
This is a repository copy of State-space segmentation for faster training reinforcement
learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/195158/

Version: Accepted Version

Proceedings Paper:
Kim, J (2022) State-space segmentation for faster training reinforcement learning. In:
IFAC-PapersOnLine. 10th IFAC Symposium on Robust Control Design ROCOND 2022, 30
Aug - 02 Sep 2022, Kyoto, Japan. Elsevier , pp. 235-240.

https://doi.org/10.1016/j.ifacol.2022.09.352

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. This
is an author produced version of an article published in IFAC-PapersOnLine. Uploaded in
accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

State-space segmentation for faster training

reinforcement learning ⋆

Jongrae Kim ∗

∗ Institute of Design, Robotics & Optimisation (iDRO), School of
Mechanical Engineering, University of Leeds, Leeds LS1 9JT, the UK,

(email: menjkim@leeds.ac.uk).

Abstract: Nonlinear control problems have been the main subjects in control engineering
from theoretical and applicational aspects. Reinforcement learning shows promising results for
solving highly nonlinear control problems. Among many variants of reinforcement learning,
Deep Deterministic Policy Gradient (DDPG) considers continuous control signals, which makes
it an ideal candidate for solving nonlinear control problems. The training requires frequently,
however, a large number of computations. To improve the convergence of DDPG, we present a
state-space segmentation method dividing the state-space to expand the target space defined
by the best reward. An inverted pendulum control example demonstrates the performance of
the proposed segmentation method.

Keywords: reinforcement learning, learning convergence, reward, linear control

1. INTRODUCTION

Nonlinear control problems have been the main subjects
in control engineering from theoretical and applicational
aspects (Slotine et al., 1991; Kokotović and Arcak, 2001;
Khalil, 2002). While there are rich systematic control
design results, they mostly rely on minimalistic versions
of nonlinear system descriptions (Mao and Billings, 1997;
Ronch et al., 2012; Ruderman, 2018). In practice, most of
the control algorithm design efforts have been devoted to
trial-error or optimization-based design parameter tuning
(Pozo et al., 2008; Smith, 2009; Garriga and Soroush,
2010).

A new opportunity arises to solve non-minimalistic non-
linear control problems. Computation speed increase by
faster CPU (Central Processing Unit), multi-core CPU
and massive numbers of parallel processing using GPU
(Graphical Processing Unit) has promoted computation-
ally intensive algorithms (Owens et al., 2008). Deep learn-
ing is one of the most successful uses of computing power
and speed improvements (Goodfellow et al., 2016). Rein-
forcement learning is a promising control algorithm that
exploits increased computation power (Sutton and Barto,
2018). It shows promising results for solving highly non-
linear control problems, especially in the field of robotics
(Ghadirzadeh et al., 2021; Ji et al., 2021).

Among many variants of reinforcement learning, DDPG
(Deep Deterministic Policy Gradient) operates over con-
tinuous control signals rather than a finite number of
discrete actions (Lillicrap et al., 2015) and is an ideal
candidate for solving nonlinear control problems (Tuyen
and Chung, 2017; Xu et al., 2019; Wang et al., 2020).
However, a convergence issue in the training of DDPG
highlights the necessity of improvements.
⋆ A 2-page early version of the paper in Korean is presented at the

ICROS2021 Conference, 23-25 June 2021, Yeosoo, Republic of Korea.

There have been several attempts to improve the train-
ing convergence with different motivations. For example,
exploiting stable trajectory generations for quadcopter
(Hwangbo et al., 2017), embedding linear controllers in
reinforcement learning (Fernandez et al., 2020), a lin-
ear combination of linear controllers with reinforcement
learning (Yoo et al., 2020), task segmentation (Kamio
et al., 2004), and incremental state-space segmentation for
learning (Takahashi et al., 1996) are some of the previous
attempts.

We present a state-space segmentation algorithm to im-
prove the convergence of DDPG in the training phase
based on the modification of the reward function defi-
nition. The idea originates from the fact that the best
reward of DDPG is frequently a pointwise state in the
state-space, which makes it extremely challenging for the
gradient descent algorithm used in the training phase to
arrive at the state corresponding to the best reward.

