
This is a repository copy of Multimodal learning for predicting mortality in patients with 
pulmonary arterial hypertension.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/195233/

Version: Accepted Version

Proceedings Paper:
Suvon, M.N.I., Tripathi, P.C., Alabed, S. et al. (2 more authors) (2023) Multimodal learning 
for predicting mortality in patients with pulmonary arterial hypertension. In: 2022 IEEE 
International Conference on Bioinformatics and Biomedicine (BIBM). 2022 IEEE 
International Conference on Bioinformatics and Biomedicine (BIBM), 06-08 Dec 2022, Las 
Vegas, NV, USA. Institute of Electrical and Electronics Engineers (IEEE) , pp. 2704-2710. 
ISBN 9781665468206 

https://doi.org/10.1109/bibm55620.2022.9995597

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Multimodal Learning for Predicting Mortality in
Patients with Pulmonary Arterial Hypertension

Mohammod N. I. Suvon1, Prasun C. Tripathi1, Samer Alabed2,3,4, Andrew J. Swift2,3,4, Haiping Lu1,3,∗
1Department of Computer Science, 2Department of Infection, Immunity and Cardiovascular Disease,
3INSIGNEO, Institute for in silico medicine, The University of Sheffield, Sheffield, United Kingdom,

4Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, United Kingdom
{mnisuvon1, p.c.tripathi, s.alabed, a.j.swift, ∗h.lu}@sheffield.ac.uk

∗Corresponding author.

Abstract—Pulmonary Arterial Hypertension (PAH) is a life-
threatening disorder. The prediction of mortality in PAH patients
can play a crucial role in the clinical management of this disease.
The prediction of mortality from one modality is a difficult task
that may only provide limited performance. Therefore, we pro-
pose a multimodal learning approach in this work to predict one-
year mortality in PAH patients. We have utilised three modalities,
which include extracted numerical imaging features, echo report
categorical features, and echo report text features from Electronic
Health Records (EHRs) of patients. We have proposed a feature
integration module to combine features from multiple modalities.
The text features have been extracted from the echo reports using
the Bidirectional Encoder Representations from Transformers
(BERT). An attention mechanism and a weighted summation
method are also adopted during the process of feature integra-
tion. We have performed different experiments to evaluate the
performance of the proposed framework for mortality prediction.
The experimental results indicate that we can achieve the best
AUC score of 0.89 for predicting one-year mortality by combining
all three modalities. The source code of this paper is available at
https://github.com/Mdnaimulislam/MultimodalTab.

Index Terms—Data integration, Mortality prediction, Multi-
modal learning, Pulmonary Arterial Hypertension

I. INTRODUCTION

Pulmonary Arterial Hypertension (PAH) is a disease that

shortens life and eventually results in right heart failure and

death if left untreated [1]. PAH is frequently diagnosed at

the advanced stage because it does not show early symptoms.

Technological advancements have improved healthcare over

the years. However, PAH is still considered as one of the

deadliest diseases [2]–[4]. Therefore, the effective clinical

management of PAH patients is crucial during the treatment.

Mortality prediction can help physicians to find out high-risk

patients in a large cohort. Prognostic risk variables are often

analysed to determine the likelihood of complications in a

large population of patients.

In the literature, several studies [5]–[16] have been reported

for diagnosis and prognosis of PAH patients. Alonzo et al. [5]

have developed a method for survival prediction from hemo-

dynamic data. Benza et al. [6], [7] have developed the Registry

to Evaluate Early and Long-Term PAH Disease Management

(REVEAL) risk calculator. This risk calculator utilizes 12
clinically relevant features to predict one-year mortality for

PAH patients. Furthermore, the REVEAL score has been

enhanced and named REVEAL 2.0 [17] by adding one more

variable and tweaking another to improve risk prediction.
The morphological features of Cardiac Magnetic Reso-

nance Imaging (CMRI) have been utilized to predict mortality

in [10]. In this work, the authors monitored pulmonary artery

stiffness to find out the changes in the area and shape for es-

timating mortality. Sachdev et al. [11] utilized various clinical

features to identify the risk of heart failure in PAH patients.

Furthermore, electrocardiogram-based features have also been

used for the diagnosis and mortality prediction in [12]. A

machine learning-based pipeline has been developed in [13]

to diagnose PAH patients using tensor-based features learned

from CMRI scans. Uthoff et al. [14] predicted the mortality of

PAH patients based on geodesically smoothed tensor features.

