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Abstract

The growing issue of demand-supply management between the prosumers and the local

energy market requires an efficient and reliable energy management model. The micro-

layers, such as prosumers, energy districts, and macro players, namely retail dealers and

wholesale dealers play a pivotal role in achieving mutual benefits. The stochastic nature of

renewable energy generation in energy districts requires an effective model that can con-

template all stochastic complexities. Therefore, this paper proposes a mutual trade model

between energy districts and smart grid to authorize the prosumers for mutual energy trans-

actions under the stochastic adaptive-service level agreement. Moreover, multiple smart

contacts are developed between the stakeholders to design adaptability and stochastic

behavior of wind speed and solar irradiance. The real-time adaptations of the stochastic

adaptive-service level agreement are based on technical beneficial feasibility and achieved

through stochastic and adaptive functions. The optimized solution based on a genetic algo-

rithm is proposed for the energy cost and energy surplus of prosumers and output parame-

ters of the mutual trade model (grid revenue). In the context of mutual benefits associated

with balanced demand and supply, the economic load dispatch and simplex method maximi-

zation are used for optimized demand-supply energy management. Moreover, the effective-

ness of the proposed adaptive and stochastic mutual trade model is validated through

simulation and statistical analysis.

1. Introduction

The energy demand is growing exponentially while fossil fuels are becoming unpopular, and

therefore, there is a need to increase the penetration of renewable energy resources in the exist-

ing power network along with a better and smarter energy management solution. The Interna-

tional Renewable Energy Agency reported that both government and public partnerships are
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targeting to reduce the capital cost to meet the total 36% of energy demand from renewable

energy sources by 2030 [1]. To overcome the gap between energy supply and demand, energy

consumers in many countries are allowed to generate their energy and feed their surplus back

into the grid. These types of consumers are usually referred to as “prosumers”. This mutual

incentive-based measure allows the energy providers to provide cost-effective, environment-

friendly, and sustainable energy solutions. The prosumers are active micro-mini players with

small-scale renewable energy generation who participate in the smart grid environment sto-

chastically (as their generation capacity depends on stochasticity) [2].

Although extensive work has been carried out for the development of a prosumer-based

smart grid for a single and cluster-based prosumers operation, where each prosumer act as a

shareholder of the energy market. A lot of remedies and challenges regarding energy estima-

tion, socio-technic issues, efficient strategies for energy management, and incentive-based pro-

grams are still overlooked in the literature. Further, the integration and control of small-scale

prosumer-based microgrids in the paradigm of the Internet of Things and demand-side man-

agement is a crucial challenge for the future smart grid [3]. The challenge of secure energy

trading for blockchain-based peer-to-peer microgrids is addressed in [4–6]. Smart contracts

ensure beneficial mutual energy transactions between the smart grid and prosumers.

In the literature, several priority-based energy scheduling mechanisms for a distributed net-

work are proposed. In [7, 8], the active energy transactions for multiple prosumers are priori-

tized. Although this approach is effective, it does not consider the reliability and congestion

aspects. This problem is solved by [9, 10] using transactive energy paradigms and taking dis-

tributed renewable energy generation in a local distribution area, respectively. The proposed

solutions help to exchange energy between various prosumers and empower distribution sys-

tem operators to participate in the wholesale electricity market to enhance their energy sharing

in the local energy trade market. The layer-wise energy management model with monitoring,

smart metering facility, and fast communication links between stakeholders is presented,

which gives an advantage in forecasting the electricity demand growth but lacks in providing

the randomness and stochasticity of source parameters of renewable energy generation. Ser-

vice-Level-Agreement (SLA) between the stakeholders requires clear and transparent energy

transactions for bidirectional energy and information flow along with pricing schemes [11,

12]. However, the proposed solution is unable to design multiple smart contract-based SLAs

with multiple Regions of Convergence (RoC) and Regions of Divergence (RoD) in response to

stochastic source parameters. The households belonging to prosumers and consumers were

considered in [13], analyzing the energy efficiency of prosumer households. The concept of a

community microgrid was introduced using multiple deterministic planning designs, which

reduced the investment cost compared to household microgrids [14].

The energy transactions between stakeholders to minimize the mismatch of demand-supply

between prosumers are highly effective than traditional cost function minimization [15, 16].

The performance of day-ahead planning and real-time operation supported by the energy stor-

age system is analyzed in [17]. The robust two-stage energy management and sharing model is

presented in [18]. The first stage solved the problem of energy sharing schedule and price

uncertainties by converting bi-level optimization into mixed-integer linear programming. The

second stage is applying an online mechanism for scheduling and imposing penalties on devi-

ated prosumers, who try to adjust their preceding schedule [18].

A sharing economy system using the Internet of Things is presented in [19], which can be

deployed when the prosumers are bound to communicate in a binary way and requires less

computational, connectivity, and actuation burden on the infrastructure. The virtual associa-

tion’s concept of the aggregator is presented in [20], in which the fair sharing and min-max

optimization techniques are used to prioritize the virtual association and increase
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competitiveness, and prosumer participation. The mutual interactions between smart grid and

renewable energy districts using demand response programs were discussed and comprehen-

sively reviewed [21, 22] to ensure the participation of distributed end-users. A scenario-based

algorithm is used for dealing with the intermittency of wind and solar energy in a combined

power system resulting in reduced system cost and minimized environmental pollution [23].

The concept of energy coalition using cooperative game theory in which prosumers operation

is enhanced by reducing the overall coalition cost through collaboration between the owners

of the energy storage system is presented [24]. Further, the Game theory is organized to reward

the outperforming players.

The above-mentioned techniques provide a cost-effective solution for mutual energy trad-

ing between the Energy Districts (eDs) and smart grids and enhance the prosumer contribu-

tion to developing prosumer-based microgrids into modern, controllable, self-healing, and

resilient smart grids. However, these works lack in providing (i) multiple Smart Contracts

(SCs) based Stochastic and Adaptive SLA (SA-SLA) with multiple RoC and RoD and (ii)

demand-supply optimized management using the simplex method and Economic Load Dis-

patch (ELD).

The key contributions of this paper are given as:

• The development and analysis of a prosumer-based energy management model for mutual

energy trading between the eDs (wind and solar) and smart grid. The mutual energy trading

between multiple eDs increases energy sharing to reduce the peak energy demand.

• The development of a new SCs-based SA-SLA technique with multiple convergences and

divergence regions. The new SA-SLA technique can incorporate prosumer energy genera-

tion based on stochastic source parameters, such as solar irradiance and wind speed. The sto-

chasticity of source parameters creates multiple ranges of prosumer energy surplus.

• The validation of prosumer energy cost and grid revenue using Genetic Algorithm, when

multiple eDs are interfaced with the smart grid considering Real-Time Pricing (RTP) and

Day-ahead (DaH) pricing.

• The development and validation of SA-SLA employing multiple SCs-based smart SLAs. Fur-

ther, the demand-supply optimized management is achieved using the Simplex method and

ELD.

The organization of the paper is as follows. Section II discusses the renewable eDs mutual

trade model incorporating environmental shifts and DRPs. Section III presents the layers and

attributes of the SA-SLA. A robust optimization model for PES, prosumer energy cost, and

grid revenue are discussed in Section IV. The performance evaluation including data analysis,

seasonal variations, smart SLAs with multiple RoC, and RoD are provided in Section V. Sec-

tion VI concludes the paper with major findings of work.