The rest of the paper is organized as follows: firstly, we
present the summary of DDPG; secondly, we present the
state-space segmentation algorithm as the main part of the
paper; thirdly, a simulation example shows the efficiency
of the proposed algorithm; finally, we conclude the paper
including future works.

2. NONLINEAR CONTROL PROBLEM & DDPG

Nonlinear Control Problem: The following differential
equation provides one of the general forms of nonlinear
control problems (Slotine et al., 1991):

ẋ = f(x) + g(x)u (1)

where ẋ = dx/dt, t is the time, x is the n-dimensional
state in ℜn, n is a positive integer, ℜn is the real number
set, u is the m-dimensional control input in U , which is a
compact set in ℜm, m is a positive integer, and f(·) and
g(·) are nonlinear functions. The right-hand side of (1)

satisfies the existence and uniqueness conditions for the
solution of the nonlinear differential equation, (1).

Deep Deterministic Policy Gradient: This is the
summary of DDPG based on (Lillicrap et al., 2015) and
(Keras: Code examples – reinforcement learning). Define
the discounted return, Rk,

Rk = r(xk) +

Tf
∑

i=k+1

γi−kr(xi) (2)

where k is the k-th step action instance of the reinforce-
ment learning, r(xk) is the instantaneous reward at k as a
function of the current state, xk, Tf is the final time step,
and γ in [0, 1] is the discount rate of the future reward. The
discount return can be written in the Bellman equation
form as follows:

Rk = r(xk) + γRk+1(xk+1)

The critic network, Qπ(xk,uk), is the discounted return
under the current deterministic control policy, π(x).

Qπ(xk,uk) = E[Rk|xk,uk]

where E(·) is the expectation, the control input, uk, is
given by

uk = π(xk) + nk

and nk is the noise to make the training algorithm to ex-
plore the action space during the learning phase of DDPG.
nk is typically modelled as the Ornstein-Uhlenbeck pro-
cess. The critic network is written in the Bellman equation
expression as follows:

Qπ(xk,uk) = E {r(xk) + γQπ [xk+1,π(xk+1)]}

where xk+1 is stochastic because of the exploration noise,
nk, in uk, propagated by (1) from tk to tk+1.

The critic function constructs its approximation using
deep neural networks.

Qπ(xk,uk) ≈ Qπ

θQ
(xk,uk) = hL

[

wT
Lh

L−1(. . .) + bL
]

where L is the number of layer, hL(·) is the output
layer activation function, hL−1 is the (L − 1)-th hidden
layer activation function, wL is the output layer weighting
vector, (·)T is the transpose, bL is the output layer bias,

hp(. . .) = hp
[

Wph
p−1(. . .) + bp

]

for p = L−1, L−2, . . . , 3, 2, Wp is the p-th layer weighting
matrix, bp is the p-th layer bias vector,

h1(. . .) = h1

{

W1

[

xk

uk

]

+ b1

}

W1 is the first layer weighting matrix, and b1 is the
first layer bias vector. The decision variable of the critic
function approximation, θQ, includes wL, bL, Wp, and bp

for p = 1, 2, . . . , L− 2, L− 1.

Similarly, a deep neural network provides the approxima-
tion of the actor or control policy function.

π(xk) ≈ πθπ
(xk)

where θπ includes all weighting matrices and bias vectors
of the neural network approximation of the control policy.

Set the initial networks of the target actor, Qπ
′

θ′

Q

, and the

target policy, πθ′

π
, equal to Qπ

θQ
and πθπ

, respectively.

DDPG Training: The optimization problem for the
critic network update is given by

Minimize
θQ

L =
1

N

N
∑

i=1

[∆Qi(θQ)]
2

(3)

where

∆Qi(θQ) =
{

r(xk) + γQπ
′

θ′

Q
[xi+1,πθ′

π
(xi)]

}

−Qπ

θQ
(xi,ui)

and N is the number of transitions, (xi,ui, ri,xi+1),
selected from the stored transition set, where ri = r(xi) is
obtained by the simulations of each episode. Update the
critic network weighting as follows: θQ ← argminL(θQ).