Recently, Alabed et al. [15] utilized tensor-based features to

perform one-year mortality prediction for PAH patients. A

deep learning-based framework has been developed in [16]

for the prognosis of PAH patients using electrocardiogram

features. These existing works for mortality prediction utilize

a specific modality of data such as electrocardiograph features,

clinical features, imaging features, etc. This limits the perfor-

mance of mortality prediction.
In the past few years, multimodal learning has been ap-

plied in different application domains to enhance prediction

performance. These studies [18]–[20] combine different types

of modalities, such as electrocardiography, text, and image

to improve the performance. Motivated by the success of

multimodal learning, we propose a multimodal learning-based

method for mortality prediction in PAH patients, as illustrated

in Fig. 1. The three main contributions of this work are

summarised as follows:

1) Firstly, we propose a novel method for predicting mor-

tality in PAH patients utilising multimodal learning to

achieve improved performance. Specifically, we com-

bine the features from three modalities using different

feature integration mechanisms and compare them. Bidi-

rectional Encoder Representations from Transformers

(BERT) are also used for the feature extraction from

the echo report text data.

2) Secondly, we perform various experiments to assess the

performance of the proposed method on real data from
978-1-6654-6819-0/22/$31.00 ©2022 IEEE
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Fig. 1: The proposed multimodal learning framework for the

prediction of mortality in PAH patients. Three modalities are

integrated in multimodal feature integration.

2, 563 PAH patients (which includes 233 cases in the

positive class and 2, 330 cases in the negative class).

3) Lastly, we also compare the results with respect to the

REVEAL score to determine the clinical effectiveness

of the proposed work.

The rest of the paper is structured as follows. Section II

explains the materials and the proposed method of our study. In

Section III, the performance of our proposed method has been

demonstrated. Finally, concluding observations are described

in Section IV.

II. MATERIALS AND METHODS

In this section, we firstly describe the data acquisition pro-

cess and then provide the detailed description of the proposed

method.

A. Data Acquisition

a) Study Population: The ASPIRE registry [21] was used

to locate all consecutive PAH patients who had not received

any treatment and had been referred for a baseline CMRI

between 2008 and 2019. Eligibility requirements include: (i)

a baseline CMRI test completed within 14 days of the RHC-

confirmed diagnosis of PAH and before the start of PAH

medication. (ii) Death within 12 months of the CMRI test or

a minimum 12-month follow-up. A sum of 2, 567 successive

incident patients with PAH was recognised, and 233 patients

died. The number of the negative class samples (patients who

did not die) was 2, 330, and the number of the positive class

samples (patients who died) was 233.

For this retrospective research, written consent was waived,

and ethical approval was received from the local ethics council

(ref c06/Q2308/8).

b) CMR Imaging Protocol: A 1.5 Tesla GE HDx (GE

Healthcare, Milwaukee, USA) system consisting of an eight-

channel cardiac coil was used to carry out cardiac magnetic

resonance. A cardiac-gated multislice balanced steady-state

free precession sequence was used to obtain short-axis (SA)

and four-chamber (4Ch) cine images. With both ventricles

completely covered from base to apex, a stack of radiographs

in the SA region was taken. The cavity zone at the end-systole

was believed to be the smallest. End-diastole was recognized

as the biggest volume, the first cine phase of the R-wave trig-

gered capture. The patients were lying on their backs with an

ECG gated retrospectively and a surface coil. At end-diastole

and end-systole on the SA images, volumetric and ventricular

function analysis was executed by contouring the ventricular

endocardial borders using MASS software. Papillary muscles

and trabecula were incorporated into the blood volume. Later

on, different imaging feature measurements were extracted

from this.

c) Clinical and Mortality Data: Before starting treat-

ment, clinical information comprising the lung function test,

intermittent shuttle walking test, serum NT-proBNP level, etc.

were gathered. The electronic medical system was used to

gather demographic information, PAH subgroup diagnosis,

WHO functional status, and prognosis information. Data on

mortality was gathered from the National Health Service

(NHS) and Private Demographics Service’s electronic files.

Once a death was reported in the UK, the NHS updated the

mortality records automatically. All patients were observed as

part of the national service definition for patients with PAH for

at least 12 months, and no patients have been lost to follow-up.

d) Multimodal Feature Preprocessing and Selection: The

initial dataset contains 299 features which have been divided

into 2 categories: 1) extracted numerical imaging feature, and

2) patient echo report (text and categorical). In this dataset, we

had many missing values for different features. The features

that contain more than 40% missing data have been discarded

from this study, and the rest of the features with missing values

have been imputed using the modified Nonlinear Iterative

Partial Least Squares (NIPALS) method [22].

