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Neural networks have proven to be remarkably successful for a wide range of complicated tasks,
from image recognition and object detection to speech recognition and machine translation. One
of their successes lies in their ability to predict future dynamics given a suitable training data
set. Previous studies have shown how Echo State Networks (ESNs), a subset of Recurrent Neural
Networks, can successfully predict both short-term and long-term dynamics of even chaotic systems.
This study shows that, remarkably, ESNs can successfully predict dynamical behaviour that is
qualitatively different from any behaviour contained in the training set. Evidence is provided for
a fluid dynamics problem where the flow can transition between laminar (ordered) and turbulent
(seemingly disordered) regimes. Despite being trained on the turbulent regime only, ESNs are
found to predict the existence of laminar behaviour. Moreover, the statistics of turbulent-to-laminar
and laminar-to-turbulent transitions are also predicted successfully. The utility of ESNs in acting
as early-warning generators for transition is discussed. These results are expected to be widely
applicable to data-driven modelling of temporal behaviour in a range of physical, climate, biological,
ecological and finance models characterized by the presence of tipping points and sudden transitions
between several competing states.

I. INTRODUCTION

Neural networks are important examples of machine
learning techniques that have exhibited tremendous
promise in the fields of image recognition, computer vi-
sion and speech recognition. Their utility stems from
their ability to predict known behaviour in new situations
but how well they can extend this ability beyond their
training set remains an open question [1]. An important
aspect of this is related to the prediction of previously
unseen temporal behaviour. This becomes particularly
interesting to explore given that neural networks have re-
cently been introduced to assist physical modelling and to
time-dependent partial differential equations [2], where
the aim is to predict future dynamics without having to
solve a computationally expensive set of equations.
Forecasting in dynamical systems is often achieved us-

ing a particular class of neural networks known as Re-
current Neural Networks (RNNs) [3]. These are charac-
terised by the presence of feedback connections within
the network to allow it to “remember” the history of
the dynamical system and to use it to improve the ac-
curacy of predictions. Among the many different RNN
architectures, we focus on Echo State Networks (ESNs)
[4, 5] owing to their relatively low training cost; compared
with most other RNNs, only one part of the network is
trained while the rest is randomly generated and remains
fixed [6]. Echo State Networks distinguished themselves
by making sound short-term (over typically less than 10
natural periods of the system) and long-term predictions
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in various low-dimensional chaotic models [4, 7–9], in
the Kuramoto–Sivashinsky equation (which is a partial
differential equation) [7, 10, 11] and in two-dimensional
Rayleigh–Bénard convection [12, 13]. Trained using a
single time series, ESNs can successfully approximate the
statistical and geometric properties of chaotic attractors
of a dynamical system [7, 14, 15] and make short-term
predictions with the level of accuracy of state-of-the-art
techniques for time-series prediction while significantly
outperforming them in terms of memory and CPU usage
[6, 15].

In this paper, we use ESNs to predict sudden transi-
tions in fluids when a laminar (ordered) flow can undergo
an instability and become turbulent (seemingly disor-
dered) and vice-versa [16]. Systems exhibiting qualita-
tively similar, bistable regimes are ubiquitous in both
natural and engineering applications. Examples include
the transport of liquid and gases through pipelines, biore-
actors in biochemical engineering, wind-turbines, airfoils,
as well as climate [17], ecological [18], Earth’s magnetic
field and geodynamo models [19, 20]. Such transitions are
often associated with a change in energy consumption or
extreme damage which makes their prediction and, cru-
cially, their control important tasks. We demonstrate
that a properly trained ESN is capable of predicting the
statistics of both laminar-to-turbulent and turbulent-to-
laminar transitions even if it has been trained using a
time series containing only turbulent dynamics, i.e., it is
able to infer laminar dynamics despite not having seen
it during training. As an example of a transitional flow,
we consider a paradigm model of plane Couette flow, i.e.,
the viscous flow between two parallel walls moving in op-
posite directions at constant and equal velocities. This
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model is a representative of a wide class of nonlinear dy-
namical systems exhibiting finite-amplitude instabilities
and spontaneous decay of chaotic dynamics. As such, we
expect our conclusions to be transferable to a variety of
systems with similar dynamical features.

II. MODEL

In plane Couette flow, the velocity field at position x

and time t, u(x, t), is generally solved for via the inte-
gration of the Navier–Stokes equation together with the
incompressibility condition, no-slip boundary conditions
in the wall-normal direction and spatial periodicity condi-
tions in the streamwise x and spanwise z directions. This
set of equations can be reduced to the Moehlis–Faisst–
Eckhardt (MFE) model [21] by replacing plane Couette
flow with a sinusoidal shear flow, known as the Waleffe
flow [22, 23], and truncating to nine Fourier-based modes,
uj(x), as listed in Appendix A. The fluid velocity can
reconstructed via:

u(x, t) =

9∑

j=1

aj(t)uj(x), (1)

where the time-dependent amplitudes are a(t) =
[a1(t), . . . , a9(t)]. The nine-dimensional ODE system of
coupled amplitude equations obtained by projecting the
Waleffe flow equations onto these modes reads