As the reinforcement learning control policy is to maximize
the reward function, J = E(R1), the policy gradient is
given by

∇θπ
J ≈

1

N

N
∑

i=1

∇πQ
π
θQ

[xi,πθπ
(xi)] ∇θπ

πθπ
(xi) (4)

At its simplest, θπ updates the value using the gradient as
in

θπ ← θπ + α∇θπ
J (5)

where α is a step-size parameter or a scaling factor. More
advanced optimization algorithms such as the stochastic
gradient descent or Adam (Adaptive Momentum Estima-
tion) are used to train reinforcement learning (Baird and
Moore, 1999; Kingma and Ba, 2014). These algorithms
also use the gradient obtained in (4).

Finally, the target networks of the critic and the control
policy function approximations are updated by

θ
′

Q ← τθQ + (1− τ)θ′

Q (6a)

θ
′

π ← τθπ + (1− τ)θ′

π (6b)

where typically small values of τ between 0 and 1 provide
stability in the algorithm convergence.

DDPG training repeats the procedures between (3) and

(6) until the target networks, Qπ
′

θ′

Q

and πθ′

π
, converge or

the algorithm reaches to the maximum number of learning
steps.

3. STATE-SPACE DIVISION

Assumption 1. From now on, without loss of generality,
r(xk) is assumed to be less than or equal to 0 for all xk in
the state-space, ℜn.

Hence, the best possible value of r(xk) is 0.

Motivations: Define the desired set, SD, in the state-
space

SD = {x ∈ Rn | x = xd}

where the instantaneous reward, r(x), is equal to zero for
x ∈ SD. When the state arrives and stays in the desired
state, all subsequent discounted returns, Rk, are zero and
the policy cost function, J , converges to a finite value.

For the regulation control problems, the desired set is
defined using a desired constant state vector, xd, and
is an isolated point in the state-space. For the tracking
control problem, xd is a vector-valued function of time,
xd(t), which is continuous in time, t, and SD is a one-
dimensional manifold in the state-space, Rn. For both the
control design problems, the desired sets have measure zero
in Rn. Arriving a measure zero set provides challenges

Fig. 1. State-space segmentation: SD is the desired target
set, and SU is the region providing u(x) ∈ U for
x ∈ SU .

for the policy gradient algorithm, (5), to find the optimal
parameters, θπ, through the stochastic gradient algorithm
or any other stochastic gradient based algorithm such as
Adam (Kingma and Ba, 2014).

Measure-zero target state-space requires long Tf , and
premature terminations of simulation episodes lead to
poorly designed controllers or no convergence. Simulating
dynamic systems is the most expensive part of the training.
The longer Tf , the longer computing time is required to
complete each episode. These motivate the necessity to
define nonmeasure-zero target sets.

Nonmeasure-zero set: Define a nonmeasure-zero set as
follows:

SD = {x ∈ Rn | ‖x− xd‖ < ε} (7)

where ‖·‖ is one of the vector norms, and ε is a positive real
number. Figure 1 shows SD in Rn space. SD is the space
surrounded by the dashed lines, whose distances from the
desired state, xd(t), are ε.

State-space segmentation: We propose to use the con-
ventional control in the neighbourhood of desired state,
xd. In the first step of the DDPG design iteration, the
target set is defined by

ST = SD ∩ SU

where SU is the region satisfying the control constraint,
i.e.,

SU = {x ∈ ℜn | uT (x,xd) ∈ U}

uT (x,xd) to be designed controls the states in ST . In the
first step, the initial conditions for DDPG training are
sampled from the set S1, which is a subset of SC

T . And,
S1 is defined such that some of the boundaries of S1 and
ST are shared.

In the second step, the target set is ST ∪ S1, and the
initial conditions are sampled from the set S2, which is
a subset of SC

T − S1. And, S2 is defined such that some of
the boundaries of S2 and S1 are shared.

