
This is a repository copy of Metamorphic testing with causal graphs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/195317/

Version: Accepted Version

Proceedings Paper:
Clark, A.G., Foster, M., Walkinshaw, N. et al. (1 more author) (2023) Metamorphic testing 
with causal graphs. In: 2023 IEEE Conference on Software Testing, Verification and 
Validation (ICST). 2023 IEEE Conference on Software Testing, Verification and Validation 
(ICST), 16-20 Apr 2023, Dublin, Ireland. Institute of Electrical and Electronics Engineers 
(IEEE) . ISBN 9781665456678 

https://doi.org/10.1109/ICST57152.2023.00023

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Metamorphic Testing with Causal Graphs

Andrew G. Clark, Michael Foster, Neil Walkinshaw, Robert M. Hierons

Department of Computer Science, University of Sheffield

{agclark2, m.foster, n.walkinshaw, r.hierons}@sheffield.ac.uk

Abstract—Metamorphic testing provides a means by which
to generate succinct test oracles that can apply to large input
spaces. For this it depends on the formulation of metamorphic
relations, which generally require extensive domain expertise and
human input. To address this problem, we present a model-based
testing approach that can automatically generate metamorphic
relations and associated tests. Our approach is motivated by the
observation that metamorphic testing is a fundamentally causal
task. We show how it is possible to leverage lightweight graph-
based modelling techniques from the field of causal inference
to specify causal properties of the system-under-test. Through
a series of controlled experiments, we find that the proposed
approach is robust to misspecification and can test evasive causal
relationships (i.e. those that are difficult to exercise and observe)
when combined with an appropriate test generation strategy. We
also apply the approach to two case studies from the Defects4J
framework with known bugs that affect causal behaviour. The
results of these case studies suggest that the approach is not
only useful for catching bugs affecting causal structure, but also
alerting the user to inaccuracies in the specification.

I. Introduction

Metamorphic testing provides an approach for reasoning

about the correctness of a system’s output in terms of changes

to its inputs [1]. In this way, a single “metamorphic rela-

tionship” can be used to succinctly summarise the expected

results for a potentially infinite range of inputs, as opposed

to the conventional approach of writing test oracles that

check the results for specific individual inputs. As a result,

metamorphic testing has been successfully applied to various

classes of systems that have traditionally been perceived as

being particularly hard to test [2], such as machine learning

systems [3] and compilers [4].

One barrier to the widespread application of metamorphic

testing is the difficulty of formulating metamorphic relation-

ships [2], [1]. Although several advances into semi-automatic

metamorphic relation construction have been made [1], exist-

ing approaches have significant limitations. Techniques that

reverse-engineer metamorphic relations from executions [5]

risk reverse-engineering faulty relations if the underlying code

is faulty. Other approaches are restricted to specific domains

[6]. Ultimately, the construction of metamorphic relations is

a difficult task for which there is no technique that is both

generalisable and reliable. Instead, the burden of this task

typically falls to an experienced tester or domain expert who

must rely upon their ingenuity and intuition.

The approach proposed in this paper is based on the

observation that metamorphic testing is an inherently causal

activity: a transformation is applied to an input in order to

establish the causal effect on an output. When viewed from

this perspective, there are several powerful approaches to

modelling and reasoning about causality, which have become

particularly widespread in areas such as epidemiology [7]. The

authors are, however, not aware of any efforts to use these

approaches to systematically generate metamorphic tests.

In this paper we propose a causal, model-based approach

to the generation of metamorphic relations and test cases.

Our approach is centred around causal directed acyclic graphs

(DAGs) [8], a well-established and extremely simple graph-

ical model that has been used extensively to model causal

relationships in a wide range of disciplines. We show how

causal DAGs can be used to model the expected causal

relationships between inputs and outputs in a software system,

and how these can be used in turn to automatically generate

metamorphic relations and their test cases. Through a series

of controlled experiments and real-world case studies, we then

evaluate the ability of our approach to detect a specific class of

bugs that modify the causal structure of the program-under-test

and that appear in all forms of software.

Overall, we make the following contributions:

• We present an approach to metamorphic testing that

uses causal graphs to automatically generate metamorphic

relations with their source and follow-up test cases.

• We perform a controlled experiment to analyse the ability

of our approach to detect structural causal bugs under

increasingly challenging conditions.

• We apply our technique to real-world software from the

Defects4J framework with known structural causal bugs.

The remainder of this paper is structured as follows. Sec-

tion II introduces a motivating example and provides the

necessary background for this paper. Section III defines causal

bugs and provides evidence that such bugs are common in

software engineering. Section IV describes our process for

creating metamorphic relations from causal DAGs. Section V

presents an empirical evaluation of our technique before

discussing the results in Section VI and demonstrating its

application to two real-world case studies in Section VII.

Section VIII then discusses related works in the literature and

Section IX concludes the paper.

II. Background

This section discusses the necessary background for this

work in the context of a toy example. Consider a simple

program which calculates a person’s BMI from their weight

and height, and outputs a classification of “overweight”, “un-

derweight” or “healthy weight” based on this. Our goal is to

test this program.

1



Metamorphic Testing: Determining whether a program

produces the correct output in response to a given input

depends on the availability of a “test oracle”. In many practical

situations, however, the intended behaviour of the software

might be poorly documented or understood. The resulting

challenge of providing a reliable verdict on a test execution is

known as the “oracle problem” [9].

Metamorphic testing [10] is a promising solution to this

problem [11]. The overarching concept is to consider an input

and a transformation to be applied to that input. The expected

output behaviour is then characterised by a corresponding

transformation in the output space. This allows us to define

the oracle in relative terms, which is often simpler than

determining if a given output is correct. Collectively, these

components are specified in what is known as a “metamorphic

relation” (MR). We provide a formal definition below.

Definition 1. A metamorphic relation is a functional property

of the system-under-test, S , that expresses how a given source

test case (xs) can be transformed into a follow-up test case (x f )

in such a way that some property over the outputs of these test

cases can be anticipated, such as equality: S (xs) = S (x f ).

Let us consider an MR for our BMI example. For a person

of weight w and height h, BMI = w/h2. From this formula,

we can derive the mutation relation BMI(kw, h) = kBMI(w, h)

using basic arithmetic. This gives us our source test case as

{W = w,H = h} and we can generate a follow-up test case

{W = kw,H = h}. We then simply run both the source and

follow-up test cases for various concrete values of w, h, and

k and check if their outputs are equivalent.

Metamorphic testing is appealing because it presents an

intuitive means by which to succinctly express properties

against which to check software correctness [1]. Using MRs,

the generation of test sets is often straightforward, especially

with the help of tools such as JFuzz [12] and approaches such

as iterative metamorphic testing [13].

A key barrier to the application of metamorphic testing lies

in the construction of MRs [1]. Although techniques have been

developed to aid MR construction [1], [2], they tend to rely

heavily on the tester’s intuition or on the availability of a

reasonably expansive and established specification [14].

Causal Graphs: Our work is based on the observation

that metamorphic testing is an inherently causal activity.

Drawing on this similarity, we leverage well-established causal

modelling approaches to develop a systematic approach for

constructing and testing MRs. Here we provide the relevant

background on graphical causal models.

Discerning causation from association is a notoriously chal-

lenging task that calls upon significant domain expertise.

Specifically, we need to identify and control for variables that

bias the causal relationships of interest. This is particularly

challenging when dealing with complex phenomena that ac-

cumulate large quantities of data involving many variables and

relationships, such as large-scale software systems.

