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Abstract The work describes experiments and mod-

els related to auxetic (negative Poisson’s ratio) foams

subjected to low-frequency and variable amplitude

3-point bending loading. A custom 3-point bending

vibration test rig is designed and used to perform the

dynamic test of auxetic PU foam beams within low-

frequency range (1–20 Hz) and 5 different displace-

ment amplitudes. The auxetic foams tested in this

work are manufactured using a simplified and rela-

tively low-cost uniaxially thermoforming compres-

sion technique, which leads to the production of foams

with transverse isotropic characteristics. Auxetic foam

beam samples with two different cutting orientations

and different thermoforming compression ratios rc
(20–80%) are tested and compared, also with the use

of theoretical Euler–Bernoulli-based and finite

element models. The dynamic modulus of the foams

increases with rc, ranging between 0.5 and 5 MPa,

while the dynamic loss factor is marginally affected by

the compression ratio, with overall values between 0.2

and 0.3. The auxetic PU foam has a noticeable

amplitude-dependent stiffness and loss factors, while

the dynamic modulus increases but slightly decreases

with the frequency. The dynamic modulus is also

20–40% larger than the quasi-static one, while the

dynamic and static loss factors are quite close. A

modified Bouc–Wen model is also further developed

to capture the amplitude and frequency-dependent

properties of the conventional and auxetic foams with

different volumetric compression ratios. The model

shows a good agreement with the experimental results.

Keywords Auxetic foam � 3-point bending test �

Bouc–Wen model � Nagy’s model � Dynamic

modulus � Loss factor

1 Introduction

Open-cell polymeric foams are widely used in applica-

tions ranging from packaging, cushioning and protec-

tive clothing, due to the significant energy absorption

causedby their elastic-plateau-densificationmicrostruc-

ture mechanism under compressive loading [1]. Since

the seminal work of Roderic Lakes in 1987 [2], auxetic

(i.e. negative Poisson’s ratio) open-cell polyurethane
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(PU) foams have been developed and evaluated by

many research groups [3]. Due to the counter-intuitive

auxetic deformation and the properties of the PU

material, auxetic foams show interesting mechanical

properties, such as indentation resistance [4], synclastic

behaviour [5], compliant shear [6, 7], improved impact

[8, 9] and vibration [10] energy absorption. Auxetic

foams therefore possess a significant potential for

applications like apparel/personal protective equipment

[8, 11, 12], cushioning [13, 14], noise reduction [15, 16],

smart materials and sensors [17, 18].

Auxetic PU open-cell foams can be manufactured

following various methodologies, such as via chem-

ical solvents [19] and compressed CO2 [20]. Auxetic

closed-cell foams with stiffnesses close to 10 MPa can

also be produced via steam processing [21, 22].

Traditional auxetic open-cell foams are, however,

made from converting conventional foams into an

auxetic version, through procedures involving triaxial

volumetric compression, annealing via heating, cool-

ing and relaxation [2, 3, 23, 24]. The volumetric

compression is used to create the typical re-entrant cell

structures inside the foam, while the heating and

cooling are used to thermoform the compressed foam

via phase transition of the PU material [23]. Some of

the authors of this work have recently simplified the

complex triaxially thermoforming manufacturing pro-

cess into a uniaxial one via the use of an open mould.

This production procedure provides a relatively low

manufacturing cost and excellent auxetic performance

[9, 25, 26], which makes it suitable for scaling-up

manufacturing purposes.

