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Label-free fibre optic Raman spectroscopy with
bounded simplex-structured matrix factorization
for the serial study of serum in amyotrophic lateral
sclerosis†

James J. P. Alix, *‡a,b Nick S. Verber,‡a,b Chlöe N. Schooling,a,c

Visakan Kadirkamanathan,c Martin R. Turner,d Andrea Malaspina,e John C. C. Dayf

and Pamela J. Shaw*a,b

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease in urgent need of disease bio-

markers for the assessment of promising therapeutic candidates in clinical trials. Raman spectroscopy is an

attractive technique for identifying disease related molecular changes due to its simplicity. Here, we describe a

fibre optic fluid cell for undertaking spontaneous Raman spectroscopy studies of human biofluids that is suit-

able for use away from a standard laboratory setting. Using this system, we examined serum obtained from

patients with ALS at their first presentation to our centre (n = 66) and 4 months later (n = 27). We analysed

Raman spectra using bounded simplex-structured matrix factorization (BSSMF), a generalisation of non-nega-

tive matrix factorisation which uses the distribution of the original data to limit the factorisation modes (spectral

patterns). Biomarkers associated with ALS disease such as measures of symptom severity, respiratory function

and inflammatory/immune pathways (C3/C-reactive protein) correlated with baseline Raman modes. Between

visit spectral changes were highly significant (p = 0.0002) and were related to protein structure. Comparison

of Raman data with established ALS biomarkers as a trial outcome measure demonstrated a reduction in

required sample size with BSSMF Raman. Our portable, simple to use fibre optic system allied to BSSMF shows

promise in the quantification of disease-related changes in ALS over short timescales.

Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative con-

dition caused by the progressive loss of motor neurones in the

brain and spinal cord. As a result, patients experience weak-

ness of limb and respiratory muscles, as well as of the muscles

controlling speech and swallowing. Despite significant pro-

gress in understanding the disease, ALS remains incurable

with an average survival time of two years from the point of

diagnosis.1

As a result, many clinical trials are underway which attempt

to treat different aspects of the disease. Development of bio-

markers of disease that can identify early changes are therefore

a priority area of ALS research. Recent imaging,2 electrophysio-

logical3 and serum4–6 biomarker studies have demonstrated

early changes in longitudinal measurements (within

3–6 months) with the potential to improve clinical trial

design.7

Raman spectroscopy is a form of vibrational spectroscopy

based upon the inelastic scattering of light. Interest in the

application of Raman spectroscopy to neurological disorders is

growing due to the simple, label-free nature of the

technique.8,9 Biofluids are particularly appealing in biomarker

research due to the ease of sample acquisition. Thus far, bio-

fluid based ALS studies have typically employed surface

enhanced Raman spectroscopy,10–12 in which inelastic scatter-

ing is potentiated by plasmon excitation in nanoparticles.13

Spontaneous Raman spectroscopy, which is more straight-

forward to implement but generates a far weaker signal, has

also been used, albeit less frequently, in studies on ALS14 and

other neurodegenerative diseases.15 While most applications

have employed standard laboratory-based microscope formats,
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fibre optic technologies are gaining momentum due to their

potential for use in clinical environments.16 Invasive, in vivo

fibre optic based measurements have been a focus for develop-

ment but bedside testing of easily obtainable samples, such as

blood, would potentially avoid complex laboratory assays and

provide rapid results upon which clinicians could act.

