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Abstract. Active touch sensing can benefit from the representation of
uncertainty in order to guide sensing movements and to drive sensing
strategies that operate to reduce uncertainty with respect to the task at
hand. Here we explore learning approaches that can acquire task knowl-
edge quickly and with relatively small datasets and with the potential
to be exploited for active sensing in robots and as models of biological
sensory systems. Specifically, we explore the utility of deep (hierarchi-
cal) Gaussian Process models (Deep GPs) that have shown promise as
models of episodic memory processes due to their low-dimensionality
(compactness), generative capability, and ability to explicitly represent
uncertainty. Using data obtained in a robotic active touch task (contour
following), we show that both single-layer and Deep GP models are ca-
pable of providing robust function approximations from tactile data to
angle and sensor position, with Deep GPs showing some advantages in
terms of accuracy and uncertainty quantification in angle discrimination.

Keywords: Active Touch · Deep Gaussian Process · Contour Following
· Tactile Sensing

1 Introduction

Active and exploratory capabilities of tactile perception can overcome the lim-
itations of acquiring tactile information in a spatially constrained sensory ap-
paratus. The active component of touch involves a modulation of attentional
systems, requires decision making and performs purposeful movements to opti-
mally obtain relevant tactile information [8, 11, 20]. In addition, psychophysical
studies have characterised the execution of exploratory movement patterns of
the sensory apparatus in the extraction of material and geometric properties
of objects [9]. According to these studies, the perception of exact shape of an
object through tactile sensing relies on a dynamic edge following exploratory
procedure. Following the contour of an object depends on correctly perceiving
the angle between the edge and the sensory apparatus. An accurate angle per-
ception permits the detection of changes in curvature to maintain contact with
the edge of the object whose contour is being explored [10]. Studies on angle
perception with the index finger on human subjects have observed the tendency
of the execution of movements of the sensory apparatus for the improvement of
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angular perception [24, 25]. Thus, the active component of contour following may
be contingent on localising the sensory apparatus with respect to the edge of an
object and modifying the sensor position to achieve better estimations of the
assessed angle. An accurate angle perception would lead to the execution of ex-
ploratory movements taking into consideration the relative orientation between
the perceiving organ and the edge of the test object.

The utility of exploratory procedures is not limited to specific end-effectors or
contact types, highlighting that active touch strategies, as identified in biological
systems, could be usefully implemented in robotic systems [21]. The need to
deploy robots in unstructured environments requires the integration of multiple
modalities to provide the embodied agent with a good understanding of the
outside world [5]. Tactile sensing contributes to the direct detection of physical
information, for instance surface shape and texture, that can otherwise only be
inferred indirectly. A variety of reliable, and small, biomimetic tactile sensors
have been developed leading to an upsurge in research on touch in robots [3].
These sensors deliver measurements in the presence of noise which translates
into uncertainty that learning models must deal with to make decisions about
future actions.

Inspired from the biology of active touch, the execution of the contour fol-
lowing exploratory procedure has relied on methods for localisation of the sen-
sor relative to the object and identification of the edge orientation [12, 16, 21].
Perception of these magnitudes has been subject on applying Bayesian models
along with sequential analysis to make decisions under uncertainty to complete
the task [14, 15, 17]. Similarly, in [1] it was proved that the implementation of
Gaussian process models can result in obtaining more accurate predictions of
angle and position magnitudes compared to the use of Bayesian models under
the same circumstances. However, the use of Deep Gaussian Process models [6]
in the representation of angle and position information from tactile data remains
to be assessed. GPs operate to infer the correlation of the training data, which,
compared, for instance, to deep learning approaches, can present an advantage
in building reliable models with relatively small training data. This can also be
useful in understanding biological organisms in which learning can take place
rapidly based on limited experience. GPs also grow in complexity to suit the
data being therefore robust to overfitting [22]. By explicitly representing un-
certainty in the data they can guide exploratory procedures aimed at reducing
uncertainty [19], and, as a means of representing the data, they can be more
transparent in terms of inspecting the low-dimensional manifold that is acquired
by the trained system. In the current paper, we compare GP model with a newer
variant, Deep GPs, that exploits hierarchical composition to create a deep be-
lief network based on Gaussian process mappings [6]. Deep GPs can overcome
some of the disadvantages of standard GPs, being more robust, analogous to the
relationship between deep neural networks and generalized linear models [23].