2. Renewable energy districts based Mutual Trade Model (MTM)

2.1 System model

The SA-SLA-based MTM between renewable energy generation-based eDs (wind and solar)

and utility is presented in this section. MTM is a stochastic adaptive model with a bidirectional

energy management capability to incorporate various price-based incentives like RTP and

DaH pricing. MTM provides an effect on the energy consumption pattern of prosumers con-

sidering stochastic weather parameters including dry bulb temperature, dew point, wind

speed, and cloud cover. The development of smart grid technologies focuses on introducing a

mechanism that can automatically balance energy demand and energy supply by varying
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desired set points. In this regard, an effective solution to the prominent issue of balancing

energy demand supply is presented [25] using a simplex method and ELD. Price-based incen-

tivization of prosumers and demand-side management are key factors to overcome the issue.

The demand-side management ensures pertinent benefits like (i) reducing peak hour demand,

(b) consumer energy cost reduction, (c) load profile improvement, and (d) best utilization of

renewable energy sources [26]. Keeping in view the stochasticity of source parameters, prosu-

mer interrelation, and community-based relations, Stochastic Adaptive Functions (SAFs) of

prosumer-generated energy are included in the MTM to model and design the stochastic

behavior of eDs under SA-SLA [19].

The aggregator plays an important role in enhancing the positive behavior of players [20].

A central control party called Coalition Manager (CM) that regulates the behavior of stake-

holders is included in MTM. The role of CM is depicted in Fig 1. SCs are developed between

stakeholders under the authority of CM. CM is responsible for updating stakeholders on the

upcoming weather conditions, energy demands, energy export, energy import, and electricity

tariff of energy import and export (nominal, DaH, or RTP). The CM rewards outperforming

stakeholders using game theory [24]. Further, CM is responsible to incentivize outperforming

players and penalize stakeholders for violating SA-SLA. Some special energy transactions in

the form of import or export offered by the service provider are also communicated to prosu-

mers via CM with details of incentives. Prosumer energy import and export are presented in

Fig 1.

2.2 Environmental shifts

Environmental dynamics vary quantitatively throughout the year. A reasonable climate varia-

tion occurred around the year that changed the energy demand of buildings [27]. Environ-

mental shifts pose a pertinent impact on the energy consumption of prosumers. This paper

presents a season-wise analysis of energy consumption as the performance of renewable

energy generation (PV arrays and wind turbines), is affected by weather parametric variations

and climatic drifts. The energy efficiency of renewable energy generation can be increased

using proper weather forecasting techniques [28]. Spring, summer, and winter seasons are

considered in this paper to analyze the prosumer energy cost (PEC), prosumer energy surplus

(PES), and grid revenue (GR).

2.3 Demand response programs (DRPs)

DRPs are playing a vital role in the energy management system of the smart grid [22]. The

operational costs of microgrids with distributed renewable energy sources can be reduced to a

Fig 1. Bidirectional energy flow via CM, NP: Nominal price.

https://doi.org/10.1371/journal.pone.0278324.g001
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large extent by the participation of DRPs. DRPs can be categorized as time-based or different

incentive-based. In DRPs, end users are encouraged to reduce their energy demands during

peak hours and accordingly receive a reward based on the types of DRPs. In this paper, the

Price based DRPs (i.e., RTP and DaH pricing schemes) are considered and a comparative anal-

ysis is provided. CM playing the role of aggregator decides a pricing scheme and communi-

cates to the stakeholders accordingly [29].

3 Stochastic adaptive- service level agreement

SLA is a formal contract between the service provider (smart grid) and prosumers using prede-

fined service standards. The service responsibility, service quality, service reliability, service

response time, performance, and security monitoring aspects are mainly covered in SLA. SLA

with a new paradigm of active services, transform passive consumers into technology-enabled

active players performing as prosumers. Multiple SCs based on the stochastic nature of RES

are developed between stakeholders. Utility and eDs associated with adaptations of SA-SLA

play a stakeholder role. Maintaining a balance between energy supply and energy demand is

necessary to get socio-economic benefits [2]. The proposed SA-SLA with bi-directional com-

munication, real-time monitoring, service security, and multiple contracts assures a balance

between energy demand and energy supply. CM regulates the actions of stakeholders by

enforcing their energy activities under SA-SLA by specifying typical rewards and penalties as

mentioned in (6). The typical block diagram of SA-SLA is shown in Fig 2. Layers play an

important role in appropriately regulating the performance of emergent distribution links [2].

The detail of the three layers used in SA-SLA is as follows. Layer one with active agents,

Fig 2. Bidirectional energy flow between energy districts and utility.

https://doi.org/10.1371/journal.pone.0278324.g002
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players, and vendors consists of multiple SCs, logic, a set of rules, constraints, and service

descriptions. The expectations and responsibilities of stakeholders are also defined in layer

one. The stakeholders use layer one in the first phase to communicate with the subsequent lay-

ers. Considering various SCs and rules, layer one converts stakeholder’s information into a

readable form and sends the gathered information to layer two for further processing. Layer

two uses directions from CM.

The function of layer two, following the CM direction, is to make decisions based on infor-

mation prearranged by layer one. A set of If-then rules are involved to evaluate information.

After sorting information, layer two, by using if-else commands check the validity of informa-

tion and sends the decision to both CM and layer three. Layer three is the most trusted and

important layer of SA-SLA because CM and stakeholders are directly linked using bidirec-

tional communication. Service security, response time, energy management, and performance

of stakeholders are key parameters of layer three. The function of layer three, having instant

information of stakeholders, is to send requests of stakeholders to CM for final approval and

circulate CM decision for kind information of stakeholders.

The key characteristics of SA-SLA are described as:

Stochastic Adaptive Functions (SAFs): Wind and solar energies depend on stochastic

environmental parameters (wind speed and solar irradiance) and exhibit highly random

behavior. Thus, to capture these energies, it is vital to represent them with some type of func-

tions that approximately follow the same pattern as they do. The Gaussian distribution func-

tion is incorporated to capture the energy generated by a wind turbine (WT) and PV arrays.

Smart Contracts (SCs): The contract in which energy import and export prices are inde-

pendent of PES is known as fix contract. Whatever the PES is, a fixed contract reflects no influ-

ence on energy import and export prices and gives rise to a fixed SLA. SCs are dynamic

contracts linked with PES. SCs define three different ranges of PES, such as PES from 10%-

30%, 31%-60%, and 61%-100%. Contracts are smart in the sense that different PES ranges

develop multiple SCs, for example, SC1, SC2, or SC3. SCs incorporating different PES ranges

are defined as:

SCs ¼

SC1 for 10% � ES � 30%

SC2 for 31% � ES � 60%

SC3 for 61% � ES � 100%:

ð1Þ

8
><

>:

where ES is prosumer energy surplus, while SC1, SC2, and SC3 are smart contracts 1, 2, and 3

respectively.

Adaptations: Parametric variations, stochastic patterns, SAFs, domains, ranges, and a set of

rules are defined for energy balance adaptations. Stochastic and adaptive environmental

parameters with stochastic and adaptive domains and ranges of SAFs stochastically change

PES and create mismatches between prosumer energy supply and energy demand (of prosu-

mers or utility). The SA-SLA develops a set of SCs for stochastic energy supply conditions. SCs

with different ranges of PES are associated with different prosumer energy import and export

prices and result in different PEC with less PEC for more PES. In this manner, each SC creates

a specific RoC and RoD for PES and according to PEC.

