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Abstract. Reinforcement learning emerges as an efficient tool to design
control algorithms for nonlinear systems. There are, however, few results
available on how the robustness of the closed-loop dynamics with rein-
forcement learning is performed. While µ-analysis is well established as
the robustness analysis tool for linear systems, there is also a limitation
caused by ignoring the equilibrium shift by the uncertain parameters. An
improved linearisation method for µ-analysis is presented and the method
is applied to the inverted-pendulum system with the reinforcement learn-
ing control. The resulting robustness analysis provides a significantly less
conservative upper bound to the smallest worst-case perturbation.

Keywords: Robustness Analysis, Reinforcement Learning, Inverted-Pendulum

1 Introduction

Consider the following nonlinear system

ẋ = fOL(x,p) + g(x,p)u (1)

where ẋ = dx/dt, x is the state in ℜn, p is the parameters to characterise
the nonlinear system in ℜp, u is the control input in ℜm, fOL(·, ·) and g(·, ·)
are nonlinear functions, which satisfy the conditions for the existence and the
uniqueness of the solution of the nonlinear differential equation, ℜ is the real
number set, d()/dt is the time derivative, and n, p andm are the positive integers
with appropriate values. Once the state feedback control is designed so that
u = u(x), the closed-loop system dynamics becomes

ẋ = f(x,p) (2)

where

f(x,p) = fOL(x,p) + g(x,p)u(x) (3)

and f(x,p) satisfies the conditions for the existence and the uniqueness of the so-
lution of the differential equation. Note that u(x) would be a complex nonlinear



function. In this paper, it is a control policy trained by the reinforcement learn-
ing with neural network functions, particularly, the Deep Deterministic Policy
Gradient (DDPG) [1] is used to design u(x).

The equilibrium point, xeq, is obtained by solving the following algebraic
equation:

f(xeq,p) = 0 (4)

Introduce a small perturbation, δx, around the equilibrium point as

x = xeq + δx (5)

Take the time derivative and obtain

δẋ =
∂f

∂x

∣

∣

∣

∣

(xeq,p)

δx = Fx(xeq,p) δx (6)

The robustness analysis is performed by introducing perturbations in the pa-
rameters for the linearised system, (6), as follows:

p = p̄+ δp (7)

and checking the stability of Fx(xeq,p) for some ranges of the perturbation
magnitude, i.e., ‖δp‖ < (1/µ), where p̄ is the nominal parameter values, ‖ · ‖ is
typically the ∞-norm and µ is a positive real number. Finding the maximum µ,
where Fx(xeq,p) is destabilised for some δp, whose norm is less than or equal
to 1/µ, is the µ-analysis problem [2].

Although this approach has been widely used, its validity only for the re-
gion, in which the equilibrium point remains sufficiently close to the original
equilibrium point for all possible parametric perturbations, has not been fully
considered to the best of the author’s knowledge. Only two exceptions are the
study presented by [3] and [4], where the equilibrium shift for polynomial un-
certain parameters is considered for a polynomial system typically occurred in
chemical reaction networks. If the validity of the linear approximation is vio-
lated, there is the risk that all analyses based on this model provide incorrect
robustness results. Due to the completely ignored equilibrium point shifting when
the perturbation is introduced, it would provide inadequate robustness results
for the linearised systems derived from nonlinear systems.

The rest of the paper is organised as follows: firstly, the robustness analysis
including equilibrium perturbation is formulated; secondly, the approach is ap-
plied to the inverted-pendulum with the DDPG control; finally, the conclusions
and future works are presented.

2 Robustness Analysis

This section introduces perturbations in equilibrium points. The linearisation
including the perturbations is derived. And, the robustness analysis method is
proposed.