To address this problem, researchers in the field of causal

inference developed a lightweight graphical model known as

the causal graph [7], [8]. Causal graphs provide a means to

capture potential causal relationships between variables and

are supported by an extensive mathematical framework. In

particular, this framework can (semi-)automatically identify

biasing variables and, thus, help to design statistical experi-

ments capable of quantifying salient cause-effect relationships.

Examples can be seen in Figures 1b, 5, and 7.

Definition 2. A causal graph G is a directed acyclic graph

(DAG) G = (V, E) comprising a set of nodes representing

random variables, V , and a set of edges, E, representing

causality between these variables, where:

1) The presence/absence of an edge Vi → V j represents the

presence/absence of a direct causal effect of Vi on V j.

2) All common causes of any pair of variables on the graph

are themselves present on the graph.

Note that, unlike frameworks such as structural equation

modelling [15], causal graphs do not specify the functional

form of causal relationships, merely their presence, absence,

and direction. From a testing standpoint, the lightweight nature

of this model is desirable as it requires less input from the user.

Causal and Independence Relations: Causal graphs

explicitly indicate which variables may (and, conversely, may

not) affect each other by the presence (or absence) of edges.

If a change to some variable of interest X (referred to a

treatment) has no bearing on another variable Y (referred to

as an outcome), i.e. P(X | Y) = P(X), the two are said to be

independent. In a situation where P(X | Y,Z) = P(X | Y),

we say that X and Y are conditionally independent given

Z. Conversely, if X can be changed in a way that evokes a

response in Y , we say that X causes Y .

Interventions: Causality concerns the effect of changes,

actions, and policies; such terms are commonly referred to as

interventions. Informally, an intervention is an external change

to some variable in a system that forces that variable to take a

specific value. We denote the act of intervening on a variable,

X, to take a value x using Pearl’s do notation [8]: do(X = x).

Viewed on a causal graph, do(X = x) removes all incoming

edges to X as it overrides the causal information flowing

through the causes of X. Furthermore, the value that an output

Y takes upon performing do(X = x) is denoted as YX=x.

Total and Direct Effects: Given a treatment X and an

outcome Y , there are two main forms of causal relationships

that can be measured: the total and direct effect [16].

The total effect of X on Y includes the effect of so-called

mediators; variables that lie on a directed path between X and

Y [7]. For example, in the causal graph X Z Y , Z

is a mediator of the effect of X on Y . To measure the total

effect (TE) of changing the value of X from x to x′, we simply

measure the outcome for both values of the treatment, X, and

observe the resulting change in Y . That is, T E = YX=x′ −YX=x.

Second, we can measure the direct effect of X on Y , which

excludes the effect of any mediators. To measure the direct ef-

fect (DE), we block the flow of information along all mediating

paths. This is achieved by “fixing” the value of at least one

mediator, Z, on this path. That is, DE = YX=x′,Z=z − YX=x,Z=z.

2



The intuition here is to block all paths between X and Y apart

from the path X → Y itself [16]. We refer to the set of “fixed”

variables as an adjustment set.

Metamorphic Testing and Causality: At this point, we

can draw a parallel with our definition of an MR (Definition 1).

Essentially, an MR expresses the expected effect of a trans-

formation defined by the pair of interventions do(X = xs) and

do(X = x f ), where xs and x f are the source and follow-up test

cases, respectively. When viewed in this way, we can re-frame

metamorphic testing to the task of measuring the causal effect

of changing X from xs to x f on some output(s) Y .

III. Causal Bugs

Software bugs are commonly characterised in terms of

“cause and effect” [17]. A particular parameter configuration

might cause an execution path that leads to an erroneous

output value. A particular GUI option might be implemented

in the back-end, and ticking it might not have the effect on

the output that the user might expect.

Such faults appear to be common. To explore the extent to

which this is the case, we focus on Java units as a specific

type of SUT. As a basis for our preliminary analysis, we

refer to the analysis carried out by Sobreira et al. [18], who

classified the fixes for each bug in the Defects4J repository

[19] (which contains details of 395 bugs from six open

source Java projects). Examples of their classifications include

“method call addition” or “wrapping with an if statement”.

Out of the 81 classes of repair they identified, 12 imply

a change to the underlying causal structure of the program

between the buggy and fixed versions. The majority of these

involve the addition or removal of program variables (method

parameters, class instantiations, etc.), corresponding to the

addition or removal of nodes in the underlying causal structure.

Additionally, the “wrong variable reference” repair suggests

a change in the relationships between existing variables in

the program, corresponding to a change in the edges of the

underlying causal structure. Of the 395 bugs in Defects4J, 228

of them were tagged with at least one structural repair. We

shall refer to such bugs as structural causal bugs.

Even when the causal structure of a program is as expected,

there may still a problem with the precise functional form

of the relationships between inputs and outputs. Changing an

input may cause changes in the anticipated outputs, but the

nature of that change (the value of the output with respect to

the input) may be incorrect. We refer to such bugs as functional

causal bugs. These require a more fine-grained test oracle

than the one considered in this paper, and are left to future

work. In Defects4J, we identified three repair categories as

being related to functional causal bugs: arithmetic expression

modification, conditional expression modification, and changes

to constants. These suggest that the causal structure remains

the same between the buggy and fixed program versions, but

that the functional form of the relationships changes. 80 of

the bugs in Defects4J are tagged with at least one of these

categories, 51 of which are also tagged with a structural repair.

IV. CausalMetamorphic Testing

This paper is based on the observation that there is a strong

relationship between causal DAGs and the type of behaviours

that are expressed in MRs. Both are fundamentally based on

the notion of a “causal effect”. Implicitly, MRs (Definition 1)

incorporate a pair of interventions that transforms a given input

(from the source to the follow-up) in such a way that it causes

a change in output that can be anticipated. The notion of an

edge in a causal graph (Definition 2) similarly incorporates the

fact that a causal relationship between two variables occurs if

an intervention on one may cause the other to change.

In this paper we explore the relationship between the

two areas of metamorphic testing and (graph-based) causal

reasoning. This raises the prospect of taking advantage of

the significant amount of research on graph-based causal

reasoning to identify and test potential MRs.

A. Causal DAGs as a Software Model

To apply causal DAGs to metamorphic testing, we need to

model the Software Under Test (SUT) in the form of a causal

DAG. For this we consider a simple abstraction:

• There are “inputs”, which correspond to parameters or

environment variables that can affect the functional be-

haviour of the program.

• There are “observable variables”, which correspond to

observable results of a computation by the SUT.

Definition 3. A Causal Software Graph (CSG) is an exten-

sion of a causal DAG (see Definition 2) defined as a tuple

(V, E, I,O). Here, V and E correspond to the nodes and edges

of the causal graph, and the sets I and O represent “inputs” and

“observable variables”, respectively, such that (I∪O) = V and

I∩O = ∅. Additionally, we have ∀(x, y) ∈ E. x ∈ O =⇒ y < I,

i.e. observable variables cannot cause inputs. This must hold

true in all software systems1 since inputs must be provided

before any computation can be done.

Where software inputs are known to be independent, we

may also assume ∀(x, y) ∈ E.¬(x ∈ I ∧ y ∈ i). This is not a

requirement of our technique, but it does reduce the size of

the test suite as we can ignore input-input tests.