Prosumer Energy Demand: Prosumer energy demand is associated with environmental

drifts that greatly influence the energy demand of consumers [12]. The proposed SA-SLA

incorporating SAFs adapt these variations caused by stochastic environmental parameters. So,

the energy demand of prosumer varies, and variation of stochastic environmental parameters

is dealt with SAFs of SA-SLA.
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Utility Loading: Grid is considered to export energy to or import energy from eDs prosu-

mers. Utility loading conditions could be lightly loaded, mediumly loaded, heavily loaded, or

in an emergency condition.

Convergent and Divergent Contractual Limits: Depending upon the stochasticity of wind

speed and solar irradiance parameters, the SAFs result in different ranges of prosumers gener-

ated energy. Multiple ranges of prosumers generated energy results in different PES ranges

and assisted in the development of SCs. As Gaussian distribution is considered to present the

random behavior of prosumer-generated energy, the area under the probability density curves

of SAFs is taken as a region of interest in our proposed SA-SLA. In the outer 5% area, the Prob-

ability Density Function (PDF) possesses a very small value in the upper portion while the

available energy is too little to meet the energy demand of the prosumer in the lower portion.

So, for the proposed SA-SLA, the middle 95% area under the PDF curve is considered RoC

while RoD refers to the outer 5% area of SA-SLA.

Prosumer Mode: Whenever the Energy produced by an ED is more than the energy

demand, the ED will be able to export the extra energy to Utility under the supervision of CM

and this surplus energy is referred to as PES.

ðEnergy SurplusÞ ) ððEeDsÞgeneration > ðEeDsÞdemandÞ: ð2Þ

The dependence of PES on Gaussian distributed prosumers generated energy distributes

PES in a gaussian manner whenever the ED is in Prosumer mode of operation.

Consumer Mode: Whenever the energy produced by ED is not enough to meet their load,

the ED will import energy from utility to meet energy demand and known as PEC.

ðEnergy CostÞ )

ððEeDsÞgeneration < ðEeDsÞdemandÞ:
ð3Þ

In the consumer mode of operation, the increase in energy generation of ED will decrease

energy costs and vice versa. PEC follows inverse relation to ED-generated energy and different

PEC will result in multiple SLAs between stakeholders. The smart grid export energy to ED on

RTP or DaH pricing.

Utility Revenue: The involvement of a prosumer in the smart grid provides benefits to

both the prosumer and the smart grid. The benefits-to-cost ratio is the key parameter to deter-

mine the utility benefits with corresponding investment. The energy is directly exported by the

grid to various consumers and the energy first imported from eDs is at a nominal rate and

then exported to the consumer at RTP or DaH price to generate GR.

GR ¼ Eu � PRTP þ ½� ðEeDÞs � Pn þ ðEeDÞs � PRTP�: ð4Þ

Benefits
Cost

¼
ðEEDÞs;j � Pn
ðEEDÞs;j�PRTP

: ð5Þ

Utility Cost: Utility pays prosumers at a nominal price rate for how much energy they

export to the utility. So, prosumer energy export to the utility will be considered as a utility

cost.

Utility Benefit: Exported energy to consumers at RTP or DaH price. Prosumers pay the

utility at RTP and DaH price for how much energy they import from the utility. So, prosumer

energy import from the utility will be considered as a utility benefit.

Maximizing Surplus: Considering the different costs of each ED, the simplex optimization

method is used to maximize the surplus with decreased cost of eDs.
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Utility Energy Demand Management: demand-supply optimized management optimally

utilizes energy sources and increases the GR. To satisfy utility energy demand, the simplex

method and ELD are proposed in SA-SLA.

Rewards and Penalties: The rewards are associated with the beneficial action and fulfill-

ment of the contract and violation of commitments lead to penalizing the violating body

(stakeholder). Amazon EC2 criterion-based rewards and penalties are considered. 10% of the

contracted amount will be paid by the penalized body for delay of less than or equal to 1% of

total execution time. For the execution time delay of more than 1%, the penalty increases from

10% to 30% of the contracted amount.

Penalty ¼ ETD � 1%; 10% of ETD > 1%; 30% of g: ð6Þf

4 Robust Optimization Model (ROM)

SAFs play an important role in ROM to model the variation encountered by highly stochastic

wind speed and solar irradiance. The ROM uses SAFs to provide the best possible results based

on stochastic source parameters. Stochastic source parameters result in different PES and PEC

ranges. Susceptible convergence and divergence limits of SLA are prone to stochastic ranges of

PEC and PES. SA-SLA adapts discrepancies of PES and PEC by developing multiple SCs and

introduces new beneficial SLA in terms of convergent and divergent limits.

4.1 Gaussian distribution functions

Environmental parameters (solar irradiance and wind speed) are stochastic. SA-SLA incorpo-

rates SAFs of prosumer-generated energy in response to stochastic parameters (solar irradi-

ance and wind speed). Based on these stochastic parameters, the output energy from WT and

PV array approximately follows the Gaussian distribution [30]. The Gaussian distribution

function of energy generated is defined as follows:

fE eð Þ ¼ ae
�
ðE� mEÞ

2

2s2
E : ð7Þ

where a ¼ 1ffiffiffiffiffiffiffi
2ps2

E

p represents mean variable length of generated energy, σE represents the stan-

dard deviation of generated energy, and μE represents the mean value of generated energy. In

probability theory and statistics, a collection of random variables is Independent and Identi-

cally Distributed (i.i.d) if they are mutually independent and each random variable in a collec-

tion follows the same probability distribution as its counterparts. As prosumer energy solely

depends on independently stochastic source parameters, the random variables associated with

prosumer generated energy have i.i.d values. Random vector associated with prosumer gener-

ated energy is expressed as follows:

E ¼ ðEt1 ;Et2 ; . . . ;EtkÞ: ð8Þ

where Et1 ;Et2 ; . . . ;Etk are gaussian i.i.d values of prosumer generated energy in the time interval

t1, t2. . .,tk. Random variables of random vector exhibit i.i.d values. As each component of the

random vector exhibits univariate gaussian distribution, the random vector itself exhibits a

multivariate gaussian distribution with k-dimension. A linear combination of random vector

components is written as:

Y ¼ ðd1Et1þ . . . ;þdkEtkÞ: ð9Þ
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For random variable Y = dTZ and any constant vector d2Rk, random vector follows the

multivariate gaussian distribution. The generalized expressions for output power and energy

from PV arrays and WT are given in the following subsections.

4.2 Stochastic wind models

The ED1 and ED2 are wind energy districts. The output power and energy generated by WT

are defined as:

Gw ¼

0 v � vi; v � v0

v � vi
vr � vi

Gwr
vi � v � vr

Gwr
vr � v � vo

ð10Þ

8
>>><

>>>:

Ew ¼ T w � Gw ¼ T w �

0 v � vi; v � v0

v � vi
vr � vi

Gwr
vr � v � vi

Gwr
vr � v � vo

ð11Þ

8
>>><

>>>:

where Gw and Gwr
represent the actual output power and rated output power of WT respec-

tively, v denotes the actual wind speed, vi denotes the cut-in wind speed, v0 denotes the cut-out

wind speed, vr denotes the range of rated wind speed, T w denotes the time of operation of WT,

and Ew denotes the actual energy generated by WT in time T w.

