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Abstract

This article considers tests of alpha in linear factor pricing models when the number

of securities, N, is much larger than the time dimension, T, of the individual return
series. We focus on class of tests that are based on Student’s t-tests of individual
securities which have a number of advantages over the existing standardized Wald

type tests, and propose a test procedure that allows for non-Gaussianity and general
forms of weakly cross-correlated errors. It does not require estimation of an invert-

ible error covariance matrix, it is much faster to implement, and is valid even if N is
much larger than T. We also show that the proposed test can account for some lim-
ited degree of pricing errors allowed under Ross’s arbitrage pricing theory condi-

tion. Monte Carlo evidence shows that the proposed test performs remarkably well
even when T¼60 and N¼5000. The test is applied to monthly returns on securities

in the S&P 500 at the end of each month in real time, using rolling windows of size
60. Statistically significant evidence against Sharpe–Lintner capital asset pricing
model and Fama–French three and five factor models are found mainly during the

period of Great Recession (2007M12–2009M06).
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This article is concerned with testing for the presence of alpha in linear factor pricing mod-

els (LFPMs) such as the capital asset pricing model (CAPM) due to Sharpe (1964) and

Lintner (1965), or the arbitrage pricing theory (APT) model due to Ross (1976), when fac-

tors are observed and the number of securities, N, is quite large relative to the time dimen-

sion, T, of the return series under consideration. There exists a large literature in empirical

finance that tests various implications of Sharpe–Lintner model. Cross-sectional as well as

time-series tests have been proposed and applied in many different contexts. Using time-

series regressions, Jensen (1968) was the first to propose using standard t-statistics to test

the null hypothesis that the intercept, ai, in the ordinary least squares (OLS) regression of

the excess return of a given security, i, on the excess return of the market portfolio is zero.1

However, when a large number of securities are under consideration, due to dependence

of the errors across securities in the LFPM regressions, the individual t-statistics are corre-

lated which makes controlling the overall size of the test problematic. Gibbons, Ross, and

Shanken (1989, GRS) propose an exact multivariate version of the test which deals with

this problem if the CAPM regression errors are Gaussian and N<T. This is the standard

test used in the literature, but its application has been confined to testing the market effi-

ciency of a relatively small number of portfolios, typically 20�30, using monthly returns

observed over relatively long time periods. The use of large T as a way of ensuring that

N<T is also likely to increase the possibility of structural breaks in the b0s that could in

turn adversely affect the performance of the GRS test.

Recently, there has been a growing body of finance literature which uses individual se-

curity returns rather than portfolio returns for the test of pricing errors. Ang, Liu, and

Schwarz (2020) show that the smaller variation of beta estimates from creating portfolios

may not lead to smaller variation of cross-section regression estimates. Cremers, Halling,

and Weinbaum (2015) examine the pricing of both aggregate jump and volatility risk based

on individual stocks rather than portfolios. Chordia, Goyal, and Shanken (2017) advocate

the use of individual securities to investigate whether the source of expected return vari-

ation is from betas or security-specific characteristics.

Out of the two main assumptions that underlie the GRS test, the literature has focused

on the implications of non-normal errors for the GRS test, and ways of allowing for non-

normal errors when testing ai ¼ 0. Affleck-Graves and Mcdonald (1989) were among the

first to consider the robustness of the GRS test to non-normal errors who, using simulation

techniques, find that the size and power of GRS test can be adversely affected if the depart-

ure from non-normality of the errors is serious, but conclude that the GRS test is

“reasonably robust with respect to typical levels of nonnormality.” (p. 889). More recently,

Beaulieu, Dufour, and Khalaf (2007, BDK) and Gungor and Luger (2009) have proposed

tests of ai ¼ 0 that allow for non-normal errors, but retain the restriction N<T. BDK de-

velop an exact test which is applicable to a wide class of non-Gaussian error distributions,

and use Monte Carlo simulations to achieve the correct size for their test. GL propose two

distribution-free nonparametric sign tests in the case of single factor models that allow the

error distribution to be non-normal but require it to be cross-sectionally independent and

conditionally symmetrically distributed around zero.

1 Cross-sectional tests of CAPM have been considered by Douglas (1967); Black, Jensen, and

Scholes (1972); and Fama and MacBeth (1973), among others. An early review of the literature can

be found in Jensen (1972), and more recently in Fama and French (2004).
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Our primary focus in this article is on multivariate tests of H0 : ai ¼ 0; for

i ¼ 1; 2; . . . ;N, when N>T, while allowing for non-Gaussian and weakly cross-sectionally

correlated errors. The latter condition is required for consistent estimation of the error co-

variance matrix, V, when N is large relative to T. In the case of LFPM regressions with

weakly cross-sectionally correlated errors, consistent estimation of V can be achieved by

adaptive thresholding which sets to zero elements of the estimator of V that are below a

given threshold. Alternatively, feasible estimators of V can be obtained by Bayesian or clas-

sical shrinkage procedures that scale down the off-diagonal elements of V relative to its di-

agonal elements.2 Fan, Liao, and Mincheva (2011, 2013) consider consistent estimation of

V in the context of an approximate factor model. They assume V is sparse and propose an

adaptive thresholding estimator of V, which they show to be positive definite with satisfac-

tory small sample properties. Fan, Liao, and Yao (2015) consider a standardized Wald

(SW) test based on the estimator of V proposed by Fan, Liao, and Mincheva (2013) and de-

rive the conditions under which the SW test of H0 can be asymptotically justified. Gungor

and Luger (2016, GL) propose a simulation-based approach for testing pricing errors. They

claim that their test procedure is robust against non-normality and cross-sectional depend-

ence in the errors. Gagliardini, Ossola, and Scaillet (2016, GOS) develop two-pass regres-

sions of individual stock returns, allowing time-varying risk premia, and propose a SW test.

Lan, Feng, and Luo (2018) use random projection of the N security returns onto a smaller

number of portfolios to circumvent the high-dimensional problem when testing for alphas,

but require N and T to be of the same order of magnitude. Raponi, Robotti, and Zaffaroni

(2019) propose a test of pricing error in cross-section regression for fixed number of time-

series observations. They use a bias-corrected estimator of Shanken (1992) to standardize

their test statistic. Ma et al. (2020) employ polynomial spline techniques to allow for time

variations in factor loadings when testing for alphas. Feng et al. (2022) propose a max-of-

square type test of alphas instead of the average used in the literature, and recommend

using a combination of the two testing procedures. As noted by He et al. (2021), Bai and

Saranadasa (1996, BS) consider yet another SW type test which requires N and T to be of

the same order of magnitude.

In this article, we develop a test statistic that initially ignores the off-diagonal elements

of V and base the test of H0 on the average of the squared t-ratios for ai ¼ 0, over

i ¼ 1; 2; . . . ;N. This idea was originally proposed in the working paper version of this art-

icle, independently of a similar approach subsequently followed by GOS. Despite the simi-

larity of the two tests, as will be seen, our version of the test performs much better for all

combinations of N and T considered in the literature, and delivers excellent size and power

even if N is very large (around 5000), in contrast to other tests that tend to over reject as

N is increased relative to T. We are also able to establish the asymptotic distribution of

proposed test under much weaker conditions and without resorting to high level

2 There exists a large literature in statistics and econometrics on estimation of high-dimensional co-

variance matrices which use regularization techniques such as shrinkage, adaptive thresholding,

or other dimension-reducing procedures that impose certain structures on the variance matrix

such as sparsity, or factor structures. See, for example, Wong, Carter, and Kohn (2003); Ledoit and

Wolf (2004); HuAng et al. (2006); BL; Fan, Fan, and Lv (2008); Cai and Liu (2011); Fan, Liao, and

Mincheva (2011, 2013); and BPS.
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assumptions.3 We achieve this by making corrections to the numerator of the test statistic

to ensure that the test is more accurately centered, and correct the denominator of the test

statistic to allow for the effects of non-zero off-diagonal elements of the underlying error

covariance matrix. The correction involves consistently estimating N�1Tr R2ð Þ, where R ¼
qijð Þ is the error correlation matrix. The estimation of N�1Tr R2ð Þ ¼ N�1

PN
i¼1

PN
j¼1 q

2
ij is

subject to the curse of dimensionality which we address by using the multiple testing (MT)

threshold estimator, ~R, recently proposed by Bailey, Pesaran, and Smith (2019, BPS). We

show that consistent estimation of N�1Tr R2ð Þ can be achieved under a more general speci-

fication of R when compared with tests that require a consistent estimator of the full ma-

trix, R. We are able to establish that the resultant test is applicable more generally and

continues to be valid for a wider class of error covariances, and holds even if N rises faster

than T. The proposed test is also corrected for small sample effects of non-Gaussian errors,

which is of particular importance in finance. We refer to this test as Jensen’s a test of LFPM

and denote it by Ĵa. The test can also be viewed as a robust version of a SW test, in cases

where the off-diagonal elements of V become relatively less important as N ! 1. Further,

the implementation of the Ĵa test is computationally less demanding, since it does not in-

volve estimation of an invertible high-dimensional error covariance matrix.

We note that the Ĵa test is not the first one which is based on the standardized squared t-

ratio for ai ¼ 0. As discussed in He et al. (2021), Srivastava and Du (2008, SD) propose

standardized squared t-ratio, using a different standardization from ours. As will be seen

below, their standardization results in serious size distortion when N is larger than T (see

the SD test discussed in Section 5). Also, Hwang and Satchell (2014) proposed a

simulation-based test, using average of the squared t-ratios.

Our assumption regarding the sparsity of V advances on Chamberlain’s (1983) approxi-

mate factor model formulation of the asset model, where it is assumed that the largest

eigenvalue of V (or R) is uniformly bounded in N (Chamberlain, 1983, p. 1307). We relax

this assumption and allow the maximum column sum matrix norm of R to rise with N but

at a rate slower than
ffiffiffiffiffi

N
p

, while controlling the overall sparsity of R by requiring

N�1TrðR2Þ to be bounded in N. In this way, we are able to allow for two types of cross-

sectional error dependence: one due to the presence of weak common factors that are not

sufficiently strong to be detectable using standard estimation techniques, such as principal

components and another due to the error dependence that arises from interactive and spill-

over effects.

We establish that under the null hypothesis H0 : ai ¼ 0; the Ĵa test is asymptotically dis-

tributed as N(0, 1) for T and N ! 1 jointly, so long as N=T2 ! 0; mN ¼ kRk1 ¼ O Ndqð Þ,
0 � dq < 1=2, and N�1Tr R2ð Þ is bounded in N. The test is also shown to have power

against alternatives that rise in N1=2T. We consider the implications of allowing for pricing

errors on the asymptotic properties of the Ĵa test and show that testing H0 still allows for

some very limited degree of non-zero pricing errors. The proofs are quite involved and in

3 Monte Carlo experiments reported by Feng et al. (2022) also show significant over-rejection of the

null by the GOS test when T ¼ 50 and N ¼ 500. These authors do not report simulation results for

larger values of N as they increase T to 100 and 200. It is therefore unclear if the over-rejection

continues when N is also increased beyond 500 when T ¼ 100. As we also note in the article,

increasing T to avoid over-rejection increases the likelihood of breaks in factor loadings which

could be another source of over-rejection.

4 Journal of Financial Econometrics
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some parts rather tedious. For the purpose of clarity, we provide statements of the main

theorems with the associated assumptions in the article, but relegate the mathematical

details to the Appendix.

Small sample properties of the Ĵa test are investigated using Monte Carlo experiments

designed specifically to match the distributional features of the residuals of Fama–French

three factor regressions of individual securities in the Standard & Poor 500 (S&P 500)

index. We consider the comparative test results for the following nine sample size combina-

tions, T 2 f60;120; 240g and N ¼ f50;100; 200g. The Ĵa test performs well for all sample

size combinations with empirical size very close to the chosen nominal value of 5%, and

satisfactory power. Comparing the size and power of the Ĵa test with the GRS test in the

case of experiments with N<T for which the GRS statistics can be computed, we find that

the Ĵa test has higher power than the GRS test in most experiments. This could be due to

the non-normal errors adversely affecting the GRS test, as reported by Affleck-Graves and

Mcdonald (1989, 1990). In addition, the Ĵa test outperforms the test proposed by GOS as

well as the SW test of Fan, Liao, and Yao (2015) and the SD test of Srivastava and Du

(2008). The Ĵa test also outperforms the simulation-based Fmax test of Gungor and Luger

(2016) and the BS test of Bai and Saranadasa (1996), which are shown to be substantially

undersized across the various designs, and has lower power when compared with the Ĵa
test. Further, we carried out additional experiments using much larger values of N, namely

N ¼ 500; 1000; 2000, and 5000, while keeping T at 60, 120, and 240. We only considered

the Ĵa test for these experiments and found no major evidence of size distortions even for

the experiments with T¼ 60 andN¼ 5000.

Encouraged by the satisfactory performance of the Ĵa test even in cases where N is much

larger than T, we applied the test to monthly returns on the securities in the S&P 500 index

using rolling windows of size T¼60months. The survivorship bias problem is minimized

by considering the sample of securities included in the S&P 500 at the end of each month in

real time. We report the Ĵa test results for CAPM, three and five Fama–French factor mod-

els over the period September 1989 to April 2018, and the three sub-periods: (1) the Asian

financial crisis (1997M07–1998M12), (2) the Dot-com bubble burst (2000M03–

2002M10), and (3) the Great Recession (2007M12–2009M06) periods. We find that the Ĵa
test rejects H0 : ai ¼ 0, mainly during periods of major financial disruptions, particularly

the period of Great Recession, with the GOS test rejecting the null for most periods, largely

due to its tendency to over-reject when T is short relative toN.

The outline of the rest of the article is as follows. Section 1 sets out the LFPM, formu-

lates the null hypothesis that underlies the tests for alphas which allow for pricing errors

and weak latent or missing factors. Section 2 introduces the estimates of alpha and derives

the GRS test as a point of departure for dealing with the case where N>T. Section 3 pro-

poses the Ĵa test for large N panels and derives its asymptotic distribution, and Section 4

summarizes the main theoretical results. Section 5 reports on small sample properties of Ĵa,

GRS, GOS, SW, Fmax, BS and SD tests, using Monte Carlo techniques. Section 6 presents

the empirical application. Section 7 concludes. The proofs of the main theorems are pro-

vided in the Appendix, and the lemmas which are used for the proofs, as well as the add-

itional Monte Carlo evidence and the detailed discussion on data sources, are provided in

the Supplementary Material.

Notations: We use K and c to denote finite and small positive constants. If fftg1t¼1 is any

real sequence and fgtg1t¼1 is a sequences of positive real numbers, then ft ¼ OðgtÞ, if there

Pesaran & Yamagata j Testing for Alpha in Linear Factor Pricing Models 5
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exists a positive finite constant K such that jftj=gt � K for all t. ft ¼ oðgtÞ if ft=gt ! 0 as

t ! 1. If fftg1t¼1 and fgtg1t¼1 are both positive sequences of real numbers, then ft ¼ � gtð Þ if
there exists T0 � 1 and positive finite constants C0 and C1, such that inft�T0 ft=gtð Þ � C0

and supt�T0
ft=gtð Þ � C1. For aN�Nmatrix A ¼ aijð Þ, the minimum and maximum eigen-

values of matrix A are denoted by kminðAÞ and kmaxðAÞ, respectively, its trace by TrðAÞ, its
maximum absolute column and row sum matrix norms by kAk1 ¼ supi

PN
j¼1 jaijj, and,

kAk1 ¼ supj
PN

i¼1 jaijj, respectively, its Frobenius and spectral norms by kAkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðA0AÞ
p

,

and kAk ¼ k1=2maxðA0AÞ, respectively. For aN � 1 dimensional vector, a; kak ¼ a0að Þ1=2.

1 The LFPM and APT Restrictions

We base our test of alpha on the following statistical factor model:

Rit � rft ¼ ai þ b0ift þ uit; (1)

where Rit is the return on security i during period t, r
f
t is the risk-free rate, ft ¼

ðf1t; f2t; . . . ; fmtÞ0 is the m� 1 vector of observed factors, bi ¼ ðbi1; bi2; . . . ; bimÞ0 is the asso-
ciated vector of risk factors with mean l ¼ E ftð Þ. Under the APT due to Ross (1976), the

following restrictions are imposed:

E Rit � r
f
t

� �

¼ lir ¼ k0 þ b0ikþ -i; (2)

where k0 is the zero-beta expected excess return, k is the m� 1 vector of risk premia, and

-i is the pricing error of security i such that

X

N

i¼1

lir � k0 � b0ik
� �2 ¼

X

N

i¼1

-2
i < K: (3)

This latter condition is given by Equation (18) in Theorem II of Ross and ensures that

under APT pricing errors are sparse. In this article, we consider a more general bound on

the pricing errors and assume that

X

N

i¼1

-2
i ¼ OðNd-Þ; (4)

where the exponent d- measures the degrees of pervasiveness of pricing errors. Deviations

from APT are measured in terms of d- (0 � d- < 1). Large values of d- represent major

departures from APT.

To motivate the alpha tests of ai ¼ 0 in the statistical model, we note that under

Equation (1),

E Rit � rft

� �

¼ ai þ b0il;

and for the statistical model to be compatible with the APT condition (2), we must have

ai ¼ k0 þ b0i k� lð Þ þ -i: (5)

6 Journal of Financial Econometrics
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Therefore, testing the null hypothesis,H0 : ai ¼ 0 for all i, can be viewed as tests of the joint

hypothesis k0 ¼ 0, k ¼ l, (referred to as “no spanning errors” here after), and testing

-i ¼ 0, for all i (referred to as “no pricing errors”). Under APT, the excess return regres-

sions can be written as

yit ¼ k0 þ b0iðk� lÞ þ -i þ b0ift þ uit; for i ¼ 1;2; . . . ;N; t ¼ 1;2; . . . ;T; (6)

where yit ¼ Rit � r
f
t and -i satisfies Equation (4).4 Under APT, the above model is often

referred to as the LFPM, to be distinguished from the statistical linear factor model given

by Equation (1). It is also worth noting that when testing H0 it is still possible to allow for a

limited degree of non-zero pricing errors, depending on the prevalence of the pricing errors

and the relative expansion rates ofN and T. See Remark 8 below.5

To ensure that the risk from common factors, ft, cannot be fully diversified we assume

that at least one of the observed factors is strong, in the sense that

sup
s

X

N

i¼1

jbisj ¼ �ðNÞ: (7)

Our test does not require all the observed factors to be strong, and allows these factors

to have different degrees of strength. In a recent paper, Bailey, Kapetanios, and Pesaran

(2021) find that among over 140 factors proposed in the literature only the market factor

can be regarded as strong. The other factors are estimated to be semi-strong, such that the

sum of their loadings in absolute terms rises with N but at the rate of db, where

1=2 < db < 1. Also, there is no guarantee that all relevant factors are included in the asset

pricing model, and to allow for possible missing (or latent) factors, we assume that

uit ¼ c0ivt þ git; (8)

where vt is a k� 1 vector of latent common factors that are IIDð0; IkÞ; ci ¼ ðci1; ci2; . . . ; cikÞ0

is the associated vector of factor loadings with bounded elements, supi;s jcisj < K. The la-

tent factors included in the error process must be weak such that

sup
s

X

N

i¼1

jcisj ¼ O Ndcð Þ; with 0 � dc < 1=2: (9)

The idiosyncratic errors, git, are also allowed to be weakly cross-correlated. Specifically,

we assume that gt ¼ g1t; g2t; . . . :; gNtð Þ0 ¼ Qgeg;t, where eg;t ¼ ðeg;1t; eg;2t; . . . :; eg;NtÞ0; feg;itg

are IID processes over i and t, with zero means , unit variances, c2;eg ¼ E e4g;it

� �

� 3, and

supi;t Eðjeg;itj8þcÞ � K < 1, for some c>0. We denote the correlation matrix of gt by

Rg ¼ qg;ijð Þ and note that Rg ¼ QgQ
0
g. To ensure that ut ¼ ðu1t;u2t; . . . ; uNtÞ0 is weakly

cross-correlated, we require that k, the number of weak factors, is finite, and

kRgk1 � kQgk1kQgk1 � K. The error specification in Equation (8) is quite general and

allows for weak latent common factors as well as network and spatial error cross

4 Some researchers have focused on testing the restrictions k� l ¼ 0, allowing k0 to be unrestrict-

ed. See, for example, Shanken (1992).