The dynamic behaviour of auxetic PU foams has

been first evaluated by Chen and Lakes [15, 27], and

then further studied by Scarpa et al. [28, 29] and

Bianchi et al. [10], showing an enhanced damping

performance provided by negative Poisson’s ratio

foams. The aforementioned research works mainly

focus on the dynamic performance of auxetic foams

between 60 and 3 kHz, covering noise and machinery

vibration isolation applications. However, for applica-

tions related to human body, such as cushioning,

personal protective equipment and apparel, the fre-

quencies of interest are significantly smaller. Typical

fundamental resonances of coupled driver/car seats are

between 1.5 Hz and 5 Hz [30], and both static and

dynamic indentation characteristics of foams are

important to dictate the comfort of the individual using

the foam product [31]. Tremors of patients affected by

multiple sclerosis tend to cover the 3–4 Hz range in the

case of titubation (i.e. nodding head tremor), a feature

that could be of interest for the design of protective

linings of headsets and helmets. In that sense, Darling

has shown that the highest magnitudes of vertical

dynamic displacement in impacted NFL helmets are

well below the 20–30 Hz [32]. The dynamic deforma-

tions of auxetic foams described in open literature are,

however, relatively simple, mainly consisting in one-

dimensional (single compressional P) waves, both in

terms of structural dynamics excitations [10], or

acoustic within impedance tubes [16, 33–35]. Single

dynamic compression/tensile loading is, however,

quite different from operational deformations occur-

ring in applications, such as human body support [14],

personal protective equipment and apparel [36]. In

those applications, the foams could be subjected to

compression and bending, with more complicated

deformations mechanisms arising. The focus of this

work is indeed to evaluate the dynamic properties of

the uniaxially thermoformed auxetic foams within a

low-frequency range (1–20 Hz), using a 3-point

bending vibration rig designed for this purpose.

Open-cell conventional and auxetic PU foams

exhibit good damping performance with noticeable

hysteresis under dynamic loading [25, 37]. The damp-

ing of the PU foams is mainly caused by the

viscoelasticity of the PU material and the pneumatic

damping effect associated with the porosity and

permeability. Patten et al. [38] and Bianchi and Scarpa

[10] have previously developed dynamic models for

conventional and auxetic PU foams considering only

the effect of the pneumatic damping. The pneumatic

force of the porousmaterial is proportional to the strain

rate, according the Darcy’s law [39]; the pneumatic

force is therefore less dominant within the low-

frequency range considered in this work. White et al.

[37], Deng et al. [40] and Singh et al. [41–43] have also

developed dynamic models of open-cell PU foams

considering the viscoelasticity and nonlinearity, ignor-

ing the pneumatic damping effect. Batt et al. [44, 45]

developed a dynamic viscoelastic model of Arcel

closed-cell foams without considering pneumatic

damping effects. In these works, the PU foams are all

subjected to compression and are assumed to behave

under linear viscoelastic and nonlinear elastic regimes,

using either polynomial [37, 42] or hyperbolic [10, 38]

functions to describe the nonlinear stiffness. In the

above models however, the nonlinear hysteretic loops
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of the PU foams under compression are different from

the amplitude-dependent hysteretic ones acquired in

the 3-point bending tests of this work. The bending-

derived hysteretic loops here exhibit decreasing secant

stiffness when the amplitude increases, although they

maintain an approximately linear behaviour for a

constant amplitude and variable frequency. Therefore,

the previously used pneumatic damping and viscoelas-

tic models adopted for the vibration of open-cell foams

are not suitable to describe the auxetic foams under

3-point bend low-frequency vibration.

The Bouc–Wen (BW) model is a widely used and

powerful phenomenological model to describe the

different types of hysteresis, such as in the case of

magnetorheological [46, 47] and piezoelectric [48, 49]

and elastomeric [50, 51] materials. The BWmodel can

describe well the different types of generalized force–

displacement hysteretic loops. However, the classical

BW model is invariant with the various input

frequencies [48, 52]. Various efforts have been

performed to modify the BW formulation to capture

frequency-dependent properties. For example, Yang

et al. introduced fractional derivatives [47]; Zhu et al.

proposed a generalized BW model with a frequency

factor [48]; Kang et al. have proposed two fractional

operators in a modified BW version [49]; and Shao

et al. have used a second-order discrete system for the

dynamic linear part [53]. All these variations proposed

to the original formulation of the BW can cater for

frequency-dependent behaviours, but also make the

updated models more complicated, by using param-

eters and components without evident physical mean-

ing. In this work, an exponential relationship between

the stiffness parameter of the BW model and the

frequency is applied to describe the frequency-depen-

dent stiffness of the PU foams. This exponential

relation is inspired by Nagy’s theory that links the

strain-rate dependence of open-cell foams under

compression, and their quasi-static behaviour [54].