2.1 Equilibrium Point Perturbation

Suppose p is perturbed as (7), then the equilibrium point is perturbed by the
parameter changes as follows:

x+
eq = xeq + δxeq (8)

where x+
eq indicates the equilibrium point with the perturbation, δp. δxeq is not

an independent perturbation but depending on δp. The relationship between
these two perturbations are obtained by solving the following algebraic equation:

f(x+
eq,p) = f(xeq + δxeq, p̄+ δp) = 0 (9)

The Taylor series expansion up to the first-order provides

f(x+
eq,p) ≈ f(xeq, p̄) + Fx(xeq, p̄)δxeq + Fp(xeq, p̄)δp = 0

where

Fx(xeq, p̄) =
∂f

∂x

∣

∣

∣

∣

(xeq,p̄)

, Fp(xeq, p̄) =
∂f

∂p

∣

∣

∣

∣

(xeq,p̄)

(10)

Hence,

δxeq(xeq, p̄) = −F−1
x (xeq, p̄)Fp(xeq, p̄)δp (11)

where the inversion of Fx always exists with the assumption that the linearised
system at the unperturbed equilibrium point, (xeq, p̄), is Hurwitz stable, i.e., all
real parts of the eigenvalues are strictly negative. This is the prerequisite for any
robustness analysis. Equation (11) provides the way to calculate how much the
equilibrium would be perturbed from the original equilibrium by the parameter
perturbations.

It is worth pointing out that Fx(xeq, p̄) is expressed in terms of the open-loop
dynamics and the control input function as follows:

Fx(xeq, p̄) =
∂fOL

∂x

∣

∣

∣

∣

(xeq,p̄)

+

m
∑

i=1

∂g

∂xi

∣

∣

∣

∣

(xeq,p̄)

u(x) + g(xeq, p̄)

m
∑

i=1

u(x)

∂xi

∣

∣

∣

∣

x=xeq

(12)

2.2 Linearized System at x+
eq

Introduce a small perturbation δx around x+
eq, and the dynamics of the pertur-

bation is approximated by

δẋ = Fx(x
+
eq,p) δx (13)



Equation (13) includes the equilibrium point perturbation caused by the para-
metric perturbation. Calculating x+

eq accurately and direct usage of (13) for
the robustness analysis with respect to the parametric uncertainty, δp, requires
solving the following nonlinear algebraic equation:

f(x+
eq,p) = fOL(x

+
eq,p) + g(x+

eq,p)u(x
+
eq) = 0 (14)

and obtaining the jacobian of the control input at the perturbed equilibrium
point for every δp as follows:

∂u(x)

∂x

∣

∣

∣

∣

x=x
+
eq

(15)

This would require additional computations and could be cumbersome, if not
impossible, for some complex functions or mapping based controllers such as
reinforcement learning or the neural network based control algorithm. As there
might not be an explicit analytical expression for the control algorithm, calculat-
ing the derivative of every perturbation would increase further the computational
cost for the robustness analysis.

To avoid the jacobian calculation of the control input for every perturbation,
approximate the right-hand side of (13) using the Taylor series expansion up to
the first-order terms as follows:

δẋ ≈



Fx(xeq,p) +

n
∑

i=1

∂Fx

∂x
(i)
eq

∣

∣

∣

∣

∣

(xeq,p)

δx(i)
eq



 δx (16)

where ∂(·)/∂x(i)
eq is the partial derivative with respect to the i-th component of

xeq, and δx
(i)
eq is the i-th component of δxeq. Substitute (11) into (16)

δẋ = [Fx(xeq,p) +∆Fx(xeq,p)] δx = A(δp)δx (17)

where

∆Fx(xeq,p) =

n
∑

i=1

∂Fx

∂x
(i)
eq

∣

∣

∣

∣

∣

(xeq,p)

δx(i)
eq (xeq, p̄) (18a)

A(δp) = Fx(xeq,p) +∆Fx(xeq,p) (18b)

∆Fx(xeq,p) is caused by the effect of the parameter perturbations on the equi-
librium point shift.