After eliminating these features, we got 111 features. These

features have been divided into numerical imaging features,

echo report categorical features, and echo report text features.

The different combinations of the data-set and its modalities

for this study have been summarised in Table I. In Table I

all the unimodals have one modality, such as extracted nu-

merical imaging features. An echo report normally consists

of 2 modalities, which are categorical (e.g., left ventricle

dilated?, right ventricle dilated?, mitral regurgitation, etc.)

and textual (e.g., machine report-1, doctor report-1, machine

report-2, doctor report-2, summary, etc.). We have separated

the categorical and textual features from the echo report and



TABLE I: Combinations of different features categorized into

different modalities.

Modalities Number of

categorical

features

Number of

numerical

features

Number of

text features

Total

number of

features

Numerical
imaging features

(unimodal)

0 93 0 93

Textual echo
report

(unimodal)

9 0 0 9

Categorical echo
report

(unimodal)

0 0 9 9

Textual and
categorical echo

report
(bi-modal)

9 0 9 18

Numerical
imaging features
+ textual echo

report (bimodal)

0 93 9 102

Numerical
imaging features

+ categorical
echo report
(bimodal)

9 93 0 102

Numerical
imaging features

+ textual and
categorical echo
report (trimodal)

9 93 9 111

made two separate unimodal. Finally, all the unimodal features

have been merged in various combinations to make several

multimodal feature datasets.

B. An End-to-End Multimodal Framework

The architecture of the proposed multimodal learning frame-

work is depicted in Fig. 1. We discuss the components of the

proposed framework in the following.

1) Multimodal Input and Preprocessing: The input to the

proposed method contains multimodal features. This feature

consists of three modality which include imaging numerical,

echo report categorical, and echo report text features. In the

preprocessing stage, each type of data is handled using a

specific method.

First, the imaging numerical features have been prepro-

cessed using the quantile transform method. By using this

method, the features are transformed to have a uniform or

normal distribution. As a result, this transformation generally

spreads around the most frequent values for a given feature.

This makes it a robust preprocessing approach because it

also minimizes the impact of outliers. Each feature has been

transformed individually. The original values are converted

to a uniform distribution using an estimate of a feature’s

cumulative distribution function. Using the associated quantile

function, the values are then transferred to the appropriate

output distribution. Feature values from unseen or new data

that lie below or beyond the fitted range are transferred to the

output distribution boundaries.

BERT

[CLS] Token1 Token2 Token3 TokenN [SEP]

last hidden state

Pooled Output

Fig. 2: The extraction of text features as pooled outputs using

BERT architecture.

Second, while processing, echo report categorical data must

be transformed into numerical form. We perform a one-hot

encoding to convert categorical features as one-hot numeric

arrays. The length of the numeric array is equal to the

number of categories in the categorical features. During the

processing, it takes a column with categorical data that has

been label-encoded and then separates the subsequent column

into numerous columns. Based on the column values, the

numbers are replaced by either 0 or 1.

Third, we perform tokenization on the echo report text

features. We have used the BERT Tokenizer [23] to determine

tokens from the text data of Echo records. This tokenizer uses

a word-piece tokenizer to split the text into words and convert

words into either their full forms (e.g., one word converted

into one token) or into word pieces, where one word can be

split into multiple tokens (e.g. character N -gram).

2) Transformer: We have utilised the popular BERT trans-

former [23] to process text data. The pre-trained transformer

has been incorporated into our method. This transformer has

been trained with a huge corpus of text data. The transformer

exploits positional encoding and attention mechanisms in its

architecture. The BERT-base has 12 BERT layers, and each

BERT layer produces token embeddings. We obtain a total of

13 layers since the model adds one extra embedding layer at

the beginning. Generally, the BERT model returns 2 outputs

that are pooled output and sequence to sequence output. The

first output from the BERT model is sequence to sequence, and

it is the output from the final layer. The output size of this layer

is ([number of batches, number of tokens in each batch, and

the size of the hidden layer]). In this study, we have extracted

the pooled output from the last layer hidden state of the first

token of the sequence (classification token [CLS]) of the pre-

trained BERT architecture as shown in Fig. 2. The pooled

output that corresponds to the last hidden state of a [CLS]

token has no interpretability, but it is the best option as an input

for a classifier that can be fine-tuned on a separate dataset. The

main reason for this is the manner in which it is pre-trained.



It is important to remember that we are utilising the BERT

model as transfer learning, which has already been pre-trained

on massive quantities of data. The [CLS] token is always

used as a starting token when performing prediction, which

is why a pooled output has no interpretability but captures all

the information for a specific input. The extracted embedded

output has been used as the text features for the Multimodal

feature combiner.