Linearly frequency-dependent relationships of the

other parameters of the BW model are used; as it will

be demonstrated, this combined approach can capture

the mild frequency-dependent stiffness and damping

behaviour of the auxetic foams within low-frequency

ranges. Besides, the 6 parameters of the classical BW

model can be reduced to 5 by performing a normal-

ization to remove the redundant term [49, 52].

The paper is structured as follows. Section 2

summarizes the manufacturing of the open-cell

auxetic foams used in this work. Section 3 describes

the mechanical tests (quasi-static cyclic and dynamic

3-point bending) and the related rigs developed. The

continuous beam transverse vibration model and the

concentrated parameter BW model are detailed in

Sect. 4. Section 5 shows the results related to the tests

and modelling, discussing the effect of amplitude,

frequency and manufacturing compression ratio of the

auxetic foams. Conclusions are drawn in Sect. 6.

2 The uniaxially thermoformed auxetic foam

The auxetic foams are obtained directly by converting the

conventional PU foam (SM Upholstery Ltd, with a

density of 27.4 kg/m3 and a pore linear density of

1102–1378/m) into an auxetic version. The manufactur-

ing procedure mainly includes three steps: compression,

heating and cooling. The pristine foam is cut into seven

blocks with 120 9 120 9 160 mm size and it is then

compressed in an open mould (Fig. 1a) along the height

direction. The final dimensions are 128, 112, 96, 80, 64,

48 and 32 mm, respectively, corresponding to a com-

pression ratios rcof 20%,30%,40%,50%,60%,70%and

80%. The rc is defined as the ratio of the foam block

heights after and before compression. The compressed

foam block and the mould are then placed in an oven

(Carbolite PF laboratory oven), heated from ambient

temperature up to 145 �C at a rate of 5 �C/min, and then

kept constant. A thermocouple is inserted into themiddle

of the foam block to monitor the inner temperature, and

the heating procedure is terminated after the inner

temperature reaches * 135 �C for 30 min; this temper-

ature is higher than the glass transition temperature of the

hard segment component of the polyurethane (114 �C

[55, 56]). The compressed foam and the mould are then

removed from the oven and cooled at temperature

(* 15 �C). The compressed foam block is released from

the openmould after a full coolingdown.Thedimensions

of the compressed foam block show no large changes

within one week after release from the mould; this

indicates the presence of a stable thermoformedmaterial.

The converted auxetic foams are anisotropic, with

significant difference in terms of mechanics along the

thermoforming directions d1 and transverse directions

d2 and d3, due to the specific uniaxial thermoforming

manufacturing procedure adopted [9, 25, 26]. There-

fore, two types of specimens are cut from the

thermoformed foam blocks with different rc values
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for the 3-point bending tests, all with same size of

120 9 20 9 10 mm (Fig. 1b). The T1 specimen is

loaded along d1, while the T2 specimen is subjected to

loading along d3. The mass of the pristine and auxetic

foam specimens with the different rc values (from 20

to 70%) are 0.719; 0.895; 0.992; 1.160; 1.360; 1.712;

2.359 and 3.667 g, respectively.