When creating a CSG, it makes sense to start from the

interface of the SUT. From this we can determine the set I:

the input parameters and environmental variables that we can

control as part of a test setup. We can also identify the set

of outputs that we wish to check, and use this as a basis for

O. It may also be helpful to capture additional key states of

computation by including some internal state variables in O.

This typically requires instrumentation of the SUT. We discuss

this in Section IV-B.

The edges between the variables represent our expectation

of how variables should affect each other. As with most model-

based testing techniques [20], the resulting model captures

1Iterating behaviour where the result of one iteration feeds into the next
can be represented by either unrolling a fixed number of iterations or making
the graph more abstract to consider the inputs and outputs of the iteration.

3



Input: A CSG (V, E, I,O), a number N of metamorphic tests to be generated

per causal relationship.

Output: A set of metamorphic tests MT , where each test is structured as

(source, f ollowU p, output, relation).

1 begin

2 MT ← ∅;

3 for x ∈ V do

/* For every pair of variables that could feasibly

form a causal edge */

4 for y ∈ (V \ (I ∪ {x})) do

5 ad justmentS et ← identify(x, y, E);

6 for i = 0; i < N; i = i + 1 do

// Create a source input for variables in I

7 source← generateRandom(I, ad justmentS et);

/* Create a follow-up input, where variable x

is transformed to a different value */

8 f ollowU p← transform(source, x, ad justmentS et);

9 if (x, y) ∈ E then

/* If (x, y) is a causal edge, changing

X should cause Y to change */

10 MT ← MT ∪ {(source, f ollowU p, y,,)};

11 else

/* If (x, y) is not a causal edge,

changing X should not affect Y */

12 MT ← MT ∪ {(source, f ollowU p, y,=)};

13 return MT ;

Algorithm 1: Generating Metamorphic Tests from a causal

DAG, assuming ∀(x, y) ∈ E.¬(x ∈ I ∧ y ∈ I).

the developer’s (or domain expert’s) expectation of how the

system should behave. Because of this, the CSG can only be

as accurate as the developer’s understanding of the SUT, and

may end up being an approximate abstraction of the system.

We investigate the degree to which our techniques can cope

with model misspecification in Section V.

B. Generating Metamorphic Test Cases from a CSG

Algorithm 1 shows how a CSG can be used to gener-

ate metamorphic tests. The basic principle is to generate a

metamorphic test for every edge in the CSG to check that a

change to the variable at the source of the edge (whilst holding

variables in the adjustment set constant) has a causal effect

on the target variable. Similarly, if there is no edge between

two variables, a metamorphic test is generated to check that

changing the source variable does not cause a change to the

target variable.

The approach iterates through every pair of nodes (x, y),

where y is not an input (lines 3 and 4). We here assume

∀(x, y) ∈ E.¬(x ∈ I ∧ y ∈ I) from Definition 3, although we

could simply iterate over all node pairs in V×V . For each pair

of nodes, we proceed to identify an adjustment set (line 5) for

the desired effect measure (see Section II), enabling the causal

effect to be isolated. We then generate the source test case

using the generateRandom function (line 7), which samples a

random value for each variable in I and the adjustment set.

The follow-up test case is obtained by applying the transform

function (line 8) to the source test case, which changes the

value of the treatment variable x to a fresh random value, while

holding all variables in the adjustment set constant. Finally, we

equip our metamorphic test case with an oracle. If (x, y) ∈ E,

we check for inequality between the source and follow-up

outputs (line 10) since the causal edge means we should be

able to observe a change in the outcome y. Conversely, if

(x, y) < E, we check for equality instead (line 12) as, if there

is no causal effect, there should be no change in y.

To execute our test cases, we need to be able to intervene on

all variables x in the SUT for which we have a metamorphic

test (x, y). While this is trivial for variables in I, we may also

need to access and modify the values of variables in O. We

refer to such variables as hidden. The means by which to

access these variables (and the extent to which this can be

automated) depends on the nature of the SUT. If, for example,

the SUT is a Java class and variables in O correspond to class-

level variables, it is possible to use bytecode instrumentation

frameworks such as Javassist (we do this for our second

case study). In other cases, some manual instrumentation

or testability transformations [21] may be required (we use

manual instrumentation for our first case study).

For some systems (e.g. when the system is a true “black

box”), these approaches may simply be infeasible. In such

cases, the inability to fully control and observe relevant

variables presents a fundamental limitation in testability [22].

In the worst case, this may prevent the testing of causal effects

involving hidden variables, and the CSG may have to be

restricted to the subset of accessible variables.

However, depending on the topology of the CSG, it may also

be possible to infer causal effects involving hidden variables

from existing data [23], [24]. This requires the identification

of a more advanced adjustment set that accounts for particular

sources of bias in the data, such as confounding and selection

bias [25]. One such approach is to apply a graphical criterion

known as d-separation [8]. We do not apply these techniques

in this work, but plan to extend our solution to accommodate

this functionality in future work.

C. Correctness and Performance

Given the two following strong assumptions, our approach

is guaranteed to catch all bugs that change the causal structure

of the SUT.

A1 No model misspecification: If the CSG perfectly reflects

the causal structure of the SUT, we can generate an

MR capable of exercising every causal and independence

relationship.

A2 Injective causal relationships: If every causal relationship

X → Y in the CSG is implemented in the SUT as an

injective function (i.e. f (xs) = f (x f ) =⇒ xs = x f ),

then, for a given MR, all possible source and follow-up

test case pairs, (xs, x f ) where xs , x f , will exercise the

causal or independence relationship.

Informal proof. Let F denote a software function and G =

(V, E, I,O) denote a CSG representing its causal structure.

Using A1 and the definition of a CSG (Definition 3), we

know that for every pair of variables (X,Y) ∈ V × V , if

(X,Y) ∈ E, then there exists at least one statement in F

where Y is assigned a value dependent on X. Conversely, if

(X,Y) < E, there is no such statement in F. Thus, by iterating

over the edges and non-edges of F, as outlined in Algorithm 1,

4



we obtain a complete set of MRs that cover all causal and

independence relations in the SUT.

If A2 holds, we can verify each MR using an individual

(xs, x f ) pair. If F implements each causal relationship as an

injective function Y = f (X), we have f (xs) = f (x f ) =⇒

xs = x f , and equivalently xs , x f =⇒ f (xs) , f (x f ). Thus,

any pair satisfying xs , x f is sufficient to test an X → Y

relationship. For independence relations, if xs , x f ∧ f (xs) =

f (x f ), we know that X cannot be a term in the function, so

the independence relation holds. □

As with any model-based testing technique, the model is

an abstraction of the SUT and, in real settings, the fidelity

of this will vary. In the following section, we systematically

relax A1 and A2 to reduce the fidelity of our CSGs, both

in terms of their accuracy (A1) and the proportion of non-

injective causal relations (A2). While these assumptions are

unlikely to hold in general, they provide a basis to quantify

and control model fidelity and, ultimately, understand how this

impacts the usefulness of the generated MRs and tests.

Misspecification is not the only way A1 can be undermined.

As discussed in Section IV-B, the (lack of) testability of the

SUT can play a role as well. Some of the variables that should

be in the CSG may not feature because the corresponding

variables in the SUT cannot be controlled or observed [22].