5 Note that the GRS test is also based on the same null hypothesis, H0 : ai ¼ 0, and assumes zero

pricing errors.
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dependence. We note that common factors cannot substitute for network dependence and

allowing for both types of dependence in the errors is important.

2 Preliminaries and the GRS Test

It proves useful to stack the panel regressions in Equation (6) by time series as well as by

cross-section observations. Stacking by time-series observations we have

yi: ¼ aisT þ Fbi þ ui:; (10)

where yi:¼ðyi1;yi2; . . . ;yiTÞ0; sT ¼ð1;1; . . . ;1Þ0; F0¼ðf1;f2; . . . ;fTÞ, and ui:¼ðui1;ui2; . . . ;uiTÞ0.
Stacking by cross-sectional observations we have

yt ¼ aþ Bft þ ut; (11)

where yt ¼ ðy1t; y2t; . . . ; yNtÞ0, a ¼ ða1; a2; . . . ; aNÞ0, B ¼ ðb1; b2; . . . ;bNÞ0, and ut ¼ ðu1t;
u2t; . . . ;uNtÞ0.

For derivation of the exact GRS (Gibbons et al., 1989) test, we assume that

ut � IIDN 0;Vð Þ, namely errors, uit; are Gaussian, have zero means, and are serially uncor-

related such that Eðuitujt0 Þ ¼ 0, for all i, j, and t 6¼ t0, with E utu
0
t

� �

¼ V, where V ¼ rijð Þ is
an N�N symmetric positive definite matrix. A non-Gaussian version of this assumption

will be considered below. Starting with Jensen’s (1968) test of individual ai’s, we note that

the OLS estimator of ai is given by

âi ¼ y0i:
MFsT

s0TMFsT

� �

; (12)

where MF ¼ IT � F F0Fð Þ�1
F0, and is an efficient estimator despite the fact that V is not a di-

agonal matrix. This result follows since Equation (10) is a seemingly unrelated regression

equation specification with the same set of regressors across all the N securities. It is also

easily seen that

âi ¼ ais
0
T þ b0iF

0 þ u0i:
� � MFsT

s0TMFsT

� �

¼ ai þ u0i:c; for i ¼ 1; 2; . . . ;N; (13)

where

c ¼ MFsT=s
0
TMFsT : (14)

Stacking the N estimates in Equation (13), we have

â ¼ aþ

u01:c

u02:c

..

.

u0N:c

0

B

B

B

B

B

@

1

C

C

C

C

C

A

;

where u0i:c ¼
PT

t¼1 uitct; and ct is the tth element of c. Hence,

â ¼ aþ
X

T

t¼1

utct; (15)

8 Journal of Financial Econometrics
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whereas before ut ¼ u1t;u2t; . . . ; uNtð Þ0. Therefore, under Gaussianity,

â � N a;
1

s0TMFsT
V

� �

:

Also, in the case where T � N þmþ 1, an unbiased and invertible estimator of V is

given by T
T�m�1

� �

V̂, where V̂ is the sample covariance matrix estimator

V̂ ¼ T�1
XT

t¼1
ûtû

0
t; (16)

ût ¼ ðû1t; û2t; . . . ; ûNtÞ0, ûit is the OLS residual from the regression of yit on an intercept

and ft.

Under Gaussianity, ût has a multivariate normal distribution with zero means, â and ût

are independently distributed, and hence using standard results from multivariate analysis

it follows that (see, e.g., Theorem 5.2.2 in Anderson, 2003) the GRS statistic (see p. 1124

of GRS)

GRS ¼ Ŵ 0 ¼ T �N �m

N

s0TMFsT

T

� �

â0V̂
�1
â; (17)

is distributed exactly as a non-central F distribution with ðT �N �mÞ and N degrees of

freedom, and the non-centrality parameter l2a ¼ T�N�m
N

s0
T
MFsT
T

� �

a0V�1a, which is zero under

H0 : a ¼ 0.6

As noted in the introduction, the single most important limiting feature of the GRS and

other related tests proposed in the literature is the requirement that T must be larger than

N. Due to this, in applications of the GRS test, individual securities are grouped into (sub)-

portfolios and the GRS test is then typically applied to 20–30 portfolios over relatively long

time periods. However, the market efficiency hypothesis implies that ai ¼ 0 for all individ-

ual securities which form the market portfolio, and it is clearly desirable to develop tests

which permitN to be much larger than T. This is even more so if we would like to minimize

the adverse effects of possible time variations in the bi’s.

It is also worth bearing in mind that the GRS test does not impose any restrictions on V,

which is possible only because N is taken to be fixed as T ! 1. Large T is required to take

account of non-Gaussian errors. While in the context of the approximate factor models

advanced in Chamberlain (1983), the errors are at most weakly correlated, which places

restrictions on the off-diagonal elements of V and its inverse. In addition, such restrictions

are also statistically important in order to estimate V and its inverse when N>T. The test

developed in this article for a large number of individual securities is therefore clearly dif-

ferent from the GRS test, both theoretically and statistically. Furthermore, as we shall see

below, a test that exploits restrictions implied by the weak cross-sectional correlation of the

errors is likely to have much better power properties than the GRS test that does not make

use of such restrictions. Finally, being a multivariate F-test, the power of the GRS test is

6 Noting that ð1þ f
0
X̂

�1
fÞ�1 ¼ T�1 s0TMF sT

� �

, where f ¼ T�1
PT

t¼1 ft and X̂ ¼ T�1
PT

t¼1

ðft � fÞðft � fÞ0 , it is easily seen that Equation (17) can be written as the widely used expression

of the GRS statistic, T�N�m
N

ð1þ f
0
X̂

�1
fÞ�1

â0V̂
�1
â. As discussed in GRS, â0V̂

�1
â measures the ex

post maximum pricing error.
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primarily driven by the time dimension, T, while for the analysis of a large number of assets

or portfolios we need tests that have the correct size and are powerful for large N.

3 Large N Tests of Alpha in LFPMs

To develop large N tests of H0 : a ¼ 0, we consider the following version of the GRS statis-

tic, as set out in Equation (17),

Wv ¼ s0TMFsT
� �

â0V�1â; (18)

where we have dropped the degrees of freedom adjustment term and replaced V̂ by its true

value. Under H0 : a ¼ 0, and assuming that the errors are Gaussian we have Wv � v2N.

Since the mean and the variance of a v2N random variable are N and 2N, one could consider

a SW test statistic defined by

SWv ¼
s0TMFsT
� �

â0V�1â�N
ffiffiffiffiffiffiffi

2N
p : (19)

Under Gaussianity and H0 : a ¼ 0; SWv!dN 0; 1ð Þ as N ! 1. To construct tests of large

N panels, a suitable estimator of V is required. But as was noted in the introduction this is

possible only if we are prepared to impose restrictions on the structure of V. In the case of

LFPM regressions where the errors are at most weakly cross-sectionally correlated, this can

be achieved by adaptive thresholding which sets to zero elements of V that are sufficiently

small, or by use of shrinkage type estimators that put a substantial amount of weight on the

diagonal elements of the shrinkage estimator of V. Fan, Liao, and Mincheva (2011, 2013)

consider consistent estimation of V in the context of an approximate factor model. They as-

sume V is sparse and propose an adaptive threshold estimator, denoted as V̂POET, which

they show to be positive definite with satisfactory small sample properties. We refer to the

feasible SW test statistic which replaces V with V̂POET as SWPOET test.7

3.1 A Ĵ a Test for Large N Securities

To overcome some of the above mentioned limitations of the plug-in procedures, we avoid

using an estimator of V altogether and base our proposed test on diagonal elements of V,

namely the N�N diagonal matrix, D ¼ diagðr11;r22; . . . ;rNNÞ, with rii ¼ E u2it
� �

, rather

than the full covariance matrix. Specifically, we consider the statistic

Wd ¼ s0TMFsT
� �

â0D�1â ¼ s0TMFsT
� �

X

N

i¼1

â2i
rii

 !

; (20)

7 Another candidate is the shrinkage estimator of V proposed by Ledoit and Wolf (2004), which we

denote by V̂LW, and refer to the associated SW statistic as SWLW. Such “plug-in” approaches are

subject to two important shortcomings. First, even if V can be estimated consistently, the test might

perform poorly in the case of non-Gaussian errors. Notice that the standardization of the Wald stat-

istic is carried out assuming Gaussianity. Further, consistent estimation of V in the Frobenius norm

sense still requires T to rise faster than N, and in practice threshold estimators of V are not guaran-

teed to be invertible in finite samples where N � T .

10 Journal of Financial Econometrics

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jfe
c
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/jjfin

e
c
/n

b
a
d
0
0
2
/7

0
3
4
2
5
5
 b

y
 g

u
e
s
t o

n
 2

2
 F

e
b
ru

a
ry

 2
0
2
3



and its feasible counterpart given by

Ŵ d ¼ s0TMFsT
� �

â0D̂
�1

v â ¼ s0TMFsT

v�1T

� �

X

N

i¼1

â2i
r̂ ii

 !

; (21)

where r̂ ii ¼ û 0
i:û i:=T. The degrees of freedom v ¼ T �m� 1 are introduced to correct for

small sample bias of the test.8 The infeasible statistic, Wd, can also be written as

Wd ¼
X

N

i¼1

z2i ; (22)

where

z2i ¼ â2i ðs0TMFsTÞ=rii: (23)

It is then easily seen that

Ŵd ¼
X

N

i¼1

t2i ; (24)

where ti denotes the standard t-ratio of ai given by

t2i ¼ â2i ðs0TMFsTÞ
v�1Tr̂ ii

: (25)

As with the panel testing strategy developed in Im, Pesaran, and Shin (2003), a standar-

dized version of Ŵ d, defined by Equation (24), can now be considered:

N�1=2½Ŵ d � E Ŵ d

� �

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Ŵ d

� �

q ; (26)

where

N�1E Ŵ d

� �

¼ E t2i

� �

; (27)

N�1Var Ŵ d

� �

¼N�1Var
XN

i¼1
t2i

� �

¼N�1
XN

i¼1
Var t2i

� �

þ 2

N

XN

i¼2

Xi�1

j¼1
Cov t2i ;t

2
j

� �

: (28)

Under Gaussianity, the individual ti statistics are identically distributed as Student’s t with v

degrees of freedom, and we have (assuming v ¼ T �m� 1 > 4)

Eðt2i Þ ¼
v

v� 2
; Varðt2i Þ ¼

v

v� 2

� �2 2ðv� 1Þ
v� 4

: (29)

Using Equations (27)–(29), the standardized statistic (26) can now be written as

Ja h2N

� �

¼ N�1=2½Ŵ d � E Ŵd

� �

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Ŵ d

� �

q ¼
N�1=2

PN
i¼1 t2i � v

v�2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v
v�2

� �2 2ðv�1Þ
v�4 1þ h2N

� �

r ; (30)

8 Only securities with r̂ ii > 0 are included in Ŵ d .
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where

h2N ¼ N�1
XN

i¼2

Xi�1

j¼1
Corr t2i ; t

2
j

� �

; (31)

and

Corrðt2i ; t2j Þ ¼ Covðt2i ; t2j Þ=½Varðt2i ÞVarðt2j Þ	
1=2:

To make the Ja test operational, we need to provide a large N consistent estimator of h2N.

Second, we need to show that, despite the fact that Ja test is standardized assuming ti has a

standard t distribution, the test will continue to have satisfactory small sample performance

even if such an assumption does not hold due to the non-Gaussianity of the underlying

errors. More formally, in what follows we relax the Gaussianity assumption and assume

that ut ¼ Qet, where Q is an N�N invertible matrix; et ¼ e1t; e2t; . . . ; eNtð Þ0, and feitg is an

IID process over i and t, with means zero and unit variances, and for some c>0, Eðjeitj8þcÞ
exists, for all i and t. Then, E utu

0
t

� �

¼ V ¼ ðrijÞ ¼ QQ0 and V is an N�N symmetric posi-

tive definite matrix, with kmin Vð Þ � c > 0. We allow for cross-sectional error heteroskedas-

ticity, but assume that the errors are homoskedastic over time. This assumption can be

relaxed by replacing the assumption of error independence by a suitable martingale differ-

ence assumption. This extension will not be attempted in this article.9

3.2 Sparsity Conditions on Error Correlation Matrix

As noted already, we advance on the literature by allowing V ¼ ðrijÞ to be approximately

sparse. Equivalently, we define sparsity in terms of the elements of the correlation matrix

R ¼ qijð Þ, where qij ¼ rij=
ffiffiffiffiffiffiffiffiffiffi

riirjj
p

. We consider the following two conditions:

mN ¼ max
1� i�N

XN

j¼1
jqijj ¼ OðNdq Þ; with 0 � dq < 1=2; (32)

and

Tr R2ð Þ ¼
X

N

i¼1

X

N

j¼1

q2ij ¼ O Nð Þ: (33)

Under condition (32), mN is allowed to rise with N, but at a slower rate than
ffiffiffiffiffi

N
p

. For

example, consider the case where condition (32) applies to the first p rows of R (with p

fixed), and the rest of theN � p rows of R are absolute summable, namely

X

N

j¼1

jqijj ¼ O Ndqð Þ; for i ¼ 1; 2; . . . ;p;

X

N

j¼1

jqijj ¼ Oð1Þ; for i ¼ pþ 1; pþ 2; . . . ;N:

9 We conducted an experiment with GARCH(1,1) errors and the evidence supports our claim. The

results are reported in Table 5.
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Then, since jqijj2 � jqijj, it readily follows that

Tr R2ð Þ ¼
X

p

i¼1

X

N

j¼1

q2ij

0

@

1

Aþ
X

N

i¼pþ1

X

N

j¼1

q2ij

�
X

p

i¼1

X

N

j¼1

jqijj

0

@

1

Aþ
X

N

i¼pþ1

X

N

j¼1

jqijj

� OðpNdq Þ þ ðN � pÞOð1Þ ¼ OðNÞ; for 0 � dq < 1=2:

Another important case covered by our sparsity assumption is when uit has the weak factor

structure given by Equation (8), with the factor loadings, ci, satisfying Equation (9).

Denoting the correlation matrix of the idiosyncratic errors, gt ¼ g1t; g2t; . . . ; gNtð Þ0 by

Rg ¼ qg;ijð Þ, and assuming that

kRgk1 < K; (34)

we have TrðN�1R2
gÞ ¼ Oð1Þ. It is now easily seen that Conditions (32) and (33) are also sat-

isfied under this set up. Denoting the correlation matrix of ut by R ¼ qijð Þ, we have

qij ¼ ~c0i~cj þ
rg;iirg;jj

riirjj

� �1=2

qg;ij; (35)

where ~ci ¼ ci=r
1=2
ii ¼ ci= c0ici þ rg;ii

� �1=2
. Since jqijj �

Pk
s¼1 j~c isjj~c jsj þ jqg;ijj, then (note that

rg;ii � rii ¼ c0ici þ rg;ii)

mN ¼ kRk1 ¼ max
i

X

N

j¼1

X

k

s¼1

j~cisjj~c jsj þmax
i

X

N

j¼1

jqg;ijj

� k supi;s j~cisj
� �

maxs
X

N

j¼1

j~c jsj

0

@

1

Aþ kRgk1:

Since supi;s j~c isj � supi;s jcisj, and sups
PN

j¼1 j~cjsj � sups
PN

j¼1 jcjsj ¼ OðNdcÞ, and by as-

sumption kRgk1 < K, Condition (32) is met if dq � dc. Also, (noting that supi;s j~cisj � 1)

N�1Tr R2ð Þ � N�1
X

N

i¼1

X

N

j¼1

X

k

s¼1

j~c isjj~cjsj þ jqg;ijj

0

@

1

A

2

� N�1
X

N

i¼1

X

N

j¼1

X

k

s¼1

j~cisjj~cjsj

0

@

1

A

2

þ 2N�1
X

N

i¼1

X

N

j¼1

X

k

s¼1

j~cisjj~c jsj þN�1Tr R2
g

� �

� N�1
X

N

i¼1

X

N

j¼1

X

k

s¼1

j~cisjj~cjsj

0

@

1

A

2

þ 2N�1
X

N

i¼1

X

N

j¼1

X

k

s¼1

j~cisjj~c jsj þN�1Tr R2
g

� �

� k2 þ 2kð ÞN�1 sups
X

N

i¼1

jcisj
 !2

þN�1Tr R2
g

� �

:
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Hence,

N�1Tr R2ð Þ ¼ N�1Tr R2
g

� �

þO N2dc�1ð Þ;

and under Conditions (9) and (34),N�1Tr R2ð Þ is bounded inN if 0 � dc � 1=2:

Remark 1: Our assumption of approximate sparsity allows for a sufficiently high degree

of cross error correlation, which is important for the analysis of financial data, where it is

not guaranteed that inclusion of observed factors in the return regressions will totally elim-

inate weak error correlations due to spatial and/or within sector error correlations. It is im-

portant that both factor and spatial type error correlations, representing strong and weak

forms of interdependencies are taken into account when testing for alpha. By allowing the

error term to include weak factors, one only needs to focus on identification of strong and

semi-strong factors to be included in ft. On this see also Bailey, Kapetanios, and Pesaran

(2021).