The 3D models of the pristine and of the rc = 60%

auxetic foams (Fig. 1c and d) have been acquired

using a l-CT scan with a resolution of 4.991 lm from

Zeiss Xradia 160 kVp Versa 510 (Carl Zeiss Micro-

scopy GmbH, Germany). The images are processed

using the Avizo 2019 software (Thermo Fisher

Scientific, France). The cell structures of the pristine

foam (Fig. 1c) are mainly in polyhedron shape, with

average dimensions around 500 lm. The ribs of the

pristine foam are mainly straight. The pores and cells

of the pristine foam are also slightly elongated along

the d1 direction, because d1 corresponds to the reactor

foam rising direction [57, 58]. In comparison, the cells

structures of the auxetic foam are more tortuous and

denser. Most of the ribs of the negative Poisson’s ratio

foam are curved due to the uniaxial compression,

resulting in the typical re-entrant cell structure of

‘‘classical’’ auxetic structures/materials [3]. The

microstructures of the auxetic foams show an evident

anisotropy, with more ribs oriented within the trans-

verse plane and lower numbers of ribs along the

Fig. 1 Manufacturing procedure of the uniaxially thermoformed auxetic foam (a); illustration of the cutting orientations of the foam

specimens in the foam block (b); 3D models of the pristine (c) and auxetic foam with rc = 60% (d) by l-CT scan
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thermoforming direction d1. The images observed

along d1 show a reticulated structure partially like the

pristine foams, but with the presence of kinks in the

ribs, while the microstructural configuration along d2
and d3 is more elongated and compressed.

The auxetic foam shows a more evident auxeticity

along the thermoforming compression direction d1
when loaded along the d2 and d3 directions. Under

tensile loading along the d2 direction, the Poisson’s ratio

m21 for auxetic foams with rc ranging from 50 to 80%

varies between - 0.2 and - 1.0. Under compression,

m21 clusters around - 1 for rc ranging between 40 and

70%. The Poisson’s ratio m23 is, however, always

positive (values between 0 and 0.8) when the foams

are compressed or tensioned along d2. When loaded

along the thermoforming direction d1, the Poisson’s

ratio m12 and m13 are all close to 0. More detailed results

about the mechanics and deformations of the thermo-

formed auxetic foams are provided in [9, 25, 26].

3 Test rigs

The 3-point static and low-frequency bending test rig for

the auxetic foams is shown in Fig. 2. The quasi-static and

dynamic tests share the same supporting and loading

structures. The foam specimen is constrained at the two

ends by two rigid supporting structures and loaded in the

middle by a middle holder. The end supports and middle

holder are designed to have round contact tips with a

diameter of 3 mm, which allow the free rotating

movement of the foam beam specimen under transverse

loading. The gap between the top and bottom tips of the

supports andmiddle holder of the 10 mmbeamspecimen

depth is constant at 9 mm for the pristine and auxetic

foams with rc ranging 20–70%. This value of the gap can

allow to be holding the beam specimen tight enough to

provide a stable support, without applying large con-

strains that affect the free rotation movements of the

beam. The gap value for the auxetic foam specimen with

rc = 80% is 9.4 mm; this foam is significantly stiffer than

the others, and a same 9 mm holding gap would result in

stronger constraint. The support span is constant as

100 mm. The span/depth ratio of the beam specimen is

10, within the limit of Euler beam theory [59, 60]. The

mass of the middle holder is 68.4 g.

The quasi-static test is performed using a Shimadzu

AGS-10kNX machine with a load cell of 100 N. The

loading rate is 3 mm/min, sufficiently slow for quasi-

static testing [25, 61]. Each specimen is tested three

times with amplitudes of 1 mm, 3 mm and 5 mm,

respectively. Two loops of cyclic compression and

tension loading are performed at each amplitude

value, and only the stable and converged second loop

is used for comparison.

The dynamic test is conducted using a vertically

installed long-stroke low-frequency shaker (APS 113)

connected to apower amplifier (APS125).Analuminium

frame supports the structures and the sensors. The

measured fundamental resonance of the frame is larger

than100 Hz, safely above themaximumfrequency range

of 20 Hz used during the tests. The piezoelectric force

Fig. 2 Three-point bending quasi-static (a) and dynamic (b) c test rigs
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(PCB 208C01, range 44.48 N) and laser (OMRONZX2-

LD100, resolution 5 lm) sensors are applied to measure

the dynamic force and displacement, respectively. The

force and displacement signals are recorded using a

National Instruments data acquisition hardware (NI

9234) and MATLAB with DAQ extension.