It is also worth commenting here on the cost of our tech-

nique. While our solution essentially reduces the problem of

specifying MRs to drawing a causal DAG, this process incurs

its own overhead; for complex and unwieldy systems, drawing

a DAG may be a non-trivial and time-consuming task. The

exact cost of constructing a DAG is hard to quantify. However,

the increasing adoption of causal DAGs as a lightweight do-

main model [26] across a range of fields such as epidemiology

[27], [28] indicates that the effort involved is perceived to be

low enough to justify their use. Furthermore, causal DAGs

are supported by an extensive mathematical framework that

alleviates the burden associated with identifying independence

relations - a task that, if conducted manually, quickly becomes

cumbersome as the size of the subject system increases.

V. Evaluation

In Section IV, we provided an informal proof that our

technique can detect all structural causal bugs in an injective

program, given a CSG which perfectly reflects its causal

relationships. However, these assumptions are unlikely to hold

in general. In this section, we investigate how our technique

performs when these assumptions break down. Our research

questions are as follows:

RQ1 How robust to model misspecification is causal meta-

morphic testing?

As with all forms of specification, in real settings, the

CSG is likely to contain imperfections. It is therefore

important to understand how such imperfections impact

the performance of causal metamorphic testing, particu-

larly in terms of the validity of the generated MRs and

ability to detect structural causal bugs.

RQ2 How robust to increasing amounts of non-injective

causal relationships is causal metamorphic testing?

When causal relationships are not injective, we face the

additional challenge of finding a fault-revealing interven-

tion, as the causal effect is only exercised by certain

configurations. This research question aims to understand

the extent to which the presence of evasive, non-injective

causal relationships impacts the ability to detect struc-

tural causal bugs, and how this relationship varies with

different sized randomly generated test suites.

A. Experimental Setup

To answer RQ1 and RQ2, we require software with a

ground-truth CSG. To this end, we generate random CSGs and

generate synthetic programs that reflect their causal structure,

as in Figure 1. We then use mutation analysis to inject artificial

bugs that either add or delete a causal relationship in the

implementation. We now describe the setup for each of these

steps in greater detail.

def program(X1,X2,Y1=None,Y2=None):

if Y1 is None:

if X1 + X3 <= 2:

Y1 = 2*X1 + 3*X2 + 2

else:

Y1 = 2*X1 + 2

if Y2 is None:

Y2 = 3*Y1 + 2

return {'Y1': Y1, 'Y2': Y2}

(a) An example synthetic program.

X1

X2

X3

Y1 Y2

(b) CSG.

Fig. 1: A synthetic CSG and python code reflecting the causal

structure.

CSG Generation: We first generate a random undirected

graph using the Erdős-Rényi model [29], and assign each

node a numerical label. This model has two parameters, n and

pe, corresponding to the number of nodes and probability of

including an arbitrary edge, respectively. We then convert the

undirected edges to directed edges such that all edges point

from nodes with a lower label to nodes with a higher label.

Finally, we convert all endogenous nodes to inputs and all

exogenous nodes to observable variables, and update the labels

to denote inputs as X and observable variables as Y . This

produces a CSG such as the one shown in Figure 1b. We then

generate tests from the CSGs as described in Section IV-B,

sampling parameter values from the range [-10, 10].

Program Generation: Our programs take the form of

Python methods comprising a series of linear equations for

each node in O. We generate the program corresponding to

a CSG by iterating over the nodes of the graph in order and

generating an equation for each that includes a linear combina-

tion of all its cause nodes and a randomly sampled constant.

For example, for the CSG in Figure 1b, we could produce

the equation Y1 = 2*X1 + 3*X2 + -3*X3 + 2. The method

takes all nodes in I as mandatory parameters and all nodes in

O as optional parameters. Each linear equation is then nested

5



in an if statement that checks whether the effect node has

been specified as an argument, in which case the argument

overrides the equation. This allows us to intervene directly on

any variable by passing in the appropriate argument.

For the purposes of answering RQ2, we add a “conditional

behaviour” parameter, pc to determine how difficult the causal

effects are to observe. This specifies the probability that a

(randomly selected) node in O is conditional, meaning its

assignment is nested in an if-then-else statement. To do this,

we generate two linear equations — one for each branch —

and a predicate is generated as a random inequality check that

compares the sum of a random non-empty subset of the effect

node’s parents to a random value in the range [-10, 10].

For example, consider the if-then-else statement surround-

ing the definition of Y1 in Figure 1a. Because of the predicate

if X1 + X3 <= 2 and the absence of X2 in the else branch,

X2 → Y1 is not injective: we must cover the if branch to

observe the effect of X2. Therefore, the source and follow-up

test case must satisfy the predicate X1 + X3 <= 2, increasing

the challenge of observing the causal effect of X2 on Y1.

Mutation Analysis: We define two mutation operators

to add and remove causal relationships in a given program,

referred to as AddCause and DeleteCause, respectively. We

implemented these operators in a fork of the Python mutation

analysis framework, Cosmic Ray [30], [31].

The AddCause operator adds a causal relationship from a

specified cause node to a specified effect node. Our imple-

mentation finds definitions of the effect node in the source

code and adds the cause node to the existing linear equation.

For example, AddCause could add X2 as a causal effect to

Y1 = 2*X1 + 3 as follows: Y1 = 2*X1 + 3 - X2. Where

the effect node is defined conditionally (i.e. a different linear

equation per branch), it is sufficient to add a causal effect

to either branch to introduce a new causal relationship. This

is because an edge X → Y in a causal graph (Definition 2)

means there exists some intervention on X that brings about

a change in Y . For this reason, our mutation operator acts on

each branch individually, producing two mutants.

Conversely, the DeleteCause operator removes all causal

relationships from a cause node to an effect node. Our imple-

mentation finds definitions of the effect node that include the

cause node and replaces the cause node with a randomly sam-

pled numerical constant. For example, DeleteCause could

remove the causal effect of X2 on Y1 in Y1 = 3*X1 + 2*X2

+ 1 as follows: Y1 = 3*X1 + 2*5 + 1. This also applies

to variables appearing in the predicates generated for RQ2.

Furthermore, where the effect node is defined conditionally,

DeleteCause acts on both branches and the predicate to

ensure that the effect is entirely removed.

Based on the structure of the CSG, we automatically define

a list of applicable mutation operators for each program.

Specifically, we define a DeleteCause mutation operator for

each edge in the CSG, and an AddCause mutation operator

for each unconnected pair of nodes in the CSG to which an

edge could be added to form a valid DAG (i.e. without cycles,

outputs causing inputs, or inputs causing inputs).

B. Methodology

Each experiment has three parameters n, pe, and pc, as

discussed in Section V-A). We generate CSGs for every combi-

nation of parameters, n = [10, 20, 30], pe = [0.25, 0.5, 0.75, 1],

and pc = [0.25, 0.5, 0.75, 1]. To mitigate the potential for

bias introduced by the random CSG and SUT generation ap-

proaches, we repeat each configuration 30 times with different

random seeds. This results in 1440 CSG-program pairs.

RQ1: Robustness to misspecification: To introduce model

misspecification, for each ground truth CSG, we produce

four mutant CSGs in which each edge or absence thereof is

inverted (deletion of an existing edge or addition of a new

one) with probability pm = [0.25, 0.5, 0.75, 1]. To quantify

the extent of misspecification, we measure the Structural

Hamming Distance (SHD) [32], [33]. Put simply, this metric

measures the number of changes that need to be made to

restore the misspecified CSG to the ground truth.

Following Algorithm 1, we then generate our metamorphic

relations and tests using the test generation outlined in Sec-

tion IV-B, before applying the mutation analysis approach de-

scribed in Section V-A. We then plot the relationship between

mutation score and SHD.