Similarly, in the third step, the target set is ST ∪ S1 ∪ S2,
and the initial conditions are sampled from the set S3,

which is a subset of SC
T −S1−S2. And, S3 is defined such

that some of the boundaries of S3 and S2 are shared.

The same step is repeated p-times such that

SC
T = S1 ∪ S2 . . . ∪ Sp

Nonlinear control design: For the states inside the
nonmeasure-zero desired set for a chosen ε, we can use
many existing control design methods, e.g., feedback lin-
earization control, sliding mode control, backstepping con-
trol, linear quadratic regulator.

Various methods in nonlinear control theory can prove the
stability of the closed-loop system with the feedback con-
trol. For example, Polycarpou and Ioannou (1993) presents
a control design for a class of uncertain nonlinear systems
to guarantee global uniform ultimate boundedness. We
represent the control algorithm as u = uT (x,xd) for
x ∈ ST .

It is frequently, however, difficult to provide global stabil-
ity proof with control constraints. Robust stability to mod-
elling uncertainties and unmodelled dynamics becomes
more challenging. In practice, we would have only the
local stability proof and verification. One of the constraints
frequently ignored in nonlinear control design is the control
input constraint, i.e., the norm of u is bounded. As indi-
cated in Figure 1, the shaded region is the feasible control
input set, SU , which does not necessarily coincide with SD.
The closed-loop system would become unstable if simply
the boundary values of U is chosen when the calculated
control input is outside of the feasible control input region
(Johnson et al., 2000; Alasty and Salarieh, 2007).

Reward for training DDPG in S1: While uT (x,xd)
controls the system at x ∈ ST , a DDPG to be designed
controls the system at x ∈ S1, i.e., u = u1(x,xd) for
x ∈ S1. The main question is how to define the reward
in the target set so that the DDPG design of S1 leads
all initial states of S1 to converge to ST . The importance
of reward functions in algorithm convergence has been
well known since the early days of reinforcement learning
research (Mataric, 1994).

For ideally designed DDPG controllers in S1 forcing the
states converging to ST , given that each episode runs long
enough, i.e., Tf ≫ t∗, the following inequality is satisfied:

‖x(t)− xd(t)‖ < ε for t > t∗

as x(t) is in ST , where t∗ is the minimum time satisfying
the inequality. If the states converge to the target set, the
instantaneous reward, rk, in (2) is set to zero as follows:

r(xk) = 0 for tk > t∗

where xk = x(tk), and xk ∈ ST .

With the nonmeasure-zero target set, ST , the convergence
of the stochastic gradient based optimizer, (5), for ex-
ample, would be improved in S1. The reward, r(xk) for
xk ∈ S1, uses the following quadratic function, which is
common for many control designs including LQR (Linear
Quadratic Regulator) controller:

r(xk) = −e
TQe− uTRu (8)

where e = x−xd, and Q and R are the weighting matrices
for the error and the control energy.

Fig. 2. Inverted pendulum control problem

Reward for training DDPG in Sk for k ≥ 2: Similar to
the previous design step, the purpose of DDPG controller
at Sk is driving the states in Sk to Sk−1 for k ≥ 2. Hence,
the reward for ST ∪ S1 ∪ . . . Sk−1 is equal to zero, and the
reward in Sk is equal to the quadratic form given in (8).

Initial condition, x(0), for DDPG training: Ideally,
the DDPG controller designed in Si would drive the state
of Si to converge to the states of Si−1 for i ≥ 1, where
S0 = ST . In addition, if the DDPG would provide the
bounded stability, the state would not come back to Si

after it goes into Si−1. Hence, for the training episodes to
obtain u = ui(x,xd) for i ≥ 1, the initial conditions, x(0),
chosen in the set Si would be sufficient to provide diverse
scenarios.