d

dt
aj = δ1j

π2

4Re
+ αj(Re)aj +

9∑

k=1

9∑

l=1

βjkl(Re)akal, (2)

where Re is the Reynolds number, δij is the Kronecker
delta acting on indices i and j, and αj(Re) and βjkl(Re)
are Re-dependent coefficients whose full expressions are
given in Appendix A. The Reynolds number is the only
non-dimensional physical parameter in this system. It
is a measure of the ratio between inertial and viscous
forces. To obtain numerical solutions of this model, we
time-integrate Eq. (2) using the 4th-order Runge–Kutta
scheme with time step △tTI = 10−3.
The only known stable solution of (2) is the steady

laminar flow: alam = [1, 0, . . . , 0]T , which is equivalent to

ulam =
√
2 sin(πy/2)ex in physical space; here, ex is the

unit vector in the x-direction. Despite the linear stability
of the laminar flow, we can observe long-lived turbulence
for Re ≳ 150 [21]. Examples of turbulent flows at differ-
ent values of the Reynolds numbers are shown in Fig. 1B
through timeseries of the kinetic energy:

E =
1

2
||u||22 = ΓxΓz

9∑

j=1

a2j , (3)

where Γx = 1.75π (resp. Γz = 1.2) is the imposed solu-
tion wavelength in the x (resp. z) direction. All our sim-
ulations display chaotic dynamics over thousands of time

units but eventually relax to the laminar flow, which is
expected to be the global attractor at least for Re ≲ 335
[24]. This phenomenon, called hereafter turbulent-to-
laminar transition, is a prominent feature of transitional
shear flows [16]. The opposite process of laminar-to-
turbulent transition is equally important both from a the-
oretical and a practical viewpoint. In this study, we show
that statistical features associated with both laminar-
to-turbulent and turbulent-to-laminar transitions can be
successfully predicted by an ESN trained solely on a tran-
sient segment of a turbulent trajectory, i.e., with no ex-
perience of laminarization.

III. METHOD

Echo State Networks (ESNs) belong to a class of artifi-
cial Recurrent Neural Networks (RNNs) that are charac-
terized by the presence of internal feedback connections
in their architectures allowing the network to have its
own “memory” and, thereby, generate time series with a
greater accuracy compared with its non-recurrent com-
panions. Fig. 1A shows a schematic representation of
a typical RNN architecture that takes the flow state
a(t) ∈ R

Na at time t as an input, where Na = 9 for the
Moehlis–Faisst–Eckhardt model, and outputs the predic-
tion of the flow state at time t+△t, ã(t+△t), where we
used △t = 1 throughout this study. It should be noted
that, in our case, the training data and the ESN pre-
diction time steps are significantly larger than the time-
integration time step △t ≫ △tTI = 10−3. In addition to
the input flow state, the RNN uses its own internal state
r(t) ∈ R

Nr , which is also updated. In the context of
ESNs, r(t) is called the reservoir state. The ESN predic-
tion is done in two stages. Firstly, the reservoir state r(t)
and the input flow state a(t) are nonlinearly transformed
to get the reservoir state at time t+△t:

r(t+△t) = tanh [b+Wr(t) +Wina(t)] + ξZ, (4)

where W and Win are fixed Nr×Nr and Nr×Na weight
matrices, b is a fixed Nr-dimensional bias vector, Z is a
random vector uniformly distributed between −0.5 and
0.5 and ξ is a hyperparameter controlling the amplitude
of the additive noise. Secondly, the reservoir state is
mapped back into the flow space via the linear transfor-
mation:

ã(t+△t) = Wout

[
r(t+△t)

1

]
, (5)

where Wout is an Na × (Nr + 1) weight matrix. The
result, ã(t + △t), is called the prediction. The network
is trained so that the prediction approximates the true
flow state a(t+△t) as accurately as possible. Note that
the addition of the unit component in the right-hand-
side vector of equation (5) is intended to create a bias
and improve the performance of the ESN.
The characteristics that distinguishes ESNs from the

vast majority of other RNN architectures are that the
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FIG. 1: (top left) Schematic of an Echo State Network. In order to make a prediction ũ(t+△t), the flow state u(t)
at the previous time step and reservoir state r(t) are passed to the randomly generated reservoir (green box) where

they are nonlinearly transformed to yield the prediction. (right) Training time series for Reynolds numbers
Re = 250, 275, 300, 500 obtained by time-integration of the Moehlis–Faisst–Eckhardt model and shown in the form

of the time-evolution of the flow kinetic energy. Only shadowed parts were used for training. (bottom) Flow
prediction made by the Echo State Network trained at Re = 300 (bright blue curve) and a representative turbulent

trajectory of the Moehlis–Faisst–Eckhardt model computed at the same Reynolds number (light blue curve).