In the current study, the feasibility of identifying the position and angle of
the sensor with respect to the edge of a test object using GP models is eval-
uated using a tactile dataset consisting of evenly distributed palpations of a
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biomimetic fingertip against the surface proximal to the edge of a circular object.
The dataset, developed in [2], and using the TacTip sensor [4], is intended for ap-
plications that require the discrimination between angle and perceptual classes
such as tracing the contour of the object. In the current work, we seek to demon-
strate that discrimination of angle and position perceptual classes can be assessed
by implementing non parametric models that provide explicit quantification of
uncertainty suitable for use in active sensing strategies such as exploratory pro-
cedures. Specifically, we train Gaussian Processes and Deep Gaussian Processes
models to learn angle and position percepts from tactile information and to as-
sess the accuracy of those predictions. We demonstrate that both methods work
effectively with this dataset with the Deep GPs showing some advantages in
terms of accuracy and uncertainty quantification.

2 Methods

2.1 Dataset

Lepora and colleagues have systematically collected sets of tactile data to en-
able the study of active touch strategies both for biomimetic artificial whiskers
and fingertips [13]. These datasets also enable the analysis of regularities in the
data when transformed into lower dimensional latent spaces [2]. In the current
work, we used a subset of the data obtained with the TacTip biomimetic fin-
gertip mounted on a UR5 robot arm. The sensor is composed of a compliant
dome with 127 internal markers whose behavior is captured by a camera located
inside the sensor case. The shear displacement of the markers corresponds to
the deformation of the compliant component contingent on contacting a surface.
The collection procedure followed a series of discrete taps on evenly distributed
locations close to the edges of a circular object. The taps were executed along
radial frame of reference with respect to the perpendicular angle of the edge.
In that sense, position classes consisted of palpations on the surface from -12
mm to 5 mm in increments of 0.5 mm, where the 0 mm position corresponds
to a palpation on the edge of the object. Nevertheless, in the present work, we
used the data from -9 mm to 5 mm in steps of 1 mm. The use of a batch of
the data allowed the assessment the capabilities of GP models to learn from a
reduced amount of data, and also for discarding position classes in which the
sensor does not provide relevant data due to lack of contact with the object.
The angle classes in the original dataset were collected in a range of 0 to 360
degrees with increments of 12 degrees. However, in this work, we used the data
from the perceptual classes that can be related to the perception of edges of
objects consisting of right angles, i.e: 0, 180, 86, and 264 degrees, being the last
two classes utilised as a proxy for classes of 90 and 270 degrees. The tactile
data for the 0 degrees perceptual class is depicted in Fig. 1. The data repre-
sents the horizontal (Fig. 1a) and vertical (Fig. 1b) displacement of the internal
markers, where each tap corresponds to a single radial position class, along with
the marker distribution of the tip of the sensory apparatus (Fig. 1c). The data
used in this work consists of four angular classes consisting of fifteen taps, where
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each tap is consistent with a position class for the localisation of the sensor and
identification of the angle between the sensing device and the edge of the object.

Fig. 1. Tactile data for 15 position classes corresponding to angle perceptual class: 0
degrees. A) Tracking of horizontal marker displacement (∆X). B) Tracking of vertical
marker displacement (∆Y). C) Layout of 127 internal markers of the TacTip sensor,
colours on each plot correspond to the shown marker position

2.2 Dimensionality Reduction

Following the work from [2], the transformation of the data from a discrete tap
consisting of a stream of the tracking of each of the 127 markers for the x and
y axes along the duration of the tap can be an effective method to observe the
intrinsic invariances and regularities in systematically collected data. As Fig. 2
displays, spatial commonalities in the real world are transferred to the latent
space without requiring a supervised learning method. Angular classes occupy
specific spaces and follow a clockwise distribution on the manifold (Fig. 2a).
Similarly, position classes are evenly distributed in the latent space maintaining
the spatial neighbouring from the space of observations. This dimensionality
reduction represents a reduction in computational load for the Gaussian Process
based models that require the inversion of the covariance matrix of training
points to obtain the conditional distribution of test datapoints given the training
set. The selection of data reduction to three dimensions was determined due
to the 78% of the explained variance contained in the transformed data. The
variance explained for each principal component was of a 41.49%, 27.21%, and
10.14%, providing a reasonable representation for the discrimination of angular
and position perceptual classes.
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Fig. 2. Dimensionality reduction of tactile data. (A) Representation of angular classes.
(B) Representation of position classes