4.3 Stochastic solar models

The ED3 is solar ED. Solar PV arrays are employed to generate electrical power. The output

power and energy from the PV array, which is stochastic due to varying solar irradiance [31] is

defined as:

Pact ¼ A� G� PR� r: ð12Þ

EPV ¼ T PV � Pact ¼ T PV � A� G� PR� r: ð13Þ

Where G is the annual averaged solar irradiance received on a tilted axis (in kW/m2), PR

represents the performance ratio of the PV module, r denotes the solar array yields (in %), A is

the PV array’s total area, Pact represents the actual output power of the PV module, T PV repre-

sents the time of operation of the PV array and EPV represents the actual output energy of the

PV array.

4.4 Prosumer energy surplus

The prosumer energy generation and energy demand fluctuations greatly influenced the PEC,

GR, and PES of the smart grid. PES refers to the extra amount of energy that exceeded the

energy demand of the prosumer. The bidirectional energy flow between smart grids and pro-

sumers enables prosumers to export the extra energy to utility with multiple SCs under the

SA-SLA framework. The PES is maximized while minimizing the PEC. The optimization

problem formulation of PES of jth prosumer is expressed as:

max
XH

h¼1
ððEhEDÞgen;j � ðE

h
EDÞdem;jÞ: ð14Þ
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s.t.

0 � ðEhEDÞgen;j � ðEED;rÞgen;j; ð15Þ

0 � ðEhEDÞdem;j � ðEED;maxÞdem;j; ð16Þ

0 � ðEEDÞs;j � maxð0; ðE
h
EDÞgen;j � ðE

h
EDÞdem;jÞ: ð17Þ

PES of prosumers is in the range of minimum energy surplus to maximum energy surplus

defined as:

ðEEDÞs;j ¼

ðEED;minÞs;j for ððEED;maxÞdem;j&ðE
h
ED;minÞgen;jÞ

ðEED;meanÞs;j for ððEED;meanÞdem;j&ðE
h
ED;meanÞgen;jÞ

ðEED;maxÞs;j for ððEED;minÞdem;j&ðE
h
ED;maxÞgen;jÞ:

ð18Þ

8
>><

>>:

where ðEhEDÞgen;j represents the actual hourly energy generation of jth ED, ðEhEDÞdem;j denotes the

actual hourly energy demand of jth ED, (EED,max)dem,j, (EED,mean)dem,j and (EED,min)dem,j repre-

sents the maximum, mean, and minimum energy demand of jth ED respectively, (EED,r)gen,j,

(EED,max)gen,j, (EED,mean)gen,j and (EED,min)gen,j represents the rated, maximum, mean, and mini-

mum energy generation of jth ED respectively, (EED)s,j is the surplus energy of jth ED, and (EED,

min)s,j, (EED,mean)s,j and (EED,max)s,j are the minimum, mean, and maximum energy surplus of

jth ED.

4.5 Prosumer energy cost

The energy generated by the prosumer is usually less than the prosumer energy demand

because of the stochastic nature of source parameters. Whenever the prosumer energy genera-

tion is not enough to meet the prosumer energy demand, additional energy is imported from

the utility that incurs a cost on the prosumer called PEC. Prosumer utilizes utility energy based

on RTP or DaH pricing schemes as updated by CM. The optimization problem formulation of

PEC of jth prosumer is expressed as:

min
XH

h¼1
PhRTP � ððE

h
EDsÞdem;j � ðE

h
EDsÞgen;jÞ: ð19Þ

min
XH

h¼1
PhDah � ððE

h
EDsÞdem;j � ðE

h
EDsÞgen;jÞ: ð20Þ

s.t.

0 � ðEhEDÞgen;j � ðEED;rÞgen;j; ð21Þ

0 � ðEhEDÞdem;j � ðEED;maxÞdem;j; ð22Þ

0 � ðEEDÞc;j � maxð0; ðE
h
EDsÞdem;j � ðE

h
EDÞgen;jÞ: ð23Þ

PEC of prosumers is in the range of minimum energy cost to maximum energy cost defined
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as:

ðEEDÞc;j ¼

ðEED;minÞc;j; for ððEED;minÞdem;j&ðE
h
ED;maxÞgen;jÞ

ðEED;meanÞc;j; for ððEED;meanÞdem;j&ðE
h
ED;meanÞgen;jÞ

ðEED;maxÞc;j; for ððEED;maxÞdem;j&ðE
h
ED;minÞgen;jÞ

ð24Þ

8
>><

>>:

where, PhRTP and PhDaH represents the RTP and DaH hourly pricing, (EED)c,j represents the actual

energy cost of jth ED while (EED,min)c,j, (EED,mean)c,j and (EED,max)c,j represents the minimum,

mean, and maximum energy cost of jth ED respectively.

4.6 Grid revenue

The smart grid is facilitating the prosumer to increase their energy generation using renewable

energy sources. The prosumer bidirectional energy flow between utility and prosumers is ben-

eficial for all prosumers, utility, and the community. GR is maximized in the proposed

SA-SLA based on RTP and DaH pricing schemes as decided by CM. The robust optimization

problem formulation of the GR along with physical constraints is formulated as:

max
XH

h¼1

ðPhRTP � E
h
u þ ðE

h
EDÞs;j � ðP

h
RTP � P

h
nÞÞ ð25Þ

max
XH

h¼1

ðPhDah � E
h
u þ ðE

h
EDÞs;j � ðP

h
Dah � P

h
nÞÞ ð26Þ

s.t.

0 � ðEhEDÞgen;j � ðEED;rÞgen;j; ð27Þ

0 � ðEhEDÞdem;j � ðEED;maxÞdem;j; ð28Þ

0 � ðEEDÞs;j � maxð0; ðE
h
EDÞgen;j � ðE

h
EDÞdem;jÞ; ð29Þ

0 � Ehu � maxð0; ðE
h
EDÞdem;j � ðE

h
EDÞgen;jÞ: ð30Þ

GR of the smart grid is in the range of minimum GR to maximum GR defined as:

GR ¼

GRmin; for ðEhu;min&P
h
n;maxÞ

GRmean; for ðEhu;mean&P
h
n;meanÞ

GRmax; for ðEhu;max&P
h
n;minÞ

ð31Þ

8
>><

>>:

where Phn represents the nominal price for ED energy export, Ehu is the hourly energy import

from utility while Ehu;min;E
h
u;mean, and Ehu;max denotes the hourly minimum, mean, and maximum

energy import from utility respectively. Phn;max; P
h
n;mean and Phn;min represents the hourly maxi-

mum, mean, and minimum nominal price rate respectively. GR is the actual GR of the smart

grid while GRmin, GRmean and GRmax represents the minimum, mean, and maximum GR of

the smart grid, respectively.
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4.7 PES maximization using the simplex method

The PES of eDs is utilized to meet stochastic utility energy demand. The simplex method is

used to maximize PES with stochastic utility energy satisfaction. Prosumer’s energy generation

is considered daily in which each ED operates 24 hours of the day to meet stochastic energy

demand. Each ED has gaussian i.i.d power generation and surplus Phs;1; P
h
s;2; P

h
s;3 with its capital

and maintenance cost. CED1, CED2, and CED3 are a total associated cost of ED1, ED2, and ED3

and T 1; T 2; T 3 denote the time of operation of ED1, ED2, and ED3 respectively. PES is maxi-

mized while minimizing PEC and this maximized PES is utilized to meet utility energy

demand. The problem formulation is expressed as:

max
XT 1þT 2þT 3

h¼1

T 1P
h
s;1 þ T 2P

h
s;2 þ T 3P

h
s;3 ð32Þ

s.t.