weight matrices W and Win and the bias term b are
initialized randomly and remain fixed, i.e., they are not
trained, and that the weight matrices are often chosen
to be sparse, resulting in a sparsely connected network
(see Appendix B for details). This greatly simplifies the
training process, which becomes equivalent to solving the
linear regression problem:

min
Wout

Nt∑

k=1

||Woutr(k△t)− a(k△t)||22, (6)

where it is assumed that the training dataset is com-
posed of Nt + 1 flow states a(t) known at times t =
0,△t, 2△t, . . . , Nt△t. The flow state at t = 0 is used as
an initial condition only to compute the first prediction
ã(△t). This minimization problem possesses a closed-
form solution given by the normal equation:

W
T
out =

(
R

T
R
)−1

R
T
A, (7)

where matrix R ∈ R
Nt×(Nr+1) is made of vec-

tors r(△t), r(2△t), . . . , r(Nt△t) and an all-ones
vector and A ∈ R

Nt×Na is made of vectors
a(△t),a(2△t), . . . ,a(Nt△t). We wish to empha-
size two modifications which differentiate our ESN

architecture from more standard alternatives found in
the literature. The first is the presence of a random
bias term b in Eq. (4), which significantly improves the
accuracy of predictions in our case. The second is the
additive noise in the same equation which is introduced
to regularize the regression problem and, at the same
time, improve the stability of our ESN [5].

The aforementioned architecture involves several hy-
perparameters: the reservoir state dimension Nr, the
spectral radius ρ(W ) of matrix W , its sparsity s and
the noise amplitude ξ. Though we did not perform an
exhaustive search of optimal hyperparameter values, sev-
eral points need to be highlighted. The success of ESNs
relies on a high-dimensional reservoir space whose dimen-
sion Nr is expected to be much higher than that of the
flow state. Consequently, we chose Nr = 1500. We also
fixed the noise amplitude ξ = 10−3 and the spectral ra-
dius ρ(W ) = 0.5, values that allowed us to minimize the
residual sum of squares (see expression (B3)). Surpris-
ingly, we found a weak dependence of the quality of pre-
diction on s and used s = 0.5 for Re = 250 and s = 0.9
for other Reynolds numbers. See Appendix B for further
details of the hyperparameter search.

To make predictions of the flow state, we simply re-
place a in (4) with ã, which is equivalent to activat-
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ing one more feedback connection (gray dotted line in
Fig. 1A). This makes (4) and (5) a closed system of
recurrent equations which only requires initial condi-
tions ã(0) and r(0). Since the initial reservoir state
r(0) is not known in advance, we must determine it
through a process termed synchronization. We take a
small number of states from the recent flow history,
a(−9△t),a(−8△t), . . . ,a(−△t), and subsequently gen-
erate reservoir states r(−8△t), r(−7△t), . . . , r(0) using
Eq. (4) and a trivial initial condition: r(−9△t) = 0. At
the end of this synchronization process, we obtain the
required initial reservoir state r(0) to predict the flow
dynamics following the procedure described above.

IV. RESULTS

Here, we provide evidence that ESNs are able to pre-
dict laminar dynamics without having observed it before.
We first generate transient turbulent trajectories by time-
integrating random initial conditions using a fourth-order
Runge–Kutta scheme applied to (2) with time step 10−3.
One such trajectory is generated for each of the follow-
ing Reynolds numbers: Re = 250, 275, 300 and 500 (see
Fig. 1B). As these simulations eventually relax to the
laminar flow (E ≈ 20.7), we selected the training set
to comprise only turbulent dynamics, as shown by the
shaded regions in Fig. 1B. For each of these training sets,
we trained one ESN, which we then identify using their
Reynolds number. For ease of reference, we call truth the
results produced by the Moehlis–Faisst–Eckhardt model
and prediction those computed by the ESN.
Each of the trained ESNs is able to generate turbu-

lent trajectories whose statistical properties are similar
to those of the original model. This fact has already
been established in [9], where ESNs were used to predict
statistical properties and extreme events associated with
the dynamics of the Moehlis–Faisst–Eckhardt model. In
this paper, we show that ESNs are able to perform the
more difficult taks of predicting laminarization, i.e., the
decay process of a turbulent trajectory towards a lami-
nar state, despite having been solely trained on turbulent
trajectories. One such prediction is shown in Fig. 1C as
an example. At t ≈ 5000, the predicted flow (dark blue
curve) terminates its low-energy chaotic oscillations to re-
lax to a higher energy behaviour with only weak temporal
variations attributed to the presence of small-amplitude
noise in Eq. (4). This new behaviour is similar to the
true laminar state, located at E ≈ 20.7.
Despite the difference between the true and the pre-

dicted laminar flow, it is particularly noteworthy that
the ESN is able to predict laminarization, a transition to
which it was not exposed during training. We obtained
a similar prediction, but without temporal oscillations, if
we turned off the noise in Eq. (4) while proceeding to the
prediction step. However, we found that the presence of
noise leads to better prediction of the transition statis-
tics, so we kept using noise throughout this study. It is

also important to emphasize that the transition occur-
ring in our prediction at t ≈ 5000 is different from the
“amplitude death” phenomenon, i.e. a sudden collapse
of oscillatory or chaotic dynamics caused by a parame-
ter shift, since our main parameter Re is not changed
dynamically. The amplitude death phenomenon has re-
cently been shown to be well replicated by ESNs [25].
As we shall see in the next sections, ESNs are capa-

ble of more surprising predictions. First, we demonstrate
their ability to learn turbulent-to-laminar transition by
showing that ESNs can successfully recover the distribu-
tion of lifetimes of turbulent trajectories [26]. Addition-
ally, we provide evidence of their ability to make short-
term probabilistic predictions of transitional events. This
paves the way for their use as generators of early-warning
signals of critical transitions [27]. Finally, we examine the
opposite kind of transition, laminar-to-turbulent transi-
tion, and show that ESNs can be used to approximate the
transition probability, one of the key statistics associated
with this type of instability [28].

