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Abstract: Previous research has demonstrated the potential to reconstruct human facial skin spectra
based on the responses of RGB cameras to achieve high-fidelity color reproduction of human facial
skin in various industrial applications. Nonetheless, the level of precision is still expected to improve.
Inspired by the asymmetricity of human facial skin color in the CIELab* color space, we propose a
practical framework, HPCAPR, for skin facial reflectance reconstruction based on calibrated datasets
which reconstruct the facial spectra in subsets derived from clustering techniques in several spectro-
metric and colorimetric spaces, i.e., the spectral reflectance space, Principal Component (PC) space,
CIELab*, and its three 2D subordinate color spaces, La*, Lb*, and ab*. The spectra reconstruction
algorithm is optimized by combining state-of-art algorithms and thoroughly scanning the parameters.
The results show that the hybrid of PCA and RGB polynomial regression algorithm with 3PCs plus
1st-order polynomial extension gives the best results. The performance can be improved substantially
by operating the spectral reconstruction framework within the subset classified in the La* color sub-
space. Comparing with not conducting the clustering technique, it attains values of 25.2% and 57.1%
for the median and maximum errors for the best cluster, respectively; for the worst, the maximum
error was reduced by 42.2%.

Keywords: human facial color; spectra reconstruction; RGB images; high fidelity color reproduction;
PCA (Principal Component Analysis); polynomial regression; subordinate color subspace

1. Introduction

Interest in spectral reflectance, as one of the optical properties of human facial skin,
has been growing in various industrial contexts, such as facial detection in transporta-
tion [1], skin pigmentation prediction for the cosmetic industry [2,3], skin color modeling
in computer graphics [4,5], skin color measurement for the diagnosis of cutaneous diseases,
and skin color matching for body and facial prostheses [6,7]. Once we have evaluated
the spectral reflectance of skin, its color under any known illumination can be computed
according to CIE Colorimetry [8]. Furthermore, skin spectra can also be used to predict
skin chromophores, providing an opportunity to extract important health-related informa-
tion [9–12].

Among the various methods that measure skin color or its spectral reflectance [13–23],
optical hyperspectral imaging is non-invasive with high efficiency, because the spectral
reflectance of every pixel of the imaging target can be reconstructed in a single imaging
cycle [17–19]. For example, Acquis S. L. acquires tissue optical properties via a hyperspectral
imaging system with the aid of a light transportation model [19]. However, hyperspectral
or multispectral imagers used for skin spectral imaging are considerably bulkier and more
expensive than consumer cameras capturing RGB images [20–25].
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In this field of skin spectra reconstruction from RGB facial images, there are two main
objectives: bio-information extraction and color reproduction. Bio-information extraction
imaging is based on the physical and physiological characteristics of human skin [19,20].
Nishidate et al. instantaneously estimated the levels of melanin and hemoglobin based
spectral reflectance data from an RGB image [20]. As for the high-fidelity color reproduction
of human facial skin color, the goal is to reconstruct the spectral reflectance; this would
make it possible to precisely reproduce the color by softcopies or hardcopies under arbitrary
illumination conditions, according to the von Kreis color consistency principle [26].

In this article, we focus on reconstructing the spectral reflectance of human facial skin
from RGB images and propose a novel framework for the calibration of the system. Our
approach adopts hybrid 1st order RGB polynomial regression and a 3PCs PCA imaging
model to predict the spectral reflectance from the camera response in RGB images via a
priori training data classified in the 2D La* color subspace. The training data comprise
measured reflectance spectra and the corresponding RGB triplets of the facial color of the
subject under specific illumination and other consistency imaging parameters. In this way,
the reflectance spectra can be precisely reconstructed from the RGB triplets acquired using
the same imaging parameters.

The methodology and superiority of the proposed method is discussed in the fol-
lowing sections. In Section 2, we review related works. In Section 3, we introduce the
hybrid CPA plus PR framework (HPCAPR) for optimal transformation based on the RGB
response of a consumer camera to the reflectance spectra of human facial colors. The
experiment design is described in Section 4. In Section 5, the experimental results are
detailed, confirming the superior performance of the proposed HPCAPR method. Two sets
of HPCAPR configurations are investigated according to a logical investigation carried out
by our team, spanning several years. In Section 5.1, we provide data justifying our claim
that the 3PCs plus 1st-Order algorithm is the best existing algorithm. In Sections 5.2 and 5.3,
the 2D La* subordinate color space and the cosine distance are confirmed to be the optimal
choices. To the best our knowledge, our study is the first to conduct reflectance reconstruc-
tion for human skin in the 2D La* color space applying the described configuration in the
HPCAPR method.

2. Related Works

To properly contextualize the framework proposed in this article, a brief review of
related works is included in this section.

Based on the measured reflectance spectra, the corresponding colors in RGB images
of the facial skin of several subjects, PCA [27,28] method, and PR [29] technique, Imai
transformed human skin color images captured by HDTV RGB cameras to color printing
chips and colors displayed them on a CRT in the mid-1990s [21]. Xiao et al. transformed
camera RGB directly to skin reflectance spectra using a RGB polynomial regression and
PCA projection approach (DPRPCA) [22]. R. He et al. transformed raw RGB to spectra
by first order polynomial regression [23,24] using different calibration datasets. Based on
Xiao’s method [22], Ma L. et al. transformed RGB to spectra by second order polynomial
regression and 3PCs projection with regulated denoise items [25].