Parallel to technological advances, the development of data

analysis algorithms is key for the incorporation of Raman

spectroscopy into clinical research and, ultimately, clinical

practice.17,18 With the exception of deep learning methods,

most statistical analyses begin with dimension reduction, a

process which aims to improve data visualisation and remove

redundant information. Non-negative matrix factorisation

(NMF) is popular method, used for both dimension reduction

and feature extraction within signal processing and biomedical

fields.19 The technique combines multivariate analysis and

linear algebra to decompose the original data into two lower

ranking matrices (i.e. with fewer dimensions). In the context of

Raman spectroscopy, one of these matrices contains the spec-

tral patterns, also termed ‘modes’, for which the non-negative

constraint provides a physically realistic output. The other

matrix contains the associated coefficients, typically termed

‘weights’, which represent the relative importance of a given

pattern to a given sample. Recently, generalisations of NMF,

termed simplex structured matrix factorisation, have been pro-

posed which do not impose the non-negative constraint.20 A

newly developed variant of this approach, termed bounded

simple structured matrix factorisation (BSSMF), uses the distri-

bution of the original data to impose bounds on the approxi-

mation.21 As for other forms of matrix factorisation, two lower

rank matrices are produced, however, BSSMF imposes the

interval found in the origin data upon the decomposition.

Thus, when applied to spectral data, such restrictions should

enhance the interpretability of the dominant spectral patterns

that are identified.

In this proof-of-concept study, we constructed a portable

fibre optic Raman system for the study of biofluids in clinical

environments. We studied serum samples collected from ALS

patients at two time points and analysed the Raman spectra

using BSSMF. We compared Raman data to established clinical

measures of disease severity, standard clinical analytes known

as promising biomarkers of disease activity (C-reactive

protein,22 ferritin23 and complement24) and the leading new

serum biomarker for ALS (neurofilament-light, NfL25,26). Our

data show promise in optimising the biomarker potential of

serum Raman studies in ALS.

Methods
Participants and clinical assessments

Samples were collected as part of A Multicentre Biomarker

Research Strategy in ALS (AMBRoSIA) study, a longitudinal,

observational biomarker study. The study was approved by an

NHS Research Ethics committee (reference: 16/LO/2136).

66 patients were recruited at their first presentation to the

Royal Hallamshire Hospital, Sheffield, UK. After written

consent was obtained blood samples were collected and

clinical measures of disease completed. Forced vital capacity

(FVC), assessment of respiratory function, was measured

using a handheld spirometer and a percentage of the

patient’s predicted value calculated using subject age and

height. The ALS Functional Rating Scale-Revised (ALSFRS-R),

the established symptom severity score for ALS, was com-

pleted. A baseline disease progression rate (DPR) was calcu-

lated as (48-ALSFRS-R)/(months from symptom onset at the

time of first sample collection). A second data collection

visit, comprising repeat clinical assessments and venepunc-

ture, was undertaken 4 months after the first visit in n = 27

patients.

Serum assays

Following venepuncture, samples were separated out for

further processing of the different biomarkers. For ferritin,

CRP and complement (C3 and C4), samples were sent to the

Clinical Chemistry and Clinical Immunology laboratories at

Sheffield Teaching Hospitals NHS Foundation Trust. For NfL

and Raman studies, serum was separated from blood (centri-

fuged at 3500 rpm at 4 °C for 10 minutes) and stored in liquid

nitrogen. For NfL, these were thawed on ice and quantified

using the Mesoscale Discovery (MSD) R-PLEX electrochemilu-

minescent (ECL)-ELISA platform, as per the manufacturer’s

instructions.

Raman spectroscopy

Raman spectra were obtained from the samples of all patients

using a custom made, fibre optic coupled, liquid measurement

cell (Fig. 1; Clifton Photonics Ltd, Bristol, UK). This cell

focusses laser excitation into a 40 μl disposable aluminium

sample container with an objective lens of focal length 25 mm

and collects scattered light in reflection mode. The internal

optics provide filtering for the rejection of elastically scattered

light and clean-up of the incident laser beam. The collection

optics have focal length 25 mm and numerical aperture of

0.22. Optical fibres coupled the cell to an 830 nm diode laser

(Process Instruments, Salt Lake City, USA) and a Raman

Explorer spectrometer (Headwall Photonics Inc. Bolton,

Massachusetts, USA). The spectrometer was used in conjunc-

tion with an Andor iDus 420 CCD and Andor Solis software

(Andor Technology ltd, Belfast UK) for data acquisition.

Acquisition of Raman spectra was undertaken in a windowless

hospital clinic room. Serum samples were thawed on ice and

25 μl pipetted into the aluminium sample holder. A laser power

of 60 mW measured at the sample was used. PTFE spectra were

collected at the start of each recording session for wavenumber

calibration. In addition, a background signal was collected with

an empty aluminium pan in situ within the recording chamber.