RQ2: Robustness to conditional behaviour: As before,

we perform mutation analysis on each of the generated pro-

grams. However, to answer this research question, we addi-

tionally report the McCabe complexity [34] of the program

and study the relationship between the mutation score and

the McCabe complexity. Here we are using the McCabe

complexity as a proxy for the extent to which the injective

assumption (A2) is violated and, therefore, how difficult it is

to exercise the causal relationship-under-test. For this research

question, we use on the strata of data with S HD = 0,

containing data from only the ground truth DAG (i.e. no

misspecification).

VI. Results

Although we controlled the size n of the generated CSGs,

there were no apparent differences between the corresponding

results that would have a baring on the outcome of the RQs.

Thus, we focus our discussion on the results for n = 20.

Results for the other sizes can be found in our repository2.

A. RQ1: Robustness to misspecification

The results in Figure 2 show that, as the CSG is increasingly

misspecified (relaxing assumption A1 from Section IV), the

mutation score falls proportionally to the SHD. This suggests

that, where the user cannot provide a perfect (or even particu-

larly accurate) CSG, the proposed technique can still produce

metamorphic relations and tests for the correctly specified

attributes of the CSG that reveal structural causal bugs.

We observe that the mutation score drops more steeply for

CSGs with higher values of pe (i.e. for CSGs that have a

denser edge structure). This can be explained in terms of the

2https://github.com/AndrewC19/causal metamorphic relation
generation/tree/main/full results

6



0

0.25

0.50

0.75

1

M
u
ta

ti
o
n

S
co

re

pe = 0.25 pe = 0.5

0 50 100 150

0

0.25

0.50

0.75

1

pe = 0.75

0 50 100 150

Structural Hamming Distance

pe = 1.0

Robustness to A1 with 20 node CSGs

Fig. 2: Results for RQ1 demonstrating the relationship be-

tween structural hamming distance (SHD) and mutation score

for CSGs with 20 nodes and different edge densities (pe).

effects of the causal mutation operators on the adjustment sets

of the generated MRs. When a spurious causal edge is added,

the adjustment sets of MRs may then include additional

variables, but are still sufficient to isolate the causal effect,

meaning the test outcome is unaffected. By contrast, removing

causal edges removes variables from the adjustment sets that

are necessary to isolate the causal effect. This can lead to

additional, correctly specified, MRs failing on the unmutated

program (making them ineligible to catch mutants) because

they fail to adjust for all variables necessary to isolate the

causal effect. This is consistent with the general consensus

within causal inference that the absence of a causal edge is a

stronger assumption than the presence of one [26].

RQ1: Our results indicate that the proposed approach is robust

to misspecifications in the underlying CSG. They also suggest

that missing genuine edges has a greater adverse effect on fault

detection capability than including spurious ones.

B. RQ2: Robustness to subtle causal relationships

Figure 3 shows that, as the McCabe complexity increases

(relaxing assumption A2 from Section IV) the mutation score

falls when using just a single test case. For all edge-densities,

the mean mutation score decreases from almost 0.97 down to

approximately 0.68 as the CSG increases in complexity. For

larger test suites, however, this effect becomes negligible. For

a test suite of size 5, the mean mutation score falls from 1 to

0.95. For a test suite of size 10 it falls from 1 to 0.98.

These findings indicate that faults residing in non-

injective causal relationships (introduced here by conditional

behaviour) can be notably harder to detect. However, they

also show how an improved test generation strategy can help

to address this issue, with the larger randomly generated test

suites achieving significantly better mutation scores.

0.4

0.6

0.8

1

M
u

ta
ti

o
n

S
co

re

pe = 0.25 pe = 0.5 pe = 0.75 pe = 1.0

T
est

su
ite

size
=

1

0.4

0.6

0.8

1

T
est

su
ite

size
=

5

5 10 15 20

0.4

0.6

0.8

1

5 10 15 20 5 10 15 20 5 10 15 20

McCabe Complexity Score

T
est

su
ite

size
=

1
0

Robustness to A2 with 20 node CSGs

Fig. 3: Results for RQ2 demonstrating the relationship be-

tween McCabe complexity and mutation score for CSGs with

20 nodes and different edge densities (pe).

RQ2: Our results indicate that the fault detection capability

of the proposed approach can be adversely affected by the

presence of non-injective causal relationships. However, this

issue may be mitigated by more rigorous test sets.

C. Threats to validity

External threats to validity: The main threat to external

validity is that we generate synthetic programs in a param-

eterised, controlled manner. This was necessary to produce

programs with a known causal structure, however they are un-

likely to be representative of realistic programs. This concern

motivated our case studies in Section VII where we apply our

technique to two real programs from the Defects4J repository.

Another threat is that we employed a random test generation

strategy to explore how the robustness to non-injective causal

relationships varies with the size of a test suite. It is probable

that we would have achieved better results by using a more

advanced coverage-driven approach. However, the fact that our

naı̈ve approach can still achieve reasonable mutation scores

demonstrates the promise of our technique.

Internal threats to validity: Our internal threats to validity

are as follows. First, since we randomise the generation of

the CSGs, programs, and mutation configurations, our results

are subject to stochasticity, and are not guaranteed to provide

a representative picture. We mitigate this threat by repeating

each configuration 30 times as per [35].

Secondly, the metrics we select to measure the extent of

misspecification (SHD) and non-injective behaviour (McCabe

complexity) may not precisely resemble the target quantity.

However, we chose these metrics because they are well known

in their respective fields: SHD is commonly used to measure

the accuracy of causal DAGs [36], and McCabe complexity is

a common metric for measuring software branching behaviour.

7



It is also worth acknowledging that we were not able to

compare our approach to a baseline or existing techniques

such as [4], [14]. Since there are very few MR generation

techniques in the literature, there does not seem to be a

commonly accepted baseline or set of comparison metrics. We

leave this to future work.

VII. Case studies

In Section V, we evaluated our technique on synthetic

programs reflecting the causal structure of randomly generated

CSGs. Our aim was to investigate how the fault-finding

capability of our technique changes as assumptions A1 and

A2 from Section IV deteriorate. In this section, we apply our

technique to detect structural causal bugs from two systems

in the Defects4J repository [19]. The implementation of these

case studies can be found in our repository3.

A. Apache Commons Math

First, we focus on a bug in the evaluation method of the

Variance class in version 2.2 of the Apache Commons Math

library (Bug ID: Math 41). According to the documentation4,

this method calculates the weighted variance of a specified

portion of an array of doubles, using a pre-computed mean.

The documentation states that evaluate takes five parame-

ters: an array (values), an array (weights), the pre-computed

mean (mean), a starting position (begin), and the number of

elements to include (length). Furthermore, it stipulates that 0

is returned when length=1, and that evaluation calculates

the variance with the following formula:

variance =

∑begin+length

i=begin
Weightsi(Valuesi − mean2)

(
∑begin+length

i=begin
Weightsi) − 1

(1)

The implementation of this method contains a structural

causal bug, as shown in Figure 4. During the computation

of the denominator in Equation (1), the initialisation and

condition of the for loop do not reference the specified start

position, begin. Furthermore, the condition does not reference

length to specify the correct end position, causing it to loop

over the entire array instead. As a consequence, the causal

effect of begin and length on the denominator is removed,

and thus impacts the computed variance.

double sumWts = 0;

- for ( int i = 0 ; i < weights.length ; i++) {

+ for ( int i = begin ; i < begin + length ; i++) {

sumWts += weights[i];

}

Fig. 4: A diff showing a structural causal bug located in the

evaluate method of the Variance class.