3.3 Non-Gaussianity

For the discussion of the effects of non-Gaussianity on the Ja test below, it is convenient to

introduce the following scaled error:

nit ¼ uit=
ffiffiffiffiffi

rii
p

; (36)

so that for each i, nit has zero mean and unit variance. In the case where the errors are non-

Gaussian the skewness and excess kurtosis of uit are given by c1;i ¼ Eðn3itÞ and

c2;i ¼ Eðn4itÞ � 3, respectively, and could differ across i. Note that under non-Gaussian

errors, ti is no longer Student t-distributed and Eðt2i Þ and Vðt2i Þ need not be the same across

i, due to the heterogeneity of c1;i and c2;i over i. Using a slightly extended version of the

Laplace approximation of moments of the ratio of quadratic forms by Lieberman (1994),

we are able to derive the following approximations of Eðt2i Þ and Varðt2i Þ10:

E t2i

� �

¼ v

v� 2
þO T�3=2ð Þ; (37)

and

Var t2i

� �

¼ v

v� 2

� �2 2 v� 1ð Þ
v� 4ð Þ þO T�1ð Þ: (38)

Substituting Equations (37) and (38) into Equation (26), we have the following non-

Gaussian version of Jaðh2NÞ, defined by Equation (30):

Ja h2N

� �

¼
N�1=2

P

N

i¼1

t2i � v
v�2

� �

þO
ffiffiffiffiffiffiffiffiffiffiffiffiffi

N=T3
p

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v
v�2

� �2 2 v�1ð Þ
v�4ð Þ þO T�1ð Þ

h i

1þ h2N

� �

r ;

where h2N is defined by Equation (31). When the numerator of the Ja statistic is replaced by

N�1=2
PN

i¼1 t2i � 1
� �

, which is the typical mean adjustment employed by Fan, Liao, and

10 See Lemma 21 in the Supplementary Material of the article.
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Yao (2015) and GOS, then the order of the asymptotic error of the numerator of such test

statistics becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffi

N=T2
p

. This is one of the reasons why our proposed test performs bet-

ter than the ones proposed in the literature, especially in cases where N � T, and there are

significant departures from Gaussianity. The asymptotic error of using v
v�2

� �2 2 v�1ð Þ
v�4ð Þ

for Varðt2i Þ under non-Gaussianity in the Ja test is OðT�1Þ, which is small for sufficiently

large T.11

3.4 Allowing for Error Cross-Sectional Dependence

A second important difference between the Ja test and the other tests proposed in the litera-

ture is the inclusion of h2N in the denominator of the test statistic to take account of error

correlations. Using Equation (31), we first note that asN and T ! 112

h2N � ðN � 1Þq2N ! 0; (39)

so long asN=T2 ! 0; and 0 � dc < 1=2, where

q2N ¼ 2

NðN � 1Þ
XN

i¼2

Xi�1

j¼1
q2ij: (40)

Here, q2N is known as the average pair-wise squared correlation coefficient and plays a

key role in tests of error cross-sectional correlations in panel regressions (see, e.g., Breusch

and Pagan, 1980; Pesaran, Ullah, and Yamagata, 2008). To see the relationship between

h2N and the sparsity of V, we note that

N�1Tr R2ð Þ ¼ 1þ 2

N

XN

i¼2

Xi�1

j¼1
q2ij ¼ 1þ N � 1ð Þq2N;

which in view of Equation (39) justifies replacing 1þ h2N by N�1Tr R2ð Þ for N and T suffi-

ciently large so long as N=T2 ! 0; and 0 � dc < 1=2. Therefore, ignoring h2N can lead to

serious size-distortions even for large N and T panels when the errors are cross-correlated

and N�1Tr R2ð Þ does not tend to zero, since the denominator of Ja will be under-estimated.

The size distortion will be present even if we impose stronger sparsity conditions on V, for

example, by requiring mN, defined by Equation (32), to be bounded in N. It is, therefore,

important that h2N (or q2N) is replaced by a suitable estimator.

One possible way of estimating q2N would be to use sample correlation coefficients, q̂ij,

defined as

q̂ij ¼ r̂ ij=
ffiffiffiffiffiffiffiffiffiffiffi

r̂ iir̂ jj

p

; (41)

where r̂ij ¼ T�1
PT

t¼1 ûitûjt and û it is the residuals from the OLS regression of yi on

G ¼ ðsT ; FÞ. However, such an estimator is likely to perform poorly in cases where N is

large relative to T, and some form of thresholding is required, as discussed in the literature

on estimation of large covariance matrices.13 Here, we consider the application of the MT

approach to regularization of large covariance matrices proposed by BPS. However, BPS

11 Small sample evidence on the efficacy of using N�1=2
PN

i¼1ðt 2i � v
v�2

Þ over N�1=2
PN

i¼1ðt 2i � 1Þ is
reported in Table 7.

12 For a proof of Equation (39), see Lemma 18 in the Supplementary Material.

13 See, for example, Cai and Liu (2011); Fan, Liao, and Mincheva (2013); BPS, among others.
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establish their results for yit � yi, while we need to apply the thresholding approach to û it.

Second, BPS consider exact sparsity conditions on the error covariance matrix, while we

allow for much more general sparsity conditions. We extend BPS’s analysis to address both

of these issues.14

The MT estimator of qij, denoted by ~qij; is given by

~q ij ¼ q̂ ijI½j
ffiffiffi

v
p

q̂ ijj > cpðNÞ	; (42)

where v ¼ T �m� 1,

cpðNÞ ¼ U
�1 1� p

2Nd

� �

; (43)

p is the nominal significance level for testing qij ¼ 0 (0 < p < 1), T ¼ cdN
d, where cd, d,

and d are finite positive constants. Using Equation (42), the MT estimator of q2N is given by

~q2
N;T ¼ 2

NðN � 1Þ
XN

i¼2

Xi�1

j¼1
~q2
ij: (44)

Under the sparsity conditions (32) and (33), it can be shown that ðN � 1Þð~q2
N;T � q2NÞ!p0

as well as in l1-norm, so long as N=T2 ! 0 (or equivalently if d>1=2) as N and T ! 1;

jointly, and if

d >
ð2� dÞ
1� �ð Þ umax; (45)

for some small � > 0, where umax � 1þ jc2;eg j, where c2;eg ¼ Eðe4g;itÞ � 3; eg;it is the ith

element of the N � 1 error vector eg;t ¼ Q�1
g gt, with gt ¼ g1t; g2t; . . . :; gNtð Þ0.15 The critical

value function, cp Nð Þ; depends on the nominal level of significance, p, and the choice of d,

subject to Condition (45). The test results are unlikely to be sensitive to the choice of p,

over the conventional values in the range of 1–10%. d determines the relative expansion

rate of N and T. The value of u depends on the degree of dependence of the errors even if

they are uncorrelated. In the case where the errors, eg;it, are Gaussian c2;eg ¼ 0 and u � 1,

and it is sufficient to set d ¼ 2� d. However, in the non-Gaussian case, and given the evi-

dence provided by Longin and Solnik (2001) and Ang, Chen, and Xing (2006) on the de-

gree of nonlinear dependence of asset returns, higher values of d might be required. In

simulations and empirical exercises to be reported below, we set f Nð Þ ¼ N, which is

equivalent to setting d¼ 1.16

Accordingly, we propose the following feasible version of the Ja statistic

Ĵa ¼
N�1=2

P

N

i¼1

t2i � v
v�2

� �

v
v�2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðv�1Þ
v�4ð Þ ½1þ ðN � 1Þ~q2

N;T 	
q ; (46)

14 Other thresholding estimators of V proposed in the literature can also be used.

15 See Theorem 4 in Section 4 and its proof in the Appendix.

16 The robustness of the Ja test against non-Gaussianity is investigated and reported in Table 7.

These results are generally supportive of setting d ¼ 1.
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where ti is the t-ratio for testing ai ¼ 0, defined by Equation (25), v ¼ T �m� 1, and ~q2
N;T

is given by Equation (44). The Ĵa test is robust to non-Gaussian errors and allows for a rela-

tively high degree of error cross-sectional dependence. In the next section, we provide a for-

mal statement of the conditions under which Ĵa tends to a normal distribution.

3.5 Survivorship Bias

When applying the Ĵa test, it is important to minimize the effect of survivorship bias. To

this end, the GRS type tests of alpha consider a relatively small number of portfolios over a

relatively large time period to achieve sufficient power. By making use of portfolios rather

than individual securities, the GRS test is less likely to suffer from survivorship bias. By

comparison, tests such as the Ĵa test can suffer from the survivorship bias due to the fact

that they are applied to individual securities directly and obtain power from increases in N

as well as from T. To deal with the survivorship bias, we propose that the Ĵa test is applied

recursively to securities that have been trading for at least T time periods (days or months)

at any given time t. The set of securities included in the Ĵa test varies over time and dynam-

ically takes account of exit and entry of securities in the market. The number of securities,

Ns, used in the test at any point of time, s; depends on the choice of T, and declines as T is

increased. It is clearly important that a balance is struck between T and Ns. Since the Ĵa test

is applicable even if N is much larger than T, and given that the power of the Ĵa test rises

both in N and T, then it is advisable to set T such that minsðNsÞ=T2 is sufficiently small.

This procedure is followed in the empirical application discussed in Section 6, where we set

T¼60 and end up with Ns in the range ½464; 487	, giving minsðNsÞ=T2 ¼ 0:12.

3.6 Other Existing Tests

3.6.1 The GOS test

It might be helpful to compare our proposed test statistic Ĵa; given by Equation (46), with

the one proposed by Gagliardini et al. (2016, pp. 1008–9):

GOS ¼
N�1=2

P

N

i¼1

t2i � 1
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½1þ ðN � 1Þq̂2
BL	

q ; (47)

where q̂2
BL is an estimator of q2N based on Bickel and Levina (2008, BL) threshold estimator

of qij.
17 As noted in the introduction, the GOS statistic is closely related to the Ĵa test statis-

tic, and also differ from it in a number of important respects. First, GOS do not employ the

degrees of freedom adjustment for the standardization of t2i , which we have shown will pro-

vide more accurate normal approximation especially when N is much larger than T.

Despite the simplicity of the corrections, as can be seen from the Appendix and the

Supplementary Material, the derivations and the proofs are not straightforward. Second,

for the estimation of large variance–covariance matrix, the evidence in BPS shows that the

MT estimator outperforms the BL estimator almost uniformly in their experiments, and

our use of MT estimator of q2N turns out to yield much better results. Third, the BL estima-

tion requires cross-validation, which can be computationally far more costly than the MT

estimation. Finally, we derive limiting distribution of the Ĵa test statistic under primitive

17 For more details, see Supplementary Section M1.1.
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assumptions with fairly general error covariance structure, while GOS place the high level

assumption of asymptotic normality of the test statistic (see their Assumption A.5) or only

consider a restrictive error covariance structure (see their Appendix F).18 We believe that

our error specification is valid more generally in empirical asset pricing literature where not

all factors can be identified and estimated, and in consequence one needs to allow for a

much wider degree of error cross-correlations to take account of weak unobserved effects.

3.6.2 The GL Fmax

GL propose a resampling test based on Fi ¼ t2i test statistic for ai ¼ 0, defined as

Fmax ¼ max
1� i�N

Fi: (48)

They consider various versions of the test, and recommend the use of the maximum test

which we will consider in our Monte Carlo exercise. The authors claim that their resam-

pling test procedure is robust against non-normality and cross-sectional error depend-

ence.19 Their test effectively makes use of wild bootstrap resampling aimed at preserving

the sample residual cross-sectional correlations, and deals with nuisance parameters by the

introduction of a bounds testing procedure.

3.6.3 The BS and SD tests in He et al. (2021)

He et al. (2021) consider the following two test statistics. Based on BS, He et al. (2021) pro-

pose a SW type test which requires N and T to be of the same order of magnitude:

BS ¼ T�1s0TMFsT
� �

â0â=� Tr V̂ð Þ=T
c1fTr V̂

2
� �

� c2½Tr V̂ð Þ	2g1=2
; (49)

where c1 ¼ 2 T�1ð Þ
T�2ð Þ T�1ð Þ and c2 ¼ 1

T�1. Based on Srivastava and Du (2008), He et al. (2021)

also propose a test statistic which is a standardized squared t-ratio, using different stand-

ardization from ours:

SD ¼ T�1s0TMFsT
� �

â0D̂
�1

v â� c3

fc4½Tr D̂
2

v

� �

� c5	½1þ Tr D̂
2

v

� �

=N3=2	2g1=2
; (50)

where c3 ¼ N T�1ð Þ
TðT�3Þ ; c4 ¼ 2

T2, c5 ¼ N2

T�1.

4 Summary of the Main Theoretical Results

In this section, we provide the list of assumptions and a formal statement of the theorems

for the size and power of the proposed Ĵa. First, we state the assumptions required for

establishing the results.

Assumption 1: The m� 1 vector of common observed factors, ft, in the return

regressions, Equation (6), are distributed independently of the errors, uit0 for all i, t,

18 See Assumptions BD.1–3 in GOS.

19 We are grateful to Richard Luger for sharing the code to compute the resampling test.
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and t0. The number of factors, m, is fixed, and at least one of the factors is strong, in the

sense that

sup
s

X

N

i¼1

jbisj ¼ �ðNÞ; (51)

and the factors satisfy f0tft � K < 1; for all t. The ðmþ 1Þ � ðmþ 1Þ matrix T�1G0G;

with G ¼ sT ;Fð Þ; is a positive definite matrix for all T, and as T ! 1, and s0TMFsT > 0,

whereMF ¼ IT � F F0Fð Þ�1
F0.

Assumption 2: The errors, uit, in Equation (6), have the following mixed weak-factor spa-

tial representation

uit ¼ c0ivt þ git; for i ¼ 1; 2; . . . ;N; t ¼ 1; 2; . . . ;T; (52)

where ci ¼ ðci1; ci2; . . . ; cikÞ0 is a k� 1 vector of factor loadings, vt ¼ ðv1t; v2t; . . . ; vktÞ0 is a
k� 1 vector of unobserved common factors, and git are the idiosyncratic components.

i. The unobserved factors vt are serially independent and the k elements are independent

of each other, such that vt � IID
�

0; IkÞ; c2;v ¼ E v4st
� �

� 3, and sups;tE v8þc
st

� �

< K, for

some c > 0. The factor loadings, cis for s ¼ 1; 2; . . . ;k, are bounded, supi;s jcisj < K,

and the factors, vt, are weak in the sense that

sup
s

X

N

i¼1

jcisj ¼ O Ndcð Þ; with 0 � dc < 1=2: (53)

ii. For any i and j, the T pairs of realizations, f gi1; gj1ð Þ; gi2; gj2ð Þ; . . . ; giT ; gjTð Þg; are inde-

pendent draws from a common bivariate distribution with mean E gitð Þ ¼ 0; Var gitð Þ ¼
rg;ii; 0 < c < rg;ii � K, and the covariance E gitgjtð Þ ¼ rg;ij.

Writing the error factor specification, Equation (52), in matrix notation we have

ut ¼ Cvt þ gt; (54)

where ut ¼ ðu1t; u2t; . . . ;uNtÞ0; C ¼ c1; c2; . . . ; cNð Þ0, and gt ¼ g1t; g2t; . . . ; gNtð Þ0. Under

Assumption 2, and denoting E gtg
0
t

� �

¼ Vg ¼ ðrg;ijÞ, we have

E utu
0
t

� �

¼ CC0 þ Vg ¼ V ¼ ðrijÞ; with rij ¼ c0icj þ rg;ij: (55)

Assumption 3: The covariance matrices V and Vg defined by Equation (55) are N�N

symmetric, positive definite matrices with kmin Vð Þ � kmin Vgð Þ � c,

et ¼ ðe1t; e2t; . . . :; eNtÞ0 ¼ Q�1ut; and eg;t ¼ ðeg;1t; eg;2t; . . . :; eg;NtÞ0 ¼ Q�1
g gt; (56)

where Q and Qg are the Cholesky factors of V and Vg, respectively. Matrix Qg is row and

column bounded in the sense that

kQgk1 < K and kQgk1 < K: (57)
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Here, feitg and feg;itg are IID processes over i and t, with zero means, unit variances,

c2;eg ¼ Eðe4g;itÞ � 3, supi;t Eðjeitj8þcÞ � K < 1, and supi;t Eðjeg;itj8þcÞ � K < 1, for some

c>0.

Remark 2: The above assumptions allow the returns on individual securities to be strong-

ly cross-sectionally correlated through the observed factors, ft, and allow for weak error

cross-correlations once the effects of strong factors are removed.

Remark 3: Under Condition (57)

kVgk1 � kQgQ
0
gk1 � kQgk1kQgk1 < K ¼ Oð1Þ; (58)

nevertheless due to the weak factors we have

kVk1 ¼ sup
j

X

N

i¼1

jrijj ¼ O Ndcð Þ;

and allow the overall error variance matrix, V, to be approximately sparse, in contrast to

the literature that requires kVk1 < K. The relaxation of the sparsity condition on V is par-

ticularly important in finance where security returns could be affected by weak unobserved

factors.

Remark 4: The high-order moment conditions in Assumption 3 allow us to relax the

Gaussianity assumption while at the same time ensuring that our test is applicable even if N

is much larger than T.

Remark 5: Assumptions 2(ii) and 3 ensure that the sample cross-correlation coefficients

of the residuals, q̂ ij, have an Edgeworth expansion which is needed for consistent estima-

tion of q2N, defined by Equation (40). For further details, see BPS.

Our main theoretical results are set out in the following theorems. The proofs of these theo-

rems are provided in the Appendix, and necessary lemmas for the proofs are given in the

Supplementary Material.

Theorem 1: Consider the return regression (6), and the statistic qNT ¼ N�1=2
PN

i¼1

z2i � 1
� �

, where z2i is defined by Equation (23). Suppose that Assumptions 1–3 hold, and

N�1Tr R2ð Þ is bounded in N, where R ¼ qijð Þ; qij ¼ E nitnjt
� �

, and nit ¼ uit=r
1=2
ii is the stand-

ardized error of the return regression Equation (6). Then, under H0 : ai ¼ 0; for all i,

qNT ¼ N�1=2
X

N

i¼1

z2i � 1
� �

!dNð0; 2x2Þ; (59)

as N ! 1 and T ! 1; jointly, where

x2 ¼ lim
N!1

N�1Tr R2ð Þ ¼ 1þ lim
N!1

ðN � 1Þq2N;

and

q2N ¼ 2

NðN � 1Þ
XN

i¼2

Xi�1

j¼1
q2ij: (60)
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Theorem 2: Consider the regression model (6), and the statistic SNT, given below, where

z2i and t2i are defined by Equations (23) and (25), respectively. Suppose that Assumptions

1–3 hold. Then, under the null hypothesis,H0 : ai ¼ 0 for all i,

SNT ¼ N�1=2
X

N

i¼1

z2i � t2i

� �

!p0;

as N ! 1 and T ! 1 jointly, so long as N=T2 ! 0; 0 � dc < 1=2, where dc is defined

by Equation (53).

Theorem 3: Consider the regression model (6), and suppose that Assumptions 1–3 hold.

Then, under H0 : ai ¼ 0; for all i,

Ja q2N
� �

¼
N�1=2

PN
i¼1 t2i � v

v�2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v
v�2

� �2 2ðv�1Þ
v�4 ½1þ ðN � 1Þq2N	

q !dN 0; 1ð Þ; (61)

so long as N=T2 ! 0; and 0 � dc < 1=2; as N ! 1 and T ! 1; jointly, where ti, q
2
N,

and dc are defined by Equations (25), (60), and (53), respectively, with v ¼ T �m� 1.