For each serum sample, an 8 seconds exposure was used, and 20

spectra were recorded (total recording time therefore 160

seconds). The individual spectra were then averaged prior to ana-

lysis. Replicates were taken from 20 samples chosen at random;
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for these, a second 25 μl of serum was taken from the main

aliquot and the spectral collection process noted above repeated.

Analysis

Spectral analyses were undertaken using MATLAB (Version

R2021b, The MathWorks, Inc., Natick, MA, USA). Analyses

were undertaken across all spectra (i.e. visit 1 and visit 2), with

separation of the two visits undertaken post-hoc. Spectra were

first windowed between 900 and 1800 cm−1. At <900 cm−1 the

spectra were dominated by silica-related artefact from the fibre

optics. At >1800 cm−1 the spectra consisted of non-biological

noise. Windowed spectra were interpolated to integer wave-

number spacings, followed by background subtraction using

the rubber band algorithm27 and standard normal variate

(SNV) normalisation. Peaks were identified using the find-

peaks MATLAB function.

BSSMF21 was also applied across all spectra i.e. visit 1 and

visit 2 were analysed as one dataset. The data are built up as

an n × m matrix, X, where n is the 900 wavenumbers and m is

the number of spectra (herein, 66 first visit samples plus 27

seconds visit samples equals a total of 93 spectra). For a rank r

factorisation, (where the rank, r, represents the number of spec-

tral patterns output from the factorisation) BSSMF approxi-

mates X as the product of two low rank matrices:

X � WH;

where W has n rows and r columns, and H has r rows and m

columns. The unique characteristic of the BSSMF method is

that entries in each column of W are bounded to belong in the

interval of the observed dataset X. Thus, the data in the matrix

W represent the dominant spectral patterns in the dataset and

are termed ‘modes’. By bounding these modes into the interval

of the observed data range we identify spectra which are phys-

ically realistic to observe. The columns of H belong to the unit

simplex; these are the weightings and represent the relative

importance of each spectral pattern (i.e. mode) to each sample.

To select the rank of the decomposition, r, that is, the number

of spectral patterns to be found, the root mean square residual

(R) between replicate data of 20 samples was calculated:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

P

m

j¼1

X1ij � X2ij
�

�

�

�

2

n�m

v

u

u

u

t

where X1 is the first run of the replicates and X2 is the repeat

set (see ESI Fig. S1† for a subtraction spectrum of the technical

replicates). For the matrix reconstruction, the root mean square

residual (D) between the dataset (X) and the approximation

(WH) was determined:

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

P

m

j¼1

X ij � ðWHÞij

�

�

�

�

�

�

2

n�m

v

u

u

u

t

The rank was chosen when the decomposition residual

became smaller than the deviation between replicates (i.e.

when D < R). This was satisfied for a rank of 5; thus, 5 domi-

nant spectral modes were found (M1–M5). All subsequent ana-

lyses were applied to the weighting matrix, H. These included

Pearson correlations with the different markers of disease

(NfL, CRP, ferritin and complement, FVC, ALSFRS-R, DPR)

which were undertaken using visit 1 data. For assessment of

visit 1 vs. visit 2 repeated measures one-way analysis of var-

iance with a false discovery rate correction (Q = 0.05) was per-

formed using GraphPad Prism (Version 9).