3) Multimodal Feature Combiner: In this module, we in-

tegrate different types of feature representations. We denote

numerical features as n, categorical features as c, and the

output of the transformer for text features as t. These features

are combined and represented as x. Despite the fact that cross-

modal attention is already incorporated into the middle layers

of multimodal transformers, we opted for a design where

the transformer comes earlier than the modality integration

because this module may simply be expanded to accommodate

more transformers in the future.

We have implemented four techniques for merging the mul-

tiple representations into a unique feature space for classifica-

tion. These techniques are concatenation, MLP+concatenation,

attention, and weighted summation. In the concatenation, we

combine the three modalities of features as given in Eq. (1):

x = t ⊕ c ⊕ n, (1)

where ⊕ denotes a simple concatenation operator that connects

multiple tensor inputs.

In the second type of integration, we use Multi-layer Per-

ceptron (MLP) to combine the categorical echo report and

numerical imaging features. In the MLP+contenation scheme,

categorical and numerical imaging features are passed through

MLP. Eq. (2) represents the process of feature integration:

x = t ⊕ MLP(c) ⊕ MLP(n), (2)

In the third scheme, we have utilized an attention mecha-

nism [24] to integrate numerical imaging, textual, and cate-

gorical echo report features.

The fourth method utilises weighted summation

method [25] to perform feature fusion on numerical

imaging, textual, and categorical echo report features. The

feature integration techniques used in this work are based on

related research in multimodal transformers [26]–[29] and

other baselines like concatenation and MLP.

4) The Output Layer: In the output layer, we calculate the

final prediction score. The formulation of this score is given

using Eq. (3):

p = σs(ω
T x + b), (3)

where ω, b, and p stand for the model weight, bias vector, and

prediction score, respectively. Additionally, the probabilities

are produced using a non-linear activation function called

σs(·), which can be altered for different tasks. For instance, in

this case, the classification task is performed using a sigmoid

activation function. The cross-entropy of prediction over the

labels, which is expressed in Eq. (4), is the loss function given

the label y ∈ {0, 1}:

L = −
1

N

N∑

i=1

yi log pi + (1− yi) log(1− pi), (4)

where N represents the total number of training samples.

III. EXPERIMENTAL RESULTS AND ANALYSIS

We have performed different experiments to study the

performance of the proposed methods. As our dataset is highly

imbalanced (233 positive and 2, 330 negative class samples),

we have utilized a custom cross-validation scheme to test the

performance. In this scheme, we made 10 folds where for

every fold, the positive class has the same 233 samples, and the

negative class has 233 unique negative samples from the 2, 330
negative samples. So every fold contains total 466 samples,

which have been split into training and validation with an

80:20 ratio. The model’s performance is decided based on

the average testing performance of all folds. To perform the

training, we optimise the loss function in Eq. (4) by using the

stochastic gradient descent approach. The learning rate has

been set as 0.0001.

Table II reports the results for different types of integration

schemes. In this table, we have compared the results for four

types of integration schemes which include concatenation,

MLP+concatenation, attention, and weighted summation. The

performance of these schemes is compared based on mean

Area Under Curve (AUC) scores obtained. It is evident from

this table that weighted summation produces superior results

for the combined modalities model rather than unimodal

models.

The proposed method produces the best result when we use

the weighted summation method and the tri-modal model with

all three modalities. In this case, the proposed method achieves

a mean AUC of 0.89. The bi-modal model with numerical

imaging and textual echo report features also provides the

same mean AUC score for the weighted summation method.

However, we select the tri-modal model as the best because

it contains smaller variations in results as compared to the bi-

modal model (see Table II). The REVEAL model allows the

evaluation of one-year mortality using some clinical features.

These features are taken from a single modality. The REVEAL

model provides an AUC score of 0.70 for the mortality

prediction. This score is considered as a gold standard for

mortality prediction in PAH patients. A score above 0.70
indicates the clinical applicability of the proposed method.

This shows that utilizing multimodal data helps to enhance

the performance of one-year mortality prediction. The features

of a single modality are insufficient for mortality prediction

(all the unimodal models have lower performance results than

bi-modal models and tri-modal model). Multimodal learning

helps enhance the performance of a model. The integration

methods, such as concatenation and weighted summation, can

be trained with a single modality. However, the other two



TABLE II: The performance on different modalities in terms of mean AUC for different types of integration methods. The

integration methods, such as concatenation and weighted summation, can be trained with a single modality. However, other

two integration methods require both imaging numerical and categorical modalities for the training. Due to this, results for

some experiments are not available in the table. (Best, Second best).