In general, the bounded stability guarantees require cer-
tain conditions for the systems, and dynamic simulators
for the DDPG training would include more detailed mod-
els such as actuator dynamics, sensor models, higher-
frequencies modes, etc, which are ignored in the control
design. The states in Si−1 might escape the set and come
back to Si, and the controller must learn these cases to
make sure the state forces back to Si−1. If there are
oscillatory trajectories between two sets, these must be
also learned during the training phase. Hence, the initial
conditions for the controller in Si for i ≥ 1 are sampled
from Ii, which is the subset of Si−1 ∪ Si, and Ii is defined
by

Ii = {x(0) | x(0) ∈ Si or

‖x∗

i − x(0)‖ ≤ δi for x(0) ∈ Si−1}

where δi is positive constant to be chosen, and x∗

i is the
closest point in Si from x(0). The initial condition belongs
to S1, or the distance to S1 is less than δi if it belongs to
Si−1.

We design sequentially DDPG controller for Si from i = 1
through the DDPG training procedure. Algorithm 1 pro-
vides the summary of the design procedures. The number
of state-space segmentation might be undetermined ini-
tially, but it increases sequentially, starting at i = 1 until
it covers the entire state space.

4. EXAMPLE

We demonstrate the proposed state-space segmentation
approach using the inverted pendulum control problem.
The inverted-pendulum stabilisation problem is shown in

Fig. 3. DDPG with feedback linearization control

Algorithm 1 Training with State-Space Segmentation

1: Define S0, set i = 1
2: while i = 1 or SC

T 6= ∪
i
k=1

Si do
3: Define Si and Ii
4: Set the reward as follows:

r(xk) = 0, for xk ∈ S0, S1, . . . , or Si−1

r(xk) = −e
TQe− uTRu, for xk ∈ Si

5: Train DDPG to obtain ui(x,xd) for Si, where
uk(x,xd) control the states in Sk for k = 0, 1, . . . , i−1

6: end while

Figure 2. From the free-body diagram in Figure 2, the
equation of motion is given by

θ̈ =
g

ℓ
sin θ +

1

mℓ2
u (9)

where g is the gravitational acceleration equal to 9.81
m/s2, ℓ is the length of the pendulum set to 1 m, m is
the mass attached at the tip of the pendulum equal to 2
kg, and u is the control torque, whose range is between −2
Nm and +2 Nm. The desired angle and angular velocities
are equal to zero. The number of state-space segmentation,
p, is set to 3.

The desired set is defined as SD = B(5, 5), where

B(α, β) =
{

(θ, θ̇) | |θ| < α[◦], |θ̇| < β[◦/s]
}

In the target set, ST , we design a feedback linearization
based controller as follows:

uT (θ, θ̇) = (mℓ2)
(

−
g

ℓ
sin θ − kpθ − kdθ̇

)

and the error dynamics is given by θ̈+kdθ̇+kpθ = 0, where
kp = 22 and kd = 4 provide the closed-loop being Hurwitz
stable as the real parts of the poles are at −2.0. The set,
SU , is given by

SU =
{

(θ, θ̇) | |uT (θ, θ̇)| ≤ 2
}

To train the DDPG controller in S1, we define S1 as

S1 = B(10, 10)− ST

where it is assumed that B(10, 10) ⊃ ST . The initial
conditions are uniformly sampled in the following set:
I1 = B(10, 10), which covers S1 and ST by definition.

Fig. 4. Inverted pendulum control time history

The DDPG algorithm implemented in (Keras: Code exam-
ples – reinforcement learning) is used to train the DDPG
design in the above, where the observation state to the
controller, u1, is (cos θ, sin θ, θ̇), i.e., the normalized rect-
angular coordinates of the mass and the angular velocity.
The pendulum model in the code is modified to match with
the differential equation, (9). A total of 50,000 episodes are
used in the design for the DDPG in S1.

Figure 3 shows the control output with respect to the
states: angle and angular velocity. The subfigure on the
left hand side shows the control output in ST and the
part of S1 where the initial conditions are for the training
episodes. The state-space region surrounded by the dashed
line corresponds to ST . The trained DDPG smoothly
connects to ST , where the nonlinear controller is active. As
the control input constraints are severely restrictive, the
region is smaller than SD. Hence, a feedback linearization
based controller alone without considering the constraint
would not be able to stabilize the pendulum outside of ST .