Theorem 4: Let

~q2
N;T ¼ 2

NðN � 1Þ
XN

i¼2

Xi�1

j¼1
~q2
ij; (62)

where

~q ij ¼ q̂ ijI½j
ffiffiffi

v
p

q̂ ijj > cpðNÞ	; (63)

qij ¼ EðnitnjtÞ; nit ¼ uit=r
1=2
ii , v ¼ T �m� 1; q̂ ij is defined by Equation (41)

cpðNÞ ¼ U
�1 1� p

2f ðNÞ

� �

; (64)

p is the nominal p-value (0 < p < 1), f ðNÞ ¼ Nd, and T ¼ cdN
d, where cd, d, and d are fi-

nite positive constants. Suppose that Assumptions 1–3 hold and

XN

i;j¼1
jqijj ¼ OðNÞ; (65)

then, ðN � 1ÞEj~q2
N;T � q2Nj ! 0, as N and T ! 1, which implies ðN � 1Þð~q2

N;T � q2NÞ!p0,

if N=T2 ¼ �ðN1�2dÞ ! 0, (or if d > 1=2), and if d > ð2�dÞ
ð1��Þ umax, for some small � > 0,

where umax � 1þ jc2;eg j and c2;eg ¼ Eðe4g;itÞ � 3 (Assumption 3).

Theorem 5: Consider the panel regression model (6) in asset returns and suppose that

Assumptions 1–3 hold. Consider the test statistic

Ĵa ¼
N�1=2

P

N

i¼1

t2i � v
v�2

� �

v
v�2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðv�1Þ
v�4ð Þ ½1þ ðN � 1Þ~q2

N;T 	
q ; (66)
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where ti is given by Equation (25), v ¼ T �m� 1; ~q2
N;T is defined by Equation (62), using

the threshold cpðNÞ given by Equation (64), with p (0 < p < 1), T ¼ cdN
d, where cd, d,

and d are finite positive constants, d > ð2�dÞ
ð1��Þ umax, for some small � > 0, where umax �

1þ jc2;eg j and c2;eg ¼ Eðe4g;itÞ � 3. Then, under H0 : ai ¼ 0 for all i,

Ĵa!dN 0; 1ð Þ; (67)

if N=T2 ! 0, as N and T ! 1, jointly.

To investigate the power properties of the Ĵa test, we consider the local alternatives

H0a : ai ¼
1i

N1=4T1=2
; with 0 < j1ij < 1; for all i; (68)

and establish the following theorem.

Theorem 6: Consider the panel regression model (6) in asset returns, and suppose that

conditions of Theorem 5 apply, and inf ðriiÞ > c > 0. Then, under the local alternatives,

H0a, defined by Equation (68),

Ĵa!dN /2=
ffiffiffi

2
p

;1
� �

; (69)

where /2 ¼ limN!1/2
N and

/2
N ¼ 1

N

X

N

i¼1

12i =rii: (70)

Remark 7: This theorem establishes that the Ĵa test is consistent (in the sense that its

power tends to unity), if /2 > 0. It is also of interest that the power of the Ĵa test increases

uniformly with N and T, in contrast to the power of the GRS test that rises with T, only.

Remark 8: The above theorem also sheds light on the effects of allowing for pricing errors

on the size and power of the Ĵa test. It is clear that adding pricing errors -i to ai in

Equation (68) will increase /2
N and hence the power of the test. But this will be at the ex-

pense of size distortions since the null of the test is H0 : ai ¼ 0 while if we allow for the

pricing errors the null will be H0
0 : ai ¼ -i, subject to the APT condition

PN
i¼1 -

2
i ¼ OðNd-Þ, with d- ¼ 0. (see Equation (4)). Under H0

0 and the alternatives, H0a in

Equation (68) we have

X

N

i¼1

a2i ¼
X

N

i¼1

-2
i ¼ O Nd-ð Þ;

and

X

N

i¼1

a2i ¼ 1

N1=2T

X

N

i¼1

12i :
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These two conditions hold simultaneously if N�1=2T�1
PN

i¼1 1
2
i ¼ O Nd-ð Þ, which in turn

implies that

/2
N ¼ 1

N

X

N

i¼1

12i =rii � infið1=riiÞ N�1
X

N

i¼1

12i

 !

¼ O Tnd-�1=2ð Þ:

Setting T ¼ � Ndð Þ, we now have /2
N ¼ O Nd-þd�1=2ð Þ and the Ĵa test will have the correct

size under H0
0 if d < 1=2� d-. Under Ross’s APT condition where d- ¼ 0, it is required

that d< 1=2. But to allow for non-Gaussian errors and weak error cross-sectional depend-

ence we require d>1=2 so that N=T2 ! 0; which is one of the conditions of Theorem 5.

Hence, we would expect some size distortions if we allow pricing errors that satisfy the

APT condition of Ross (1976). To avoid size distortions in the presence of pricing errors,

we need to consider stronger restrictions on pricing errors so that they decline with N, for

example, -i ¼ O N��ð Þ. Under this specification, since
PN

i¼1 -
2
i ¼ O N1�2�ð Þ, then

d- ¼ 1� 2�, and pricing errors can be accommodated in our analysis if � > d=2þ 1=4.

Since Theorem 5 requires d > 1=2; then we must have � > 1=2.

Remark 9: Pricing errors cannot be allowed for in the case of the GRS test since it

requires N<T, and with N fixed it is not possible to distinguish ai from -i in the LFPM

given by Equation (6).

5 Small Sample Evidence Based on Monte Carlo Experiments

We examine the finite sample properties of the Ĵa test by Monte Carlo experiments, and

compare its performance to the existing tests, which are discussed in Section 3.6.

Specifically, we consider the GRS test, the GOS test, and a feasible version of the SW test,

as well as the distribution-free Fmax test and the BS and SD tests, which are defined by

Equations (3), (47), (19), (48), (49), and (50), respectively. Computational details of these

tests are given in Section M1.1 of the Supplementary Material.

5.1 Monte Carlo Designs and Experiments

We consider the following data generating process (DGP):

rit ¼ ai þ
X

3

l¼1

biflt þ j uit; (71)

for i ¼ 1; 2; ::;N; t ¼ 1;2; . . . ;T, where f‘t for l¼ 1, 2, 3 are the observed factors, and

uit ¼ civt þ git; (72)

in which vt is the missing factor and git is the idiosyncratic component of the return process

defined below. The scalar coefficient j is introduced so that the overall fit of the panel can

be controlled to match the average fit of the return regressions defined by

R2
NT ¼ N�1

PN
i¼1 R

2
iT , where R2

iT is the R-squared of the regression for rit, computed for a

given sample. We calibrate j ¼ 6:5 for N¼ 500 and T¼ 120 to match R2
NT ¼ 0:30 for the

model without omitted common component and spatial errors. The value of j is fixed

throughout the experiments.
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The observed factors are calibrated to closely match the three Fama and French (1993,

FF3) factors (market factor, HML, and SMB) and are generated as20

f‘t ¼ qf ;‘f‘;t�1 þ e‘t;

where qf ;1;qf ;2; qf ;3ð Þ ¼ �0:1; 0:2;�0:2ð Þ; e‘t ¼
ffiffiffiffiffiffi

h‘t
p

n‘t with n‘t � IIDNð0; 1Þ follow

GARCH(1,1) models:

h‘t ¼ x‘ 1� .‘ � u‘ð Þ þ .‘h‘;t�1 þ u‘e
2
‘;t�1;

where x1;x2;x3ð Þ ¼ 20:25;6:33; 5:98ð Þ; .1; .2; .3ð Þ ¼ 0:61;0:70;�0:31ð Þ, and u1;u2;ð
u3Þ¼ 0:31; 0:21; 0:10ð Þ.21

To calibrate the empirical FF3 model, we estimated it using S&P500 security level

monthly excess return for 120months ending on April 2018. We chose the series with the

full sample period, which left 457 securities. The results are summarized in Table 1.

We generate the factor loadings as IIDUð0:3; 1:8Þ for the market factor, IIDUð�1:0; 1:0Þ
for the HML factor, and IIDUð�0:6;0:9Þ for the SMB factor. In this way, we ensure that

the means and standard deviations of the betas match their empirical counterparts and suf-

ficient ranges of the estimates of b0s reported in Table 1 for the FF3 model are covered in

the experiments.

The latent factor vt is generated as IID(0, 1) and its loadings ci are generated to ensure a

given factor strength denoted by the exponent dc. We generate ci as

ci � IIDUð0:7;0:9Þ; for i ¼ 1; 2; . . . ; bNdcc

ci ¼ 0; for bNdcc þ 1; bNdcc þ 2; . . . :;N;

and to avoid systematic errors we then randomly reshuffle ci over i before assigning them to

the individual returns, rit: Our theoretical derivations suggest that the size of our proposed

Ĵa test should be under control so long as dc < 1=2. Accordingly, we consider the values of

dc ¼ 0, 1/4, and 1/2. Allowing for latent factors is important since in practice researchers

cannot be sure that they have included all relevant risk factors in their models. The problem

of missing (or latent) factors continues to apply even if we extend the list of observed fac-

tors as it is done in the recent literature. See, for example, Giglio and Xiu (2021) and the re-

cent paper by Bailey, Kapetanios, and Pesaran (2021) who consider the estimation of factor

strength.

In addition to allowing for latent factors, we also consider network (or spatial) type

cross-sectional error dependence by generating the idiosyncratic errors eg;it as

uit ¼ civt þ git;

VarðuitÞ ¼ c2i VarðvtÞ þ VarðgitÞ

git ¼ w
X

N

j¼1

wijgjt þ rgieg;it; for i ¼ 1; 2; . . . ;N;

(73)

20 SMB stands for “small market capitalization minus big” and HML for “high book-to-market ratio

minus low.” See Fama and French (1993).

21 The estimates used in the generation of the factors and their volatilities are computed using

monthly observations over the period May 2008–April 2018.
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which can be solved for gt ¼ ðg1t; g2t; . . . ; gNtÞ0 as

gt ¼ ðIN � wWÞ�1Dgeg;t;

where eg;t ¼ eg;1t; eg;2t; . . . ; eg;Ntð Þ0, w ¼ f0:0; 0:25g; Dg ¼ diagðrg1;rg2; . . . ;rgNÞ0. We adopt

a rook form of W ¼ ðwijÞ, where all elements in W are zero except wiþ1;i ¼ wj�1;j ¼ 0:5 for

i ¼ 1; 2; . . . ; n� 2 and j ¼ 3;4; . . . ; n, with w1;2 ¼ wn;n�1 ¼ 1, and standardized such that

wii ¼ 0 and
PN

j¼1 wij ¼ 1. Case of error cross-sectional independence arises for the param-

eter values w ¼ 0 and dc ¼ 0. We allow for error cross-sectional heteroskedasticity by gen-

erating r2gi as IID ð1þ v22;iÞ=3, and consider Gaussian (1) eg;it � IIDN 0;1ð Þ, as well as non-

Gaussian errors, (2) eg;it � IID
t�;it

½�= ��2ð Þ	1=2, where t�;it are independent draws from a t-distribu-

tion with � degrees of freedom. In light of the properties of the empirical distribution of the

FF3 regression residuals, for t distribution error, we choose �¼ 8, so that the value of excess

kurtosis, 1.5, falls between the sample mean and sample median shown in Table 1.

All the N return series are generated from t ¼ �49;�48; . . . :0; 1; 2; . . . :;T, with f‘;�50 ¼
0 and h‘;�50 ¼ 1 for ‘ ¼ 1;2; 3. The first 50 observations are dropped to minimize the

effects of the initial values and observations rit; ft ¼ ðf1t; f2t; f3tÞ0, for t ¼ 1; 2; . . . ;T are

used in the MC experiments. Further details are provided in the Supplementary Material.

To estimate size of the tests, we set ai ¼ 0 for all i. To investigate power, we consider

alternatives based on Equation (5), setting k0 ¼ 0, namely

ai ¼ b0i k� lð Þ þ -i:

For the scenario called “Power 1,” we set k ¼ l, and generated ai as ai ¼ -i � IIDNð0; 1Þ
for i ¼ 1; 2; . . . ;Na with Na ¼ bNdac; ai ¼ 0 for i ¼ Na þ 1;Na þ 2; . . . ;N. We considered

the values da ¼ 0:7. In another scenario called “Power 2,” we assume there are no pricing

errors and set -i ¼ 0 for all i, but consider the case where k� l ¼ cð2:92;�0:63;�9:96Þ0,
that match the estimates reported in Table 1 of GOS (p. 1011) for c¼ 1. To make the

power of the tests for “Power 2” comparable for “Power 1,” we set c¼ 0.1. We do not

consider the case both k 6¼ l and -i 6¼ 0, as it is clear that in this case higher power will

be achieved.

All combinations of T¼60, 120, 240 and N¼50, 100, 200 (and 500, 1000, 2000,

5000 for the Ĵa test) are considered. All tests are conducted at the 5% significance level and

all experiments are based on R¼ 2000 replications. To compute ~q2
N;T which enters the

Table 1. Descriptive statistics of Fama–French three factor regression results

Average b estimates

for FF3 factors

Average skewness and

excess kurtosis of the residuals

b̂MKT b̂HML b̂SMB Skewness Excess kurtosis

Mean 1.05 0.07 0.18 0.32 2.76

SD 0.43 0.57 0.45 0.87 5.61

Median 1.02 0.00 0.17 0.14 1.19

Min 0.19 �1.46 �1.95 �1.53 �0.53

Max 2.92 2.91 1.99 6.34 57.57
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denominator of the Ĵa statistic, given by Equation (46), we consider p ¼ f0:05;0:1g and

d ¼ f1; 2g. The results are very insensitive to the choice of the values of ðp; dÞ and the case

for ðp; dÞ ¼ ð0:05; 1Þ is reported. It is worth noting that that the choice of p when comput-

ing ~q2
N;T is not governed or affected by the choice of the nominal size of the Ĵa test.

5.2 Size and Power

Table 2 reports the size and power of the Ĵa, GRS, GOS, SW, Fmax, BS, and SD tests in the

case of normal errors, under various degrees of cross-sectional error correlations, as meas-

ured by the exponent, dc.

First, consider Panel A of Table 2 which reports the size of the tests. The GRS test when

applicable (namely when T>N) is an exact test and has the correct size. The empirical size

of the Ĵa test is also very close to the 5% nominal level for all combinations of N and T.

Even when N¼ 200 and dc ¼ 0:5, the size of the Ĵa test lies in the range 5.9–6.4% for dif-

ferent values of T. In contrast, both GOS and SW tests grossly over-reject the null hypoth-

esis, and the degree of the over-rejection becomes more serious as N increases for a given T.

In line with the discussion in Section 3.4, the size distortion of these tests is mitigated when

T increases. The Fmax test severely under-rejects the null hypothesis, with the size ranging

between 0.0% and 0.4%. Although less pronounced than the Fmax test, the BS test is very

conservative and the size steadily drops as T (and N) rises. Again, although less pronounced

than the GOS and SW tests, the SD test tends to over-reject the null hypothesis and the de-

gree of the over-rejection becomes more serious asN increases for a given T.

The power of the tests based on the “Power 1” design is reported in Panel B of Table 2.

The power of Ĵa test is substantially higher than that of the GRS test. This is in line with

our discussion at the end of Section 1, and reflects the fact that GRS assumes an arbitrary

degree of cross-sectional error correlations and thus relies on a large time dimension to

achieve a reasonably high power. In contrast, the power of the Ĵa test is driven largely by

the cross-sectional dimension. The power comparison of the GOS, SW, and SD tests with

the Ĵa test seems inappropriate, given their large size-distortions. Having said this, it is perhaps

remarkable that the power of the Ĵa test is comparable to the unadjusted power of the GOS,

SWPOET, and SWLW tests. The power of the Fmax and BS tests is uniformly lower than the

power of the Ĵa test, likely due to the conservative nature of these tests. The power of the tests

based on the “Power 2” design is reported in Panel C of Table 2. The properties of the tests

with the “Power 2” design reported in Panel C of Table 2 are qualitatively very similar to

those of the “Power 1” design. A detailed discussion of Table 2 is therefore omitted.

We now consider the case in which the errors are non-normal. The size results are sum-

marized in Table 3. The results show that the size of the Ĵa test and the GRS test, as well as

the Fmax, BS, and SD tests, is hardly affected by non-normality. The over-rejection of the

GOS and SW tests tends to be somewhat magnified by non-normality.

Furthermore, the behavior of the test statistics is examined under the same DGP as that

examined in Table 2, except that a spatial autoregressive component was incorporated into

the error generation process. The results with such mixed factor-spatial errors are reported

in Table 4. As can be seen, the size of the Ĵa test and GRS test is well controlled, with a

slight over-rejection for T¼60, which disappears when T is increased to 120. In contrast,

the size distortion of GOS and SW seems to be amplified with this design. The size proper-

ties of the Fmax, BS, and SD tests remain similar to those in Table 2.
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Table 2. Size and power of the Ĵ a and other tests with normal errors

Panel A: Size (ai ¼ 0 for all i)

dc ¼ 0 dc ¼ 1=4 dc ¼ 1=2

(T,N) 50 100 200 50 100 200 50 100 200

Ĵa
60 6.4 5.6 4.7 6.1 6.1 6.1 5.5 6.8 5.9

120 6.5 5.6 4.7 5.9 5.9 5.3 5.8 6.1 6.1

240 4.9 5.8 5.2 5.7 5.8 4.7 6.0 6.2 6.4

GRS

60 5.0 – – 4.1 – – 5.3 – –

120 5.8 4.3 – 4.9 4.3 – 4.9 3.7 –

240 4.3 4.9 4.5 4.8 5.4 4.9 5.9 4.6 5.1

GOS

60 17.4 23.5 30.3 17.3 22.5 31.5 16.9 23.8 29.9

120 11.3 12.3 13.9 9.8 12.2 14.4 9.6 11.7 14.7

240 7.2 8.9 9.3 7.4 8.4 8.6 7.7 8.4 9.6

SW

60 17.4 23.5 30.3 17.4 22.6 31.5 17.8 24.3 30.2

120 11.3 12.3 13.9 10.0 12.2 14.4 22.9 19.6 16.0

240 7.2 8.9 9.3 7.4 8.7 8.6 10.8 14.3 20.9

Fmax

60 0.4 0.2 0.1 0.1 0.0 0.2 0.4 0.2 0.0

120 0.2 0.1 0.1 0.1 0.2 0.0 0.1 0.1 0.0

240 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.1

BS

60 4.2 4.0 4.6 3.4 4.4 3.9 3.9 4.4 4.3

120 3.4 2.9 2.7 2.7 2.9 2.4 2.9 3.5 3.5

240 2.0 2.4 2.0 2.6 2.5 2.0 3.2 2.9 3.0

SD

60 10.9 12.0 13.2 10.2 12.1 13.5 9.3 11.2 11.9

120 7.9 7.7 8.3 7.1 7.9 8.5 6.4 8.1 8.6

240 5.0 6.7 6.7 5.7 6.3 5.8 5.9 6.7 7.3

Panel B: Power 1 (ai ¼ -i � Nð0; 1Þ for i ¼ 1; . . . ; bN0:7c and ai ¼ 0 for other i)

dc ¼ 0 dc ¼ 1=4 dc ¼ 1=2

(T, N) 50 100 200 50 100 200 50 100 200

Ĵa
60 70.3 81.7 90.8 64.6 78.1 86.9 53.4 66.0 77.0

120 93.6 98.5 99.7 91.7 98.2 99.8 84.7 95.5 98.6

240 99.5 99.9 100.0 99.4 100.0 100.0 98.8 99.9 100.0

GRS

60 14.7 – – 13.4 – – 14.5 – –

120 82.8 48.9 – 80.1 49.3 – 79.6 48.5 –

240 99.0 99.8 95.5 99.0 99.8 95.6 99.0 99.7 95.4

(continued)
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Table 2. (continued)