2.3 Gaussian Process Based Models

Gaussian process [22] and Deep Gaussian process [6] models were implemented
with the dimensionality-reduced tactile data. Training data consisted of each
tap represented in three dimensions. 60 datapoints corresponding to 15 evenly
distributed positions for each of the 4 angular percepts were used as an input to
the models. Specifically, the non-parametric models were used for regression of
angle and position of the sensor with respect to the edges of objects composed of
right angles. The Gaussian Process model implementation and optimisation were
carried out using the methods provided by the GpFlow library [18]. The model
consists of a Matern 52 covariance function, replicating the studies performed
in [1] with the difference that we used less training samples to train the GP
and Deep GP models. The covariance function was used as a kernel for its
combination with the data to form the regression model, with X∗ describing
previously unseen data, being f∗ the approximation of f(X∗):

f∗|X∗, X, y ∼ N (m,C), (1)

where m and C, the mean and covariance of the function approximation for
the test data are obtained as follows:

m = K∗x(Kxx + σ2I)−1y, (2)

C = K∗∗ −K∗x(Kxx + σ2I)−1KT
∗x, (3)

The covariance matrices used to perform the calculation of equations 2 and 3
consist of the covariance between training points: Kxx = k(XX); the covariance
between training and test points: K∗x = k(X∗, X), and the covariance between
test points K∗∗ = k(X∗, X∗). In addition, a Deep Gaussian Process regression
model with a variational stochastic inference method [23] was implemented with
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the offered tools from the GPflux library [7]. The model consisted of two G.P
layers, and a Gaussian likelihood layer. Each of the G.P layers were composed
of Squared Exponential covariance functions. Deep GP regression represents a
hierarchical model, in this case with two layers:

y = f1(f2(x)), where f1 ∼ GP and f2 ∼ GP, (4)

constructing the function,

f : x, −→
f2

z −→
f1

y, (5)

Where z is a latent variable in the hierarchical model, which can be referred as
a ‘layer’ in a deep model.

3 Results

In this section, a comparison between the implemented models is carried out. We
present the learned mean function values along with the 95% confidence interval
for the predictions of each model for a given input X∗ representing previously
unseen tactile data. Additionally, the performance of the regression using each
method is evaluated through the obtention of the mean absolute error, and the
coefficient of determination. The MAE provides a quantification of the assessed
magnitude corresponding to each regression model, i.e: angle and position. The
coefficient of determination, known as R2 score provides a representation of the
proportion of variance of the evaluated variables explained by the independent
variables in the model. This coefficient measures goodness of fit and therefore
provides and indication of the capacity to predict unseen samples (through the
amount of explained variance).

3.1 Position Discrimination

The implementation of Gaussian Process and Deep Gaussian Process regression
models for the localisation of the sensor in the radial axis with respect to the per-
pendicular angle of a right-angled object can serve as a method for implementing
movement policies to actively follow the contour of the object. In that sense, as
can be seen in Fig. 3, both models provide a similar outcome in predicting the
position of the sensor given the tactile data acquired at the specific position
relative to the edge. However, it can be observed that the confidence interval,
translated into the uncertainty of the prediction tends to be slightly higher with
the Deep GP model (Fig. 3b) with respect to the GP model (Fig. 3a). A higher
variance in the prediction may result in inaccuracies on the perception of sensor
position; nevertheless, the provided variance can be used to determine a fixation
point or set of points in which the perception of the respective angle could be
predicted with higher accuracy.

The performance of the predictions on test data for each model is presented
in Table 1. The coefficient of determination metric indicates that both models



Deep GPs for Angle and Position Discrimination in Active Touch Sensing 7

Fig. 3. Prediction of radial position of the sensor relative to the edge of a right-angled
object (y axis) using tactile data collected at the corresponding position relative to
the edge (x axis). (A) Predictions from Gaussian Process model. (B) Predictions from
Deep Gaussian Process model

will provide accurate predictions in further unseen samples. Even though the
mean absolute error of the Deep GP model is 0.013 mm greater than the error
from the predictions with the GP model, both models display an error of less
than 0.2 mm. This relatively low mean absolute prediction error for the studied
models would imply a robust localisation of the sensor with respect to the edge of
the object. Consequently displaying a potential to effectively modify the position
state parameter for the correct perception of the angle relative to the edge of
objects comprised of right angles.