The motivation of the above heuristic methods is similar, namely, high-fidelity color
reproduction. Although all of these methods are optimized on the bases of real skin re-
flectance spectra and camera RGB response (viz. spectral datasets), the algorithms they use
are substantially different. The relevant algorithms, along with the calibration methods,
are summarized in Table 1. We can see that the PCA and PR methods are mainstream
approaches for skin color reproduction. Nevertheless, due to the use of different training
sets in calibrating the spectra reconstruction, the order of the regression polynomial and
the number of PCs may vary. Except for [25], which described the use of a denoising
strategy [25], all presented approaches allowed us to explore adaptive methods and their
effectiveness, rather than focusing on trivial computational residual errors.
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Table 1. A summary of spectral reflectance reconstruction methods from RGB color images.

Method Ref. Optimal Algorithm PCA Source Calibration Data

PR F. H Imai, et al.,
1996 [21]

HDTV RGB to RGB via XYZ by PCA
method and second order polynomial

regression
Skin reflectance dataset 108 reflectance spectra

from 54 human faces

PRPCA K. Xiao et al., 2016
[22]

Direct RGB polynomial regression to
reflectance spectra
via PCA method

Skin reflectance spectra
dataset

Spectra matching
silicon skin color chart

RFOPR R. He et al., 2021
[23]

Raw RGB to reflectance spectra by
first order polynomial regression Not applicable

200 pieces of skin data
collected using five
facial locations on
40 human faces.

P2XYZ R. He et al., 2021
[24]

RGB to XYZ via first order
polynomial regression Not applicable facial skin data from

60 human faces

PRPCAR L. Ma et al., 2021
[25]

RGB to reflectance spectra via second
order polynomial regression plus
3PCs with regulated denoise item

4392 pieces of data
from a 482 subject

database; different from
the silicon skin dataset

90 pieces of skin data
from a silicon skin

database

HPCAPR Proposed in this
article

RGB to reflectance spectra by first
order polynomial regression plus

3PCs with modifying subset training

Skin reflectance
selected uniformly

from subsets

40 pieces of skin data
uniformly selected

from a k-means subset
in the La* 2D color

subspace

3. Method

In Section 3.1, we present the algorithms used in the approaches described in Section 2.
Then, in Section 3.2, we introduce the hybrid CPA and PR spectral reconstruction frame-
work (HPCAPR) for optimizing the transformation from the RGB response of a consumer
camera to the reflectance spectra of human facial colors. In Section 3.3, we propose a
methodology to reconstruct the reflectance of human skin via subordinate clusters. The
motivation for this approach is twofold. We will disclose the nature of the HPCAPR
framework and the idea of reconstructing human skin reflectance in clusters in terms of a
subordinate color space in the interests of drawing comparisons between the proposed and
the aforementioned algorithms.

3.1. HPCAPR Spectral Reconstruction Framework
3.1.1. General Two-Step Algorithm

Generally, reflectance reconstruction involves two steps, i.e., spectral characterization
and reconstruction, on the condition that the illuminant and spectral sensitivity of the
camera sensor are unknown.

In the characterization step, the spectral characteristics of the imaging system are
specified by the transform matrix (also called projection) M using response matrix CTr and
the corresponding measured reflectance RTr in the training set (cf. Equation (1)).

CTr = MRTr (1)

Under the same imaging conditions as those used during training, reflectance RRe
could be accurately reconstructed from the matrix of the RGB triplets from images CRe in
the second step if the projection matrix M was optimized. See Equation (2), where M+ is
the pseudoinverse matrix of M.

RRe = M+CRe (2)

For the sake of the optimization of matrix M, a second verification step is used for
evaluation via the perceptual color difference metrics, for instance, ∆E*ab (CIEDE Lab*)
and/or the spectral difference RMSE (Root Mean Square Error) between the reflectance
spectra in the verification set and its corresponding reconstructed ones. In Equation (3),
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RVeri is the matrix of reflectance spectra in the verification set, and CVeri is the matrix of the
corresponding RGB triplets of camera response.

RVeri = M+CVeri (3)

For more clarity, the dimensionalities of the matrices in the above equations are
explicated as follows. The columns of matrices CTr and CRe are equal to the spectral
channels of camera m; rows of RTr and RRe are equal to the dimension of reflectance n.
Therefore, the dimensions of transform matrix M are equal to m× n, and those of M+ are
n×m. The rest of the dimensionalities comprising the rows of CTr, the columns of RTr, and
the correspondents of CRe and RTr are equal to the number of samples in the training set
and the number of samples to be reconstructed, respectively.

The reflectance reconstruction algorithm aims to transform the responses of the camera,
m = 3 dimensional RGB triplets, to spectral reflectance with, supposing the same dataset
is used, n = 31 dimensions. Therefore, the direct inverse transformation is always ill-
conditioned. As can be seen, we call this method direct inversion. In principle, reducing
the ill condition of the transform matrix is crucial to improve the accuracy of reflectance
reconstruction. Therefore, intuitive but reasonable strategies to overcome this obstacle
involve either extending the dimension of camera response RGB triplets from 3 to a greater
number or reducing the dimension of reflectance from 31 to a lower number. This is the
fundamental mathematical reason for the use of polynomial regression (PR) and the PCA
method, which are described in Sections 3.1.2 and 3.1.3.