In addition, principal component analysis (PCA) was

applied to the 5 spectral weightings of the entire dataset, and

the direction of maximum variance (PC1) was calculated

(BSSMF-PCA). Considering the jth sample, the BSSMF-PCA

value is given by
P

5

r¼1
ðp r½ � �HrjÞ, where p[r] is the PC1 coefficient

for the rth dimension. For identification of patterns associated

with more/less severe disease the five modes were split into

two subgroups, depending upon whether the respective coeffi-

cient, p[r], was positive or negative. If a mode has a positive

coefficient, then as its weighting increases, a relative increase

in the BSSMF-PCA value is observed. By contrast, increasing

weight for the modes with negative coefficients results in a

relative decrease in BSSMF-PCA. The PC coefficients were then

Fig. 1 The portable fibre optic Raman system. (a) The 3D printed fluid

cell and schematic of the system. (b) Mean (± standard deviation)

spectra (all samples).
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used to derive a linear combination of the modes for the two

subgroups (more/less severe disease). To do this, each BSSMF

mode in the subgroup was multiplied by the absolute value of

the respective PC1 coefficient, |p[r]|. Hence, by assessing how

the BSSMF-PCA value correlates with disease it is possible to

assign labels of more severe and less severe disease to these

two combined spectral patterns (as shown in Fig. 2b). For the

visit 1 vs. visit 2 analysis, the paired data (mode weights and

BSSMF-PCA scores) were identified for post hoc analysis and

the same PC coefficient procedure applied.

The sample size for the number of patients required in a

hypothetical clinical trial was calculated at 5% significance

and 80% power:28

Number of patients sample sizeð Þ ¼ 2�
Z1�

α
2
þ Z1�β

ES�
p

100

0

B

@

1

C

A

2

where Z is the standard normal distribution for the respective

significance level (α = 0.05) and power (1 − β = 80%), p is the

treatment effect percentage and ES is the effect size of the bio-

marker, calculated by assessing the mean change over time (μ)

and the standard deviation of the change (σ):

ES ¼
μ

σ

Results and discussion
Baseline data

Patient characteristics are shown in Table 1. Raman spectra

were obtained and Raman spectra demonstrated features

similar to those seen in other blood biofluid studies,14,29 with

prominent peaks relating to phenylalanine (999 cm−1), the

amide III region (between 1205 cm−1 and 1340 cm−1), the CH2

Fig. 2 Spectral patterns arising from the BSSMF and their linear combinations. (a) Modes from the BSSMF factorisation of all data. Visit 1 outputs

were then correlated with visit 1 clinical/biomarker data to established associations with disease severity (n=66 samples from 66 patients). (b) Modes

were combined with PCA and then the relevant PC1 coefficients used to derive spectral patterns associated with worsening disease (modes 1, 3, 5)

and less severe disease (modes 2, 4).
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deformation of lipids/proteins (1448 cm−1) and amide I region

(1650–1660 cm−1) (Fig. 1). Tentative assignments were taken

from the literature (see ESI Table S1† for references).

BSSMF was undertaken and the five modes demonstrated

similar prominent peaks to the raw spectra (Fig. 2a). Shifts

were evident for certain peaks. These included phenylalanine

peaks (999/1000 and 1024–1027 cm−1), the CH2 deformation of

lipids/proteins (1446–1450 cm−1) and α-helical protein content

(938–942 cm−1). There were also differences in the promi-

nence, or even presence/absence of other peaks, including

1078–1080 cm−1 (present in modes M1–M4), 1153 cm−1

(present in M1, M2, M5), 1240 cm−1 (M5), 1520 cm−1 (promi-

nent in M2). See ESI Table S1† for further mode peak

assignments.

Correlations between spectra obtained from samples taken

at the baseline visit (i.e. visit 1, n = 66) and clinical/biochemi-

cal characteristics were explored using mode weights. These

demonstrated that some modes were associated with more

severe disease (M1, M3, M5), and some with less severe

disease (M2, M4; Fig. 2a; see ESI Table S2† for full correlation

statistics). Particularly prominent correlations were seen for

FVC and the inflammatory/immune proteins C-reactive protein

(CRP) and C3. FVC is an established respiratory assessment

used in ALS. CRP is an acute phase protein which acts as an

activator of the complement system, a key component of the

innate immune system. Both are increased in ALS and associ-

ated with a more severe form of disease.22,30–34 In keeping

with these prior reports, in our analyses modes associated

with increasing CRP/C3 were also associated with worsening

disease.