Panel B: Power 1 (ai ¼ -i � Nð0; 1Þ for i ¼ 1; . . . ; bN0:7c and ai ¼ 0 for other i)

dc ¼ 0 dc ¼ 1=4 dc ¼ 1=2

(T, N) 50 100 200 50 100 200 50 100 200

GOS

60 83.1 93.0 98.6 80.3 91.7 97.9 71.7 86.0 96.0

120 95.1 99.2 99.9 94.5 99.1 100.0 89.2 97.6 99.5

240 99.6 100.0 100.0 99.4 100.0 100.0 99.1 99.9 100.0

SW

60 83.1 93.0 98.6 80.4 91.7 97.9 72.7 86.5 96.1

120 95.1 99.2 99.9 94.5 99.1 100.0 94.6 98.6 99.7

240 99.6 100.0 100.0 99.4 100.0 100.0 99.6 100.0 100.0

Fmax

60 17.6 20.3 25.3 16.0 18.8 20.5 11.2 16.1 16.5

120 53.2 65.8 76.0 50.0 63.6 72.7 38.2 50.3 65.0

240 87.9 95.7 99.2 87.0 94.8 98.8 77.8 90.4 96.6

BS

60 39.8 49.4 63.1 38.0 49.4 58.8 28.9 39.7 48.9

120 73.2 86.2 95.0 71.0 85.7 94.1 63.2 79.7 90.1

240 96.3 99.4 100.0 95.5 99.6 100.0 92.8 98.6 99.9

SD

60 76.7 87.9 95.6 72.7 85.5 93.5 60.9 75.4 87.5

120 94.4 98.8 99.8 93.0 98.7 99.9 86.3 96.4 99.1

240 99.5 99.9 100.0 99.4 100.0 100.0 98.7 99.9 100.0

Panel C: Power 2 (ai ¼ b0iðk� lÞ with ðk� lÞ ¼ 0:1ð2:92;�0:63;�9:96Þ0)

dc ¼ 0 dc ¼ 1=4 dc ¼ 1=2

(T,N) 50 100 200 50 100 200 50 100 200

Ĵa
60 58.4 81.5 96.3 56.2 79.4 96.5 49.0 75.6 94.9

120 94.4 99.7 100.0 93.0 99.6 100.0 90.0 99.4 100.0

240 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0

GRS

60 11.8 – – 12.3 – – 12.4 – –

120 78.1 47.7 – 75.5 46.5 – 76.9 45.1 –

240 99.9 100.0 99.3 99.8 100.0 99.0 99.8 100.0 99.1

GOS

60 76.2 94.8 99.7 75.0 94.0 99.9 72.0 93.2 99.7

120 96.5 100.0 100.0 96.1 99.7 100.0 94.0 99.9 100.0

240 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

SW

60 77.4 93.8 99.9 78.1 93.7 99.8 75.6 92.5 99.8

120 97.1 99.8 100.0 95.7 100.0 100.0 95.7 99.7 100.0

240 100.0 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0

(continued)
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Since the autoregressive conditional heteroskedasticity is commonly found in security

returns, the effect of cross-sectionally correlated errors with GARCH(1,1) processes is also

investigated. The size properties of the tests are summarized in Table 5. The results are al-

most identical to those using unconditionally time-series homoskedastic (but cross-

sectionally heteroskedastic) errors reported in Table 2. This is to be expected as the LFPM

is a static model and unconditional homoskedastic GARCH errors do not affect our theor-

etical results.

The experimental results so far confirm that the finite sample performance of the Ĵa test

is superior to the other tests we have considered. In the light of these promising results, we

further investigate the properties of J-alpha tests, in particular the sensitivity of the choice

of the values for fd; pg and the effectiveness of the standardization employed by the Ĵa.

First, we examine the sensitivity of the test to the choice of the value of fd; pg. As men-

tioned, the Ĵa we have considered employs d¼ 1 and p¼0.1. To check whether this choice

is appropriate, in the next experiment, we consider four combinations of fd;pg using

d ¼ 1; 2; p ¼ 0:05;0:01. Table 6 summarizes the size and power results. As can be seen, the

choice of p has little effect on the size and power characteristics. Meanwhile, the

Table 2. (continued)

Panel C: Power 2 (ai ¼ b0iðk� lÞ with ðk� lÞ ¼ 0:1ð2:92;�0:63;�9:96Þ0)

dc ¼ 0 dc ¼ 1=4 dc ¼ 1=2

(T,N) 50 100 200 50 100 200 50 100 200

Fmax

60 1.6 1.9 1.7 1.5 1.5 1.5 1.3 1.4 1.5

120 7.6 9.0 10.3 6.6 7.6 9.1 7.5 7.7 8.9

240 35.2 43.7 55.4 31.4 44.5 56.7 29.3 42.3 54.9

BS

60 25.8 44.6 70.9 23.4 42.1 69.4 18.7 33.8 57.7

120 60.6 88.0 99.0 57.8 85.4 99.4 47.5 77.7 97.6

240 96.3 100.0 100.0 95.2 100.0 100.0 91.9 99.6 100.0

SD

60 67.6 89.0 99.0 65.9 87.4 98.9 59.4 83.8 97.9

120 95.1 99.8 100.0 94.5 99.7 100.0 90.8 99.8 100.0

240 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0

Notes: This table summarizes the size and power of Ĵa, GRS, GOS, SW, Fmax, BS, and SD tests of ai ¼ 0 for

i ¼ 1; 2; . . . ;N, in the case of three-factor models. The observations are generated as

yit ¼ ai þ
P3

‘¼1 b‘if‘t þ uit ; i ¼ 1; 2; ::;N; t ¼ 1; 2; . . . ;T; f‘t ¼ lf ‘ þ qf ‘f‘;t�1 þ e‘t , where e‘t ¼
ffiffiffiffiffiffi

h‘t
p

n‘t , h‘t ¼
lh‘ þ q1h‘h‘;t�1 þ q2h‘e

2
‘;t�1; n‘t � IIDNð0; 1Þ; t ¼ �49; . . . ;T with f‘;�50 ¼ 0 and h‘;�50 ¼ 0; ‘ ¼ 1; 2; 3. The

idiosyncratic errors are generated as uit ¼ civt þ rgieg;it , where eg;it � IIDNð0; 1Þ; vt � IIDNð0; 1Þ and

r2gi � IIDð1þ v22;iÞ=3. The first bNdc cð< NÞ ci are generated as Uniformð0:7; 0:9Þ, and the remaining elements

are set to 0. We consider the values dc ¼ 0; 1=4, and 1/2. Ĵa is the proposed test; GRS is the F-test due to

Gibbons et al. (1989) which is distributed as FN;T�N�m; which is applicable when T > N þ 4. “–” signifies that

the GRS statistic cannot be computed. GOS is the test proposed by Gagliardini et al. (2016) defined in

Equation (47); SW is the test based on the POET estimator of Fan et al. (2013). Fmax is proposed by GL, BS

and SD are tests of He et al. (2021), which are defined in the Supplementary Material. Values of Ĵa, GOS, SW,

BS, and SD are compared with a positive one-sided critical value of the standard normal distribution. All tests

are conducted at the 5% significance level. Experiments are based on 2000 replications.
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performance of the test is slightly sensitive to the choice of d, but this effect quickly disap-

pears as T increases. These experimental results support the use of the Ĵa test with d¼1 and

p¼ 0.1.

Finally, an experiment was conducted to check the effectiveness of the standardization

employed in the Ĵa. In particular, we check the effectiveness of the centering t2i � v=ðv� 2Þ
employed by the Ĵa test compared with t2i � 1 employed by GOS, and the usefulness of esti-

mating the cross-correlation of t2i with the MT estimator ~qN, respectively. For this purpose,

two J-alpha test variants, ~Ja and Jað0Þ, are considered on top of the Ĵa statistic.
~Ja is identi-

cal to Ĵa, but replaces t
2
i � v=ðv� 2Þ by t2i � 1. The second statistic, Jað0Þ, sets ~qN equal to

Table 3. Size of the Ĵ a and other tests with non-normal errors

Size: ai ¼ 0 for all i

dc ¼ 0 dc ¼ 1=4 dc ¼ 1=2

(T,N) 50 100 200 50 100 200 50 100 200

Ĵa
60 5.9 4.6 5.6 5.0 6.2 5.0 5.5 6.6 7.0

120 5.7 4.8 5.2 4.3 6.2 6.0 5.8 5.7 5.1

240 5.8 5.7 5.4 4.7 5.6 5.4 6.5 6.8 5.8

GRS

60 5.0 – – 4.5 – – 5.4 – –

120 4.9 5.1 – 4.8 4.7 – 3.6 5.1 –

240 5.5 4.7 4.2 3.7 5.0 4.7 5.4 5.6 5.0

GOS

60 17.1 22.2 30.0 15.5 21.7 29.2 17.0 22.9 32.6

120 9.5 10.8 14.0 9.5 11.9 14.3 8.9 12.4 14.4

240 8.1 8.3 8.9 6.6 7.9 9.0 8.1 9.2 9.1

SW

60 17.1 22.1 30.1 15.5 21.7 29.2 18.5 23.5 32.8

120 9.5 10.8 14.0 9.5 11.8 14.4 19.7 19.9 15.5

240 8.1 8.3 8.9 6.6 8.0 9.0 11.1 17.7 24.6

Fmax

60 0.0 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.2

120 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1

240 0.2 0.1 0.2 0.2 0.2 0.1 0.1 0.3 0.1

BS

60 3.9 3.6 4.6 2.9 4.4 3.5 3.5 4.5 4.7

120 3.2 2.0 3.3 2.5 3.2 2.1 2.9 2.5 3.4

240 2.2 1.8 2.2 2.1 2.6 2.1 3.0 2.6 3.0

SD

60 10.8 11.3 13.0 9.4 12.2 12.7 9.6 12.1 13.3

120 6.7 6.3 8.5 5.7 8.3 8.7 6.6 7.4 7.8

240 5.9 6.1 6.4 4.8 6.0 6.6 6.3 7.1 6.8

Notes: See the note to Table 2. The DGP is the same as in Table 2, except that uit ¼ civt þ rgieg;it, where eg;it is

independently drawn from standardized student t-distribution with eight degrees of freedom.
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zero (i.e., does not control for cross-correlation). In the present experiment, to investigate

the behavior of the Ĵa test in more challenging environments, N is considered with larger

values, that is, N ¼ 500; 1000; 2000 and 5000, while T is set to 60, 120, and 240 as be-

fore. The results are reported in Table 7, which reveal that the centering using v=ðv� 2Þ as
well as the control of error cross-correlations by the MT estimator play a very significant

role in controlling the size of the test for large N (and large T as shown in Panel A of

Table 2).

Table 4. Size of the Ĵ a and other tests, spatially correlated errors

Size: ai ¼ 0 for all i

dc ¼ 0 dc ¼ 1=4 dc ¼ 1=2

(T,N) 50 100 200 50 100 200 50 100 200

Ĵa
60 7.3 7.1 7.8 5.8 7.0 6.1 6.7 6.8 6.4

120 6.1 6.5 6.1 6.0 5.2 5.7 6.5 6.2 6.6

240 6.5 6.1 5.6 5.8 4.9 5.9 6.9 7.0 5.9

GRS

60 4.4 – – 4.1 – – 4.9 – –

120 5.5 5.4 – 4.4 5.2 – 5.4 5.5 –

240 5.7 5.0 4.3 5.0 5.0 5.3 5.6 4.5 4.1

GOS

60 17.4 23.9 32.3 17.7 24.0 31.1 19.3 24.5 30.9

120 11.4 13.8 16.5 11.0 12.6 15.2 10.9 11.5 16.9

240 8.9 10.2 9.8 8.6 8.6 10.8 8.5 9.8 9.4

SW

60 17.5 23.9 32.2 17.8 24.1 31.2 20.5 25.5 31.0

120 11.9 13.8 16.5 12.6 13.0 15.4 44.8 15.7 18.9

240 17.7 12.8 11.3 15.8 14.3 12.9 20.3 44.9 26.5

Fmax

60 0.2 0.2 0.0 0.3 0.1 0.1 0.3 0.1 0.1

120 0.1 0.1 0.1 0.2 0.1 0.0 0.0 0.2 0.1

240 0.1 0.0 0.1 0.1 0.0 0.2 0.1 0.1 0.2

BS

60 4.0 4.2 3.8 3.8 3.6 3.5 4.0 4.4 3.6

120 3.1 3.2 3.4 2.8 3.0 2.6 3.0 3.2 3.6

240 2.7 3.0 2.4 2.9 2.4 2.4 3.0 3.4 2.5

SD

60 9.8 12.0 13.4 9.4 11.3 12.3 9.5 10.6 11.6

120 6.8 7.7 7.9 6.4 6.9 7.7 7.4 7.0 8.0

240 6.4 6.7 6.4 5.6 5.2 6.8 6.4 7.1 6.3

Notes: See the note to Table 2. The DGP is the same as in Table 2, except that uit ¼ civt þ git with

git ¼ w
PN

j¼1 wijgjt þ rgieg;it . We have chosen the value w ¼ 1=4 and a rook form for W ¼ ðwijÞ, namely, all ele-

ments in W are zero except wiþ1;i ¼ wj�1;j ¼ 0:5 for i ¼ 1; 2; . . . ;N � 2 and j ¼ 3; 4 . . .;N, with

w1;2 ¼ wN;N�1 ¼ 1.
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6 Empirical Application

6.1 Data Description

We consider the application of our proposed Ĵa test to the securities in the S&P 500 index

of large cap U.S. equities market. Since the index is primarily intended as a leading indica-

tor of U.S. equities, the composition of the index is monitored by S&P to ensure the widest

possible overall market representation while reducing the index turnover to a minimum.

Changes to the composition of the index are governed by published guidelines.

Table 5. Size of the Ĵ a and other tests, GARCH(1,1) errors

Size: ai ¼ 0 for all i

dc ¼ 0 dc ¼ 1=4 dc ¼ 1=2

(T,N) 50 100 200 50 100 200 50 100 200

Ĵa
60 5.6 4.9 5.6 5.9 5.6 5.0 6.0 6.1 5.5

120 5.2 5.8 5.9 5.8 5.0 4.6 5.4 5.6 5.3

240 6.1 4.9 6.0 5.8 5.6 4.9 5.6 6.8 4.8

GRS

60 3.9 – – 4.8 – – 4.6 – –

120 3.7 4.8 – 5.3 5.6 – 4.9 4.9 –

240 4.5 5.0 5.8 4.8 5.4 5.5 5.0 5.4 5.3

GOS

60 15.3 21.5 29.9 17.9 20.6 32.5 18.5 22.7 29.8

120 9.5 11.9 14.0 10.1 10.5 13.7 10.5 12.4 14.9

240 8.2 7.3 9.3 8.2 8.9 8.9 7.8 10.1 9.8

SW

60 16.1 22.5 29.6 16.1 22.1 29.4 19.0 23.5 31.5

120 9.8 11.2 15.1 9.7 11.4 15.1 21.2 23.3 16.8

240 7.7 8.8 8.1 7.8 8.7 8.5 11.1 16.9 27.4

Fmax

60 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.1

120 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.1

240 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1

BS

60 4.0 4.0 3.8 3.7 3.3 4.3 4.0 3.8 4.0

120 2.9 3.3 3.9 2.8 2.8 2.9 3.0 3.1 2.3

240 2.6 1.6 2.0 2.7 2.6 2.3 2.7 2.6 2.4

SD

60 8.7 10.8 12.5 9.9 11.2 13.4 10.3 10.8 11.3

120 6.6 8.2 9.1 7.2 7.2 7.7 6.4 7.4 7.3

240 6.3 5.5 6.8 5.9 6.6 6.6 5.6 7.3 6.1

Notes: See the note to Table 2. The DGP is the same as in Table 2, except that uit ¼ civt þ eg;it with eg;it ¼
ffiffiffiffiffiffi

xit
p

fit and fit � IIDNð0; 1Þ, where xit ¼ r2gið1� .� uÞ þ .xi;t�1 þ ue2g;it�1. We set . ¼ 0:2 and u ¼ 0:6. First

50 time-series observations of eg;it are discarded.
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In particular, a security is included if its market capitalization currently exceeds US$5.3 bil-

lion, is financially viable, and at least 50% of their equity is publicly floated. Companies

that substantially violate one or more of the criteria for index inclusion, or are involved in

merger, acquisition, or significant restructuring are replaced by other companies.

Table 6. Size and power of the Ĵ a tests for p ¼ f0:1; 0:05g and d ¼ f1; 2g with normal errors

dc ¼ 0 dc ¼ 1=4 dc ¼ 1=2

(T,N) 50 100 200 50 100 200 50 100 200

Size (ai ¼ 0 for all i)

Ĵaðp ¼ 0:1; d ¼ 1Þ
60 6.4 5.6 4.7 6.1 6.1 6.1 5.5 6.8 5.9

120 6.5 5.6 4.7 5.9 5.9 5.3 5.8 6.1 6.1

240 4.9 5.8 5.2 5.7 5.8 4.7 6.0 6.2 6.4

Ĵaðp ¼ 0:1; d ¼ 2Þ
60 6.6 5.7 5.0 6.2 6.1 6.2 6.0 7.6 6.8

120 6.6 5.6 4.7 6.0 5.9 5.3 6.0 6.5 6.5

240 5.0 5.9 5.3 5.7 5.8 4.8 6.0 6.3 6.4

Ĵaðp ¼ 0:05; d ¼ 1Þ
60 6.4 5.6 4.8 6.1 6.1 6.1 5.6 6.9 5.9

120 6.5 5.6 4.7 5.9 5.9 5.3 5.9 6.2 6.2

240 4.9 5.9 5.3 5.7 5.8 4.8 6.0 6.2 6.4

Ĵaðp ¼ 0:05; d ¼ 2Þ
60 6.6 5.7 5.0 6.2 6.1 6.2 6.1 7.6 6.9

120 6.6 5.6 4.7 6.0 5.9 5.3 6.0 6.6 6.5

240 5.0 5.9 5.3 5.7 5.8 4.8 6.0 6.3 6.4

Power 1 (ai ¼ -i � Nð0;1Þ for i ¼ 1; . . . ; bN0:7c and ai ¼ 0 for other i)

Ĵaðp ¼ 0:1; d ¼ 1Þ
60 70.3 81.7 90.8 64.6 78.1 86.9 53.4 66.0 77.0

120 93.6 98.5 99.7 91.7 98.2 99.8 84.7 95.5 98.6

240 99.5 99.9 100.0 99.4 100.0 100.0 98.8 99.9 100.0

Ĵaðp ¼ 0:1; d ¼ 2Þ
60 70.7 82.0 91.0 64.9 78.4 87.1 55.0 67.9 78.7

120 93.6 98.5 99.7 91.9 98.3 99.8 84.9 95.5 98.6

240 99.5 99.9 100.0 99.4 100.0 100.0 98.8 99.9 100.0

Ĵaðp ¼ 0:05; d ¼ 1Þ
60 70.5 81.9 90.9 64.8 78.3 87.0 53.8 66.2 77.7

120 93.6 98.5 99.7 91.8 98.3 99.8 84.7 95.5 98.6

240 99.5 99.9 100.0 99.4 100.0 100.0 98.8 99.9 100.0

Ĵaðp ¼ 0:05; d ¼ 2Þ
60 70.7 82.0 91.0 65.0 78.4 87.1 55.2 68.0 78.8

120 93.6 98.5 99.7 91.9 98.3 99.8 85.0 95.5 98.6

240 99.5 99.9 100.0 99.4 100.0 100.0 98.8 99.9 100.0

Notes: See the note to Table 2. The DGP is the same as in Table 2. The p and d are for the MT estimator

~q ij ¼ q̂ ijI½j
ffiffiffi

v
p

q̂ ijj > cpðNÞ	, where cpðNÞ ¼ U
�1 1� p

2Nd

� �

.
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In order to take account for the change to the composition of the index over time, we

compiled returns on all the 500 securities that constitute the S&P 500 index each month

over the period January 1984 to April 2018. The monthly return of security i for month t is

computed as rit ¼ 100ðPit � Pi;t�1Þ=Pi;t�1 þDYit=12, where Pit is the end of the month

price of the security and DYit is the percent per annum dividend yield on the security. Note

that index i depends on the month in which the security i is a constituent of S&P 500, s,

say, which is suppressed for notational simplicity.