It is worth noting that pursuing the orthogonality of transform matrix M is another way
to increase the precision of the reflectance estimation. At the same time, it is also an ideal
theoretical criterion for selecting the parameters for spectral imaging. As a consequence, the
authors have put forward many spectral reconstruction algorithms based on the filter selec-
tion, training set selection, and noise reduction methodologies, among others [21,25,28–36].
Detailed discussion about this topic is outside of the scope of this article.

3.1.2. Polynomial Dimensional Extension

In this case, matrix M in Equation (1) is derived from the polynomial extension of the
RGB responses of the camera, that is to say, the columns of matrix CTr are the vectors of
polynomial extension of the RGB triplets of the training set samples. In this research, the
dimension of reflectance is 31. For the sake of overcoming the ill condition of matrix M, the
possible order of the polynomial can be 1, 2, 3, 4, and the numbers of the corresponding
items of the polynomial can be 4, 10, 20, and 35 respectively. The components of RGB
polynomial extension are:

A1 = [1 R G B]; (4)

A2 = [RR GG BB RG RB GB]; (5)

A3 = [RRR GGG BBB RRG RRB GGR GGB BBR BBG RGB]; (6)

A4 = [RRRR GGGG BBBB RRRG RRRB GGGR GGG
BBBR BBBG RRGG RRBB GGBB RRGB GGRB BBRG].

(7)

where the R, G, and B in the square brackets are the values of the pixels in the RGB
images; each item separated by a space is an element of a row vector. In each item, a
group combining R, G, or B indicates the multiple of these values. As above, the order
of the polynomial equals the highest number of multipliers in an element. Superscript t
denotes the transposition of a matrix, and Prgbi (i = 1, 2,..., j) is the column vector of the ith
order polynomial.

Prgb j = [A1 A2 . . . Aj]
t, j ≤ 4. (8)

where the arrangement of the elements of the corresponding vector follows the expansion
convention of a row vector in Matlab, e.g., Prgb 1 = [1 R G B]t, Prgb 2 = [1 R G B RR GG
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BB RG RB GB ]t, and so on. Regarding polynomial extension, the number of items in the
corresponding 1st~4th order of polynomials would be 4, 10, 20, and 35.

Therefore, the spectral reconstruction process can be expressed as:

PrgbiTr = MPRRTr; (9)

RRe = M+
PRPrgbiRe

(10)

Rveri = M+
PRPrgbiVeri

(11)

where MPR is the transform matrix from the reflectance of training set RTr to the ith order
polynomial extension of the RGB triplets of training set PrgbiTr; M+

PR is the Moore–Penrose
pseudo-inverse of matrix MPR; subscripts Re,Tr and Veri denote the items related to the
reconstructed ones, the calibration training set, and the verification set, respectively; and
subscript PR of the transform matrix corresponds to the polynomial regression (PR) method.

3.1.3. PCA Dimension Reduction

Rather than extending the dimension of the response of the camera from three
items to a higher number (as in the polynomial regression method), the PCA method
projects reflectance to a lower dimensional spectral space using only a few eigenvectors of
the reflectance:

RTr = Ut
jα; (12)

where U is the matrix of PCs, or the principal component matrix; subscript j denotes the
number of the first j of the most significant PCs; superscript t denotes the transposition
of the matrix; each row vector of Ut

j is an eigenvector of the PC source referred to in
Table 1; and α is score vector in the columns of the training set. It can be deduced that
the number of elements in a column vector in matrix α should be equal to j. In this way,
the 31-dimensional of reflectance is reduced to j. Then, the spectral reconstruction process
parallel to Equations (9)–(11) would be:

CTr = MPCARTr = MPCAUt
jα; (13)

RRe = Ut
jβRe = M+

PCACRe; (14)

RVeri = Ut
jβVeri= M+CVeri; (15)

where βRe is the score matrix corresponding to the reflectance to be reconstructed, similar
to βVeri; subscript PCA, of the transform matrix corresponds to the PCA method. From
Equations (13)~(15), it follows that:

RVeri = Ut
j αCt

Tr(C TrCt
Tr
)−1CVeri. (16)

The essence of PCA is the least square approach using a low-rank approximation of
the data matrix. The lower rank matrix is supposed to be known a priori, but it can be
estimated using singular linear prediction matrix U.

3.2. Hybrid Spectral Reconstruction Framework (HPCAPR)
3.2.1. Combining PR and PCA

A logical approach is to combine the two methods, PR and PCA, as this would optimize
the spectral reconstruction processing on both sides. Therefore, the hybrid method could
be expressed similarly to Equations (9)−(11) and Equations (13)−(15):

CTr = MHbrUt
jα = PrgbiTr; (17)

RRe = Ut
jβRe = M+

HbrPrgbiRe
; (18)
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RVeri = Ut
jβVeri = M+

HbrPrgbiVeri (19)

where the subscript Hbr of the transform matrix corresponds to the hybrid PCA and PR
combining method. Deriving from Equations (13)–(15), we obtain:

RVeri = Ut
jαPrgbiTr

(
PrgbiTrPrgbiTr

t
)−1

PrgbiVeri. (20)

Note that the two parameters in Equation (20), i.e., the number of polynomial orders
i and the number of PCs j, will be determined by parameter scanning in the following
Section 4.2.