Although the initial conditions are between ±10◦ and
±10◦/s for training the DDPG in S1, the exploration
nature of reinforcement learning covers the whole region of
the state-space as shown in the designed controller state
mapping to actions shown on the right hand side of the
figure. Unlike linear controllers would produce -2 Nm or +2
Nm for sgn(θ, θ̇) = (+1,+1) or (−1,−1), where sgn() is the
sign function, it learns the nonlinear controller behaviour
exploiting the initial angular velocity to reach the desired
position with the same initial rotational direction.

Figure 4 shows example trajectories and control input
history for θ(0) = −180◦ and θ̇(0) = 100 ◦/s. The settling
time is around 29 seconds. It is typical to use approximate
models to train reinforcement learning control to reduce
the simulation time, and an Euler method based model of
the differential equation, (9), with the step size equal to 0.2
s is used in the training. The Runge-Kutta method with
higher numerical precision, on the other hand, provides
the time history simulations for the designed controller.

Figure 5 shows the corresponding switching history. As the
nonlinear controller in ST does not provide the region of
attraction the same size as the set itself, ST , the trajectory
could escape from ST , and the DDPG acts on forcing the
state back into ST .

Fig. 5. State-space segmentation switching time history

5. CONCLUSIONS & FUTURE WORKS

We present a state-space segmentation method to improve
the convergence of reinforcement learning training. The
idea is motivated by enlarging the convergent area during
the training phase of reinforcement learning. We demon-
strate the performance using an inverted pendulum control
problem. DDPG is combined with a nonlinear controller,
and the combined controller stabilizes the full range of
state-space. Current future works include providing the
convergence guarantee of the states in Si to Si−1 by
introducing additional conditions in the training phase.

ACKNOWLEDGEMENTS

This research was supported by Unmanned Vehicles Core
Technology Research and Development Program through
the National Research Foundation of Korea (NRF) and
Unmanned Vehicle Advanced Research Center(UVARC)
funded by the Ministry of Science and ICT, Republic of
Korea.

REFERENCES

Alasty, A. and Salarieh, H. (2007). Nonlinear feedback
control of chaotic pendulum in presence of saturation
effect. Chaos, Solitons & Fractals, 31(2), 292–304. doi:
https://doi.org/10.1016/j.chaos.2005.10.004.

Baird, L. and Moore, A.W. (1999). Gradient descent
for general reinforcement learning. Advances in neural
information processing systems, 968–974.

Fernandez, G.I., Togashi, C., Hong, D.W., and Yang,
L.F. (2020). Deep reinforcement learning with lin-
ear quadratic regulator regions. arXiv preprint
arXiv:2002.09820.

Garriga, J.L. and Soroush, M. (2010). Model predictive
control tuning methods: A review. Industrial & Engi-
neering Chemistry Research, 49(8), 3505–3515.

Ghadirzadeh, A., Chen, X., Yin, W., Yi, Z., Björkman,
M., and Kragic, D. (2021). Human-centered collabo-
rative robots with deep reinforcement learning. IEEE
Robotics and Automation Letters, 6(2), 566–571. doi:
10.1109/LRA.2020.3047730.

Goodfellow, I., Bengio, Y., and Courville,
A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Hwangbo, J., Sa, I., Siegwart, R., and Hutter, M. (2017).
Control of a quadrotor with reinforcement learning.
IEEE Robotics and Automation Letters, 2(4), 2096–
2103. doi:10.1109/LRA.2017.2720851.

Ji, G., Yan, J., Du, J., Yan, W., Chen, J., Lu, Y., Rojas, J.,
and Cheng, S.S. (2021). Towards safe control of contin-
uum manipulator using shielded multiagent reinforce-
ment learning. IEEE Robotics and Automation Letters,
6(4), 7461–7468. doi:10.1109/LRA.2021.3097660.

Johnson, E., Calise, A., El-Shirbiny, H., and Eysdyk, R.
(2000). Feedback linearization with neural network
augmentation applied to x-33 attitude control. In
AIAA Guidance, Navigation, and Control Conference
and Exhibit. doi:10.2514/6.2000-4157.