T 1CED1 þ T 2CED2 þ T 3CED3 ¼ CEDt ð33Þ

T 1 þ T 2 þ T 3≼72; ð34Þ

T 1; T 1; T 1≽0: ð35Þ

where CEDt is the total cost associated with all eDs.

4.8 Genetic Algorithm (GA) optimization

GA is an evolutionary algorithm for optimizing both constrained and unconstrained optimiza-

tion problems. GA incorporates functions, namely objective function, fitness function, and

genetic operators, such as mutation operator, crossover operator, and reproduction operator.

The mutation is the flopping of randomly selected bits with a small mutation probability �m

while the crossover is the main genetic operator usually associated with a higher probability

�c. Fitness functions are formulated as objective functions and represented as FS, FC, & FGR
for PES, PEC, and GR respectively. Genetic operators are applied to the old solutions and each

new iteration, based on the old solution results in a new optimal point. The layout of a Genetic

Algorithm for MTM is presented as:

Algorithm 1 Genetic Optimization Algorithm for improved PES, PEC, and GR
1: Initialize with inputs ðEhEDÞgen;j, ðE

h
EDÞdem;j;P

h
RTP, and PhDah; P

h
n.

2: t = 0.
3: Evaluate FS, FC, and FGR using (14–31).
4: If FS, FC, & FGR converges, then,
5: PES = (EED)s,j, PEC = (EED)c,j, and GR = GR.
6: Else
7: t = t+1
8: Calculate next generation individuals ðEhEDÞgen;j, ðE

h
EDÞdem;j; P

h
RTP, and PhDah; P

h
n

using (15), (16), (25), and (26).
9: Repeat steps 3 and 4.
10: End.

4.9 Demand-supply management using the simplex method and ELD

In a smart grid, the energy balance state is maintained by mutual coordination of eDs prosu-

mers and utility through bidirectional energy and information flow. For this purpose, the
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simplex method maximization and the problem of ELD are proposed for eDs that ensure a bal-

ance between utility energy demand and prosumer energy supply.

The simplex method maximizes the PES and selects the best possible combination (ratio) of

the eDs operating time to meet utility energy demand with minimized eDs operating cost. The

ELD calculates the eDs energy surplus with the corresponding eDs total operating cost. The

objective is to determine whether PES is enough to meet utility energy demand with mini-

mized eDs operating cost and extra energy (if available) after meeting the utility energy

demand. The following are algorithms 2 and 3, which are presented for optimal utility energy

demand management. The SCs-based SA-SLA algorithm is presented as:

Algorithm 2 SA-SLA Algorithm to develop SCs based Smart SLAs
1: Initialize with inputs WS; SI; ðEhEDÞdem;j; P

h
RTP;&P

h
Dah;P

h
n.

2: Calculate stochastically ðEhEDÞgen;j using (7–9).
3: Compute (EED)s,j using (14).
4: Select corresponding SC using (1).
5: Run optimization algorithm,
6: Compute optimal PES, PEC, and GR using Algorithm 1.
7: Run Simplex Method,
8: Maximize (PEDs)s to meet PU using (32–35).
9: Run ELD,
10: Find (PEDs)s = PU using Algorithm 2.
11: Develop Smart SLAs based on SC, (EED)s,j, & (EED)c,j.
12: End

Algorithm 3 ELD Algorithm to meet Utility Energy Demand
1: Initialization with inputs (PED)s,j, PU, CEDj, and QEDjj.
2: Stochastic (PEDs)s is calculated using (48).
3: If (PEDs)s�PU, then,
4: Compute CEDj,t in (45),
5: Calculate (PEDs)s,new.
6: If (PEDs)s,new = PU, then,
7: (PEDs)s,diff = (PEDs)s−(PEDs)s,new.
8: Else
9: Repeat step 3.
10: Else
11: Calculate (PEDs)s,new.
12: If (PEDs)s,new = PU, then,
13: (PEDs)s,diff = (PEDs)s,new−(PEDs)s.
14: Else
15: Repeat step 12.
16: End
17: End

ELD is a technique to determine the optimal output power of multiple simultaneously run-

ning generating stations to satisfy stochastic energy demand with minimum cost. Fossil fuel-

based generating stations are considered in ELD with several generating units in each station.

In such types of generating stations, fuel is the major factor that contributes to the operating

cost of generating stations. Fuel consumption varies in direct proportion to the power deliv-

ered by generating stations. Thus, to minimize the overall operating cost of several generating

stations, it is demanding to optimally determine the output power of each generating station

necessary to fulfill stochastic power demand.

For eDs with renewable energy generation facilities, the stochastic natural resources (wind

speed, solar irradiance) are used as fuel. So, renewable-based eDs have only maintenance costs
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associated with them. Their operating (maintenance) cost remains the same irrespective of

whether minimum or full rated power is supplied. Therefore, the output power reduction of

renewable-based eDs may increase the fuel consumption leading to a high cost of generation.

Therefore, there is an emergent need to model ELD for stochastic renewable-based eDs to (a)

optimally determine output power for utility energy demand satisfaction and (b) the extra out-

put power after demand fulfillment that can be utilized for any other purpose, such as storing

in rechargeable batteries or supply to neighboring prosumer. So, eDs will avail extra advantage

of utilizing this stored energy at the time of energy shortage. For a total of n different stochastic

renewable-based eDs, the ED set N is defined as:

N ¼ 1; 2; 3; . . . . . . . . . ; n: ð36Þ

Each ED constitutes a unique stochastic power surplus PEDj. The total stochastic power sur-

plus of eDs at a specified instant will be the sum of their stochastic output power. Total sto-

chastic energy surplus eDs at a specified instant will be the sum of their stochastic output

energies defined as:

ðPEDÞs ¼ ðPEDÞs1 þ ðPEDÞs2 þ ðPEDÞs3 þ � � � þ ðPEDÞsn ¼
Xn

j¼1
ðPEDÞs;j: ð37Þ

ðEEDÞs ¼ ðEEDÞs1 þ ðEEDÞs2 þ ðEEDÞs3 þ � � � þ ðEEDÞsn ¼
Xn

j¼1
ðEEDÞs;j: ð38Þ

where ðEEDÞs1; ðEEDÞs2; ðEEDÞs3; . . . ; ðEEDÞsn are the energy surplus of eDs from 1 to n and

depend on stochastic environmental parameters. The total operating (maintenance) cost of

eDs is defined as:

CEDs ¼ CED1 þ CED2 þ CED3 þ � � � þ CEDn: ð39Þ

CEDs ¼
Xn

j¼1
CEDj: ð40Þ

where CED1;CED2;CED3; . . . . . . ::;CEDn refers to operating costs of eDs from 1 to n correspond-

ing to the power surplus of ðPEDÞs1; ðPEDÞs2; ðPEDÞs3; . . . . . . ::; ðPEDÞsn of nth ED, respectively. The

utility energy demand is sinusoidally distributed over the time horizon to reduce complexity

and is defined as:

PU ¼ A sin
2� pi� horizon

24

� �

: ð41Þ

where A is the mean utility energy demand. In this paper, three renewable-based eDs are con-

sidered for stochastic energy generation. The first two eDs use wind turbines for energy gener-

ation while the energy is produced by PV arrays in the third ED. The power surplus of eDs will

between the minimum and maximum limits are expressed as:

ðPEDÞs1;min≼ðPEDÞs1≼ðPEDÞs1;max; ð42Þ

ðPEDÞs2;min≼ðPEDÞs2≼ðPEDÞs2;max; ð43Þ

ðPEDÞs3;min≼ðPEDÞs3≼ðPEDÞs3;max: ð44Þ

The overall cost function of the eDs is defined as:

CEDj;t ¼ QED;jjðPED
2Þs;j þ CEDjðPEDÞs;j: ð45Þ
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where, QED,jj is the quadratic scaling factor of jth ED. The problem is to find the portion of the

power delivered by each ED that is necessary to meet utility energy demand with minimum

eD operating costs. Optimization problem formulation of ELD for stochastic renewable-based

eDs is formulated as:

min
Xn

j¼1
CEDj;t: ð46Þ

s.t.

ðPEDÞsj;min≼ðPEDÞsj≼ðPEDÞsj;max; ð47Þ

ðPEDsÞs ¼ ðPEDÞs;1 þ ðPEDÞs;2 þ ðPEDÞs;3; ð48Þ

PU � ðPEDÞs ffi 0:0001; ð49Þ

PU≽0; ðPEDÞs≽0: ð50Þ

where, CEDj,t is the total cost of jth ED while (PED)sj,min (PED)sj,min and (PED)sj,max are mini-

mum and maximum PES of jth eD. The Langrangian associated with CEDj,t is defined as:

LðCEDj;t; l; mÞ ¼
Xn

j¼1
CEDj;t þ l þ m : ð51Þ

where L represents Langrangian of total PES of all three eDs, is inequality constraints of

(PED)s used in (47) and (50), λ is the constant of multiplication for inequality constraints, is

the equality constraints of (PED)s and PU used in (48) and (49), while μ is the constant of multi-

plication for equality constraints.

Stochastic environmental parameters (wind speed, solar irradiance) vary the PES of eDs

between their minimum energy generation and maximum energy supply capacities. For PES,

more than utility energy demand, the value of lambda is updated iteratively until the balance is

achieved between PES and utility energy demand except for losses. The PES at this moment is

called balanced PES. For PES, less than utility energy demand, the prosumer’s energy demand

should decrease until the power balanced criterion satisfies defined as:

ðPEDsÞs ¼ PU ð52Þ

5 Performance evaluation

5.1 Data analytics

Hourly data gathered from trustful sources [32] is considered for one year for three eDs

located at Brownsville and Copano Bay Texas US. For day-wise simulations, the hourly avail-

able data is averaged for each day of the year. As the source parameters like wind speed and

solar irradiance are stochastic and random, the considered data is almost aperiodic type. Sea-

sonal data is also considered, such as winter, summer, and spring. Copano Bay has a Longitude

of -97.0 and a Latitude of 28.1. Brownsville has Latitude and Longitude coordinated at 25.9

and -97.5 respectively. We considered WT installation at Copano Bay and solar PV panel

installation at Brownsville due to important reasons like (a) having reasonable wind speed

ranging from 3.7 m/s to 17.5 m/s enabling Copano Bay to produce enough energy generation

and (b) Brownsville has significant solar irradiance to produce massive solar energy.
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5.2 Seasonal variations

Prosumer’s energy consumption patterns and RES parameters show reliance on seasons of the

year [33]. For better understanding, it is imperative to clarify the hitches of different seasons

[34]. In this context, this paper presents the season-wise analysis of output parameters, such as

PES, PEC, and GR. Moreover, a comparative analysis of both optimized and unoptimized

results is provided.

5.2.1 Spring season. The Spring season is observed during March, April, and May at

Brownsville and Copano Bay Texas US. The month of March is selected from the spring season

for analyzing the PEC, GR, and PES. During this season, a minimum number of heating and

cooling devices are used, thus resulting in decreased energy demand with increased PES. The

energy is imported and exported by prosumers under the umbrella of SA-SLA. Fig 3 shows the

unoptimized (RTP) and optimized PEC. Fast convergence of SA-SLA is noticed on 22nd

March while convergence is slow on 28th march. Fig 4 presents the unoptimized and optimized

PES. Fig 4 shows that SA-SLA converges fast on 28th march while the rate of convergence is

Fig 3. Prosumer energy cost of the spring season.

https://doi.org/10.1371/journal.pone.0278324.g003

Fig 4. Prosumer energy surplus of the spring season.

https://doi.org/10.1371/journal.pone.0278324.g004
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slow on 22nd March. The GR of the smart grid is presented in Fig 5 with a fast and slow conver-

gence rate on the 28th and 22nd of March respectively.

5.2.2 Summer season. The summer season starts from ‘June to September at Brownsville

and Copano Bay Texas US. The month of June is selected from the summer season for analyz-

ing the PEC, GR, and PES. In summer, maximum wind speed is observed resulting in the high-

est wind energy production in ED1 and ED2, compared to other seasons. Further, most

summer days are sunny resulting in increased solar energy production in ED3. The hotness of

summer compels prosumers to switch on the cooling devices for their comfort resulting in

peak load, compared to other seasons. So, peak load is recorded in summer apart from maxi-

mum energy production resulting in maximum and minimum PEC and PES respectively. Fig

6 shows that the maximum PEC recorded on 26th June and minimum PEC on 17th June

resulted in fast convergence of SA-SLA on 17th June and slow convergence on 26th June. Simi-

larly, Fig 7 shows the fast convergence of SA-SLA on 3rd June and the slow convergence of

Fig 5. Grid revenue for the spring season.

https://doi.org/10.1371/journal.pone.0278324.g005

Fig 6. Prosumer energy cost of the summer season.

https://doi.org/10.1371/journal.pone.0278324.g006
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SA-SLA on 26th June for PES. The GR generated by SA-SLA is presented in Fig 8. The self-

healing smart grid with the stochastic adaptive rate of convergence and minimum and maxi-

mum GR on 26th and 15th June results in fast and slow convergence respectively.

5.2.3 Winter season. The Winter season starts in October and remains till the end of Feb-

ruary at Brownsville and Copano Bay Texas US. The month of October is selected from the

winter season for analyzing the PEC, GR, and PES. In the winter season, most of the days are

cloudy and windy. So, reasonable wind energy with less solar energy generation (due to

reduced solar irradiance) is possible. In the winter season, prosumer uses more heating

devices, compared to other seasons resulting in peak load. Due to less solar energy production,

the ED3 with PV panels imports more energy from the smart grid resulting in the highest PEC

with slow SA-SLA convergence.