3.2.2. Spectra Reconstruction in Clusters Classified in a Subordinate Color Space

Minimizing the square error to estimate unknown variables from a priori knowledge
is a general approach for spectral reconstruction. In practice, a priori knowledge is abstract
in the training set. An ideal training set should be comprised of the most representative
samples that span the space of the assembly, such that those that are not in the training
set can be reconstructed accurately. Previous research has selected training sets based on
various criteria (see Table 1); however, we adopt a different method to the select training
set from clusters in a 3D uniform CIELab* color space and its subspace. Our method is
inspired by the substantial asymmetricity of human skin colors in the uniform color space
CIELab* (see, Figure 1). Details of the acquisition of the displayed dataset are provided in
Section 4.1. From Figure 1, we can see that the skin colors in the La* plane are much more
asymmetric than those in the a*b* and Lb* planes (hereafter called the 2D color subspace).
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Figure 1. Asymmetry distribution of a skin color assembly in spectral and color space. (a) Reflectance
spectra space, (b) 2D a*b* color subspace, (c) 2D L*a* color subspace, (d) (C) 2D L*b* color subspace.
Note that the different colors of the curves in (a) are randomly generated by plotting tools.

The heuristic method contains two steps. The first is to classify the skin dataset
assembly into clusters using the k-means algorithm [37]. This can be performed using the
Matlab function kmeans. Given the number of the clusters to be classified, i.e., k, the k-means
function partitions ensemble data S that contains N samples into k clusters (S1, S2, . . . , S),
minimizing the sum of point-to-centroid distances D(Xi, Xc,m), summed over all k clusters:

Sm = {Xi|min[∑i=N
i=1 D(Xi, Xc,m)]}, m ∈ {1, 2, .., k} (21)

Several distances D(Xi, Xc,m) could be used:
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(1) ‘sqeuclidean’ distance. Each centroid is the mean of the points in that cluster.

DSqeuc(Xi, Xc,m) = (Xi − Xc,m)(Xi − Xc,m)
t (22)

(2) ‘cityblock’ distance. Each centroid is the component-wise median of the points in
that cluster.

DCB(Xi, Xc,m) = ∑p
i=1|Xi − Xc,m| (23)

(3) ‘cosine’ distance. Each centroid is the mean of the points in that cluster after
normalizing those points to Euclidean length.

Dcos(Xi, Xc,m) = 1−
XiXt

c,m√(
XiXt

i
)(

Xc,mXt
c,m
) (24)

Figure 2 shows an example of skin colors classified by kmeans (k = 3) with ‘sqeuclidean’
distance in the CIELab* color space.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 20 
 

 

The heuristic method contains two steps. The first is to classify the skin dataset as-

sembly into clusters using the k-means algorithm [37]. This can be performed using the 

Matlab function kmeans. Given the number of the clusters to be classified, i.e., k, the k-means 

function partitions ensemble data S that contains N samples into k clusters (S1, S2,…, S), 

minimizing the sum of point-to-centroid distances D(Xi, Xc,m), summed over all k clusters: 

𝑆𝑚 = {𝑋𝑖|min [∑ 𝐷(𝑋𝑖 , 𝑋𝑐,𝑚)]𝑖=𝑁
𝑖=1 }, m∈ {1,2, . . , 𝑘} ;  (21) 

Several distances D(Xi, Xc,m) could be used: 

(1) ‘sqeuclidean’ distance. Each centroid is the mean of the points in that cluster. 

𝐷𝑆𝑞𝑒𝑢𝑐(𝑋𝑖 , 𝑋𝑐,𝑚) = (𝑋𝑖 − 𝑋𝑐,𝑚)(𝑋𝑖 − 𝑋𝑐,𝑚)
𝑡
 (22) 

(2) ‘cityblock’ distance. Each centroid is the component-wise median of the points in 

that cluster. 

 𝐷𝐶𝐵(𝑋𝑖 , 𝑋𝑐,𝑚) = ∑ |𝑋𝑖 − 𝑋𝑐,𝑚|
𝑝
𝑖=1  (23) 

(3) ‘cosine’ distance. Each centroid is the mean of the points in that cluster after nor-

malizing those points to Euclidean length. 

𝐷𝑐𝑜𝑠(𝑋𝑖 , 𝑋𝑐,𝑚) = 1 −
𝑋𝑖𝑋𝑐,𝑚

𝑡

√(𝑋𝑖𝑋𝑖
𝑡)(𝑋𝑐,𝑚𝑋𝑐,𝑚

𝑡 )

  
(24) 

Figure 2 shows an example of skin colors classified by kmeans (k = 3) with ‘sqeuclid-

ean’ distance in the CIELab* color space. 

 

Figure 2. Clusters classified by kmeans (k = 3) with ‘sqeuclidean’ distance in the CIELab* color 

space. 

The second step applies the spectral reconstruction framework HPCAPR within sub-

sets Sm. In Section 5, we show that the cluster obtained using the ‘cosine distance’ in the 2D 

La* color space goes beyond the other clusters. 

It is worth noting that the notations in this section are independent of those used in 

other sections for clarity. For instance, whether 𝑋𝑖  denotes color coordinates or reflec-

tance vectors depends on which space of the clustering is to be transformed. 

 

Figure 2. Clusters classified by kmeans (k = 3) with ‘sqeuclidean’ distance in the CIELab* color space.

The second step applies the spectral reconstruction framework HPCAPR within subsets
Sm. In Section 5, we show that the cluster obtained using the ‘cosine distance’ in the 2D La*
color space goes beyond the other clusters.

It is worth noting that the notations in this section are independent of those used in
other sections for clarity. For instance, whether Xi denotes color coordinates or reflectance
vectors depends on which space of the clustering is to be transformed.