3https://github.com/AndrewC19/DAG-MT-case-studies
4https://commons.apache.org/proper/commons-math/javadocs/api-

3.6.1/org/apache/commons/math3/stat/descriptive/moment/Variance.html

Causal Software Graph: The CSG shown in Figure 5

uses only information that is available in the documentation.

From this we know that mean, values, and length are used to

compute a “numerator”, and that length, begin and weights

should be used to compute a “denominator”. These are then

combined to yield the final variance result. There is a direct

edge from length to variance to cover the specific case

where length is either zero or where begin+length exceeds

the length of values.

The numerator and denominator nodes are not immedi-

ately observable (hence the dashed boxes). When developing

the model from the documentation, we start from an assump-

tion that we are able to instrument the implementation to

expose the corresponding values in the implementation as it

executes (elaborated below).

weights

begin

length

values

mean

numerator

denominator

variance

Fig. 5: CSG for Variance.evaluate, with the fault-causing

relationships highlighted in red and hidden variables shown as

dashed boxes.

Metamorphic relations and tests: Using our CSG, we

identified and manually wrote test cases for the 18 causal meta-

morphic relations (11 ShouldCause and 7 ShouldNotCause).

Each test case specifies a control value and randomly samples

a follow-up value using a series of basic generator methods.

Instrumentation: For the two hidden variables

(numerator and denominator), we manually instrumented

the code to enable us to get and set the value of these

variables. To achieve this, we modified evaluate to include

two new variables, numerator and denominator, that store

the numerator and denominator shown in Equation (1), and

updated the definition of variance to use these variables. We

also return a hash map containing the variables in the CSG

and their respective values. While manual instrumentation

was trivial in this instance, we appreciate this would not

be feasible for larger, unwieldy software systems, and that

source code is not always available. We address the latter of

these concerns in the following case studies.

Results: Out of the 18 metamorphic test cases, 16 passed

and 2 failed on the buggy version of Apache Commons

Math. The two failing test cases correspond to the fault-

causing relationships highlighted in red in Figure 5: length→

denominator and begin → denominator. We then ran the

same test suite against the fixed version of Apache Commons

Math, finding that all test cases passed as expected.

B. Apache Commons Lang

Next, we turn our attention to a bug in the format method

of the FastDateFormat class, affecting version 2.5 of the

Apache Commons Lang library (Bug ID: Lang 26). This is

8



an efficient and thread-safe implementation for formatting and

parsing dates that accounts for the user’s locale5.

A FastDateFormat instance can be created by calling one

of its factory methods, getInstance, that takes three inputs:

a string representation of a pattern (e.g. "yyyy-mm-dd");

a TimeZone instance that can be obtained given a string

encoding a time zone ID (e.g. "UK"); and a Locale instance

that is defined by two strings, one specifying the language

(e.g. "en") and the other specifying the country (e.g. "US").

Given a particular date as input, the format method is then

called on the resulting FastDateFormat instance and returns

a string representation of the specified date and format.

The implementation of the format method contains a

structural causal bug, as shown in Figure 6. Here, locale

is not passed to the constructor of the GregorianCalendar

instance for which the date is formatted, resulting in the user’s

default system locale being used instead. Consequently, if

locale is set to be different to the default system locale,

format may return an unexpected string.

public String format(Date date) {

- Calendar c = new GregorianCalendar( timeZone );

+ Calendar c = new GregorianCalendar(

timeZone, locale );

c.setTime(date);

return applyRules(c, new StringBuffer(maxLength)

).toString();

}

Fig. 6: A diff showing a structural causal bug located in the

format method of the FastDateFormat class.

This bug is problematic for locales that use the ISO 8601

date and time standard, such as en-GB, as this standard

has 53 weeks for certain years (those with 53 Tuesdays),

whereas others have 52. For example, if a FastDateFormat

is instantiated with an ISO 8601 locale (e.g. en-GB) and the

pattern ww (i.e week number) but the system locale is non-

ISO 8601 (e.g. en-US), format will wrongly output week 1

instead of week 53 if the date is set to 1st January 2010.

Causal Software Graph: We constructed the CSG shown

in Figure 7 using only information available in the docu-

mentation. Nodes represent the variables used to instanti-

ate the FastDateFormat object: locale, timeZone, and

rules. We then inserted two hidden variables (rules and

maxLength) to capture the logic behind the initialisation of the

FastDateFormat object. Specifically, the instance variables

are used to construct a list of rules that are eventually used

to create the formatted string (dateStr). The rules are also

used to predict the maximum length of the formatted string

(maxLength) to create a string buffer with sufficient capacity.

Metamorphic relations and tests: With the CSG in Fig-

ure 7 we constructed a total of 12 metamorphic relations, of

which 7 are ShouldCause and 5 are ShouldNotCause. Using

5https://commons.apache.org/proper/commons-
lang/apidocs/org/apache/commons/lang3/time/FastDateFormat.html

pattern

timeZone

locale

rules maxLength dateStr

Fig. 7: A CSG for the FastDateFormat.format method,

with the fault-causing relationship highlighted in red, a mis-

specified edge shown by a dashed edge, and the hidden

variables in dashed boxes.

a series of basic generator functions, we automatically sample

values for any variables that are a member of the (potentially

empty) adjustment set of the metamorphic relation under test.

A FastDateFormat object is then instantiated using each

input configuration, before calling the format method with

the fault-causing date, January 1st 2010.

Instrumentation: Whereas the previous case study dealt

with a single method, this implementation is spread across

a class. The hidden variables in our CSG (rules and

maxLength) ultimately turn out to be derivable from class

variables as opposed to internal method variables, which

makes the task of observing and manipulating them much

easier. In practice, we used the documentation to develop an

automated bytecode instrumentation tool for this.

Results: Of the 12 metamorphic test cases, 10 passed

and 2 failed. The failing test cases correspond to the fault-

causing causal relationship highlighted in Figure 7, locale→

dateStr, and a further unexpected failure in the relationship

maxLength → dateStr. Contrary to our initial expectation,

our tests reveal that maxLength has no causal effect on

dateStr. After further investigation, we found that although

maxLength determines the initial capacity of the dateStr

string buffer, it has no observable impact on the contents of

dateStr because the capacity of the string buffer is auto-

matically expanded upon overflowing. However, we wrongly

expected maxLength to set a hard upper-limit on the size of

buffer that would result in an incomplete string.

Overall, in this case study, we were able to generate a set of

metamorphic relations and tests that catch the structural causal

bug in the format method of the FastDateFormat class.

Additionally, these tests alerted us to a further discrepancy

between our CSG and the implementation located in the

maxLength → dateStr relationship that, upon investigation,

turned out to be an error in our specification. Nevertheless, it

was the process of generating metamorphic relations and tests

from our CSG that revealed this misunderstanding.

VIII. RelatedWork

This section provides a review of work related to the

core topics of this paper, namely the construction of MRs,

graph-based test case generation, and causality in software

engineering. We also briefly summarise methods designed to

learn causal graphs from data.