A. Turbulent-to-laminar transition

Turbulent-to-laminar transitions are often character-
ized using statistical tools similar to the survival func-
tion S(t) = P (T ≥ t), which represents the probability
that turbulent behaviour remains observed for a dura-
tion t or, equivalently, that the time T at which the lam-
inarization event eventually takes place is larger than t
[16, 21, 26]. Within the context of the Moehlis–Faisst–
Eckhardt model, for Re ≲ 300, this distribution takes
the form [21]:

S(t;Re) = exp

[
t− t0
τ(Re)

]
, (8)

where t0 is the time taken for the initial condition to
approach the turbulent saddle and 1/τ(Re) is the Re-
dependent escape rate. To build the lifetime distribu-
tion for the original MFE model at a fixed value of the
Reynolds number, we time-integrate 200 random initial
conditions generated by drawing initial amplitudes aj(0)
from the uniform distribution with support [−1; 1] such
that the kinetic energy of any initial condition is equal
to E = 0.3ΓxΓz, as described in [21]. The lifetime T is
measured for each of these initial conditions in the fol-
lowing way: we assume that a laminarization event has
taken place and, thus, record T if the total kinetic energy
of the flow E > 15 from time T − 1000 to time T .
This procedure is used for Re = 200, 250, 275, 300, 350

and the resulting survival functions are shown in Fig. 2
(light colours). For Re = 350 and beyond, the lifetime
distribution does not follow law (8), as was already ob-
served in [21], so we did not investigate such values of
the Reynolds number. To provide matching ESN predic-
tions, we used the same initial conditions, augmented by
the first 9 time-steps of the associated time-integration
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that we use for synchronization. The resulting predic-
tions are shown by the dark color curves in Fig. 2. We
did not obtain results for Re = 200 owing to the fact
that laminarization occurs too soon to generate a suffi-
ciently long laminarization-free time-series for training.
To demonstrate the level of sensitivity of our results to
randomness inherent to the ESN generation process, we
additionally computed an empirical distribution of sur-
vival functions at Re = 275 by sampling 100 ESNs and
building a survival function for each of them. The median
and 80% confidence band of the empirical distribution are
shown in Fig. 2 with green squares and green shadowed
area respectively.
The ESN predictions are excellent: they preserve the

main qualitative feature of the true distributions, their
exponential structure, implying that the memoryless na-
ture of the laminarization process has been adequately
learned. Furthermore, the escape rate of these survival
laws, 1/τ(Re), is also well-predicted as one can observe in
table I. This is a surprising result given that our ESNs
had not seen any laminarization event during training.
Moreover, the ESN predictions are fairly robust to ran-
dom choices of reservoirs which can be concluded from
the small spread of the empirical distribution at Re = 275
and the median overlapping the true survival function.
A relatively large spread of the empirical distribution for
S(t) ≲ 4×10−1 does not change this conclusion since it is
mainly explained by the increasing statistical uncertainty
inevitably taking place when estimating the distribution
tail with modest-size samples.
Interestingly, ESNs have recently been shown to suc-

cessfully replicate a similar type of distributions which
statistically describe random transitions between lam-
inar and chaotic states in the Navier–Stokes equation
[29]. However, in contrast to our work, time series used
for training there contained a relatively small number of
transitions.

B. Early warning of turbulent-to-laminar transition

Lifetime distributions, such as those considered above,
are used to predict statistics about the long-term be-
haviour of the system. In many cases, however, it is a
short-term prediction that is of interest, like that of criti-
cal transitions in, for example, climate [30, 31], geophysi-

TABLE I: Maximum Likelihood Estimates of
parameters t0 and τ(Re) of the exponential distribution
(8) approximating lifetime distributions computed both

for the Moehlis–Faisst–Eckhardt model and ESNs.

Re
t0 τ(Re)

Relative error in τ(Re)
Truth Prediction Truth Prediction

250 845 1207 835 734 0.121
275 956 1222 1202 1249 0.169
300 1086 1248 2161 2089 0.033

0 2500 5000 7500 10000 12500 15000

t

10−2

10−1

100

S
(t
)

Re = 200

Re = 250

Re = 275

Re = 300

Re = 350

FIG. 2: Lifetime distributions for Reynolds numbers
from Re = 200 to Re = 350 shown in the form of
survival functions. Bright (resp. light) colours

correspond to the distributions generated by Echo State
Networks (resp. Moehlis–Faisst–Eckhardt model). At
Re = 275, the ESN result was constructed based on a
distribution of survival functions computed for 100
ESNs: the squares and the dashed curve denote the

median values while the shadowed area denotes the 80%
confidence band.

cal [32], ecological [33] and many other complex nonlinear
systems [27, 34].