3.3. Results Evaluation

To evaluate the quality of the spectral reconstruction, many indices can be used [27].
Generally, the indices are categorized into spectrometric and colorimetric types. We chose
the two most widely used metrics, DELab* (∆Eab∗) and RMSE (Equations (25) and (26)).
DELab* is the color difference based on CIE Colorimetry, assuming a standard observer (CIE
1931 standard 2 deg observer) and a given illumination. RMSE considers only the spectral

difference between the n-dimensional predicted
ˆ
R and measured spectral reflectance R. It

is not affected by the illumination.

∆Eab∗ =

√(
L̂∗ − L∗

)2
+ (â∗ − a∗)2 +

(
b̂∗ − b∗

)2
(25)
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RMSE =

√√√√ || ˆ
R−R||

n
(26)

4. Experiment Design
4.1. Datasets

Two skin color datasets containing 514 and 608 effective samples, respectively, are
used in this research. In the former, 282 samples were measured on Chinese and 232 on
Caucasian subjects. The samples were collected with the same protocol as that in [22]. For
each subject, the skin color measurements were obtained from three body areas: forehead,
cheeks, and neck. A Konica Minolta CM-700d spectrophotometer was used to measure
reflectance. Its viewing geometry is d/8 (diffuse illumination, 8-degree viewing) and the
aperture size was set to 3 mm. The output spectral reflectance data were in the range
of 400 nm to 700 nm, sampled at intervals of 10 nm. Facial images were captured using
a Nikon D7000 DSLR camera with subjects sitting in a Verivide facial image viewing
cabinet with diffused D65 lighting. Each facial image was saved as a camera RGB image.
The RGB values corresponding to the former measured position were averaged from the
area in the facial images with a diameter of approximately the same size as the aperture
of the spectrophotometer. Except for the numbers of samples, the two datasets had no
discernable differences.

Figure 3 displays reflectance curves of the skin samples of subjects of two ethnicities
in the dataset based on 514 samples and the schematic of dataset acquisition protocol.
The dataset displayed in Figure 1 is the one containing 608 samples, which was applied
as described below. In Figure 3c, we illustrate the data acquisition framework and the
structure of the dataset. As indicated, a record of a sample of the dataset contains one record
of the RGB response of the subject, one corresponding reflectance, and one color-coordinate
Lab*. Among them, the former was acquired by averaging the RGBs of the pixels of the
four areas on subjects’ forehead, cheeks, and neck from the RGB image taken by the camera.
The size and positions of the areas correspond to the aperture size of the spectrometer and
the measured position on the subject’s skin due to the immediate touched measure mode
of the spectrometer. The latter, namely, the reflectance spectra and the Lab*, were measured
from the same areas where the RGB responses of the camera were recorded for each subject.

In this article, the samples of the dataset have specific usages in terms of different
computational missions. If one is familiar with the related research, such as that listed
in Table 1 [21–25], the nature of the usage of the dataset may be known. In that case, the
readers should feel free to skip to the next section.

In the characterization step of the reflectance reconstruction computation, the RGBs
and the reflectance spectra of the training set were used as input data. We obtained the
output, namely, the transform matrix, from RGB to reflectance. In the verification step, the
RGB of the verification set (testing set) were used as input. With the help of the intermediate

transform matrix, we obtained the output, namely, reconstructed reflectance
ˆ
R. At the

same time, the corresponding errors were calculated for evaluating the performance of the
spectra reconstruction.

In the clustering computation, the choice of the input variant was made based on the
spaces conducting the clustering operation; for example, the Lab* records of the dataset were
used as input when clustering in Lab* color space. One may ask the following question: If
we have the RGB response of the camera and without the Lab* and the reflectance, because
these are not contained in the dataset, which cluster of the RGB belongs in the Lab* space?
The answer is explicit. It is easy to map the RGB to Lab* with the aid of the known dataset.
Details of the mapping method are beyond of the scope of this article.
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Here, we take Equation (20) as an example, due to the fact that it contains both steps,
i.e., characterization and verification; similar to the methods described above, the RGBs as
well as the PCs of the reflectance samples all seems to be inputs. Therefore, it is hard to tell
which records are the inputs of this calculation. However, if we recall the above derivation,
we find that the training set reflectance spectra calculated using the Ut

jα, the RGBs of the
training set and verification set arranged in PrgbiTr and PrgbiVeri are all input variants. If we
calculate errors using Equations (25) and (26), the Lab* and the reflectance records of the
verification set can be used as the inputs.

4.2. System Optimalization via Parameter Scanning

Four parameters are required for optimization. Figure 4 is a schematic of the scanning
process used to obtain the optimal parameters.
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Figure 4. Schematic of the process of scanning for optimal parameters within reasonable ranges.

The orders of polynomial i and the number of PCs j in Equation (20) follow the
combinations from the corresponding sets. The order of RGB polynomial extensions
i ∈ {0,1,2,3,4} correspond to items {3,4,10,20,35}. Note that the 0-order polynomial contains
just three items, that is, the alternative expression is A0 = [R G B], similar to Equation (4).
Because other researchers concluded that skin color could be reproduced sufficiently with
3PCs [21,22,25], and more PCs contain more spectral information from the training set, we
decided that a possible optimal number of PCs could be j ∈ {3,4,5,6,7,8,9,10}. Consequently,
the number of combinations of the two parameters is 40, as shown in Table 2.

Table 2. Lists of the 40 parameter combinations of the number of PCs and items of polynomial extension.