The time-series data on the safe rate of return, and the market factors are obtained from

Ken French’s data library web page. The one-month U.S. treasury bill rate is chosen as the

risk-free rate (rft), the value-weighted return on all NYSE, AMEX, and NASDAQ stocks

(from CRSP) is used as a proxy for the market return (rmt), the average return on the three

Table 7. Size of the Ĵ a tests, for very large N with normal and non-normal errors

dc ¼ 0 dc ¼ 1=4 dc ¼ 1=2

(T,N) 500 1000 2000 5000 500 1000 2000 5000 500 1000 2000 5000

Panel A:Normal errors

~Ja
60 14.5 19.4 29.4 52.4 13.0 19.3 29.5 53.3 14.3 18.7 28.2 51.5

120 8.6 9.2 12.5 21.7 8.9 8.9 11.7 21.6 8.7 9.1 11.1 19.1

240 6.6 7.4 7.1 11.3 6.9 7.1 7.7 11.7 6.7 7.1 7.0 10.8

Jað0Þ
60 6.9 5.3 4.3 5.2 5.5 5.7 5.2 5.1 7.5 7.4 6.9 7.8

120 5.1 4.4 4.9 5.0 5.7 4.5 5.3 4.6 7.1 6.1 5.8 7.2

240 5.0 5.0 4.2 5.2 5.1 5.1 4.1 5.0 6.9 6.6 6.0 7.1

Ĵa
60 6.8 5.3 4.2 5.1 5.5 5.6 5.1 5.1 6.5 6.3 6.1 7.2

120 5.1 4.2 4.8 5.0 5.6 4.4 5.2 4.5 5.6 4.5 4.4 5.8

240 5.0 5.0 4.1 5.1 5.0 5.1 4.1 5.0 5.7 5.2 4.3 5.6

Panel B:Non-normal errors

~Ja
60 13.7 18.5 28.1 52.0 13.1 17.7 28.6 51.3 12.6 18.5 25.7 49.7

120 9.0 10.1 12.2 21.2 9.4 9.5 12.4 21.7 8.7 9.6 11.7 19.9

240 6.3 7.3 7.9 12.2 6.7 7.4 7.5 12.2 7.7 7.7 8.1 10.0

Jað0Þ
60 5.6 5.0 4.1 4.1 4.9 4.6 4.0 4.6 7.3 5.9 6.1 5.8

120 5.7 5.4 4.8 4.7 5.3 4.8 5.1 4.9 7.7 6.2 5.7 6.0

240 5.2 5.4 4.7 5.4 5.3 4.8 4.5 5.3 7.7 7.2 6.0 6.5

Ĵa
60 5.5 5.0 4.0 4.0 4.9 4.5 4.0 4.6 6.4 5.3 5.4 5.4

120 5.6 5.4 4.6 4.7 5.2 4.7 5.0 4.9 6.4 4.7 4.5 4.9

240 5.2 5.4 4.6 5.4 5.1 4.8 4.4 5.2 6.2 5.7 4.7 5.0

Notes: See the note to Table 2. The DGPs are the same as in Table 2 for normal errors and in Table 3 for non-

normal errors. For the purpose of comparison to Ĵa, we also provide results for ~Ja test, which controls for error

cross-correlations as the Ĵa test but demean t2i by 1 rather than v=ðv� 2Þ. The Jað0Þ test is defined by Equation

(61) with q2N ¼ 0, which does not control for error cross-correlations.
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small portfolios minus the average return on the three big portfolios (SMBt), the average re-

turn on two value portfolios minus the average return on two growth portfolios (HMLt),

the difference between the returns on diversified portfolios of stocks with robust and weak

profitability (RMWt), and the difference between the returns on diversified portfolios of the

stocks of low and high investment firms (CMAt). SMB, HML, RMW, and CMA are based

on the stocks listed on the NYSE, AMEX, and NASDAQ. All data are measured in percent

per month. See Section M1.3 in the Supplementary Material for further details.

6.2 Month End Test Results (September 1989–April 2018)

Encouraged by the satisfactory performance of the Ĵa test, even in cases where N is much

larger than T, we apply the Ĵa test that allows for non-Gaussian and cross-correlated errors

to all securities in the S&P 500 index at the end of each month spanning the period

September 1989–April 2018.22 In this way, we minimize the possibility of survivorship bias

since the sample of securities considered at the end of each month is decided in real time. As

far as the choice of T is concerned, to reduce the impact of possible time variations in betas,

we select a relatively short time period of T¼60months. Accordingly, we estimated the

CAPM, Fama and French (1993) three factor (FF3), and Fama and French (2015) five fac-

tor (FF5) regressions. The estimated FF5 regression is

ri;st � rf ;st ¼ âis þ b̂1;is rm;st � rf ;stð Þ þ b̂2;isSMBst þ b̂3isHMLst

þ b̂4;isRMWst þ b̂5isCMAst þ ûi;st;
(74)

for t ¼ 1;2; . . . ; 60; i ¼ 1;2; . . . ;Ns, and the month ends, s, from September 1989 to April

2018. The CAPM regression includes the first factor and the FF3 regression uses the first

three factors in Equation (74) as regressors, respectively. All securities in the S&P 500 index

are included except those with less than 60 months of observations and/or with five con-

secutive zeros in the middle of sample periods. See the Supplementary Material for discus-

sions on the statistical properties of the regression residuals.

Table 8 reports the rejection frequencies of the Ĵa and GOS tests based on the CAPM,

FF3, and FF5 models over the month ends, for the full sample periods, and three market

disruption periods: (1) the Asian financial crisis (1997M07–1998M12), (2) the Dot-com

bubble burst (2000M03–2002M10), and (3) the Great Recession (2007M12–2009M06)

periods. Depending on the factor model (CAPM, FF3, or FF5) and nominal size (5% or

1%) considered, the Ĵa test rejects the null hypothesis H0 : ai ¼ 0, from 24% to 30% of the

total number of tests carried out, which is much smaller than the rejection rates of the GOS

test that lie between 39% and 72%. The high rejection rates and their wide range in the

GOS test may be due to the tendency of this test to over-reject when T is relatively small, as

documented by Monte Carlo experiments in Section 5.

As to be expected, rejection rates in the top panel of Table 8 (based on 5% level) are

larger than those in the bottom panel (based on 1% level), but the differences are of

second-order importance, particularly when compared with the choice of the underlying

asset pricing models. Focusing on the test results based on the 5% level, we note wide

22 In all the empirical applications T < N and the GRS test cannot be computed. We have also

decided to exclude other tests discussed in the Monte Carlo Section on the grounds of their sub-

stantial size distortion of the null and/or low power.

Pesaran & Yamagata j Testing for Alpha in Linear Factor Pricing Models 35

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jfe
c
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/jjfin

e
c
/n

b
a
d
0
0
2
/7

0
3
4
2
5
5
 b

y
 g

u
e
s
t o

n
 2

2
 F

e
b
ru

a
ry

 2
0
2
3



variations in the test outcomes across models (CAPM, FF3, and FF5) particularly in the

case of sub-samples representing the Asian Financial Crisis and the Dot-com Bubble. The

test outcomes for these two sub-samples critically depend on the choice of the asset pricing

model, although as for the full sample results the GOS test gives much larger rejection rates.

Given the sensitivity of the test outcomes to the choice of the asset pricing model, no firm

conclusions can be made in relation to these financial crises. The results based on the Ĵa
only lead to substantial rejections only in the case of Dot-com Bubble period and when we

base the test on the FF5 model.

The situation is very different when we consider the Great Recession period, where we

find substantial rejection of the null of market efficiency irrespective of the model choice.

Using the Ĵa there is no pattern to the rejection rates across the models, and using CAPM

given a rejection rate of 84% when compared with 95% for FF3 and 74% for FF5. The

GOS rejection rates are much higher (100% for CAPM and FF3 and 95% for FF5). Due to

its over-rejection tendency, the GOS test seems to be less discriminatory when we compare

the GOS rejection rates across the different sample periods. This is particularly so in the

case of the GOS tests based on the FF5 model. Overall, both tests provide strong evidence

of pricing errors during the Great Recession, but Ĵa test appears to provide more sensible

results than the GOS test in this application.

7 Conclusion

In this article, we propose a simple test of LFPMs, the Ĵa test, when the number of secur-

ities, N, is large relative to the time dimension, T, of the return series. It is shown that the Ĵa
test is more robust against error cross-sectional correlation than the SW tests based on an

adaptive thresholding estimator of V, which is considered by Fan, Liao, and Yao (2015).

Table 8. Empirical application: rejection frequencies of the Ĵ a and GOS tests

Test Ĵa test GOS test

Factor models CAPM FF3 FF5 CAPM FF3 FF5

Significance level of 0.05

Full sample period (1989M09–2018M04) 0.28 0.27 0.30 0.42 0.57 0.72

Three market disruption periods:

(1) Asian financial crisis (1997M07–1998M12) 0.06 0.22 0.39 0.33 0.83 1.00

(2) The Dot-com Bubble Burst (2000M03–2002M10) 0.00 0.50 0.66 0.09 0.72 1.00

(3) The Great Recession (2007M12–2009M06) 0.84 0.95 0.74 1.00 1.00 0.95

Significance level of 0.01

Full sample period (1989M09–2018M04) 0.24 0.27 0.24 0.39 0.49 0.62

Three market disruption periods:

(1) Asian financial crisis (1997M07–1998M12) 0.00 0.11 0.28 0.28 0.83 0.67

(2) The Dot-com Bubble Burst (2000M03–2002M10) 0.00 0.25 0.56 0.03 0.59 1.00

(3) The Great Recession (2007M12–2009M06) 0.79 0.84 0.68 0.95 1.00 0.89

Notes: This table provides rejection frequencies of the Ĵa and GOS tests with the significance levels of 0.05 and

0.01, applied to CAPM, FF3, and FF5 regressions of securities in the S&P 500 index using rolling T¼ 60

monthly estimation windows over the month ends during the full sample period and during the three market

disruption periods.
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It allows N to be much larger than T, when compared with alternative tests proposed in the

literature. The proposed test also allows for a wide class of error dependencies including

mixed weak-factor spatial autoregressive processes, and is shown to be robust to random

time-variations in betas.

Using Monte Carlo experiments, designed specifically to match the distributional fea-

tures of the residuals of Fama–French three factor regressions of individual securities in the

S&P 500 index, we show that the proposed Ĵa test performs well even when N is much

larger than T, and outperforms other existing tests such as the tests of GOS et al. (2015)

and GL. Also, in cases where N<T and the standard F-test due to GRS can be computed,

we still find that the Ĵa test has much higher power, especially when T is relatively small.

Application of the Ĵa test to all securities in the S&P 500 index with 60months of return

data at the end of each month over the period September 1989–April 2018 clearly illus-

trates the utility of the proposed test. Statistically significant evidence against Sharpe–

Lintner CAPM and Fama–French three and five factor models is found mainly during peri-

ods of financial crises and market disruptions.

Supplemental Data

Supplemental data are available at https://www.datahostingsite.com.

Appendix: Proofs of the Theorems

In this Appendix, we provide proofs of the theorems set out in Section 4 of the article.

These proofs make use of lemmas which are provided, together with their proofs, in the

Supplementary Material.

For further clarity and convenience, we summarize some repeatedly used notations below:

MG ¼ mtt0ð Þ ¼ IT � PG; PG ¼ G G0Gð Þ�1
G0; G ¼ sT ; Fð Þ; v ¼ TrðMGÞ ¼ T �m� 1;

(A.1)

MF ¼ mF;tt0ð Þ ¼ IT � F F0Fð Þ�1
F0; HF ¼ hh0 ¼ ðhtht0 Þ

with h ¼ ðhtÞ ¼ MFsT ; wT ¼ TrðHFÞ ¼ h0h ¼ s0TMFsT ;
(A.2)

where F is a T�mmatrix and sT ¼ 1;1; . . . ; 1ð Þ0 is a T � 1 vector of ones. Also, before pro-

viding a proof of Theorem 1, we state a theorem due to Kelejian and Prucha (2001, KP)

which is used to establish it.

Lemma 1 (Central Limit Theorem for Linear Quadratic Forms): Consider the following

linear quadratic form

QN ¼ e0Aeþ b0e ¼
X

N

i¼1

X

N

j¼1

aijeiej þ
X

N

i¼1

biei;

where fei; i ¼ 1; 2; . . . ;Ng are real-valued random variables, and aij and bi denote real-

valued coefficients of the quadratic and linear forms. Suppose the following assumptions

hold: Assumption KP1: ei, for i ¼ 1; 2; . . . ;N, have zero means and are independently dis-

tributed across i. Assumption KP2: A is symmetric and supi
PN

j¼1 jaijj < K. Also,
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N�1
PN

i¼1 jbij
2þe0 < K for some e0 > 0. Assumption KP3: supi Ejeij4þe0 < K for some

e0 > 0. Then, assuming that N�1Var QNð Þ � c for some c> 0,

QN � E QNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var QNð Þ
p !dNð0; 1Þ:

Proof: See KP (Theorem 1, p. 227). �

Proof of Theorem 1: Noting that HF ¼ hh0, where h ¼ ðh1; h2; . . . ; hTÞ0 ¼ MFsT , we can

write

z2i ¼ w�1
T n0iHFni

with wT ¼ s0TMFsT . Then,

XN

i¼1
z2i ¼ w�1

T

XN

i¼1
n0iHFni ¼ w�1

T

XT

t¼1
utht

� �0
D�1

r

XT

t¼1
utht

� �

;

where Dr ¼ diagðr11;r22; . . . ; rNNÞ. Using Equation (54)

N�1=2
PN

i¼1 z
2
i ¼ w�1

T

PN
i¼1 N

�1=2n0iHFni

¼ w�1
T N�1=2

PT
t¼1 Cvt þ gtð Þht

h i0
D�1

r

PT
t¼1 Cvt þ gtð Þht

h i

¼ aNT þ 2bNT þ cNT ;

(A.3)

where

aNT ¼ w�1
T N�1=2

PT
t¼1 htv

0
tC

0
� �

D�1
r

PT
t¼1 htCvt

� �

;

bNT ¼ w�1
T N�1=2

PT
t¼1 htv

0
tC

0
� �

D�1
r

PT
t¼1 htgt

� �

; and

cNT ¼ w�1
T N�1=2

PT
t¼1 htg

0
t

� �

D�1
r

PT
t¼1 htgt

� �

:

(A.4)

Consider the first term, aNT, and note that

aNT ¼ w�1
T N�1=2

PT
t¼1

PT
r¼1 hthrv

0
tC

0D�1
r Cvr

¼ w�1
T N�1=2

PT
t¼1

PT
r¼1 hthr

PN
i¼1 ~c

0
ivtv

0
r~ci

� �

;

where

~ci ¼
ci
ffiffiffiffiffi

rii
p ¼ ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0ici þ rg;ii
p : (A.5)

Equivalently, letting dT ¼ w
�1=2
T

PT
1¼1 htvt, and noting that for any conformable real sym-

metric positive semi-definite matrices A and B, Tr ABð Þ � Tr Að Þkmax Bð Þ (this result is re-
peatedly used below), we have

aNT ¼ N�1=2
PN

i¼1 ~c
0
i w

�1=2
T

PT
1¼1 htvt

� �

w
�1=2
T

PT
t¼1 htvt

� �0
	 


¼ N�1=2
PN

i¼1 ~c
0
idTd

0
T~ci

� N�1=2
PN

i¼1 ~c
0
i~ci

� �

kmax dTd
0
T

� �

� N�1=2
PN

i¼1 ~c
0
i~ci

� �

d0TdT
� �

:

38 Journal of Financial Econometrics

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jfe
c
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/jjfin

e
c
/n

b
a
d
0
0
2
/7

0
3
4
2
5
5
 b

y
 g

u
e
s
t o

n
 2

2
 F

e
b
ru

a
ry

 2
0
2
3



But since ht are given constants such that
PT

t¼1 h
2
t ¼ wT , and by assumption vt is IIDð0; IkÞ;

it then readily follows that d0TdT!p1, and hence

aNT ¼ Op N�1=2
X

N

i¼1

~c0i~ci

 !

:

Also, it is clear from Equation (A.5) that j~cisj � 1 and j~cisj � jcisj, and

N�1=2
X

N

i¼1

~c0i~ci ¼ N�1=2
X

N

i¼1

X

k

s¼1

~c2is � N�1=2
X

k

s¼1

X

N

i¼1

j~cisj
 !

� N�1=2
X

k

s¼1

X

N

i¼1

jcisj
 !

� N�1=2 sup
s

X

N

i¼1

jcisj;

and hence by Assumption 2, N�1=2
PN

i¼1 ~c
0
i~ci ¼ O Ndc�1=2ð Þ, and overall aNT ¼ Op Ndc�1=2ð Þ.

Similarly,

bNT ¼ w�1
T N�1=2

PT
t¼1 htv

0
tC

0
� �

D�1
r

PT
t¼1 htgt

� �

¼ w�1
T N�1=2

PT
t¼1

PT
r¼1 hthrv

0
tC

0D�1
r gr

¼ w�1
T N�1=2

PT
t¼1

PT
r¼1 hthr

X

N

i¼1

gir

r
1=2
ii

� �

~c0ivt

¼ N�1=2 w
�1=2
T

PT
t¼1 htv

0
t

� �

w
�1=2
T

PN
i¼1

PT
t¼1 ht~ci

git

r
1=2
ii

� �	 


¼ N�1=2 w
�1=2
T

PT
t¼1

PN
i¼1 ht d0T~ci

� � git

r
1=2
ii

� �	 


:

Since by Assumption, git and vt (and hence dT ) are independently distributed, it follows

that EðbNTÞ ¼ 0. Consider now Var bNTð Þ, and note that for given values of ci we have

(recall that git is independent over t and
PT

t¼1 h
2
t ¼ wT )

Var bNTð Þ ¼ N�1w�1
T

PT
t¼1

PT
r¼1

PN
i¼1

PN
j¼1 hthr ~c0iE dTd

0
T

� �

~cj

h i

E
gitgjr

r
1=2
ii r

1=2
jj

 !