Construction of Metamorphic Relations: Several papers

in the literature present heuristics to aid users in creating

MRs [37], [38], [39]. The main consensus is that source and

9



follow up test cases which are “further apart” by some metric

are more likely to discover faults. Mayer and Guderlei [38]

also find that MRs phrased as equalities are relatively weak,

although Chen et al. [37] say that theoretically stronger MRs

are not necessarily better at detecting real program defects.

More recent work [14] presents a method where users are

given pairs of concrete parameter settings and asked to either

generalise them into MRs or declare that no MR exists for

the pair. Additionally, Liu et al. [40] suggest constructing new

MRs by composing existing ones.

These methods all require significant input from the user.

To address this, Zhang et al. [5] introduce a particle swarm

optimisation based approach for automatically inferring poly-

nomial MRs from program executions. This significantly re-

duces the burden on the user but has two key limitations. First,

it requires a large amount of execution data from the SUT.

Second, MRs inferred from execution data will reflect any

bugs in the implementation, meaning we must now determine

which of the inferred MRs capture the expected behaviour.

Test Case Generation from Directed Graphs: Vilkomir

et al. [41], [42] present a method of generating combinatorial

test cases using a DAG representing dependencies between

program inputs. Edges are labelled with parameter values

such that test paths through the graph represent test cases.

Their technique differs from ours in several ways. Where their

graphical models only illustrate dependencies between input

parameters, ours may also include outputs and internal vari-

ables, allowing them to also serve as test oracles. Second, our

models do not require the user to precisely describe parameter

domains. Our approach also produces metamorphic test cases

where Vilkomir et al.’s approach produces combinatorial ones.

Chen et al. [43] applied metamorphic testing to two bioin-

formatic programs that take a weighted directed graph rep-

resenting gene-to-gene interactions as input. This work is

fundamentally different from ours in that our DAGs model

the expected behaviour of the SUT where Chen et al.’s are an

input. Their work is also highly specialised to the field of gene

regulatory behaviour, where our technique is domain agnostic.

Metamorphic Testing Tools: Several tools and tech-

niques exist to assist in the practicalities of metamorphic

testing. Zhu [12] developed JFuzz, a tool for unit testing Java

programs via metamorphic testing. Given a class to test and

a series of MRs (implemented as classes), this tool automates

the generation of source and follow-up test cases.

Kanewala et al. [6] introduced a machine learning-based

approach that predicts MRs based on a control flow graph

and data dependency information. The approach has been

shown to accurately predict whether a given function satisfies a

library of pre-defined MRs commonly used for testing machine

learning applications, but it does not aim to produce new ones.

Causality in Software Testing: There are a number of

techniques that aim to establish causality in software systems.

Johnson et al. [44] developed a tool to explain the root cause of

faulty software behaviour by mutating existing tests to form a

suite of minimally different tests that, contrary to the original,

are not fault-causing. The passing and failing tests can then

be compared to understand why a fault occurred.

Another relevant technique is cause-effect graphing [45],

[46]. Here, input-output relationships are expressed in a variant

of a combinatorial logic network called a cause-effect graph,

created by manually extracting causes, effects, and boolean

constraints from natural language specifications.

In a similar vein, dataflow testing [47] is a family of testing

strategies designed to verify the interactions between each

program variable’s definition and its uses, referred to as def-

use pairs. The aim here is to exercise def-use pairs with respect

to some coverage criterion. Although not explicitly related

to causality, the field shares a similar objective to our work,

namely to verify interactions between variables.

Automatic Generation of DAGs: While manual creation

of DAGs is widely accepted in fields such as epidemiology,

methods exist that could (partially) automate this process.

Causal discovery [36] aims to learn causal structures from

data by exploiting asymmetries that separate association from

causation [48]. Causal DAGs have also been generated via

static analysis of source code [49], [50]. A fundamental

weakness of both approaches is that inferred graphs represent

the actual system rather than its intended behaviour, so reflect

any bugs present in the implementation.

IX. Conclusions

While metamorphic testing presents a promising solution

to the oracle problem, a key challenge is to devise MRs

describing the software behaviour in terms of how changes

to the input parameters bring about changes to the outputs.

Existing techniques either rely heavily on the user [14], or infer

relations using the program itself [5], meaning the inferred

relations may reflect implementational bugs in the SUT.

In this paper, we proposed a model-based technique for

generating metamorphic relations from a lightweight, intuitive

graphical causal model of software behaviour. We evaluated

our technique using synthetic programs with a known causal

structure, finding that our technique is able to produce useful

metamorphic relations and tests capable of catching structural

causal bugs, even in the presence of misspecification and

evasive (i.e. difficult to observe) causal relationships.

To demonstrate the applicability of our technique to real

systems, we also applied it to a pair of Java programs from

Defects4J with known structural causal bugs. This revealed

that our technique is not only able to catch structural causal

bugs at various levels of abstraction, but it can also alert the

user to problems with the specification.

In future work, we plan to enrich the proposed graphical

model with functional information, such that we can also gen-

erate metamorphic relations capable of catching bugs that alter

the functional form of a causal relationship. Furthermore, there

is the potential to combine the proposed technique with more

advanced test generation and selection techniques. A more

comprehensive evaluation, application to further case studies,

and perhaps a human usability study is also desirable to draw

more general conclusions about our technique’s performance.

10



References

[1] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–27, 2018.

[2] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on software engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[3] C. Murphy, G. Kaiser, L. Hu, and L. Wu, “Properties of machine learning
applications for use in metamorphic testing,” Combining SOA and BPM

Technologies for Cross-System Process Automation, p. 867, 2008.

[4] Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing approach
for compiler based on metamorphic testing technique,” in 2010 Asia

Pacific Software Engineering Conference. IEEE, 2010, pp. 270–279.

[5] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and
H. Mei, “Search-based inference of polynomial metamorphic relations,”
in Proceedings of the 29th ACM/IEEE International Conference on

Automated Software Engineering, ser. ASE ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 701–712. [Online].
Available: https://doi.org/10.1145/2642937.2642994

[6] U. Kanewala, J. M. Bieman, and A. Ben-Hur, “Predicting metamorphic
relations for testing scientific software: a machine learning approach
using graph kernels,” Softw. Test. Verif. Reliab., vol. 26, no. 3, pp. 245–
269, nov 2015. [Online]. Available: https://doi.org/10.1002%2Fstvr.1594

[7] M. Hernan and J. Robins, Causal Inference: What if. CRC Press, 2020.

[8] J. Pearl, Causality. Cambridge university press, 2009.

[9] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE transactions on software

engineering, vol. 41, no. 5, pp. 507–525, 2014.

[10] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A
new approach for generating next test cases,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.12543

[11] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively does
metamorphic testing alleviate the oracle problem?” IEEE Transactions

on Software Engineering, vol. 40, no. 1, pp. 4–22, 2014.

[12] H. Zhu, “Jfuzz: A tool for automated java unit testing based on data mu-
tation and metamorphic testing methods,” in 2015 Second International

Conference on Trustworthy Systems and Their Applications. IEEE,
2015, pp. 8–15.

[13] P. Wu, “Iterative metamorphic testing,” in 29th Annual Interna-

tional Computer Software and Applications Conference (COMPSAC’05),
vol. 1. IEEE, 2005, pp. 19–24.

[14] T. Y. Chen, P.-L. Poon, and X. Xie, “Metric: Metamorphic relation
identification based on the category-choice framework,” Journal of

Systems and Software, vol. 116, pp. 177–190, 2016.

[15] R. B. Kline, Principles and practice of structural equation modeling.
Guilford publications, 2015.