Combination 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Items 3 4 10 20 35 3 4 10 20 35 3 4 10 20 35 3 4 10 20 35
PCs 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6

Combination 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Items 3 4 10 20 35 3 4 10 20 35 3 4 10 20 35 3 4 10 20 35
PCs 7 7 7 7 7 8 8 8 8 8 9 9 9 9 9 10 10 10 10 10

4.3. Further Scanning for Optimal Clusters

In order to find the minimum size of the training set, we started with two samples
with reasonable step-sizes in ascending sequence and stopped at a certain number when
the results were acceptable. In the second half of the experiment, we selected the training
samples randomly to determine the optimal iteration times due to the fluctuation of the
result of a single operation. Then, the other two parameters, i.e., the size of the training sets
and the iteration times, were taken from the numbers listed in Figure 4.

The motivation here was to explore the optimal subspace classification using cluster
techniques for skin reflectance reconstruction. The subspace could be either in the spectral
reflectance domain, which comprises the direct spectrum domain and the domain projecting
to PCA, or the subspace classified in CIELAB* and its derived 2D subordinate color space
a*b*, La*, Lb*.

5. Results and Discussion
5.1. Optimal Parameters for the Hybrid Algorithm
5.1.1. Polynomial Order and Number of PCs

As described above, the spectral reconstruction of 40 combinations of different poly-
nomial items (or orders) and the number of PCs (the principal components involved) was
conducted; the averages of the evaluation results are illustrated in Figure 4. For simplicity,
the training samples were selected from all 514 samples, and the number of samples in the
training set was set to 128, i.e., approximately one-fourth of the total number. Thus, the ratio
of the numbers of the training set and verification set was 1:3. Previous calculations have
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indicated that this sample ratio performs better. Table 1 lists the 40 parameter combinations
of the number of PCs and items of polynomial extensions.

Figure 5 illustrates the results. From Figure 5a, we can see that the combination
2,7,12,17,22,27,32,37 achieved the best group aligning in the lowest line. Looking at Table 2,
we find that all the combinations of the best group have four polynomial items, in which
the numbers are displayed in bold. That is to say, the RGB response of the camera extended
by first order polynomial had the best performance in terms of ∆Eab∗ . However, the perfor-
mances of the third order (20 items) polynomial demonstrated superior results compared to
the others in terms of RMSE, as shown in Figure 5b.
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Figure 5. Global performance of combinations of different polynomial items and numbers of PCs.
(a) Color errors in terms of DELab*, (b) Spectral errors in terms of RMSE.

Based on the above results, the optimal parameter of a polynomial could be considered
to be 1st-order, namely, comprising four items. This is favorable to the evaluation index
DELab*, although the RMSEs are trivially worse than those with 3rd -order (20 items). There
are two reasons for this. Firstly, from Figure 5a and Table 1, we can see that the difference
between the first and third order polynomials was less than 0.2 Lab* units, which was far
less than the discrimination capabilities of human eyes [22]. Secondly, because the 1st- and
3rd-orders had 4 and 20 items respectively, the computational requirements of the first order
algorithm were far less than those of the third order.

It should be mentioned that the DELab*s in this article (otherwise Specified) was
calculated by the means of the median DELab* under each of the four illuminations (A, D50,
F02, and D65). This was intended to provide the conditions for a robust assessment of the
metameric color match determined by the precision of the spectral reconstruction rather
than being limited in terms of color matching under specific illumination conditions [8].

5.1.2. Size of Training Sets and Number of Iterations

Figure 6 demonstrates the stability of the HPCAPR var hybrid algorithm when varying
the iteration number of random sampling and number of sampling subjects in the training
set. Note that DElab*s is the average of the median results of the spectral reconstruction
performance of the verification set when selecting a training set randomly for specific
iteration numbers. In Figure 6, we can see that the results get worse when the size of the
training set is less than eight subjects and the iteration number is less than 20. Otherwise,
the results reveal a relatively high level of stability, regardless of the number of iterations,
when the subjects and the iteration number are greater than 10 and 20. Therefore, we
adopted safety parameters according to this protocol.
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Figure 6. Stability of the proposed algorithm when varying the iteration number and the size of the
training set.

Figure 7 displays the results of the DELab* metrics of the skin spectral reconstruction
by 1st-order polynomial and the 3PCs hybrid algorithm with 10 sampling subjects varying
with the corresponding iteration numbers. As displayed in Figure 7, the performance
rapidly improved with an iteration number larger than 20, although minor fluctuations
remained. Surprisingly, under the minimum iteration number, i.e., 5, the evaluation value
in terms of the color difference error DELab* was acceptable, i.e., 2.87 [22].
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5.1.3. Comparison with Separate PCA and the Polynomial Method

For a quantity comparison, Table 3 lists the evaluation results of 1st-order PR (poly-
nomial regression) and the 3PCs plus PCA hybrid spectral reconstruction algorithm with
the dataset with both ethnicities when the number of the training set was 40. The protocol
was the same as described above, in which the data were the average of the median of the
corresponding results. From Table 3, we can see that the 3PCs+1st-Order algorithm achieved
the best performance. That is to say, separate PR or PCA was worse than PR plus PCA, in
that it decreased the ill condition of the transformation between the RGB space and the
spectral reflectance space.
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Table 3. Performance with and without the combination of PCA and PR.