¼ N�1w�1
T

PT
t¼1

PN
i¼1

PN
j¼1 h

2
t ~c0iE dTd

0
T

� �

~cj

� � rg;ij

r
1=2
ii r

1=2
jj

 !

¼ N�1
PN

i¼1

PN
j¼1 ~c0iE dTd

0
T

� �

~cj

� � rg;ij

r
1=2
ii r

1=2
jj

 !

:

Also, E dTd
0
T

� �

¼ E w
�1=2
T

PT
1¼1 htvt

� �

w
�1=2
T

PT
1¼1 htv

0
t

� �h i

¼ Ik and

Var bNTð Þ ¼ N�1
XN

i¼1

XN

j¼1
~c0i~cj
� � rg;ij

r
1=2
ii r

1=2
jj

 !

:

Pesaran & Yamagata j Testing for Alpha in Linear Factor Pricing Models 39

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jfe
c
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/jjfin

e
c
/n

b
a
d
0
0
2
/7

0
3
4
2
5
5
 b

y
 g

u
e
s
t o

n
 2

2
 F

e
b
ru

a
ry

 2
0
2
3



Further,

�

�

�

�

�

rg;ij

r
1=2
ii r

1=2
jj

�

�

�

�

�

¼ jrg;ijj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0ici þ rg;ii
� �

c0jcj þ rg;jj
� �

q ¼
jqg;ijj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0
i
ci

rg;ii
þ 1

� �

c0
j
cj

rg;jj
þ 1

� �

r � jqg;ijj:

Therefore (recalling that supj;s j~c jsj < K and j~c isj � jcisj),

Var bNTð Þ � N�1
PN

i¼1

PN
j¼1 j~c0i~cjjjqg;ijj � N�1

PN
i¼1

PN
j¼1

Pk
s¼1 j~cisjj~c jsjjqg;ijj

� sup
j;s

j~cjsj N�1
Xk

s¼1

XN

i¼1
j~cisj

XN

j¼1
jqg;ijj

� �	 


� KN�1
Pk

s¼1

PN
i¼1 jcisj

PN
j¼1 jqg;ijj

� �

:

But by Condition (57) in Assumption 3 and rg;ii > c > 0 imply supj
PN

i¼1 jqg;ijj < K (also

see Equation (58)) and by Equation (53), we have sups
PN

i¼1 jcisj ¼ O Ndcð Þ. Then, it follows

that Var bNTð Þ ¼ O Ndc�1ð Þ and bNT ¼ O Ndc=2�1=2ð Þ. Therefore, bNT is dominated by aNT

and using these results in Equation (A.3) we have

N�1=2
X

N

i¼1

z2i ¼ w�1
T N�1=2

XT

t¼1
htg

0
t

� �

D�1
r

XT

t¼1
htgt

� �

þOp Ndc�1=2ð Þ: (A.6)

Now using Equation (56), we can express the above as

N�1=2
X

N

i¼1

z2i ¼ w�1
T N�1=2

XT

t¼1
hte

0
g;tQ

0
g

� �

D�1
r

XT

t¼1
htQgeg;t

� �

þOp Ndc�1=2ð Þ:

where eg;t � IIDð0; INÞ. After some re-arrangement of the terms we now obtain

N�1=2
X

N

i¼1

z2i � 1
� �

¼ N�1=2w�1
T

XT

t¼1
hte

0
g;t

� �

Q0
gD

�1
r Qg

� �

XT

t¼1
hteg;t

� �

þOp Ndc�1=2ð Þ

qNT ¼ N�1=2 x0TAxT � Tr Að Þ� 


þN�1=2 TrðAÞ �N½ 	 þOp Ndc�1=2ð Þ;
(A.7)

where

xT ¼ w
�1=2
T

XT

t¼1
hteg;t and A ¼ Q0

gD
�1
r Qg: (A.8)

First consider the deterministic component of qNT, and using Equation (55) and under

Assumption 3, we have

R ¼ ~C~C
0 þD�1=2

r QgQ
0
gD

�1=2
r ; (A.9)

where ~C ¼ ~c1; ~c2; . . . ; ~cNð Þ0. Then,

Tr Rð Þ ¼ N ¼
XN

i¼1
~c0i~ci þ Tr Að Þ:
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But, as before,

Tr ~C~C
0� �

¼
PN

i¼1 ~c
0
i~ci ¼

PN
i¼1

Pk
s¼1 ~c

2
is

� Pk
s¼1

PN
i¼1 jcisj � k sup

s

XN

i¼1
jcisj ¼ O Ndcð Þ:

(A.10)

Hence,

N�1=2 TrðAÞ �N½ 	 ¼ O Ndc�1=2ð Þ;

and Equation (A.7) can be written as

qNT ¼ zNT þO Ndc�1=2ð Þ þOp Ndc�1=2ð Þ; (A.11)

where

zNT ¼ N�1=2x0T
~AxT ; with ~A ¼ A�N�1Tr Að ÞIN : (A.12)

We now apply the central limit theorem for linear quadratic forms due to KP to zNT, which

is reproduced for convenience as Lemma 1. We first establish the conditions required by

KP’s theorem (see Lemma 1). To this end, we first note that E xTð Þ ¼ 0, and

Var xTð Þ ¼ w�1
T E

PT
t¼1 hteg;t

� �

PT
t¼1 hteg;t

� �0
	 


¼ w�1
T

PT
t¼1 h

2
t E eg;te

0
g;t

� � ¼ IN :

Denote the ith element of xT by xi;T and note that it is given by

xi;T ¼ w
�1=2
T

PT
t¼1 hteg;it ¼ w

�1=2
T h0eg;i, where eg;i ¼ ðeg;i1 eg;i2; . . . ; eg;iTÞ0, with an abuse of

the notation. Then, xi;T ¼ w
�1=2
T e0g;iMFsT and x2i;T ¼ w�1

T e0g;iHFeg;i; hence, for a given T, the

elements of xT have zero means, a unit variance, and are independently distributed as

required by KP’s theorem. Using results on the moments of quadratic forms, it is also easily

established that Eðx6i;TÞ ¼ w�3
T E e0g;iHFeg;i

� �3 ¼ 15þOðv�1Þ � K uniformly over i (see

Lemma 11), and hence condition KP1 of the KP theorem (Lemma 1) is met. Consider now

matrix ~A defined by Equation (A.12) and note that it is symmetric and we have

k~Ak1 � kA�N�1Tr Að ÞINk1 � kAk1 þN�1Tr Að Þ

and using Equation (A.8)

k~Ak1 � kQ0
gD

�1
r Qgk1 þN�1Tr Q0

gD
�1
r Qg

� �

� 1

miniðriiÞ

� �

kQgk1kQgk1 þN�1Tr Q0
gQg

� �

kmax D�1
r

� �

� 1

miniðriiÞ

� �

kQgk1kQgk1 þN�1Tr Q0
gQg

� �h i

:

But under Condition (57) and noting that rii > c > 0, then

k~Ak1 ¼ sup
i

XN

j¼1
j~aijj < K;
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and condition KP2 of Lemma 1 is met. To establish condition KP3, we note that

Tr ~Að Þ ¼ 0; Tr ~A
2

� �

¼ Tr A2ð Þ �N�1 Tr Að Þ½ 	2:

Using Equation (A.9), let B ¼ D�1=2
r QgQ

0
gD

�1=2
r , and note that

TrðR2Þ ¼ Tr B2ð Þ þ Tr ~C
0~C

� �2
h i

þ 2Tr ~C
0
B~C

� �

: (A.13)

Also,

Tr ~C
0
B~C

� �

� Tr ~C
0~C

� �

kmax Bð Þ;

and in view of Equation (57), we have

kmax Bð Þ ¼ kmax Q0
gD

�1
r Qg

� �

� k Q0
gD

�1
r Qg

� �

k1 � 1

miniðriiÞ

� �

kQgk1kQgk1 < K;

and hence (using Equation (A.10)):

Tr ~C
0
B~C

� �

¼ O Ndcð Þ: (A.14)

Also (recalling that j~cisj � jcisj),

Tr ~C
0~C

� �2
¼ Tr

PN
i¼1 ~ci~c

0
i

� �2

¼PN
i¼1

PN
j¼1 Tr ~ci~c

0
i~cj~c

0
j

� �

¼PN
i¼1

PN
j¼1 ~c0i~cj
� �2

¼Pk
s¼1

Pk
s0¼1

PN
i¼1

PN
j¼1 j~c is~c js~c is0~cjs0 j

� Pk
s¼1

Pk
s0¼1

PN
i¼1

PN
j¼1 jcisjjcjsjjcis0 jjcjs0 j

� k2 supi
PN

i¼1 jcisj
� �2

¼ O N2dcð Þ:

(A.15)

Hence, using Equations (A.14) and (A.15) in Equation (A.13), we have

Tr B2ð Þ ¼ TrðR2Þ þO N2dcð Þ:

Also, in view of Equation (A.8)

Tr B2ð Þ ¼ Tr D�1=2
r QgQ

0
gD

�1=2
r D�1=2

r QgQ
0
gD

�1=2
r

h i

¼ Tr Q0
gD

�1
r Qg

� �2
	 


¼ Tr A2ð Þ:

To summarize

Tr
�

AÞ ¼
ffiffiffiffiffi

N
p

þO Ndcð Þ and Tr A2ð Þ ¼ Tr
�

R2
�

þO N2dcð Þ;

which also yield (recall that dc < 1=2)

Tr ~A
2

� �

¼ Tr A2ð Þ �N�1 Tr Að Þ½ 	2

¼ TrðR2Þ þO N2dcð Þ �N�1
ffiffiffiffiffi

N
p

þO Ndcð Þ
� 
2

¼ TrðR2Þ þO N2dcð Þ þO N2dc�1ð Þ � 1:

Therefore,

N�1Tr ~A
2

� �

¼ N�1TrðR2Þ þO N2dc�1ð Þ; (A.16)
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which is bounded in N under the assumptions that N�1Tr R2ð Þ is bounded in N and

0 � dc < 1=2. Furthermore, it is readily seen that

N�1Tr R2ð Þ ¼ N�1
X

N

i¼1

X

N

i¼1

q2ij ¼ 1þ ðN � 1Þq2N :

Finally, using Equation (A.12)

Var zNTð Þ ¼ N�1Var x0T
~AxT

� �

¼ N�1E x0T
~AxT

� �2
	 


:

Consider

x0T
~AxT

� �2

¼ w�2
T

X

T

t¼1

X

T

t0¼1

htht0e
0
g;t
~Aeg;t0

 !2

¼ w�2
T

X

T

t¼1

X

T

t0¼1

X

T

r¼1

X

T

r0¼1

htht0hrhr0 e0g;t
~Aeg;t0

� �

e0g;r
~Aeg;r0

� �

:

Since, by assumption, eg;t are serially independent, then using the results on moments of the

quadratic forms, we have

E e0g;t
~Aeg;t

� �2
	 


¼
X

N

i¼1

X

N

j¼1

X

N

i0¼1

X

N

j0¼1

~a ij~ai0j0E eg;iteg;jteg;i0teg;j0tð Þ

¼ c2;eg

X

N

i¼1

~a2ii þ
X

N

i¼1

~a ii

 !2

þ 2
X

N

i¼1

X

N

j¼1

~a ij~aji;

where c2;eg ¼ Eðe4g;itÞ � 3 and by assumption jc2;eg j < K. Also,

E e0g;t
~Aeg;t

� �

e0g;r
~Aeg;r

� �h i

¼ Tr ~Að Þ½ 	2 for t 6¼ r:

For r ¼ t 6¼ t0 ¼ r0,

E e0g;t
~Aeg;t0

� �

e0g;t
~Aeg;t0

� �h i

¼ E e0g;t0
~Aeg;t

� �

e0g;t
~Aeg;t0

� �h i

¼ E e0g;t0
~A ~Aeg; t

0Þ ¼ Trð~A2
�

:

�

Similarly, for r0 ¼ t 6¼ t0 ¼ r; we have E e0g;t
~Aeg;t0

� �

e0g;t0
~Aeg;t

� �h i

¼ Trð~A2Þ. Using these

results

w2
TE x0T

~AxT

� �2
	 


¼
X

T

t¼1

h4t

 !

c2;eg

X

N

i¼1

~a2ii þ
X

N

i¼1

~a ii

 !2

þ 2
X

N

i¼1

X

N

j¼1

~a ij~aji

2

4

3

5

þ
X

T

t¼1

X

T

r¼1

h2t h
2
r �

X

T

t¼1

h4t

 !" #

Tr ~Að Þ½ 	2 þ 2
X

T

t¼1

X

T

r¼1

h2t h
2
r �

X

T

t¼1

h4t

 !" #

Trð~A2Þ:
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But
PT

t¼1

PT
r¼1h

2
t h

2
r

� �

¼
PT

t¼1h
2
t

� �2

;
PN

i¼1 ~a ii ¼Trð~AÞ¼0;
PN

i¼1

PN
j¼1 ~aij~a ji ¼Trð~A2Þ, and

we have

Var zNTð Þ ¼ N�1E x0T
~AxT

� �2
	 


¼ c2;egw
�2
T N�1

X

N

i¼1

~a2ii

 !

X

T

t¼1

h4t

 !

þ 2w�2
T

X

T

t¼1

h2t

 !2

N�1Trð~A2Þ;

and, further noting that
PT

t¼1 h
2
t ¼ wT ; then

Var zNTð Þ ¼ 2N�1Trð~A2Þ þ
c2;eg

P

T

t¼1

h4t

 !

w2
T

N�1
X

N

i¼1

~a2ii

 !

;

and using Equation (A.16)

Var zNTð Þ ¼ 2N�1TrðR2Þ þ
c2;eg

P

T

t¼1

h4t

 !

w2
T

N�1
X

N

i¼1

~a2ii

 !

þO N2dc�1ð Þ;

where by assumption N�1Tr R2ð Þ is bounded in N. Also, using Equation (S.15) in Lemma 8,
PT

t¼1 h
4
t ¼ OðTÞ, and

jc2;eg j
X

T

t¼1

h4t

 !

w2
T

N�1
X

N

i¼1

~a2ii

 !

� K

X

T

t¼1

h4t

 !

w2
T

N�1Trð~A2Þ
� �

� K

T
N�1TrðR2Þ
� 


þO T�1N2dc�1ð Þ ¼ OðT�1Þ þO T�1N2dc�1ð Þ:

Therefore,

Var zNTð Þ ¼ 2N�1TrðR2Þ þOðT�1Þ þO N2dc�1ð Þ; (A.17)

which is bounded for any N and T, so long as N�1Tr R2ð Þ is bounded in N and

0 � dc < 1=2. Also, using Equation (A.11), and under the same conditions, and as N and

T ! 1, in any order,

lim
N;T!1

Var qNTð Þ ¼ 2x2 > 0;

as required. This result also ensures that condition KP3 of Lemma 1 is satisfied and there-

fore, we also have qNT!dNð0; 2x2Þ; asN and T ! 1, in any order. �

Proof of Theorem 2: We have

SNT ¼ N�1=2
X

N

i¼1

z2i 1� 1

r�1
ii r̂ii

 !" #

; (A.18)

where z2i ¼ n0iHFni=wT ; with ni ¼ ui:=r
1=2
ii being the standardized error of the return equa-

tion (6) and wT ¼ s0TMFsT and r̂ii ¼ û0
i:û i:=T. Write Xi ¼ r�1

ii ~rii and note that by
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assumption rii > 0, and by construction only securities with r̂ ii > c > 0 are included in the

Ĵa test, so that

SNT ¼ N�1=2
X

N

i¼1

z2i 1� 1

Xi

� �	 


; (A.19)

where Xi ¼ n0iMGni=v; with v ¼ T �m� 1 and MG ¼ mtt0ð Þ; defined by Equation (A.1).

Also, by Equation (37), E t2i
� �

¼ E z2i =Xi

� �

¼ v= v� 2ð Þ þO T�3=2ð Þ for each i, and by

Lemma 11, E z2i
� �

¼ E n0iHFni=wT

� �

¼ w�1
T Tr HFð Þ ¼ 1; for all i. Thus, we have

E SNTð Þ ¼ O
ffiffiffiffiffiffiffiffiffiffiffiffiffi

N=T2

q

� �

: (A.20)

Next, for all i ¼ 1;2; . . . ;N, we have Xi > 0; and Equation (A.19) can be written as

SNT ¼ N�1=2
X

N

i¼1

z2i 1�Xið Þ þ 1�Xið Þ2
Xi

" #

¼ S1;NT þ S2;NT ;

where

S1;NT ¼ N�1=2
X

N

i¼1

z2i 1�Xið Þ; (A.21)

and

S2;NT ¼ N�1=2
X

N

i¼1

z2i 1�Xið Þ2
Xi

: (A.22)

But since Xi > c > 0 and z2i 1�Xið Þ2 � 0, then

jS2;NT j � c�1N�1=2
X

N

i¼1

z2i 1�Xið Þ2

and

EjS2;NT j � c�1N1=2 sup
i

E z2i 1�Xið Þ2
h i

: (A.23)

But

E z2i 1�Xið Þ2
h i

¼ E z2i X
2
i

� �

� 2E z2i Xi

� �

þ E z2i
� �

¼ v�2w�1
T E n0iHFni

� �

n0iMGni
� �2

h i

� 2v�1w�1
T E n0iHFni

� �

n0iMGni
� �� 


þ 1:

Now using results from Lemma 11, we have

E n0iHFni
� �

n0iMGni
� �� 


¼ vwT þOðvÞ;

E n0iHFni
� �

n0iMGni
� �2

h i

¼ v2wT þOðvwTÞ;
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which yields

E z2i 1�Xið Þ2
h i

¼ O T�1ð Þ; uniformly across i: (A.24)

Using this result in Equation (A.23), we obtain

EjS2;NT j � c�1N1=2 sup
i

E z2i 1�Xið Þ2
h i

¼ O

ffiffiffiffiffi

N
p

T

� �

;

and by Markov inequality we have S2;NT!p0, so long as N=T2 ! 0. Therefore, to establish

SNT!p0; it is sufficient to show that S1;NT!p0. By Lemma 17, we have

N�1=2
X

N

i¼1

z2i Xi � 1ð Þ ¼ N�1=2
X

N

i¼1

z2g;i Xg;i � 1ð Þ þOp Ndc�1=2ð Þ:

where z2g;i ¼ g0iHFgi= wTrg;iið Þ > 0; Xg;i ¼ g0iMGgi= vrg;iið Þ > 0. Using results on the moments

of quadratic forms, by Lemma 15, we have

N�1=2
X

N

i¼1

E z2g;i Xg;i � 1ð Þ
h i

¼
P

t h
2
t mtt

vwT
c2;egN

�1=2
X

N

i¼1

X

N

‘¼1

~q4
g;i‘;

where c2;eg ¼ Eðe4g;itÞ � 3 (and jc2;eg j < K by assumption), ~qg;i‘ ¼ qg;i‘=r
1=2
g;ii with qg;i‘ being

such that Qg ¼ qg;i‘ð Þ; Qg defined by Equation (56). But as 0 � mtt � 1 (MG ¼ mtt0ð Þ) by
Lemma 8, v�1w�1