Table 1. Performance metrics for Gaussian Process and Deep Gaussian Process for
position prediction

Metric GP Deep GP

R2 0.9971 0.9967
MAE 0.1772[mm] 0.1910[mm]

3.2 Angle Discrimination

The discrimination of the angle in which the sensor is located with respect to
the edge of an object has been proved to be relevant in the execution of ex-
ploratory movements in tasks such as following the contour of an object [21].
The predictions provided by both evaluated models are presented in Fig. 4. It
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can be observed that the predictive expected value for angle perception tends
to be relatively accurate for both models. However, the Gaussian process model
presents a higher variance in the prediction (Fig. 4a) with respect to the vari-
ance obtained from the Deep model (Fig. 4b). This higher variance shows that
a diminished consistency in accurate predictions would be present, inducing a
significant impact in the execution of the contour following task. An inaccu-
rate prediction of the angle could lead to the execution of incorrect exploratory
movements when the motion policy is set to moving the sensor perpendicular to
the perceived angle. In that sense, the Deep GP model presents a better per-
formance and potential to better achieve the task considering the relevance of
angle perception in the execution of exploratory movements.

Fig. 4. Prediction of perpendicular angle of the sensor relative to the edge of a right-
angled object (y axis) from tactile data obtained at the corresponding radial position
relative to the edge (x axis). (A) Predictions from Gaussian Process model. (B) Pre-
dictions from Deep Gaussian Process model

Higher variance in the prediction of test datapoints from the GP model is
reflected in the R2 performance metric as detailed in Table 2, which is lower
than the coefficient of determination obtained from the Deep model prediction.
The best possible R2 score is 1, thus the Deep GP model tends to provide more
certain predictions than when using the Gaussian Process model. Additionally,
through the quantification of the mean absolute error we can demonstrate that
the Deep Gaussian process model outperforms its shallow counterpart with an
error reduction of approximately five degrees.
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Table 2. Performance metrics for Gaussian Process and Deep Gaussian Process for
angle prediction

Metric GP Deep GP

R2 0.9495 0.9912
MAE 11.03° 6.11°

4 Discussion and future work

The execution of exploratory movements to maintain the contact with an object
in a contour following setting relies on the accuracy of the perception of the
angle between the sensing device and the edge of the object. This perception
can be enhanced by positioning the sensor in locations where the angle can be
perceived with more accuracy (fixation point). In this work, Gaussian Process
and Deep Gaussian Process models were implemented for the discrimination of
angle and position of the sensor with respect to the edge of right-angled objects
with tactile data. For the position discrimination, both models provide a mean
absolute prediction error of less than 0,2 mm, which represents an advantage in
localising and positioning the sensor in places where the angle can be perceived
with more accuracy. With regards to angle discrimination, it was shown that the
Deep GP model provided a better performance with respect to the GP model.
This outperforming was reflected in the capability to provide less variability in
the predictions of previously unseen data. In addition, the deep model presents
the potential to produce more accurate predictions as demonstrated in a mean
absolute predictive error reduction of five degrees compared to the shallow model.
The results from the angle discrimination provide directions about the policy
that ought to be followed to perform active touch, i.e. to locate the sensor in
a fixation point. It would be straightforward to determine a fixation point in
which the sensor needs to be placed by only taking into account the values of
the mean function provided by both models. However, the higher variance of the
predictions obtained from the GP model suggests that the angle perception is
prone to present a higher perception error as opposed to its deep counterpart
which indicates that the predictions will be closer to the predicted mean function
values. Therefore, the obtained accuracy and reduction in the uncertainty of the
predictions of the Deep GP model can directly influence the performance of
exploratory movements to successfully follow the contour of objects comprised
of right angles.

The application of this type of models have demonstrated the requirement
of a relatively small dataset comprised of 60 datapoints to correctly characterise
the evaluated magnitudes. Additionally, the quantification of uncertainty be-
comes a beneficial metric for decision making to perform active touch. Future
work will be directed to integrate the studied models in action-perception loops
to allow robotic systems actively perform dynamical edge following of objects
with different curvatures under practical scenarios where the quantification of
uncertainty and accuracy of the predictions could eventually be essential for the
completion of the task.



