)

)
, (A.8)

where g∨i are the dual parameters (2.9). Using the notation (2.2), (2.28), the last relation
can be written as vα(−x)vα(x) = u∨(α)− u(x).

Another useful property of vα(x) is the following duality:

vα(x; g0, g1, g2, g3) = v−x(−α; g∨0 , g∨1 , g∨2 , g∨3 ) = −vx(α; g∨0 , g∨1 , g∨2 , g∨3 ) . (A.9)

This can be checked by comparing translation properties and residues in the x-variable.
Finally, let us state how σα(x) and vα(x) behave under action of γ ∈ SL(2,Z). We will

use the group homomorphism π from SL(2,Z) to the permutation group S3 defined on the
generators as follows:

π : SL(2,Z)→ S3 , γ 7→ πγ , ( 1 1
0 1 ) 7→ s23 ,

( 0 1
−1 0

)
7→ s13 . (A.10)

Note that the kernel of π is the principal congruence subgroup Γ(2) ⊂ SL(2,Z).
Take γ =

(
a b
c d

)
∈ SL(2,Z) and define τ ′, α′, x′, g′i in the following way:

τ ′ = aτ + b

cτ + d
, α′ = (cτ + d)−1α , x′ = (cτ + d)−1x , (A.11)

g′0 = g0 , g′r = gπγ(r) for r = 1, 2, 3 . (A.12)

With this notation, we have:

σα′(x′|τ ′) = (cτ + d) exp
(
− 2πic
cτ + d

αx

)
σα(x|τ) , (A.13)

σ
πγ(r)
α′ (x′|τ ′) = (cτ + d) exp

(
− 2πic
cτ + d

αx

)
σrα(x|τ) , r = 1, 2, 3 . (A.14)

– 22 –



J
H
E
P
0
5
(
2
0
2
1
)
0
5
1

These transformations can be deduced easily using the modular transformations of Jacobi
theta functions. As a corollary,

vα′(x′; g′0, g′1, g′2, g′3|τ ′) = (cτ + d) exp
(
− 4πic
cτ + d

αx

)
vα(x; g0, g1, g2, g3|τ) . (A.15)

B Calculating the N = 2 spectral curve

The N = 2 spectral curve is defined by the characteristic polynomial

det(L− kId) = k4 + a1k
3 + a2k

2 + a3k + a4 (B.1)

of the Lax matrix (2.20). By direct calculation,

a1 = 0

a2 = −
(
p2

1 − p2
2 + 2g2(σα(−q12)σα(q12) + σα(−q+

12)σα(q+
12)
)

+ vα(−q1)vα(q1) + vα(−q2)vα(q2)
)

a3 = −2g2
(
vα(q2)σα(q12)σα(−q+

12) + vα(q1)σα(−q12)σα(−q+
12)

+ vα(−q1)σα(q12)σα(q+
12) + vα(−q2)σα(−q12)σα(q+

12)
)

a4 = p2
1p

2
2 + vα(−q2)vα(q2)p2

1 + vα(−q1)vα(q1)p2
2

+ 2g2
(
σα(−q+

12)σα(q+
12)− σα(−q12)σα(q12)

)
p1p2

+ vα(−q1)vα(q1)vα(−q2)vα(q2)

− g2
(
vα(q1)vα(q2)σα(−q+

12)2 + vα(−q1)vα(q2)σα(q12)2

+ vα(q1)vα(−q2)σα(−q12)2 + vα(−q1)vα(−q2)σα(q+
12)2

)
+ g4

(
σα(−q12)σα(q12)− σα(−q+

12)σα(q+
12)
)2

(B.2)

where we have used the abbreviations qij = qi − qj and q+
ij = qi + qj .

Using (A.7) and (A.8), we easily find that

a2 = −
(
h2 + 4g2℘(α) + 2

3∑
r=0

(g∨r )2℘(α+ ωr)
)

= −(h2 + 4g2℘(α) + 2u∨(α)) , (B.3)

where
h2 = p2

1 + p2
2 − u(q1)− u(q2)− 2g2

(
℘(q12) + ℘(q+

12)
)
. (B.4)

To calculate a3, we first note that it is elliptic in q1,2 with possible first order poles
along the mirrors qi = 0 for i = 1, 2 and q1 ± q2 = 0. However, it is symmetric under
interchanging q1, q2 and changing their signs arbitrarily. Hence, a3 cannot have a first
order pole along any mirror, thus it is regular elliptic, i.e. constant independent of q1, q2.
After than we can evaluate a2 at convenient values of q1, q2. The result is

a3 = −2g2
( 3∑
i=0

gi

)
℘′(α) = −4g2g∨0 ℘

′(α). (B.5)
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It remains to deal with a4. By using (A.7) and (A.8) repeatedly, we rearrange it into

a4 =
( 3∑
r=0

(g∨r )2℘(α+ ωr)
)
h2 +

( 3∑
r=0

(g∨r )2℘(α+ ωr)
)2

+
(
p1p2 + g2℘(q12)− g2℘(q+

12)
)2

− u(q1)p2
2 − u(q2)p2

1 + u(q1)u(q2)− g2b (B.6)

where we have introduced

b = vα(q1)vα(q2)σα(−q+
12)2 + vα(−q1)vα(q2)σα(q12)2

+ vα(q1)vα(−q2)σα(−q12)2 + vα(−q1)vα(−q2)σα(q+
12)2 . (B.7)

Calculating b is more involved, so we just give a sketch. As the first step, we analyse the
2nd order poles in q1, q2 and find that the following expression agrees with b up to an extra
term c having first order poles only:

b = (2u∨(α)− u(q1)− u(q2))(℘(q12) + ℘(q+
12)) +

3∑
r=1

2g2
r℘(q1 + ωr)℘(q2 + ωr) + c . (B.8)

Using the symmetry arguments once more, we conclude that c must be regular, i.e. it is
just a function of α. In addition, we know that c = c(α) is even elliptic. It is also easy
to check that c(α) has a 4th order pole at α = 0 and 2nd order poles at α = ω1,2,3. To
determine c(α) from that, we analyse the Laurent expansion of b in α near α = 0 and
α = ω1,2,3. We skip the details and just give the answer:

c = 2
[
4(g∨0 )2℘(α)2 − 2℘(α)

(
u∨(α)−

3∑
i=1

(g∨r )2er

)]
+ d , (B.9)

up to a possible constant d which may depend on gi and ei = ℘(ωi), but not on α.
Backward substitution of (B.9) and (B.8) into (B.6) gives the answer for a4, after which

all that remains is to rearrange the terms based on the form of the quartic Hamiltonian
h4 (2.3). The constant d in (B.9) can always be absorbed into h4, so can be ignored.
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