The combined BSSMF-PCA metric was also found to be

associated with more severe disease (see ESI Table S2† for cor-

relations and ESI Table S3† for PC coefficients). Thus, more/

less severe disease spectral patterns were obtained (Fig. 2b). By

using multiple measures of disease this approach provides a

more comprehensive means of findings spectral features

associated with worsening disease. These patterns demon-

strated peak differences related to protein structure (938–952,

1253/55, 1316/1320, 1654/6 cm−1) and lipids (1100 cm−1). Peak

shifts such as these have been described in other diseases,

such as malignancy35,36 and necrosis.37 The understanding of

the exact mechanisms driving such shifts is incomplete but

may involve altered inter-molecular interactions.38 Thus,

changes in chemical bond length or symmetry, perhaps

related to structural alterations of proteins, may drive such

changes.

While environmental factors such as sample temperature

could also contribute, we noted that other peaks demonstrated

alterations in shape and intensity, or were absent in some

modes (e.g. 1335, 1520 cm−1). Instrument calibration was per-

formed prior to each recording session and average spectra

from each visit manifested several prominent common peaks

(e.g. 999, 1080, 1123, 1153, 1205, 1554, 1656 cm−1; Fig. 3).

These observations would suggest that systematic differences

in recording conditions were not the dominant reason for

peak differences found in the matrix decomposition.

Interestingly, peak alterations indicative of changes in

protein structure have also been identified in Raman serum

studies of other neurodegenerative conditions.15 These dis-

orders, which include ALS, are increasingly recognised as pro-

teinopathies, in which misfolded proteins play a key driving

Table 1 Clinical details of the ALS patients

Mean age (s.d.) 62 years (12)

Gender (n, %) Male: 37 (56%)
Female: 29 (44%)

Site of disease onset (n, %) Limb: 55 (84%)
Bulbar: 8 (12%)
Respiratory: 1 (2%)
Cognitive: 1 (2%)

Mean disease duration (s.d.) 22 months (21.7)
Mean ALSFRS-R score (range) 37 (17–48)
Mean DPR (range) 0.8 (0–6)
Mean % predicted FVC (range) 86 (12–141)

Fig. 3 Change in clinical and biochemical measures of disease. (a) Changes in key clinical and biochemical measures of disease (n = 27; see ESI fig.

S2† for data from other measures). (b) Mean (± standard deviation) for Raman spectra obtained from patients attending both visit 1 and visit 2 (n =

27). *p < 0.05, **p < 0.01.
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role in disease initiation and spread.39 For example, analysis of

protein aggregates within blood from ALS patients demon-

strated the presence of a large number of proteins involved in

the proteasome, the clearance system for defective proteins,

illustrating that the effects of abnormal proteins can spread

across the blood–brain barrier.40 Assessing whether Raman

spectroscopy could provide a simple point of care assay on

such aggregates would be a useful future work. In addition,

peaks associated with carotenoids were more prominent in the

less severe disease pattern (1153, 1521 cm−1). Carotenoids

exhibit free radial scavenging and interact with the Nrf2 signal-

ling pathway, both of which have been implicated in ALS.41,42

Interestingly, increased carotenoid intake has been shown to

correlate with less severe disease,43 although the relationship

between intake and disease is likely to be complex.44

Change over time: visit 1 vs. visit 2

Second visit assessments were performed 4 months after the

first visit in n = 27 patients. Established clinical (ALSFRS-R,

FVC) and biochemical biomarkers (NfL) demonstrated signifi-

cant change between the two visits, indicating disease pro-

gression in these patients (Fig. 3a; see ESI Fig. S2† for remain-

ing biomarkers). The weightings of modes M3, M4 and M5

from the BSSMF also demonstrated significant changes

(Fig. 4a). The BSSMF-PCA scores increased over time (moving

from negative to positive; Fig. 4b), which represents a shift

from the less severe to the more severe spectral pattern in the

earlier analysis. Significant differences were observed in the

visit 1/visit 2 BSSMF-PCA scores (p = 0.0002; Fig. 4b).