10 P. J. Salazar and T.J. Prescott

Acknowledgments

The authors would like to thank N. Lepora and collaborators collecting and mak-
ing available the dataset used in this work. This work is supported by European
Union’s Horizon 2020 MSCA Programme under Grant Agreement No 813713
NeuTouch

References

1. Aquilina, K.: Tactile Perception and Control of a Soft Shear-Sensitive Optical
Tactile Sensor. Ph.D. thesis, University of Bristol (2021), https://research-
information.bris.ac.uk/en/studentTheses/tactile-perception-and-control-of-a-soft-
shear-sensitive-optical-

2. Aquilina, K., Barton, D.A.W., Lepora, N.F.: Principal Components of Touch. In:
2018 IEEE International Conference on Robotics and Automation (ICRA). pp.
4071–4078. IEEE (5 2018). https://doi.org/10.1109/ICRA.2018.8461045

3. Bartolozzi, C., Natale, L., Nori, F., Metta, G.: Robots with a sense of touch. Nature
Materials 15(9), 921–925 (9 2016). https://doi.org/10.1038/nmat4731

4. Chorley, C., Melhuish, C., Pipe, T., Rossiter, J.: Development of a tactile sensor
based on biologically inspired edge encoding. In: 2009 International Conference on
Advanced Robotics. pp. 1–6 (2009), https://ieeexplore.ieee.org/document/5174720

5. Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile sensing-from hu-
mans to humanoids. IEEE Transactions on Robotics 26(1), 1–20 (2 2010).
https://doi.org/10.1109/TRO.2009.2033627

6. Damianou, A.C., Lawrence, N.D.: Deep Gaussian Processes. Journal of Machine
Learning Research 31, 207–215 (11 2012), http://arxiv.org/abs/1211.0358

7. Dutordoir, V., Salimbeni, H., Hambro, E., McLeod, J., Leibfried, F., Arte-
mev, A., van der Wilk, M., Deisenroth, M.P., Hensman, J., John, S.T.:
GPflux: A library for Deep Gaussian Processes. arXiv:2104.05674 (2021),
https://arxiv.org/abs/2104.05674

8. Gibson, J.J.: Observations on active touch. Psychological Review 69(6), 477–491
(1962). https://doi.org/10.1037/h0046962

9. Lederman, S.J., Klatzky, R.L.: Hand movements: A window into hap-
tic object recognition. Cognitive Psychology 19(3), 342–368 (7 1987).
https://doi.org/10.1016/0010-0285(87)90008-9

10. Lederman, S.J., Klatzky, R.L.: Extracting object properties through haptic explo-
ration. Acta Psychologica 84(1), 29–40 (10 1993). https://doi.org/10.1016/0001-
6918(93)90070-8

11. Lepora, N.: Active Tactile Perception. In: Prescott, T.J., Ahissar, E.
(eds.) Scholarpedia of Touch, pp. 151–159. Atlantis Press, Paris (2016).
https://doi.org/10.2991/978-94-6239-133-8\{ }11

12. Lepora, N., Martinez-Hernandez, U., Prescott, T.: Active Bayesian Percep-
tion for Simultaneous Object Localization and Identification. In: Robotics: Sci-
ence and Systems IX. Robotics: Science and Systems Foundation (6 2013).
https://doi.org/10.15607/RSS.2013.IX.019

13. Lepora, N.F.: Biomimetic Active Touch with Fingertips and
Whiskers. IEEE Transactions on Haptics 9(2), 170–183 (4 2016).
https://doi.org/10.1109/TOH.2016.2558180



Deep GPs for Angle and Position Discrimination in Active Touch Sensing 11

14. Lepora, N.F., Aquilina, K., Cramphorn, L.: Exploratory Tactile Servoing With
Active Touch. IEEE Robotics and Automation Letters 2(2), 1156–1163 (4 2017).
https://doi.org/10.1109/LRA.2017.2662071

15. Martinez-Hernandez, U., Dodd, T., Prescott, T.J., Lepora, N.F.: Active Bayesian
perception for angle and position discrimination with a biomimetic fingertip. In:
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp.
5968–5973. IEEE (11 2013). https://doi.org/10.1109/IROS.2013.6697222

16. Martinez-Hernandez, U., Dodd, T.J., Prescott, T.J.: Feeling the Shape: Active
Exploration Behaviors for Object Recognition with a Robotic Hand. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems 48(12), 2339–2348 (12 2018).
https://doi.org/10.1109/TSMC.2017.2732952

17. Martinez-Hernandez, U., Rubio-Solis, A., Prescott, T.J.: Learning from
sensory predictions for autonomous and adaptive exploration of object
shape with a tactile robot. Neurocomputing 382, 127–139 (3 2020).
https://doi.org/10.1016/j.neucom.2019.10.114

18. Matthews, A.G.d.G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A.,
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