2.3 Robustness Analysis at x+
eq

Define the difference matrix by the perturbation of A(δp) as follows [5]:

A∆(δp) = A(δp)−A(0) (19)



and the linearised system is given by

δẋ = A(0)δx+A∆(δp)δx (20)

The stability of the perturbed system is determined by the following transfer
function:

G(s, δp) = [I −M(s)A∆(δp)]
−1

M(s) (21)

where s is the complex frequency variable in the Laplace transform,

M(s) = [sI −A(0)]
−1

(22)

and I is the identify matrix with the appropriate dimension.
The robustness analysis problem is seeking the minimum magnitude of the

perturbation, ‖δp‖, among the following singularity is satisfied:

‖δp∗‖ = argmin
‖δp‖

|I −M(jω)A∆(δp)| = 0 (23)

for ω ∈ [0,∞), where j =
√
−1. This is the µ-analysis problem, where µ is equal

to the inverse of ‖δp∗‖. In the standard µ-analysis problem, the uncertainty is
pulled out from A(δp) and the inversion in (21) is given as (I −M∆)−1, where
∆ is a diagonal matrix for the real-valued parameter perturbation problem as
this. This is only possible if the uncertainty appears in the polynomial form.

The uncertain parameters in the robustness analysis problem given in (21),
however, cannot be separated from A(δp) in general as they are not neces-
sarily given in polynomial equations. For the non-polynomial form uncertainty
structures, the sampling-based µ-analysis algorithm in [5], which is an improved
algorithm originally presented in [6] and [7], is to solve the robustness analysis
problem given in (23). The algorithm finds the intersection of the two hyper-
surfaces in the uncertain space using random samples defined by the following
equation:

ℜ |I −M(jω)A∆(δp)| = 0 (24a)

ℑ |I −M(jω)A∆(δp)| = 0 (24b)

at ω in [0,∞), where ℜ(·) and ℑ(·) are the real and the imaginary part of the
argument, respectively. The algorithm is to find the minimum ‖δp‖ that the
singular conditions are met using a random sampling-based method.

3 Example: Inverted-Pendulum Stabilisation

The pendulum stabilisation is one of the benchmark problems for many control
algorithms. The reinforcement learning is applied to the inverted-pendulum sta-
bilisation problem shown in Figure 1 and the robustness analysis is performed. In
the following, we use exact bound for the robustness bound of linearised systems
and true bound for the true robustness bound of nonlinear systems.



Fig. 1. A simple pendulum control problem

3.1 Dynamics & DDPG

OpenAI Gym provides a pendulum environment [8]. The discretized pendulum
dynamics in the python source program corresponds to the following differential
equation:

θ̈ =
3g

2ℓ̂
sin θ +

3

m̂ℓ̂2
uRL (25)

where θ̈ = d2θ/dt2, g is the gravitational acceleration equal to 9.81m/s2, m̂ =

1kg, ℓ̂ = 1m and uRL is the control input to be designed using the reinforcement
learning approach and its magnitude is in the range of [−2, 2] Nm.

The reinforcement learning for uRL is trained using the python code in [9],
where the DDPG in [10] is implemented in the code and the arguments to the
control are as follows:

uRL(s1, s2, s3) = uRL(cos θ, sin θ, θ̇) (26)

where s1 = cos θ, s2 = sin θ, s3 = θ̇ and θ̇ = dθ/dt.
Based on the freebody-diagram shown in Figure 1, the equation of motion

must be, in fact, given by

θ̈ =
g

ℓ
sin θ +

1

mℓ2
uRL (27)

To keep the reinforcement learning model for training uRL the same as the orig-
inal dynamics, redefine the nominal mass and length as follows: m̄ = (3m̂)/4 =

0.75kg and ℓ̄ = (2ℓ̂)/3 = 0.667m. The true mass and length are defined with
uncertainties as follows:

m = m̄+ δm [kg], ℓ = ℓ̄+ δℓ [m] (28)

and δp = [δm, δℓ]T .