In the transitional flow problem considered here, we
may want to determine whether a given turbulent flow
will laminarize within a relatively short time window,
e.g. T = 2000. In the case of a deterministic system,
such as the Moehlis–Faisst–Eckhardt model, it is suffi-
cient to time-integrate a given initial condition to learn
whether the laminarization event occurs. Our ESN, in
contrast, is a stochastic model by design owing to the
presence of the noise term in (4) and, thus, does not need
any alteration or the creation of any additional pertur-
bation to assess the probability of turbulent-to-laminar
transition within a given time window. To compute this
probability, we perform ensemble predictions, where each
prediction within the ensemble starts from the same ini-
tial condition but, due to the noise, evolves differently
from other predictions. The probability of turbulent-to-
laminar transition is then computed as the fraction of
these predictions leading to laminarization.

We start by exploring the average level of “leakiness” of
the turbulent saddle generated by the ESN at Re = 500,
i.e., the average probability that a typical turbulent flow
suddenly laminarizes given a short sequence of its previ-
ous states. This value will act as a reference for future
predictions. To make such a measurement using the ESN,
we pick N = 100 random states a(tj), j = 1, . . . , N , from
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FIG. 3: Prediction of turbulent-to-laminar transition at
Re = 500 based on the calculation of the probability of

turbulent-to-laminar transition PT→L which is
estimated using an ensemble approach for four initial
states (red dots) at times tj = 13840 + 100(j − 1),

where j = 1, . . . , 5. Every 10th ensemble member of the
prediction generated by the Echo State Network is
plotted in bright blue. The true flow trajectory

obtained by time-integration of the
Moehlis–Faisst–Eckhardt model is plotted in light blue.

a time-series, which was not previously used. We make
ensemble predictions for each of these random states after
synchronizing the ESN using the previous 9 time-steps
a(tj − 9△t),a(tj − 8△t), . . . ,a(tj). For each ensemble
member, we predict the next 2000 time units using the
ESN. Each of the predictions is then classified as either
exhibiting turbulent-to-laminar transition or not. The
probability of turbulent-to-laminar transition, denoted
as PT→L(tj), is then estimated as a fraction of laminariz-
ing trajectories. The average probability of turbulent-to-
laminar transition, which we will refer to as the reference
probability Pref, is obtained by averaging PT→L(tj) with
respect to tj : Pref ≈ 0.11. We can then generate an early
warning of turbulent-to-laminar transition whenever the
probability PT→L(t) takes significantly larger values than
Pref.

We demonstrate that ESNs are able to act as gener-
ators of early warning signals by making probabilistic
predictions of the Re = 500 transition shown in Fig. 1B,
starting approximately at t ≈ 14000. To that aim, we

use the part of the time-series preceding the transition
but not included in the training set (small non-shadowed
part in the Figure). We expect that the probabilities
of turbulent-to-laminar transition PT→L(t) estimated by
the ESN become higher as t approaches the transition
point. To verify this, we pick four initial states at times
tj = 13840+100(j−1), where j = 1, . . . , 5, and compute
the corresponding probabilities of turbulent-to-laminar
transition PT→L(tj) using the ESN trained at Re = 500
and N = 100 ensemble members for each initial state. As
required by the synchronization procedure, we also use 9
flow states prior to each given initial state. The proba-
bility of turbulent-to-laminar transition is then computed
using exactly the same ensemble-based algorithm as we
used to compute the reference probability Pref. The re-
sulting probabilities together with a small selection of
predictions generated by ensemble members are shown
in Fig. 3. These results are in line with our expectations.
The initial probability prediction is 0.05 at t0 = 13840
(top panel in Fig. 3), a value comparable to the reference
value Pref ≈ 0.11 and thereby implying a low likelihood
of transition to the laminar state. At slightly later initial
time t1 = 13940, the probability of turbulent-to-laminar
transition jumps up to a significantly larger value, 0.31,
which can already be considered as an early warning. The
predicted probability keeps increasing as we get closer to
the actual transition, thereby confirming that this mea-
sure can indeed act as an early warning.

C. Laminar-to-turbulent transition

The transition from turbulence to laminar flow does
not follow similar dynamical processes to its reciprocal
laminar-to-turbulent transition. While the former is a
sudden escape from a turbulent saddle (i.e., not an at-
tractor), transition to turbulence is a finite-amplitude
instability: the laminar flow is linearly stable, so a suf-
ficiently large perturbation is necessary to trigger tran-
sition to turbulence. In this section, we also show that
ESNs can be used to predict this transition.
To characterize the transition from laminar flow to tur-

bulence statistically, it is convenient to introduce the lam-
inarization probability Plam(E), which is the probability
that a random perturbation to the laminar flow decays
as a function of its kinetic energy E [28]. The laminar-
ization probability is related to the relative volume of the
basin of attraction of the laminar flow and, therefore, to
the notion of basin stability [18].