Fig 7. Prosumer energy surplus of the summer season.

https://doi.org/10.1371/journal.pone.0278324.g007

Fig 8. Grid revenue for the summer season.

https://doi.org/10.1371/journal.pone.0278324.g008
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PEC of prosumers is shown in Fig 9 with fast and slow SA-SLA convergence on 31st and

26th October respectively while PES is depicted in Fig 10 with fast and slow SA-SLA conver-

gence on 26th and 31st October respectively. Fig 11 presents the GR of SG generated under

SA-SLA by the virtue of stochastic adaptive SCs between stakeholders. Fast and slow SA-SLA

convergence of GR is noticed on 26th and 31st October respectively.

5.3 Demand-supply optimized management

The proposed SA-SLA using the simplex method and ELD, guarantee a balance between

energy supply and energy demand. The matched energy supply and energy demand increase

the convergence rate of SA-SLA and GR of the smart grid. The simplex method and ELD are

the two prominent techniques employed to concisely manage the energies. Utility energy

demand and PES management using the simplex method and ELD are shown in Figs 12 and

13 respectively. The percentage increase in PES using ELD is 11.76 percent, compared to the

simplex method. The balance between energy demand and energy supply is achieved with the

advantage of extra surplus energy that can be stored or utilized for any other purpose. The

Fig 9. Prosumer energy cost of the winter season.

https://doi.org/10.1371/journal.pone.0278324.g009

Fig 10. Prosumer energy surplus of the winter season.

https://doi.org/10.1371/journal.pone.0278324.g010
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comparison shows that the ELD technique outperforms the simplex method in terms of

demand-supply optimized management.

5.4 Multiple SLAs convergence and divergence

The variations in stochastic wind speed and solar irradiance bring changes in PES and PEC of

prosumers. PEC Susceptible RoC and RoD of SA-SLA are influenced by stochastically chang-

ing PES and PEC. Stochastic SCs are developed between stakeholders and based on these SCs,

multiple SLAs are developed under SA-SLA. Each newly developed SLA comprises unique

RoC and RoD. Convergence provides a sense of problem-solving (region of benefit) while

divergence provides a sense of moving away from problem solution (region of benefit). The

convergence and divergence of each newly developed SLA are based on the area under the

PDF of gaussian i.i.d values of PES and PEC for specific SC. The centered 95% area under the

Fig 11. Grid revenue for the winter season.

https://doi.org/10.1371/journal.pone.0278324.g011

Fig 12. Demand-supply optimized management using the simplex method.

https://doi.org/10.1371/journal.pone.0278324.g012
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PDF curve is considered the RoC of SA-SLA while the remaining 5% outer area is the RoD

SA-SLA.

5.5 Multiple smart SLAs

The formal contract between the customer (eDs) and service provider (smart grid) with a set

of defined service standards is called SLA. PES and PEC are dependent variables of renewable

energy generation (wind and solar). The specific range of PES and PEC is contracted between

stakeholders defining the RoC and RoD of a specific SLA. Fixed SLA associate static PES and

PEC in the contract. The stochastic source parameters result in different PES, PEC, and GR of

Fig 13. Demand-supply optimized management using ELD.

https://doi.org/10.1371/journal.pone.0278324.g013

Fig 14. RoC and RoD of SLA1.

https://doi.org/10.1371/journal.pone.0278324.g014
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a smart grid that may undergo in RoD of fixed SLA and lead toward SLA violation. Thus, there

was an emergent need to develop an SLA that increases stakeholders’ mutual benefits by incor-

porating a stochastic pattern of source parameters (wind speed and solar irradiance).

An SA-SLA is comprised of multiple smart contracts and SLAs are modeled and designed.

Each time source parameters vary their dynamics, SCs-based new SLAs are developed and cre-

ate multiple RoC and RoD of SA-SLA. Each newly developed SLA results in a unique RoC and

RoD. The SA-SLA converges in the RoC region of a specific SLA and increases the mutual ben-

efits of stakeholders, while diverges in the RoD region of a specific SLA, which is not beneficial

to stakeholders. If SLA1 moves towards the divergence region due to unbounded values of PES

and PEC at a specific hour or day, the possibility of convergence (converged values of PES and

PEC) with any other contracted SLA is checked and adopted, having optimum values of PES

and PEC at that specific moment. The convergence and divergence responses to multiple

smart SLAs of SA-SLA are based on the area under the PDF of Gaussian distributed PES and

PEC. For paradigm, three different SLAs developed are shown in Figs 14–16. At any instant of

time with specific PES and PEC, the suitability of multiple smart SLAs is checked and validated

Fig 16. RoC and RoD of SLA3.

https://doi.org/10.1371/journal.pone.0278324.g016

Fig 15. RoC and RoD of SLA2.

https://doi.org/10.1371/journal.pone.0278324.g015
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for increased mutual benefits. SLA1, SLA2, and SLA3 have some common RoC, but there

exists another region where SLA1 diverges while SLA2 shows convergence, as shown in Figs

14 and 15.

Similarly, Figs 15 and 16 depict that for the same region, the SLA2 divergences while SLA3

shows convergences. The proposed SA-SLA shows that the RoD region of SLA1 becomes the RoC

of SLA2 and similarly, the RoD region of SLA2 becomes the RoC of SLA3. The RoC and RoD of

multiple SLAs may completely interchange or overlap and must possess associated PES and PEC.

5.6 Statistical analysis

Box-and-whisker plot (also known as a box plot) plays an important role in describing statisti-

cal characteristics of numeric data and is especially useful when multiple data sets are being

compared. Visual representation of the box plot develops a sense of five important data charac-

teristics, such as lowest observation, highest observation, lower quartile, upper quartile, and

median. Lines outside the box are known as whiskers. Bars at the upper and lower tip of whis-

kers represent the highest and lowest observations while the median is represented by the line

inside a box. Box plot analysis of PEC is provided in Fig 17. The vertical axis denotes prosu-

mers cost (in $/Mwh) while the horizontal axis represents RTP optimized, DaH optimized,

and unoptimized categories of prosumer cost for ED1, ED2, and ED3. Fig 17 depicts that opti-

mized results of PEC are improved for all eDs. Moreover, it is noticeable that DaH optimiza-

tion results of PEC are decreased in comparison with RTP, for all eDs.

Similarly, the box plot analysis of PES for all eDs is provided in Fig 18. The vertical axis of

Fig 18 represents energy surplus (in Mwh) while the horizontal axis is labeled with optimized

and unoptimized categories of prosumer energy surplus for ED1, ED2, and ED3. Fig 18 shows

that optimized results of PES are better for all eDs. Prosumers’ participation in the smart grid,

not only benefits prosumers but also increase the GR of the smart grid. Fig 19 represents a

box plot analysis of GR, similarly to PEC with the only difference that instead of PEC, we con-

sider GR (in $/Mwh) at the vertical axis of Fig 19. Improved results in terms of GR of smart

grid with RTP-based optimization and DaH pricing-based optimization can be noticed in Fig

19. Moreover, Fig 19 also reveals that optimization based on DaH pricing generates more GR

for the smart grid than optimization based on RTP. Therefore, it is concluded that increased

mutual benefits of eDs prosumer and smart grid are associated with DaH pricing.