The instantaneous reward of the reinforcement learning is given by

R = −J = −
(

θ2 +
θ̇2

10
+

u2
RL

1000

)

(29)

where R is the reward, J is the cost, and θ is in [−π, π]. It is also worth pointing
out that the resulting control might not achieve the maximum reward, R = 0,
at θ = 0, θ̇ = 0 and uRL = 0. The equilibrium achieved by uRL satisfies

uRL(cos θeq, sin θeq, θ̇eq = 0) = −mgℓ sin θeq (30)

3.2 Linearization

The stability analysis is to check the eigenvalues of the Jacobian, Fx(x,m, ℓ), at
the equilibrium point as follows:

Fx(xeq,m, ℓ) =
df(x,m, ℓ)

dx

∣

∣

∣

∣

x=xeq

(31)

where

f(x,m, ℓ) =

[

θ̇
g

ℓ
sin θ +

1

mℓ2
uRL

]

, x =

[

θ

θ̇

]

, xeq =

[

θeq
0

]

(32a)

The Jacobian is given by

Fx(xeq,m, ℓ) =

[

0 1
F21 F22

]

(33)

where

F21 =
df2
dθ

∣

∣

∣

∣

x=xeq

=
g

ℓ
cos θeq +

1

mℓ2
duRL

dθ

∣

∣

∣

∣

x=xeq

(34a)

F22 =
df2

dθ̇

∣

∣

∣

∣

x=xeq

=
1

mℓ2
duRL

dθ̇

∣

∣

∣

∣

x=xeq

(34b)

and

duRL

dθ
= −duRL

ds1
sin θ +

duRL

ds2
cos θ (35a)

duRL

dθ̇
=

duRL

ds3
(35b)

The control input derivative with respect to si at the equilibrium point is ob-
tained numerically. TensorFlow, for example, has a function to calculate the



derivatives with respect to the input variables. The jacobian with respect to the
uncertain parameters is given by

Fp(xeq, p̄) =

[

0 0

− 1

m̄2ℓ̄2
ūRL − g

ℓ̄2
sin θeq −

2

m̄ℓ̄3
ūeq

]

(36)

where ūRL is the control input for the equilibrium point with the nominal values
of the uncertain parameters, i.e., the solution of (30) with m = m̄ and ℓ = ℓ̄.

The second-derivatives are obtained as

∂F21

∂θeq
= −g

ℓ
sin θeq +

1

mℓ2
∂2uRL

∂θ2

∣

∣

∣

∣

x=xeq

(37a)

∂F22

∂θeq
=

∂F21

∂θ̇eq
=

1

mℓ2
∂2uRL

∂θ∂θ̇

∣

∣

∣

∣

x=xeq

(37b)

∂F22

∂θ̇eq
=

1

mℓ2
∂2uRL

∂θ̇2

∣

∣

∣

∣

x=xeq

(37c)

The second-derivative of the control input is obtained as

∂2uRL

∂θ2
=

∂2uRL

∂s21
(sin θ)2 +

∂2uRL

∂s22
(cos θ)2 − ∂uRL

∂s1
cos θ − ∂uRL

∂s2
sin θ (38a)

∂2uRL

∂θ̇2
=

∂2uRL

∂s23
(38b)

∂2uRL

∂θ∂θ̇
= − ∂2uRL

∂s1∂s3
sin θ +

∂2uRL

∂s2∂s3
cos θ (38c)

Similar to the first-derivative of uRL, the Tensorflow function calculates the
second-derivatives of uRL with respect to s1, s2 and s3. Now, we have all nec-
essary derivatives to obtain (11) and (17), and we are ready to perform the
robustness analysis for the pendulum system with the reinforcement learning.

3.3 Worst Perturbation with Usual Linearization (6)

The exact worst perturbation for the pendulum system with the usual linearisa-
tion approach, (6), is to be obtained. The nominal values for the mass and the
length of the pendulum are the ones used to train the reinforcement learning
algorithm, i.e., m̄ = 0.75kg and ℓ̄ = 0.67m. The true mass and the true length
are perturbed as follows:

m = 0.75 + δm [kg], ℓ = 0.67 + δℓ [m] (39)

The stability of the perturbed system from the nominal value shown in Figure
2(a) is of the ranges in 0.7kg ≤ m ≤ 3kg and 0.75m ≤ ℓ ≤ 1.25kg. The true stable
and the unstable regions are divided by the red solid line, which is obtained by
the linearised system at the corresponding perturbed m and ℓ, hence, including



(a) m̄ = 0.75kg and ℓ̄ = 0.67m

(b) m̄ = 2kg and ℓ̄ = 1m.