Modalities Concatenation MLP+Concatenation Attention Weighted Summation

Numerical imaging features (unimodal) 0.69±0.03 − − 0.83±0.02

Textual echo report (unimodal) 0.63±0.05 − − 0.72±0.04

Categorical echo report (unimodal) 0.58±0.04 − − 0.67±0.01

Textual and categorical echo report
(bi-modal)

0.64±0.02 − − 0.73±0.03

Numerical imaging features + textual
echo report (bi-modal)

0.70±0.03 − − 0.89±0.02

Numerical imaging features +
categorical echo report (bi-modal)

0.69±0.02 0.72±0.03 0.78±0.02 0.86±0.01

Numerical imaging features + textual
and categorical echo report (tri-modal)

0.71±0.03 0.74±0.02 0.81±0.01 0.89±0.01

TABLE III: The performance of the best integration method weighted summation in other metrics for different modalities

(Best, Second best).

Modalities Sensitivity Specificity Positive

Predictive Value

(PPV)

Negative

Predictive Value

(NPV)

Accuracy

REVEAL score (unimodal) 0.66±0.3 0.70±0.02 0.67±0.02 0.69±0.02 0.68±0.02

Numerical imaging features
(unimodal)

0.69±0.06 0.86±0.06 0.87±0.05 0.69±0.04 0.76±0.03

Textual echo report (unimodal) 0.59±0.12 0.71±0.05 0.72±0.02 0.59±0.07 0.64±0.05

Categorical echo report (unimodal) 0.54±0.05 0.64±0.05 0.68±0.02 0.53±0.01 0.59±0.01

Textual and categorical echo report
(bi-modal)

0.52±0.04 0.82±0.02 0.78±0.02 0.57±0.02 0.65±0.02

Numerical imaging features +
textual echo report (bi-modal)

0.69±0.03 0.90±0.03 0.90±0.03 0.70±0.01 0.78±0.01

Numerical imaging features +
categorical echo report (bi-modal)

67±0.03 0.85±0.02 0.85±0.02 0.67±0.02 0.75±0.02

Numerical imaging features +
textual and categorical echo report

(tri-modal)

0.73±0.05 0.89±0.03 0.90±0.02 0.72±0.03 0.80±0.01

integration methods require numerical imaging and categorical

modalities for training.

We have also analyzed the performance of the best model

with the weighted summation integration method in Table III.

In this table, the results are compared based on five perfor-

mance metrics. These performance metrics include sensitivity,

specificity, PPV (Positive Predictive Value), NPV (Negative

Predictive Value), and accuracy. It can be observed from this

table that the proposed method produces promising results for

different metrics. The proposed method shows the best per-

formance for each metric (except specificity) when we utilize

all modalities. Finally, we have reported Receiver Operating

Characteristics (ROC) curve in Fig. 3 for the best models. This

curve depicts the results for the best integration method, which

is the weighted summation method. It can be noticed from this

figure that the mean AUC score of the proposed methods is

the highest for the tri-modal model with all three modalities.

The bi-modal model with numerical imaging and categorical

echo report features produces lower performance than the tri-

modal model and bi-modal model with numerical imaging and
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Fig. 3: Mean receiver operation characteristic curve analysis

showing predictive accuracy of the best integration method

(weighted summation) with different modalities. This figure is

best viewed in color print or on screen.

textual echo report features. Therefore, the utilisation of the

textual echo report feature helps to enhance the performance

of the model.

IV. CONCLUSION AND FUTURE WORK

Automatic diagnosis and prognosis of PAH patients play a

crucial role in clinical practice. It is usually required to identify

high-risk patients from a large set in order to provide targeted

course of the treatment. In this work, we have developed

a method to predict one-year mortality in PAH patients.

The proposed method exploits multimodal data to enhance

the performance. We have utilised numerical imaging data

extracted from CMRI and echo report categorical and text

data extracted from electronic health records. We have incor-

porated a transformer in the proposed method to process text

features. Several combinations of modalities and integration

methods have been tested to observe the performance. We

have achieved the best performance when we combined all

modalities of data using the weighted summation method.

The proposed method has achieved an AUC score of 0.89,

which is better than the REVEAL score (AUC = 0.70) used

in the clinical practice. Some of the features used in the dataset

contains a huge number of missing values. These features have

been excluded in the current study. In the future, we will utilise

a better missing data handling scheme and use all features

present in the dataset to enhance the performance.
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