Kamio, T., Soga, S., Fujisaka, H., and Mitsubori, K.
(2004). An adaptive state space segmentation for rein-
forcement learning using fuzzy-art neural network. In
The 2004 47th Midwest Symposium on Circuits and
Systems, 2004. MWSCAS ’04., volume 3, iii–117. doi:
10.1109/MWSCAS.2004.1354305.

Keras: Code examples – reinforcement learning (2020).
Deep deterministic policy gradient (DDPG). URL
https://keras.io/examples/rl/ddpg pendulum/.

Khalil, H.K. (2002). Nonlinear systems; 3rd ed. Prentice-
Hall, Upper Saddle River, NJ.

Kingma, D.P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kokotović, P. and Arcak, M. (2001). Constructive
nonlinear control: a historical perspective. Automat-
ica, 37(5), 637–662. doi:https://doi.org/10.1016/S0005-
1098(01)00002-4.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. (2015).
Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971.

Mao, K.Z. and Billings, S.A. (1997). Algorithms for
minimal model structure detection in nonlinear dynamic
system identification. International Journal of Control,
68(2), 311–330. doi:10.1080/002071797223631.

Mataric, M.J. (1994). Reward functions for accelerated
learning. In Machine learning proceedings 1994, 181–
189. Elsevier.

Owens, J.D., Houston, M., Luebke, D., Green, S.,
Stone, J.E., and Phillips, J.C. (2008). GPU comput-
ing. Proceedings of the IEEE, 96(5), 879–899. doi:
10.1109/JPROC.2008.917757.

Polycarpou, M.M. and Ioannou, P.A. (1993). A robust
adaptive nonlinear control design. In 1993 American
control conference, 1365–1369. IEEE.

Pozo, F., Ikhouane, F., and Rodellar, J. (2008).
Numerical issues in backstepping control:
Sensitivity and parameter tuning. Journal of
the Franklin Institute, 345(8), 891–905. doi:
https://doi.org/10.1016/j.jfranklin.2008.05.005.

Ronch, A.D., Badcock, K., Wang, Y., Wynn, A., and
Palacios, R. (2012). Nonlinear Model Reduction for
Flexible Aircraft Control Design. doi:10.2514/6.2012-
4404.

Ruderman, M. (2018). Minimal-model for robust control
design of large-scale hydraulic machines. In 2018 IEEE
15th International Workshop on Advanced Motion Con-
trol (AMC), 397–401. doi:10.1109/AMC.2019.8371125.

Slotine, J.J.E., Li, W., et al. (1991). Applied nonlinear
control, volume 199. Prentice hall Englewood Cliffs, NJ.

Smith, C.L. (2009). Practical process control: tuning and
troubleshooting. John Wiley & Sons.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement
Learning: An Introduction. The MIT Press, second
edition.

Takahashi, Y., Asada, M., and Hosoda, K. (1996). Rea-
sonable performance in less learning time by real robot
based on incremental state space segmentation. In Pro-
ceedings of IEEE/RSJ International Conference on In-
telligent Robots and Systems. IROS’96, volume 3, 1518–
1524. IEEE.

Tuyen, L.P. and Chung, T. (2017). Controlling bicy-
cle using deep deterministic policy gradient algorithm.
In 2017 14th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI), 413–417. doi:
10.1109/URAI.2017.7992765.

Wang, M., Ruan, X., and Zhu, X. (2020). Heuristic
gait learning of quadruped robot based on deep de-
terministic policy gradient algorithm. In 2020 Chi-
nese Automation Congress (CAC), 1046–1049. doi:
10.1109/CAC51589.2020.9326973.

Xu, J., Hou, Z., Wang, W., Xu, B., Zhang, K., and
Chen, K. (2019). Feedback deep deterministic pol-
icy gradient with fuzzy reward for robotic multi-
ple peg-in-hole assembly tasks. IEEE Transactions
on Industrial Informatics, 15(3), 1658–1667. doi:
10.1109/TII.2018.2868859.

Yoo, J., Jang, D., Kim, H.J., and Johansson, K.H.
(2020). Hybrid reinforcement learning control for a
micro quadrotor flight. IEEE Control Systems Letters,
5(2), 505–510.