T

PT
t¼1 h

2
tmtt � v�1w�1

T

PT
t¼1 h

2
t ¼ v�1 as

PT
t¼1 h

2
t ¼ wT , and also that

0 �
PN

‘¼1 ~q
4
g;i‘ � 1, as

PN
‘¼1 ~q

2
g;i‘ ¼ 1 (since

PN
‘¼1 q

2
g;i‘ ¼ rg;ii), and jc2;eg j � K, we have

N�1=2
X

N

i¼1

E z2g;i Xg;i � 1ð Þ
h i

¼ O
ffiffiffiffiffi

N
p

=T
� �

:

Furthermore,

Var N�1=2
X

N

i¼1

z2g;i Xg;i � 1ð Þ
" #

¼ 1

N

X

i

Var z2g;i Xg;i � 1ð Þ
h i

þ 1

N

X

i 6¼j

Cov z2g;i Xg;i � 1ð Þ; z2g;j Xg;j � 1
� �

h i

:

We first note that

Var z2g;i Xg;i � 1ð Þ
h i

¼ E z4g;i Xg;i � 1ð Þ2
h i

� E z2g;i Xg;i � 1ð Þ
h in o2

:

As has shown above,

E z2g;i Xg;i � 1ð Þ
h i

¼ O T�1ð Þ

uniformly over i. Next, consider

E z4g;i Xg;i � 1ð Þ2
h i

¼ E z4g;iX
2
g;i

� �

� 2E z4g;iXg;i

� �

þ E z4g;i

� �

: (A.25)
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But, using results on the moments of quadratic forms, by Lemma 11, we have

E z4g;i

� �

¼ 3þO T�1ð Þ; E z4g;iXg;i

� �

¼ 3þO T�1ð Þ and E z4g;iX
2
g;i

� �

¼ 3þO T�1ð Þ; (A.26)

uniformly over i. Substituting Equation (A.26) into Equation (A.25), we have

E z4g;i Xg;i � 1ð Þ2
h i

¼ O T�1ð Þ;

therefore,

Var z2g;i Xg;i � 1ð Þ
h i

¼ O T�1ð Þ

uniformly over i. We conclude that

1

N

X

i

Var z2g;i Xg;i � 1ð Þ
h i

¼ O T�1ð Þ:

Secondly, by Lemma 16,

1

N

X

i6¼j

Cov z2g;i Xg;i � 1ð Þ; z2g;j Xg;j � 1
� �

h i

¼ O T�1ð Þ þOðN=T2Þ:

In sum, under Assumptions 1–3, SNT!p0, so long as 0 � dc < 1=2; N=T2 ! 0 as N and

T ! 1; jointly. �

Proof of Theorem 3: Under Assumptions 1–3, using Theorem 2 we have

N�1=2
X

N

i¼1

z2i � t2i

� �

=½2 1þ ðN � 1Þq2N
� �

	1=2!p0;

where z2i is defined by Equation (22), so long as ðN � 1Þq2N ¼ Oð1Þ; N=T2 ! 0; and 0 �
dc < 1=2; as N and T ! 1; jointly. Under these conditions (by Lemma 4), it follows that

N�1=2
PN

i¼1 t2i � v
v�2

� �

=½2 1þ ðN � 1Þq2N
� �

	1=2 has the same limit distribution as

N�1=2
PN

i¼1 z2i � 1
� �

=½2 1þ ðN � 1Þq2N
� �

	1=2, which is shown to be standard normal by

Theorem 1, and the desired result now follows, observing that limT!1 v
v�2

� �2 2ðv�1Þ
v�4 ¼ 2. �

Proof of Theorem 4: Let wNT ¼ 1
N

PN
i;j¼1 ~q2

ij � q2ij

� �

, and note that

wNT ¼ 1

N

XN

i;j¼1
~qij þ qij
� �

~q ij � qij
� �

;

and since j~qijj < 1 and jqijj < 1, it also follows that

jwNT j �
2

N

XN

i;j¼1
j~q ij � qijj: (A.27)

Further, letting Iij ¼ I jq̂ijj > v�1=2cpðNÞ
h i

, we have

~qij � qij ¼ q̂ijIij � qij ¼ q̂ij � E q̂ ij

� �� 
� Iij þ E q̂ij

� �� qij
� 
� Iij � qij 1� Iij

� �

;
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and hence

1

2
EjwNT j �

1

N

XN

i;j¼1
E jq̂ ij � E q̂ij

� �j � Iij
� �þ 1

N

XN

i;j¼1
jE q̂ ij

� �� qijjE Iij
� �

þ 1

N

XN

i;j¼1
jqijj 1� E Iij

� �� 


¼ A1 þA2 þA3:

(A.28)

Now using Equation (41), we note that

q̂ ij ¼
u0i:MGuj:

u0i:MGui:
� �1=2

u0j:MGuj:
� �1=2

;

where û i: ¼ MGui:. Also, since MG is an (T�T) idempotent matrix of rank v ¼ T �m� 1,

there exists an orthogonal T�T transformation matrix L LL0 ¼ ITð Þ, defined by

LMGL
0 ¼ Iv 0

0 0

� �

: (A.29)

Hence, setting

fi: ¼ r
�1=2
ii Lui:; (A.30)

q̂ij can be written equivalently in terms of the first v elements of fi: ¼ ðfi1; fi2; . . . ; fiTÞ0 as
(see Lemma 19)

q̂ ij ¼

P

v

t¼1

fitfjt

P

v

t¼1

f2it

� �1=2
P

v

t¼1

f2jt

� �1=2
;

where fit ¼
PT

t0¼1 ltt0nit0 and ltt0 is the ðt; t0Þ element of L. Also, as shown in Lemma 19, for

each i; fit’s are independently distributed over t, and

E fitð Þ ¼ 0; E f2it

� �

¼ 1; E fitfjt
� � ¼ qij:

jijð4; 0Þ ¼ Eðf4itÞ � 3; jijð0; 4Þ ¼ Eðf4itÞ � 3;

jijð3; 1Þ ¼ Eðf3itfjtÞ � 3qij; jijð1;3Þ ¼ Eðfitf3jtÞ � 3qij;

jijð2; 2Þ ¼ Eðf2itf2jtÞ � 2q2ij � 1:

Furthermore, by Lemma 19

E q̂ ij

� � ¼ qij þ
aij
v
þO v�2ð Þ; (A.31)

Var q̂ij

� � ¼ bij
v
þO v�2ð Þ; (A.32)

where

aij ¼ � 1

2
qijð1� q2ijÞ þ

3

8
qij jijð4; 0Þ þ jijð0;4Þ
� 


� 1

2
jijð3; 1Þ þ jijð1;3Þ
� 


þ 1

4
qijjijð2; 2Þ;
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and

bij ¼ ð1� q2ijÞ
2 þ 1

4
q2ij jijð4; 0Þ þ jijð0;4Þ
� 


� qij jijð3; 1Þ þ jijð1; 3Þ
� 


þ 1

2
2þ q2ij

� �

jijð2;2Þ:

Hence, using Equation (A.31), jE q̂ij

� �� qijj � 1
v jaijj þO T�2ð Þ, and we have the following

bound on the second term of Equation (A.28):

A2 ¼ 1

N

XN

i;j¼1
jE q̂ij

� �� qijjE Iij
� �

� 1

vN

XN

i;j¼1
jaijj þO NT�2ð Þ:

Furthermore, since jij are bounded, and by assumption
PN

i;j¼1 jqijj ¼ OðNÞ, we have

1

Nv

XN

i;j¼1
jaijj

� 1

2

1

Nv

XN

i;j¼1
jqijjj1� q2ijj þ

3

8

1

Nv

XN

i;j¼1
jqijjjjijð4; 0Þ þ jijð0; 4Þj

þ 1

4

1

Nv

XN

i;j¼1
jjijð3; 1Þ þ jijð1;3Þj þ

1

2Nv

XN

i;j¼1
jqijjjjijð2;2Þj:

But

1

Nv

XN

i;j¼1
jqijjjjijð2;2Þj � sup

ij
jjijð2; 2Þj

1

Nv

XN

i;j¼1
jqijj ¼ Oðv�1Þ;

and hence

1

Nv

XN

i;j¼1
jaijj �

1

4

1

Nv

XN

i;j¼1
jjijð3; 1Þ þ jijð1; 3Þj þOðv�1Þ: (A.33)

Also,

1

Nv

XN

i;j¼1
jjijð3;1Þ þ jijð1; 3Þj

� 1

Nv

XN

i;j¼1
jEðf3itfjtÞ þ Eðfitf3jtÞj þ

6

Nv

XN

i;j¼1
jqijj

¼ 1

Nv

XN

i;j¼1
jEðf3itfjtÞ þ Eðfitf3jtÞj þOðv�1Þ;

and as established in Lemma 20 (see (S.80) in the Supplementary Material), we have

1

Nv

XN

i;j¼1
jEðf3itfjtÞ þ Eðfitf3jtÞj ¼ O T�1N2dc�1ð Þ þOðT�1Þ;

which if used in Equation (A.33) yields

1

Nv

XN

i;j¼1
jaijj ¼ O v�1N2dc�1ð Þ þOðv�1Þ:

Overall, for the second term of Equation (A.28), we have

A2 ¼ 1

N

XN

i;j¼1
jE q̂ij

� �� qijjE Iij
� �

¼ OðT�1N2dc�1Þ þOðv�1Þ þO Nv�2ð Þ;
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and since by assumption dc � 1=2, and N=T2 ! 0, as N and T ! 1; then

A2 ! 0: (A.34)

To deal with the first and the third terms of Equation (A.28), we need to distinguish be-

tween values of jqijj that are strictly away from zero, namely those values that satisfy the

condition jqijj > qmin > 0, and those values that are zero or very close to zero. Note that for

values of jqijj sufficiently close to zero, in the sense that jqijj � jN�/q , for some j > 0 and

/q > 1, we have23

A3 � 1

N

XN

i;j¼1
jqijj � jN1�/q ! 0; if /q > 1:

Therefore, without loss of generality, we only consider the case where jqijj > qmin > 0, for

all i and j. In this case, we have

A3 ¼ 1

N

XN

i;j¼1;jqij j>qmin

jqijjE 1� Iij
� �

� 1

N

XN

i;j¼1;jqij j>qmin

E 1� Iij
� �

: (A.35)

Further, since E 1� Iij
� �

¼ Pr jq̂ ijj � v�1=2cpðNÞ
h i

, then using result (A.7) in Lemma 4 of

BPS (2017, supplement) we have (for some small � > 0)

Pr jq̂ ijj � v�1=2cpðNÞjqij 6¼ 0
h i

� Ke
� 1��ð Þ

2

v jqij j�
cpðNÞ
ffiffi

v
p

� �2

bij 1þ oð1Þ½ 	:

Using this result in Equation (A.35) now yields

A3 � KNe
� 1��ð Þ

2

v qmin�
cpðNÞ
ffiffi

v
p

� �2

bmax 1þ oð1Þ½ 	;

where bmax ¼ supij bij < K, which can be written equivalently as

A3 � Ke
�v 1��ð Þ

2

qmin�
cpðNÞ
ffiffi

v
p

� �2

�2lnðNÞ
v 1��ð Þ

	 


bmax 1þ oð1Þ½ 	:

Noting that c2pðNÞ=v and lnðNÞ=v have the same rate of convergence and both ! 0, as N

and T ! 1, it then follows that24

A3 ! 0; forsome qmin > 0: (A.36)

Finally, consider the first term of Equation (A.28) and write it as

A1 ¼ 1

N

XN

i;j¼1
E jq̂ ij � E q̂ij

� �j � Iij
� 
 ¼ 1

N

XN

i;j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðq̂ ijÞ
q

E jzijj � Iij
� �

; (A.37)

where zij ¼ q̂ ij � Eðq̂ ijÞ
� 


=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var q̂ij

� �

q

, and Var q̂ij

� �

is given by Equation (A.32). Also, by

Cauchy–Schwarz inequality (noting that E z2ij

� �

¼ 1)

23 Note that the sparsity condition given by Equation (65) can be violated if /q < 1.

24 Note that since by assumption T ¼ cdN
d , with d > 1/2, then lnðNÞ=v ¼ T=ðT �m � 1Þð Þ

c�1
d N�d lnðNÞ ! 0, as N ! 1. Recall that m, the number of factors, is fixed as T ! 1.
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E jzijj � Iij
� �

¼ E jzijjI jq̂ ijj > v�1=2cpðNÞ
h i� �

� E jzijj2
� �h i1=2

EfI jq̂ijj > v�1=2cpðNÞ
h i

g
� �1=2

� fPr jq̂ ijj > v�1=2cpðNÞ
h i

g1=2 � 1:

Using this result and Var q̂ij

� �

from Equation (A.32) in Equation (A.37) and distinguishing

between non-zero and near zero values of qij; we have

A1 ¼ N�1
X

N

i;j¼1

E jq̂ ij � E q̂ij

� �j � Iij
� 
 �

N�1

ffiffiffiffiffiffiffiffiffiffi

bmax

v

r

þO v�1ð Þ
 !

PN
i;j¼1 fPr jq̂ ijj > v�1=2cpðNÞ

h i

jjqijj ¼ 0g1=2

þN�1

ffiffiffiffiffiffiffiffiffiffi

bmax

v

r

þO v�1ð Þ
 !

PN
i;j¼1 fPr jq̂ijj > v�1=2cpðNÞjjqijj > qmin

h i

g1=2

¼ A11 þA12:

Under the sparsity conditions, Equations (32) and (33), the maximum number of non-zero

jqijj is given bym2
N, and we have

A12 � 1

N

ffiffiffiffiffiffiffiffiffiffi

bmax

p

ffiffiffi

v
p þO v�1ð Þ

" #

m2
N ¼ O

m2
N

N
ffiffiffi

v
p

 !

; (A.38)

where mN ¼ OðNdq Þ. Hence, since by assumption dq < 1=2, then it follows that A12 ! 0,

asN and v ! 1. For A11, which relates to the near zero values of jqijj, making use of result

(A.5) in Lemma 4 of BPS (2017, supplement) we have

A11 � K
N2 �m2

N

� �

N

ffiffiffiffiffiffiffiffiffiffi

bmax

p

ffiffiffi

v
p þO v�1ð Þ

" #

exp
� 1� �ð Þ

4

c2pðNÞ
umax

 !

1þ oð1Þ½ 	;

where umax ¼ maxijuij < K. Then for A1 to tend to zero it is sufficient that (note that

N�1m2
N ! 0, since dq < 1=2)

N
ffiffiffi

v
p exp

� 1� �ð Þ
4

c2pðNÞ
u

 !

! 0; as N and v ! 1: (A.39)

To obtain a sufficient condition for Equation (A.39) to hold, set T ¼ cdN
d and note that

(recall that v ¼ T �m� 1 and T=ðT �m� 1Þ < K, sincem is fixed as T ! 1)

N
ffiffiffi

v
p exp

� 1� �ð Þ
4

c2pðNÞ
u

 !

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T

T �m� 1

r

exp
� 1� �ð Þ

4

c2pðNÞ
u

þ ð1� d=2Þ logðNÞ
 !

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T

T �m� 1

r

exp �logðNÞ

1� �ð Þ
4

c2pðNÞ
u

� ð1� d=2Þ logðNÞ

logðNÞ

2

6

4

3

7

5

0

B

@

1

C

A

:

But by result (b) of Lemma 2 of BPS (2017, supplement), limN!1 c2pðNÞ= logðNÞ ¼ 2d; and

Condition (A.39) is met if d 1� �ð Þ=2umax � ð1� d=2Þ > 0; or equivalently if

d > ð2�dÞ
1��ð Þ umax. Therefore, under this condition, A11 ! 0, and together with Equation

Pesaran & Yamagata j Testing for Alpha in Linear Factor Pricing Models 51

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jfe
c
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/jjfin

e
c
/n

b
a
d
0
0
2
/7

0
3
4
2
5
5
 b

y
 g

u
e
s
t o

n
 2

2
 F

e
b
ru

a
ry

 2
0
2
3



(A.38) establishes that A1 ! 0. Therefore, using this result, Equations (A.34) and (A.36) in

Equation (A.28) we have EjwNT j ! 0; as required, and in turn implies wNT!p0, by

Markov inequality. Finally, using (S.79) in the Supplementary Material established in

Lemma 20, and setting ci ¼ 0, for all i, and rg;ij ¼ 0, for all i 6¼ j, to ensure that qij ¼ 0, for

all i 6¼ j, we have

uij ¼ Eðf2itf2jtjqij ¼ 0Þ ¼ c2;eg

X

T

r¼1

l4tr

 !

XN

‘¼1
r�1
ii r�1

jj q2g;i‘q
2
g;j‘

� �

þ r�1
ii r�1

jj rg;iirg;jj:

where ltr is the (t, r) element of the T�T orthonormal matrix L defined by Equation

(A.29), qg;i‘ is such that Qg ¼ qg;i‘ð Þ; Qg defined by Equation (56). Also, jrg;ii=riij �

1;
PT

r¼1 l
4
tr � PT

r¼1 l
2
tr

� �2

� 1;
PN

‘¼1 ~q
2
g;i‘ ¼

PN
‘¼1 q

2
g;i‘=rg;ii ¼ 1; and

XN

‘¼1
r�1
ii r�1

jj q2g;i‘q
2
g;j‘

� �

¼ j
XN

‘¼1
~q2
g;i‘~q

2
g;j‘j �

XN

‘¼1
~q4
g;i‘

� �1=2 XN

‘¼1
~q4
g;j‘

� �1=2

� 1:

Hence, supij uij � 1þ jc2;eg j, as required. �

Proof of Theorem 5: By Theorem 3, Jaðq2NÞ!dNð0; 1Þ so long as N=T2 ! 0; and 0 �
dc < 1=2; as N ! 1 and T ! 1; jointly, where Jaðq2NÞ and dc are defined by Equations

(61) and (53), respectively. Since Theorem 4 ensures that Ĵa � Jaðq2NÞ!p0; as ðN �
1Þð~q2

N;T � q2NÞ!p0 when d>2/3, as N and T ! 1; and d > ð2�dÞ
ð1��Þ umax, for some small

� > 0, where umax � 1þ jc2;eg j, under these conditions, Ĵa has the same limit distribution

as Jaðq2NÞ (by Lemma 4), which establishes the result. �

Proof of Theorem 6: The steps in the proof are similar to the ones in deriving the limiting

distribution of Ĵa under the null hypothesis. First, Lemma 22 provides the proof of the re-

sult, under Assumptions 1–3, and under the local alternatives (68), N�1=2
PN

i¼1ðz2i;a �
1Þ!dNð/2;2x2Þ; as N ! 1 and T ! 1; jointly, where z2i;a defined by (S.97) in the

Supplementary Material, x2 ¼ 1þ limN!1ðN � 1Þq2N ; q2N is defined by Equation (60).

Also, by Lemma 23, we have N�1=2
PN

i¼1ðz2i;a � t2i Þ ¼ opð1Þ. Finally, Ĵa � Ja ¼ opð1Þ, since
the consistency result of the MT estimator ~q2

N;T given by Theorem 4 will not be affected by

the introduction of local alternatives, as the MT estimator is obtained based on the regres-

sion residuals of the alternative model. This completes the proof of Theorem 6. �
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