Several reports utilising more traditional techniques for

monitoring ALS (such electrophysiological and imaging

studies) have demonstrated significant changes in disease

state within 4 months.2,3 The most promising serum bio-

marker at present is NfL, a structural protein found in axons

which is released when axons degenerate. Recent multi-centre

work from the AMBRoSIA study group found that levels

increased over time and modelling its inclusion as a trial

outcome measure reduced sample size requirements.26

To investigate the potential of our Raman paradigm in a

longitudinal setting, a hypothetical clinical trial was con-

structed and sample sizes for the number of patients required

(not the volume of serum) were calculated (Table 2). In com-

parison to established ALS biomarkers (ALSFRS-R, FVC, NfL),

Raman data from modes M3-5 and the linear combination of

all modes (BSSMF-PCA) required smaller sample sizes.

Fibre optic Raman systems have been investigated for

in vivo applications, for example, for deployment during

surgery and endoscopy.16 Serum studies have largely employed

either standard microscope formats (e.g.45), but smaller porta-

ble systems are being investigated (e.g.46). More recently, opto-

fluidic systems, which combine microfluidics to separate

blood components with Raman, have been developed.47,48

Whether using a portable system such as ours, or a miniature

optofluidic design, being able to take Raman to the clinic

offers the possibility for real-time molecular fingerprinting at

the point of care. Such information could help guide clinical

decision making in the precision medicine era. This might

benefit a range of diseases, as well as a variety of care settings,

for example, emergency care, surgery and outpatient clinics. In

addition to immediate patient benefit, reduced decision-

making times can also have potential knock-on effects in cost

benefit analyses. Developing an evidence base for point of care

Raman spectroscopy through high quality, multi-centre

studies with parallel health economic assessments, will be a

priority for the field as it continues to develop.

The complexity of Raman spectra and the subtle molecular

differences found in disease necessitates multivariate analysis,

often beginning with dimensionality reduction. The typical

approach (PCA) can distort the spectral profile and present

physically unrealistic results. Non-negative matrix factorisation

can overcome some of these issues and provide a quantitative

measure of the importance of different spectral patterns to

disease.49,50 The bounded simplex structured matrix factoris-

ation used here does not impose the non-negative constraint;

instead the factorisation matrix W is bound within an interval

defined by the original data.21 Thus, the data within W can be

interpreted in the same way as the original data (X). Bounded

component analysis approaches are similar in their approach,

although more difficult to interpret.51 In our analyses we also

combined modes to gain a more complete picture of the bio-

chemical changes occurring over time. Analysing Raman data

in this fashion could facilitate clinical trials, with reduced

Table 2 Hypothetical clinical trial sample sizes

Effect
size

Sample size: 50%
treatment effect

Sample size: 20%
treatment effect

Raman
M1 −0.35 529 3310
M2 −0.26 941 5883
M3 0.89 80 502
M4 −0.85 87 547
M5 0.84 89 557
BSSMF-PCA 0.85 87 547
ALSFRS-R −0.44 323 2024
FVC −0.78 102 642
Neurofilament-light 0.7 128 798

Fig. 4 Longitudinal BSSMF mode and BSSMF-PCA changes. (a)

Changes in individual BSSMF mode weights. (b) Change in BSSMF-PCA

scores from visit 1 and visit 2. ns – not significant, ***p < 0.001.
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sample size numbers reducing trial costs. This, in turn, can

help utilise resources more efficiently, meaning more studies

could be funded in the search for new treatments.

Furthermore, the integration of advanced analysis algorithms

with portable fibre optic technology, or indeed other plat-

forms, can aid the development of biomedical Raman spec-

troscopy as a point of care technology.

Conclusions

Herein, we have presented a novel, portable fibre optic system

for the study of human biofluids. As the development of bio-

markers for monitoring ALS is an area of intense investigation,

we tested the system on serum from ALS patients collected at a

4-month interval. We analysed data using a matrix decompo-

sition technique with enhanced physical interpretation con-

straints. Key spectral features appeared to relate to protein

structure. Further assessment of serum samples over longer

time periods could provide additional insights into the

complex biochemical changes occurring the serum of patients

with ALS and facilitate more efficient clinical trial design.
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