[16] H. Geffner, R. Dechter, and J. Y. Halpern, Eds., Probabilistic and Causal

Inference: The Works of Judea Pearl, 1st ed. New York, NY, USA:
Association for Computing Machinery, 2022, vol. 36.

[17] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[18] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and M. A. Maia,
“Dissection of a bug dataset: Anatomy of 395 patches from defects4j,”
in Proceedings of SANER, 2018.

[19] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing

and Analysis, ser. ISSTA 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 437–440. [Online]. Available:
https://doi.org/10.1145/2610384.2628055

[20] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Software testing, verification and reliability, vol. 22,
no. 5, pp. 297–312, 2012.

[21] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and
M. Roper, “Testability transformation,” IEEE Transactions on Software

Engineering, vol. 30, no. 1, pp. 3–16, 2004.

[22] R. S. Freedman, “Testability of software components,” IEEE transac-

tions on Software Engineering, vol. 17, no. 6, pp. 553–564, 1991.

[23] J. Tian and J. Pearl, “On the testable implications of causal models with
hidden variables,” arXiv preprint arXiv:1301.0608, 2012.

[24] A. G. Clark, M. Foster, B. Prifling, N. Walkinshaw, R. M. Hierons,
V. Schmidt, and R. D. Turner, “Testing causality in scientific modelling
software,” 2022. [Online]. Available: https://arxiv.org/abs/2209.00357

[25] S. Greenland and J. Pearl, Causal Diagrams. John Wiley & Sons, Ltd,
2017, pp. 1–10. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/9781118445112.stat03732.pub2

[26] P. W. Tennant, E. J. Murray, K. F. Arnold, L. Berrie, M. P. Fox, S. C.
Gadd, W. J. Harrison, C. Keeble, L. R. Ranker, J. Textor et al., “Use
of directed acyclic graphs (DAGs) to identify confounders in applied
health research: review and recommendations,” International Journal of

Epidemiology, vol. 50, no. 2, pp. 620–632, 2021.

[27] M. A. Hernán, S. Hernández-Dı́az, M. M. Werler, and A. A. Mitchell,
“Causal knowledge as a prerequisite for confounding evaluation: an
application to birth defects epidemiology,” American journal of epidemi-

ology, vol. 155, no. 2, pp. 176–184, 2002.

[28] N. Vousden, R. Ramakrishnan, K. Bunch, E. Morris, N. Simpson,
C. Gale, P. O’Brien, M. Quigley, P. Brocklehurst, J. J. Kurinczuk et al.,
“Impact of sars-cov-2 variant on the severity of maternal infection
and perinatal outcomes: Data from the uk obstetric surveillance system
national cohort,” MedRxiv, 2021.

[29] P. Erdős, A. Rényi et al., “On the evolution of random graphs,” Publ.

Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[30] “Cosmic ray: Variable inserter.” [Online]. Avail-
able: https://anonymous.4open.science/r/cosmic-ray-FORK258/src/
cosmic ray/operators/variable inserter.py

[31] “Cosmic ray: Variable remover.” [Online]. Avail-
able: https://anonymous.4open.science/r/cosmic-ray-FORK258/src/
cosmic ray/operators/variable replacer.py

[32] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-
climbing bayesian network structure learning algorithm,” Machine learn-

ing, vol. 65, no. 1, pp. 31–78, 2006.

[33] M. de Jongh and M. J. Druzdzel, “A comparison of structural dis-
tance measures for causal bayesian network models,” Recent Advances

in Intelligent Information Systems, Challenging Problems of Science,

Computer Science series, pp. 443–456, 2009.

[34] T. McCabe, “A complexity measure,” IEEE Transactions on Software

Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[35] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software

Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[36] D. Malinsky and D. Danks, “Causal discovery algorithms: A practical
guide,” Philosophy Compass, vol. 13, no. 1, p. e12470, 2018.

[37] T. Chen, D. Huang, T. Tse, and Z. Q. Zhou, “Case studies on the
selection of useful relations in metamorphic testing,” in In Proceedings

of the 4th Ibero-American Symposium on Software Engineering and

Knowledge Engineering (JIISIC’04)., 11 2004, pp. 569–583.

[38] J. Mayer and R. Guderlei, “An empirical study on the selection of good
metamorphic relations,” in 30th Annual International Computer Software

and Applications Conference (COMPSAC’06), vol. 1, 2006, pp. 475–
484.

[39] Y. Cao, Z. Q. Zhou, and T. Y. Chen, “On the correlation between the
effectiveness of metamorphic relations and dissimilarities of test case
executions,” in 2013 13th International Conference on Quality Software,
2013, pp. 153–162.

[40] H. Liu, X. Liu, and T. Y. Chen, “A new method for constructing meta-
morphic relations,” in 2012 12th International Conference on Quality

Software, 2012, pp. 59–68.

[41] S. A. Vilkomir, W. T. Swain, J. H. Poore, and K. T. Clarno, “Modeling
input space for testing scientific computational software: A case study,”
in Computational Science – ICCS 2008, M. Bubak, G. D. van Albada,
J. Dongarra, and P. M. A. Sloot, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 291–300.

[42] S. A. Vilkomir, W. T. Swain, and J. H. Poore, “Combinatorial test
case selection with markovian usage models,” in Fifth International

Conference on Information Technology: New Generations (itng 2008),
2008, pp. 3–8.

[43] T. Y. Chen, J. W. Ho, H. Liu, and X. Xie, “An innovative approach
for testing bioinformatics programs using metamorphic testing,”
BMC Bioinformatics, vol. 10, no. 1, jan 2009. [Online]. Available:
https://doi.org/10.1186%2F1471-2105-10-24

[44] B. Johnson, Y. Brun, and A. Meliou, “Causal testing: understanding de-
fects’ root causes,” in Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, 2020, pp. 87–99.

11



[45] K. Nursimulu and R. L. Probert, “Cause-effect graphing analysis and
validation of requirements,” in Proceedings of the 1995 Conference of

the Centre for Advanced Studies on Collaborative research. Citeseer,
1995, p. 46.

[46] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The Art of

Software Testing. Wiley Online Library, 2004, vol. 2.
[47] T. Su, K. Wu, W. Miao, G. Pu, J. He, Y. Chen, and Z. Su, “A survey

on data-flow testing,” ACM Comput. Surv., vol. 50, no. 1, mar 2017.
[Online]. Available: https://doi.org/10.1145/3020266

[48] C. Glymour, K. Zhang, and P. Spirtes, “Review of causal discovery
methods based on graphical models,” Frontiers in genetics, vol. 10, p.
524, 2019.

[49] A. Podgurski and Y. Küçük, “Counterfault: Value-based fault local-
ization by modeling and predicting counterfactual outcomes,” in 2020

IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE, 2020, pp. 382–393.
[50] S. Lee, D. Binkley, R. Feldt, N. Gold, and S. Yoo, “Causal program

dependence analysis,” arXiv preprint arXiv:2104.09107, 2021.

12


	Introduction
	Background
	Causal Bugs
	Causal Metamorphic Testing
	Causal DAGs as a Software Model
	Generating Metamorphic Test Cases from a CSG
	Correctness and Performance

	Evaluation
	Experimental Setup
	Methodology

	Results
	RQ1: Robustness to misspecification
	RQ2: Robustness to subtle causal relationships
	Threats to validity

	Case studies
	Apache Commons Math
	Apache Commons Lang

	Related Work
	Conclusions
	References