3PCs+1st-Order 1st-Order 3PCs RGB

DE Lab* 2.87 2.91 3.17 3.42
RMSE 0.0218 0.0221 0.241 0.0273

These results evidence the superiority of the proposed HPCAPR to any other previous
method. This can be confirmed by comparing with Tables 1 and 2, and the computational
results listed in Table 3.

The methods listed in Table 1 can be classified into two fundamental categories. PR [21],
PRPCA [22], PRPCAR [25], and HPCAPR comprise the first type, in the sense that they
do not only use PR but also the PCA method. In the second approach, the fundamental
method is the first-order polynomial regression used in RFOPR [23] and P2XYZ [24]. From
Table 3, we can see that the algorithm that adopted the 3PCs+First Order combination
attained the best performance with all of the 40 possible parameter combinations related
in Table 2. Moreover, in contrast to previous authors that gave the results corresponding
to several CIE standard illuminations, Figure 8 graphs the performance of the algorithm
with the same 3PCs plus 1st-Order algorithm configuration. We can see that the results
are consistent with previous research, especially regarding the best performance under
F2 illumination [22,25]. Therefore, the proposed HPCAPR framework should adopt this
algorithm configuration, which has been shown to be the best choice, both in principle and
by experimental computation.
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In the first half of this paper, we confirmed that the performance of the hybrid of PCA
and RGB polynomial algorithms with 3PCs plus 1st-Order PR gives the best results among
the existing methods listed in Table 1. We also determined the optimal parameters to be
used for further investigation in the second half of this report. Our motivation was to
further determine the optimal subspace of skin reflectance and clustering methods in order
to further improve the spectral reconstruction performance, as outlined in Section 5.2.

5.2. Spectra Reconstruction in Clusters Classified in a Subordinate Color Space
5.2.1. Protocol

For the sake of focusing on the subspace which will be explored in the following
sections, we outline the following experimental protocols:

1. The iteration times were fixed at 300.
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2. The size of the training set was 40 samples, selected randomly from a larger ensemble
set containing 608 samples or a subset thereof; the verification set comprised the rest
of the samples of the corresponding dataset or subset.

3. The CIE standard illuminant D65 was adopted.
4. The evaluation index adopted DELAB* (∆Eab∗) color difference, regardless of the

highly correlated spectral error index RMSE, and the subindices included mean, median,
maximum, minimum, and standard deviation.

5. Among the 300 iterations, the results of the best and worst groups in terms of mean
∆Eab∗ are demonstrated.

6. Five groups of results are given considering random variations in the k-means
algorithm.

5.2.2. Spectral Reconstruction in the 2D La* Color Subspace

Figure 9 summarizes the performance of skin reflectance reconstruction for the pro-
posed HPCAPR framework under various clustering strategies, in which the number of
centroids K = 5. Note that K has the same meaning as k in Equation (21). In the computation
process, we found that the value of K was constrained by the overall number of samples
in the dataset, in which it was hard to gain high precision results if K was too small. In
contrast, if it was too large, the algorithm collapsed due to the number of samples in the
training set going beyond the number of all the samples in a cluster. From Figure 9a, we
can see that pursuing subsets is an effective way to improve the precision of the spectral
reconstruction in the clusters. The CIELab* color space outperformed the 3D 3PC space
(the space that spanned by the first three PCs of the reflectance of the dataset) and the 31
dimensional reflectance space. Figure 9b indicates that La* is the best corresponding 2D
color subspace.

5.2.3. Clustering in the 2D La* Color Subspace by Cosine Distance

It is worth mentioning that the results in Figure 9 are clustered in the ‘sqeucilidean’
distance (Equation (22)), which is the default distance in many clustering applications.
In this research, however, we found that the most appropriate distance was the ‘cosine’
distance, as described as Equation (24). Together with the ‘cityblock’ distance, the evaluation
results are listed in Table 4. There, we can see that the median and maximum of the ‘cosine’
distance are better than those of the ‘sqeuclidean’ distance. The two main statistics are of the
utmost significance for color reproduction. The median is clearer for the distribution than
the mean, especially for a sparse distribution of bigger values. As an example, we can see
that the median is smaller than the mean in Table 4. Therefore, we can safely conclude that
the ‘cosine distance’ performs better.

Table 4. Performance in terms of ∆Eab∗ of different distances for the clustering algorithm in the 2D
La* color subspace 1.

Mean Median Max Min Std

K = 5,’sqeuclidean’

Best mean 2.31 2.06 4.10 0.92 1.24
Worst mean 4.00 3.81 6.23 1.36 1.75

K = 5,’cityblock’

Best mean 2.49 2.39 4.96 0.51 1.34
Worst mean 3.83 3.63 9.41 0.83 2.02

K = 5,’cosine’

Best mean 2.16 1.93 4.04 0.95 1.26
Worst mean 4.03 3.80 6.16 1.25 1.72

1 The best and worst means are the averages of five best- and five worst-performing clusters, respectively, as
determined by the average of color differences ∆Eab∗ of all the reflectance spectra in the verification set and the
corresponding reconstructed counterparts in the cluster.
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Figure 9. Performance of skin reflectance reconstruction for the proposed HPCAPR framework
under various clustering strategies. (a) Clusters in the spaces with dimensions not less than three.
(b) Clusters in CIELab* and its subordinate 2D color spaces. Note that the vertical axis refers to
DELab*(∆Eab∗). Every index number has been averaged from five repetitions with 300 iterations each.