We compute the laminarization probability for 20 dif-
ferent values of the kinetic energy of perturbations evenly
spaced in the logarithmic scale: E1 = 10−4, . . . , E20 = 1.
For each energy level Ej , we generate 50 random per-
turbations by drawing ak(0), k = 1, . . . , 9, from the uni-
form distribution with support [−1; 1] and scale them
such that the kinetic energy of perturbations is equal to
Ej . We then time-integrate the Moehlis–Faisst–Eckhardt
model starting from each of the generated perturbations
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FIG. 4: Laminarization probability as a function of the
kinetic energy of random perturbations plotted for the
Moehlis–Faisst–Eckhardt model (light blue curve) and
the ensemble of 100 Echo State Networks (bright blue
curve denotes the median, light blue shadowed area

denotes the interdecile range) at Re = 500.

for 300 time units and record transition to turbulence if
E reaches values lower than 10 within this time window.
The laminarization probability Plam(Ej) is then approx-
imated as the fraction of random perturbations which do
not lead to transition to turbulence. We used the same
procedure to estimate the laminarization probability us-
ing the ESN trained on the turbulent state, except that
each perturbation is time-advanced for 10 time-steps us-
ing the Moehlis–Faisst–Eckhardt model to provide suffi-
cient data for synchronization. To provide a statistical
confirmation of the ESN ability to learn the laminariza-
tion probability, statistically, we estimated Plam(Ej) for
100 randomly generated ESNs thereby generating an em-
pirical distribution of laminarization probability curves.

The resulting dependence of Plam(E) on the perturba-
tion kinetic energy E for Re = 500 is shown in Fig. 4
for both the truth and prediction. The laminarization
probability of the original model is almost monotonically
decreasing with E. It tends to 1 for small perturbation
energies (the laminar flow is linearly stable) and we found
that Plam(E) = 0 for E ≳ 2 × 10−2, indicating that all
the perturbations beyond this energy trigger transition to
turbulence. The ESN prediction exhibits the same trend
and compares qualitatively well with the truth, show-
ing that ESNs are also capable of learning the statistical
boundaries of the basin of attraction of the laminar flow.
It is, in fact, remarkable that the ESN can successfully
estimate the threshold for laminar-to-turbulent transi-
tion despite having only been trained on fully turbulent

timeseries. Despite these qualitatively striking predic-
tions, the ESN does somewhat overestimate the lami-

narization probability for intermediate perturbation en-
ergies, thereby overestimating the nonlinear stability of
the laminar flow. This is likely related to the fact that
the ESN generates the laminar state in the presence of
O(10−3) noise making it more stable to perturbations of
very small amplitudes. As a result, we observe a sys-
tematically increased laminarization probability in the
interval 5× 10−3 ≲ E ≲ 10−2 in Fig. 4.

V. DISCUSSION

In this work, we have shown that Echo State Net-
works, a class of Recurrent Neural Networks, are able to
capture dynamical behaviour qualitatively different from
anything included in their training dataset. We demon-
strated this on the Moehlis–Faisst–Eckhardt model, a
classical example of fluid dynamics where the flow can
display two distinct types of behaviour, laminar flow and
turbulence. In this problem, the transition from laminar
flow to turbulence is a finite-amplitude instability, while
the reverse transition is a spontaneous escape from a
chaotic saddle. We computed predictions of these transi-
tions using Echo State Networks trained solely on turbu-
lent dynamics and compared them to the “truth”, which
we determined by directly time-integrating the Moehlis–
Faisst–Eckhardt model.
Remarkably, our Echo State Networks were able to

learn laminar dynamics despite not having seen it dur-
ing training. In addition, they were capable of success-
fully reproducing the statistical properties of both types
of transition. Finally, we demonstrated that Echo State
Networks can successfully act as generators of early warn-
ing signals of transition by tracking the predicted prob-
ability of turbulent-to-laminar transition in time. In our
study, each Echo State Network was trained at a spe-
cific value of Re separately from other Echo State Net-
works. However, we believe that transfer learning already
adapted for Echo State Networks [35] can be used to train
only one Echo State Network using a long training time
series and then adjust it to a new value of Re based on a
small-size time series. Similarly, transfer learning could
help improve the prediction accuracy by adding a small
sample of laminar dynamics to the training set.
This success may be related to the Echo State Net-

work Approximation Theorem recently proved for a one-
dimensional observable of the true dynamical system and
in the absence of noise [36]. It states that, under some
mild conditions, for a sufficiently large reservoir and
structurally stable true dynamical system, there exists
such a matrixWout that the dynamical system defined by
the resulting Echo State Network is topologically conju-
gate to the true dynamical system. A crucial consequence
of this theorem is that an Echo State Network is also ex-
pected to embed attractors of the true system. However,
this theorem does not provide us with particular rules for
building the matrices W , Win and Wout guaranteeing
that a given attractor will be embedded into the mani-
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FIG. 5: Predictions made by Echo State Networks
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were obtained using random initial conditions.