Fig. 2. The usual linearization (6) is used for the stability check. This figure shows the
whole regions for both of the nominal value cases are stable, i.e., the largest real part of
the eigenvalues is negative. The contours show the largest real part of the eigenvalues
of the perturbed system given by (6) for each nominal value case. (b) is zoomed-in to
show the proximity of the nominal value to the unstable boundary. The red line shows
how the true stable and unstable regions are divided.



the true effect of equilibrium shift. The largest real part of the eigenvalues of the
perturbed linearised system for each perturbation is calculated and the contour
plot is shown in Figure 2(a). The exact worst perturbations for the linearised
system is calculated, but it provides the conclusion that the system is robustly
stable for all perturbation in the region, while the significant area in the uncertain
space is, in fact, unstable.

The incorrect robust stability analysis cannot be fixed by adjusting the nom-
inal values. Set the nominal values very close to the unstable region, for example,
m̄ = 2kg and ℓ̄ = 1m. The robustness analysis shows that the linearised system
is stable in the same whole region of perturbation and Figure 2(b) shows the
zoom-in contour around the new nominal value.

3.4 Robustness Analysis with Improved Linearization (17)

The improved linearisation of the pendulum closed-loop system with the rein-
forcement learning is given by

A(δp) = Fx(xeq,m, ℓ) +
∂Fx(xeq,m, ℓ)

∂θeq
δθeq +

∂Fx(xeq,m, ℓ)

∂θ̇eq
δθ̇eq (40)

where
[

δθeq
δθ̇eq

]

= −F−1
x ([θeq, θ̇eq]

T , [m̄, ℓ̄]T )Fp([θeq, θ̇eq]
T , [m̄, ℓ̄]T )

[

δm
δp

]

(41)

Note that δ̇eq is always equal to zero by the definition of the equilibrium point.
The robustness of the pendulum system is performed using (24). For ω = 0,

the boundaries, where the real part sign change occurs, are the singular lines
as shown in Figure 3. In this case, the imaginary part is zero over the whole
perturbation space. The exact singular point, which is the closest point from
the nominal value to the singular line in the ∞-norm sense, is indicated by the
filled circles. The worst-case perturbation is the size of the smallest square box
centred at m = 2 kg and ℓ = 1 m contacted the singular lines or at least one
of the singular points. The square box is elongated in the vertical axis because
of the non-equal scale used. As shown in Figure 3, the exact robustness bound,
δp∗ for the improved linearised system with the nominal values, m̄ = 2 kg and
ℓ̄ = 1 m, is about 1.7.

The robustness analysis algorithm in [5] with the improved linearised system
at ω = 0 gives the bound around 1.9, which is relatively tight to the exact value.
For the other frequencies, the bounds are a lot bigger than the one found at
ω = 0.

4 Conclusions

The destabilising uncertainty bounds with the linearisation approaches are fre-
quently optimistic. This is the limitation of linearised approach itself. Therefore,



Fig. 3. Singular lines and the exact worst perturbation for ω = 0

the worst-case perturbation found must be used as the upper bound on the min-
imum magnitude worst-case perturbation. The new method provides a lot closer
bound to the true value than the usual linearisation method.

The smallest bound, 1.9, is still far from the true bound for the nonlinear
system, which is about 0.2, the closest distance between the nominal value and
the red line in Figure 2(b). This is not the limitation of the robustness analy-
sis algorithm but the limitation of the linearised model itself. The discrepancy
between the estimated and the true is mainly caused by the large slope of the
control function uRL with respect to the states. The implemented reinforcement
learning has abrupt changes in the input causing the large equilibrium shifts.
Restricting these abrupt changes would improve the robustness of the system.
Nevertheless, the proposed model significantly improves the original bound by
including the equilibrium shift.
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