5.3. Improvement of the Proposed HPCAPR Framework

As addressed above, the proposed HPCAPR framework for facial skin reflectance
reconstruction comprises two main topics. One is the hybrid 3PCs plus 1st-order PR algo-
rithm, which reduces the ill condition of the transformation between the reflectance and
the camera response; the other is the spectral reconstruction of clusters classified in the 2D
La* color subspace. To the best of our knowledge, the present research is the first proposed
method for skin spectra reconstruction via clustering in the 2D La* color subspace. Table 5
lists the results of the proposed HPCAPR (left columns) and those of similar algorithms
without using the clustering technique. If we focus on the median and maximum errors,
we can quantify the improvement. For the best cluster, we attained 25.2% and 57.1%; for
the worst, the maximum error was reduced by 42.2%.
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Table 5. Performance of clusters in the 2D La* color subspace, Cosine distance and five clusters 1.

Cluster in La* Space No Cluster

Cluster Mean Median Max Min Std Mean Median Max Min Std

Best 1 2.12 1.93 4.01 0.99 1.24 2.8 2.56 9.41 0.26 1.43
Best 2 2.12 1.93 4.01 0.99 1.24 2.81 2.59 9.87 0.12 1.49
Best 3 2.12 1.93 4.01 0.99 1.24 2.8 2.57 9.41 0.38 1.5
Best 4 2.32 1.93 4.15 0.77 1.33 2.83 2.57 9.6 0.4 1.48
Best 5 2.12 1.93 4.01 0.99 1.24 2.8 2.6 9.28 0.11 1.43

Best Mean 2.16 1.93 4.04 0.95 1.26 2.81 2.58 9.51 0.25 1.47

worst 1 4.10 3.83 6.08 1.23 1.64 3.29 3.01 10.74 0.67 1.65
worst 2 4.10 3.83 6.08 1.23 1.64 3.43 3.05 9.44 0.28 1.9
Worst 3 4.10 3.83 6.08 1.23 1.64 3.37 3.09 10.31 0.43 1.74
Worst 4 4.10 3.83 6.08 1.23 1.64 3.45 3.04 10.26 0.32 1.89
Worst 5 3.76 3.68 6.48 1.32 2.05 3.5 3.01 12.49 0.2 2.05

Worst Mean 4.03 3.80 6.16 1.25 1.72 3.41 3.04 10.65 0.38 1.85
1 The left columns are from clusters classified using the k-means algorithm with ‘Cosine’ distance and five centroids.

It might be surprising to see the maximum figures reversed in the worst clusters
indicated in the last line in Table 3; however, one might also notice that the sparse outliers
in the dataset impact more on the figures in the clusters than in the ensemble dataset. This
is a consequence of the average operation on the outliers (extreme data) not being favorable
to the clusters with fewer samples. Figure 10a illustrates the distribution of the statistics.
We can see in the boxplot that the outliers were impacted significantly by the means or
medians. As demonstrated in Figure 6, more samples in the training set does not increase
the operational precision; on this basis, we can also explain the impact of the outliers on
the overall performance of the reflectance reconstruction system. That is to say, there is not
a significant increase in performance, although the training set could have more samples
in certain circumstances without using the clustering strategy. To intuitively demonstrate
the performance of the proposed HPCAPR, Figure 10a–c displays three randomly selected
spectra pairs of the reconstructed reflectance spectra and the corresponding measured
counterparts in the verification set.
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(b–d) Contrasts of the reconstructed reflectance spectra and corresponding measured counterparts in
the verification set. Statistically, outliers are considered to be the most extreme data and are plotted
individually using the red ‘+’ marker symbol in (a). Note that the labels of panels (b–d) use the
same ‘wavelength’ xlabels and ‘reflectance’ ylabels; the colors of curves in panels (b–d) are random
generated by the plotting tool.

For the sake of clarity, in Figure 11, we present a schematic of an example of the
clusters of one clustering operation. Note that the cluster sequence is random because
the initialization centroids were randomly selected [38]. Here, we can see the irregular
distribution of the samples, especially for group5 and group1. The outliers in Figure 10a
might be the sparsely distributed samples in such clusters. Finding the outliers and further
reducing the maximum errors in skin reflectance reconstruction is beyond of the scope of
this article.
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Figure 11. An example of the clusters after one cosine distance clustering operation.

We made preliminary comparisons in Section 5.1 and further investigations to find
the optimal parameters for the proposed HPCAPR in Sections 5.2 and 5.3. In Section 5.1,
the 3PCs plus 1st-Order PR algorithm was shown to conform to our expectations, revealing
itself to be the best among existing algorithms. In Sections 5.2 and 5.3, we applied the
optimal space clustering in the 2D La* subordinate color space; the corresponding clustering
distance was cosine distance. To the best our knowledge, this is the first algorithm which is
able to perform reflectance reconstruction for human skin in the 2D La* color space.

6. Conclusions

We developed a practical HPCAPR framework for skin facial reflectance reconstruction
from RGB images. Based on previous research and real human facial skin color datasets,
we confirmed the effectiveness of the hybrid algorithm, which combines the PCA and
RGB PR algorithms, in which the 3PCs plus first order PR are the best parameter selection.
Furthermore, we have demonstrated the superiority of subordinate 2D La* color subspace
for facial skin spectra reconstruction from RGB images via a clustering technique. One
limitation of the present research might be that the dataset contained images of subjects
of only two ethnicities. However, race is an ambiguous term, and some Caucasians are
darker than others [39]. Nonetheless, a dataset with more distributed samples could be
investigated in the future.
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