Fig 17. Box plot of PEC of eDs for comparison between optimized and unoptimized PEC. UNOPT: Un-

Optimized.

https://doi.org/10.1371/journal.pone.0278324.g017

PLOS ONE Stochastic adaptive-service level agreement-based energy management model for smart grid and prosumers

PLOS ONE | https://doi.org/10.1371/journal.pone.0278324 December 13, 2022 23 / 28

https://doi.org/10.1371/journal.pone.0278324.g017
https://doi.org/10.1371/journal.pone.0278324


Fig 19. Box plot of GR of eDs for comparison between optimized and unoptimized GR.

https://doi.org/10.1371/journal.pone.0278324.g019

Table 1. Region of Convergence (RoC) and Region of Divergence (RoD) of PEC, PES, and grid revenue.

eDs Months RoC of PEC RoD of PEC RoC of PES RoD of PES RoC of GR RoD of GR

ED1 Mar 321–118 321<C<118 25–1 25<Es<1 410–25 410<GR<25

June 229–150 229<C<150 57–5 57<Es<5 450–50 450<GR<50

Oct 386–126 386<C<126 29–3 29<Es<3 320–55 320<GR<55

ED2 Mar 225–170 225<C<170 30–6 30<Es<6 570–51 570<GR<51

June 155–120 155<C<120 68–8 68<Es<8 600–90 600<GR<90

Oct 271–156 271<C<156 37–3 37<Es<3 420–71 420<GR<71

ED3 Mar 172–123 172<C<123 35–8 35<Es<8 645–52 645<GR<52

June 110–79 110<C<79 78–9 78<Es<9 674–96 674<GR<96

Oct 207–146 207<C<146 42–3 42<Es<3 491–97 491<GR<97

https://doi.org/10.1371/journal.pone.0278324.t001

Fig 18. Box plot of PES of eDs for comparison between optimized and unoptimized PES.

https://doi.org/10.1371/journal.pone.0278324.g018
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5.7 Tabular analysis

As explained earlier, both RoC and RoD are associated with SA-SLA. It is imperative to

develop strong knowledge about the contractual limits of RoC and RoD as they decide whether

bidirectional energy flow between stakeholders is beneficial or not. PEC, PES, and GR must

remain in the corresponding convergence region for the mutual benefit of stakeholders. RoC

and RoD of PES, GR, and PEC for ED1, ED2, and ED3 are tabulated in Table 1 for one month

of each season (Mar for spring, June for summer, and October for winter) while an SC-based

RoC for multiple smart SLAs of SA-SLA is tabulated in Table 2. From Tables 1 and 2, it is con-

cluded that there are different convergence ranges for different SCs in terms of PEC and PES.

5.8 Critical debate

Output power from WT and solar PV array is the function of the stochastic source parameters

(wind speed and solar irradiance) and is influenced by the stochasticity of source parameters.

In this context, prosumers’ generated energy varies at every instant following the current sta-

tistic of stochastic source parameters. Variations encountered in prosumers generated energy

stochastically change prosumers’ energy import and export and result in randomly distribut-

ing PES and PEC. Prosumer’s energy import and export activities are monitored by CM under

the authority of SLA. Fixed SLA is based on a fixed contract between stakeholders and inflexi-

ble to the stochasticity of source paraments. In real-time scenarios, large variations are

encountered in PES and because of fixed contract-based SLA, most PES occur outside the con-

tractual limits. The purpose of utilizing almost all PES for utility energy management arises a

need to design an SLA that may vary contractual limits for mutual benefits of stakeholders

depending on available PES. A multiple SCs-based SA-SLA is one of the solutions to overcome

the limitations of fixed SLA-based EMMs. SAFs of prosumers generated energy is modeled in

SA-SLA that generate gaussian i.i.d values of prosumers generated energy. Gaussian i.i.d values

of prosumers generated energy stochastically change PES. As PES can vary from minimum

prosumer energy generation to their maximum energy generating capacities, various ranges of

PES are defined in SC. As stochastic source parameters change their values, the new SCs are

developed in terms of PES as defined in (1).

SC1 is responsible to develop SLA1 with high PEC and a small area of convergence as

shown in Fig 14. This is because of the reason that minimum PES is associated with SC1.

SC2 is liable to develop SLA2 with less PEC and a large area of convergence than SLA1 as

shown in Fig 15. The PEC is mostly associated with the bottom portion of the convergence

area revealing that the large PES of SC2 decreases PEC to some extent. Similarly, SC3 is lia-

ble to develop SLA3 with less PEC and a large area of convergence than SLA2 as shown in

Fig 16. As the largest PES is associated with SC3, SLA3 has a wider convergence area. As

moving further toward large PES in SLA1, SLA2, and SLA3, the PEC decreases but the dif-

ference is: that for the same PES, less PEC is associated with SLA2 and SLA3 than with

SLA1 because of their contract.

Figs 14–16 that 95% convergence area under the PDF curve of PES associates more PES as

the move from SLA1 to SLA3 and 95% convergence area under the PDF curve of PEC

Table 2. SCs-based RoC for multiple smart SLAs of SA-SLA.

Parameters SLA1 SLA2 SLA3

PEC ($/Mwh) 218–24 231–23 248–22

PES (Mwh) 9–25.5 9–25.5 9–25.5

https://doi.org/10.1371/journal.pone.0278324.t002
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associates less PES as the move from SLA1 to SLA3. Table 2 shows the improved statistics of

SA-SLA in terms of PES and PEC. The demand-supply optimized management is another

important perspective of SA-SLA. As explained earlier, the stochastic parameters change PES

in a stochastic manner. The variation in PES disturbs the energy balance of prosumers and

utility. In response to stochastic PES, an optimized demand-supply management mechanism

using the simplex method and ELD is developed and validated as clear in Figs 12 and 13.

Moreover, ED1, ED2, and ED3 cumulatively put a great energy share to reduce the peak

energy demand of the smart grid. The purpose of the above discussion is clear that SA-SLA

with multiple SCs promotes prosumer participation in smart grid and increases the mutual

benefits of stakeholders by developing multiple SLAs.

6 Conclusions

The penetration of renewable energy generation-based eDs into smart grids transforms the

behavior of energy importing consumers (utilities) into active energy managing prosumers.

The MTM between eDs and smart grid with multiple SCs increases the gain of both parties

and flourishes the structure of the power system. The overall performance of the system is

influenced by stochastic parameters and the role played by players, actors, and aggregators. In

this paper, the stochastic and adaptive functions of prosumer-generated energy are incorpo-

rated due to the stochasticity of source parameters. Further, the new SLAs technique is pro-

vided to incorporate multiple ranges of PES. The weather’s parametric effects on prosumer

energy consumption are modeled. The performance of the purposed SA-SLA is evaluated via a

season-wise analysis of the year, namely the summer season, spring season, and winter season.

The summer season accompanied by regular wind blowing and clear solar irradiance results in

massive energy generation from RES. The analysis of the result shows a maximum PEC reduc-

tion (31%) in summer, compared to spring (28%) and winter (25%). Similarly, the PES maxi-

mization is recorded at 47% in summer than in spring (40%) and winter (41%). Moreover, the

demand-supply optimized management achieved by ELD meets 11.76% more utility energy

demand than the simplex method. Multiple contractual limits of smart SLAs result in

decreased PEC with increased PES. Thus, multiple SCs-based SA-SLA, by developing multiple

SLAs, increases the mutual benefits of stakeholders in terms of PEC, PES, and GR.
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