fold generated by an Echo State Network. We found that
the training time series plays a crucial role in this pro-
cess. In particular, Echo State Networks failed to learn
the precise laminar dynamics and, as a consequence, were
not able to produce any transitions, when the training
time series did not include at least one large-amplitude
excursion pulling the flow relatively close to the laminar
state. This fact is illustrated in Fig. 5, where we show
predictions made by Echo State Networks trained on four
time series. The first one (top plots) does not cover the
large excursion at t ≈ 3500 whatsoever and results in an
Echo State Network that is unable to predict laminar dy-
namics and turbulent-to-laminar transition. The second
one covers only a small piece of this excursion which is
enough for the Echo State Network to reproduce laminar
dynamics, but not its stability. Finally, the third and
fourth time series cover a sufficient part of the excur-
sion in order for Echo State Networks to generate stable
laminar flows. To predict new dynamics, Echo State Net-
works therefore require training time series that include
some indication that the turbulent dynamics may not be
ubiquitously stable.

Our results provide strong evidence that Echo State
Networks can be used for data-driven discovery of new
dynamical regimes, early warning of transitions between
different dynamical modes and prediction of reversals
from transitions. While these results were obtained for a
low-dimensional turbulent model, they could be extended
to higher dimensional systems given that Echo State Net-
works have already been shown to successfully replicate
the Kuramoto–Sivashinsky equation and 2D turbulence
[7, 10–13] where Echo State Networks can be comple-

mented by autoencoders for the sake of dimensionality
reduction [37]. We believe that our findings have a po-
tential to be useful in a range of applications involving
complex nonlinear systems characterized by abrupt tran-
sitions between dynamical regimes [27, 30–34].
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Appendix A: Moehlis–Faisst–Eckhardt model

The Moehlis–Faisst–Eckhardt model is an extension of
Waleffe’s eight-dimensional model which is believed to
capture many features of shear flow turbulence including
transient chaos [21]. In this model, a computational do-
main Ω = [0; Γx]× [−1; 1]× [0; Γz], periodic in the x- and
z-directions, is assumed. The velocity field is represented
by the following decomposition:

u(x, t) =

9∑

j=1

aj(t)uj(x), (A1)

where the modes uj(x) are defined as follows

u1 =



√
2 sin(πy/2)

0
0


 ,

u2 =




4√
3
cos2(πy/2) cos(γz)

0
0


 ,

u3 =
2√

4γ2 + π2




0
2γ cos(πy/2) cos(γz)
π sin(πy/2) sin(γz)


 ,

u4 =




0
0

4√
3
cos(αx) cos2(πy/2)


 ,
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u5 =




0
0

2 sin(αx) sin(πy/2)


 ,

u6 =
4
√
2√

3(α2 + γ2)



−γ cos(αx) cos2(πy/2) sin(γz)

0
α sin(αx) cos2(πy/2) cos(γz)


 ,

u7 =
2
√
2√

α2 + γ2



γ sin(αx) sin(πy/2) sin(γz)

0
α cos(αx) sin(πy/2) cos(γz)


 ,

u8 = N8




πα sin(αx) sin(πy/2) sin(γz)
2(α2 + γ2) cos(αx) cos(πy/2) sin(γz)

−πγ cos(αx) sin(πy/2) cos(γz)


 ,

u9 =



√
2 sin(3πy/2)

0
0


 .

The model itself is defined by a system of nine ordinary
differential equations:

da1
dt

=
β2

Re
− β2

Re
a1 −

√
3

2

βγ

kαβγ
a6a8 +

√
3

2

βγ

kβγ
a2a3,

da2
dt

= −
(
4β2

3
+ γ2

)
a2
Re

+
5
√
2

3
√
3

γ2

kαγ
a4a6 −

γ2

√
6kαγ

a5a7 −
αβγ√

6kαγkαβγ
a5a8 −

√
3

2

βγ

kβγ
a1a3 −

√
3

2

βγ

kβγ
a3a9,

da3
dt

= −β2 + γ2

Re
a3 +

2√
6

αβγ

kαγkβγ
(a4a7 + a5a6) +

β2(3α2 + γ2)− 3γ2(α2 + γ2)√
6kαγkβγkαβγ

a4a8,

da4
dt

= −3α2 + 4β2

3Re
a4 −

α√
6
a1a5 −

10

3
√
6

α2

kαγ
a2a6 −

√
3

2

αβγ

kαγkβγ
a3a7 −

√
3

2

α2β2

kαγkβγkαβγ
a3a8 −

α√
6
a5a9,

da5
dt

= −α2 + β2

Re
a5 +

α√
6
a1a4 +

α2

√
6kαγ

a2a7 −
αβγ√

6kαγkαβγ
a2a8 +

α√
6
a4a9 +

2√
6

αβγ

kαγkβγ
a3a6,

da6
dt

= −3α2 + 4β2 + 3γ2

3Re
a6 +

α√
6
a1a7 +

√
3

2

βγ

kαβγ
a1a8 +

10

3
√
6

α2 − γ2

kαγ
a2a4 − 2

√
2

3

αβγ

kαγkβγ
a3a5 +

α√
6
a7a9 +

√
3

2

βγ

kαβγ
a8a9,

da7
dt

= −α2 + β2 + γ2

Re
a7 −

α√
6
(a1a6 + a6a9) +

1√
6

γ2 − α2

kαγ
a2a5 +

1√
6

αβγ

kαγkβγ
a3a4,

da8
dt

= −α2 + β2 + γ2

Re
a8 +

2√
6

αβγ

kαγkαβγ
a2a5 +

γ2(3α2 − β2 + 3γ2)√
6kαγkβγkαβγ

a3a4,

da9
dt

= −9β2

Re
a9 +

√
3

2

βγ

kβγ
a2a3 −

√
3

2

βγ

kαβγ
a6a8,

where Re is the Reynolds number and the remaining co-
efficients are defined as follows:

α = 2π/Γx, β = π/2, γ = 2π/Γz,

N8 =
2
√
2√

(α2 + γ2)(4α2 + 4γ2 + π2)
,

kαγ =
√
α2 + γ2, kβγ =

√
β2 + γ2,

kαβγ =
√
α2 + β2 + γ2.

In this study, we consider fixed wavelengths values Γx =
1.75π and Γz = 1.2π corresponding to the minimal flow
unit in plane Couette flow allowing for sustained turbu-
lence [38].
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Appendix B: Echo State Network generation and

training

The Echo State Network (ESN) architecture we use
in this work can be fully described by a two-equation
system:

r(t+△t) = tanh [b+Wr(t) +Wina(t)] + ξZ, (B1)

ã(t+△t) = Wout

[
r(t+△t)

1

]
, (B2)

where ã(t+△t) ∈ R
Na is the prediction of the flow state

at time t + △t based on its state a(t) ∈ R
Na at time t

and the reservoir state r(t) ∈ R
Nr . The key feature of

ESNs making them different from many other examples
of Recurrent Neural Networks is that the matrices W ,
Win and vector b are generated randomly. Moreover, the
weight matrices are often assumed to be sparse which is
akin to using pruning, a technique successfully employed
in neural networks [39]. This allows us to avoid compli-
cated and computationally demanding backpropagation-
based algorithms for training and formulate training as a
linear-regression problem while keeping a high accuracy
of the final prediction.

Matrix W ∈ R
Nr×Nr is generated in three steps.

First, we generate a random matrix W̃ by drawing all
its coefficients from uniform distribution with support
(−0.5; 0.5). Second, we impose required sparsity s by
setting to zero sN2

r randomly chosen matrix elements.

Finally, we rescale matrix W̃ to ensure that the resulting
matrix W has a prescribed spectral radius ρ = ρ(W ):

W = W̃
ρ

ρ(W̃ )
.

Matrix Win ∈ R
Nr×Nu and vector b ∈ R

Nr are gener-
ated by drawing their elements from uniform distribution
with support (−1; 1) without imposing any constraints on
sparsity.

The least-squares optimization problem is then formu-
lated to minimize the sum of squares of deviations of
one-step predictions with respect to matrix Wout:

min
Wout

Nt∑

k=1

||Woutr(k△t)− a(k△t)||22, (B3)

where we assume that Nt + 1 flow states a(t) are known
at times t = 0,△t, 2△t, . . . , Nt△t and, thus, constitute
our training dataset. The flow state at t = 0 is only
needed to compute the first prediction ã(△t). Instead
of directly solving the normal equation, we find the solu-
tion by taking the Moore–Penrose pseudoinverse R+ of
matrix R:

W
T
out = R

+
A, (B4)

where matrices R and A are defined as follows:

R =




r(△t) 1
r(2△t) 1

... 1
r(Nt△t) 1


 , (B5)

A =




a(△t)
a(2△t)

...
a(Nt△t)


 . (B6)

The pseudoinverse is computed using the singular value
decomposition (SVD) of R. We pursue this approach in
our work owing to the relative low dimensionality of our
problem. It must be emphasized however that for large-
scale problems, one may want to turn to semi-direct or
purely iterative methods for solving the normal equation.
For each Re, we train a separate ESN. For training

purposes, we use a single turbulent trajectory without
laminarization events. Our networks have four hyperpa-
rameters: reservoir state dimension Nr, spectral radius ρ,
sparsity s and noise strength ξ. To find an optimal com-
bination of hyperparameter values, we use another turbu-
lent trajectory simulated at the same Reynolds number
and divide it into a set of blocks of equal length t = 300
(see Fig. 6 for an example). Then short-term predic-
tions are made by an ESN within each block to estimate
its performance as a residual sum of squares. Optimal
configuration is then found by train 10 ESNs per combi-
nation of hyperparameter values, ranking them accord-
ing to their performance and selecting the best one. To
reduce the dimensionality of the hyperparameter space,
we fix Nr = 1500 and ξ = 10−3. As a result, values
ρ = 0.5 and s = 0.9 have been found to be optimal for
all the Reynolds numbers except for Re = 250 for which
s = 0.5 has been used. The number of blocks used for
the hyperparameter search depends on available turbu-
lent trajectories and is typically equal to 10.
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