Sinusoidal vibrations with different frequencies

and amplitudes are used in this dynamic test. Each

foam specimen is tested with 32 different frequencies,

ranging between 1 and 20 Hz (Table 1) and with 5

different amplitudes (1, 2, 3, 4, 5 mm) at each

frequency. The frequencies used for pristine and

auxetic foams with rc ranging 20–70% are slightly

different from the ones of the rc = 80% auxetic foam,

because the rc = 80% auxetic foam is stiffer and with a

larger resonance frequency compared with the other

foams. Moreover, more frequencies need to be used to

excite the beams close to resonance and obtain a

better-quality frequency response function (FRF). A

feedback controlling system is applied to control the

displacement amplitude at each frequency. In each

case, the force and displacement signals are recorded

for a period of 10 s, with a sampling frequency of

2560 Hz. A low-pass filter up to 100 Hz has been

applied to remove the noise at high frequency.

4 Theoretical model

4.1 Simplification of the beam transverse

vibration model

The 3-point bending vibration model of the foam beam

under dynamic excitations can be represented in

Fig. 3. The beam has simple supports at the two ends

and a concentrated mass in the middle. The Euler–

Bernoulli (EB) beam is used in this work by neglecting

the shear deformation of the beam itself and the

presence of geometric nonlinearity. Detailed discus-

sions about the validity of the use of the EB model in

this work are provided in Appendix A.1. The differ-

ential equation of this dynamic system based on

Euler–Bernoulli beam theory [62–65] is:

EI
o
4y

ox4
þ qAþMd x� lð Þ½ �

o
2y

ot2
¼ F tð Þd x� lð Þ ð1Þ

The dðx� lÞ is the Dirac d-function, used to

introduce the concentrated mass M and force f ðtÞ.

The characteristic function of the beam vibration

model in Fig. 3 can be obtained as in (2), after the

processing described in Appendix A.2.

w lð Þ x2M tan k
L

2

� �
� tanh k

L

2

� �� �
� 4k3EI

� �
¼ 0

ð2Þ

For the symmetric mode shape, wðlÞ 6¼ 0, therefore

the second term in (2) should be equal to 0 and the

corresponding mode frequencies can be calculated.

For the antisymmetric mode shapes, w lð Þ ¼ 0 and

w
0

lð Þ 6¼ 0, the concentrated middle mass has no effect

and the mode shape and frequency should be the same

as the transverse vibration of the continuous beam

without middle mass, because the rotary inertia of the

concentrated central mass is neglected and only the

transverse inertia is considered. Therefore, the natural

frequencies of the antisymmetric mode shapes [62, 65]

can be calculated as

xi ¼ k2i

ffiffiffiffiffiffi
EI

qA

s
; ki ¼

p

l
;
2p

l
;
3p

l
::: ð3Þ

We can then substitute the typical parameters of the

auxetic foam specimens into (2) and (3): L = 0.1 m,

beam width b = 20 mm, beam thickness h = 10 mm,

E = 1 MPa, q=76.92 kg/m3, Poisson’s ratio m=-0.3,

M = 68.43 g. The resulting first 3 resonance

Table 1 Frequencies of the sinusoidal signals used for the

different specimens

rc Frequencies in sinusoidal vibration (Hz)

0–70% 1 2 3 3.33 3.66 4 4.33 4.66

5 5.33 5.66 6 6.33 6.66 7 7.33

7.66 8 8.33 8.66 9 10 11 12

13 14 15 16 17 18 19 20

80% 1 2 3 4 5 5.5 6 6.5

7 7.5 8 8.5 9 9.5 10 10.5

11 11.5 12 12.5 13 13.5 14 14.5

15 15.5 16 16.5 17 18 19 20

Fig. 3 The 3-point bending vibration model of the beam with a

concentrated mass in the middle

123

1024 Q. Zhang et al.



frequencies are as 5.41 Hz, 206.8 Hz and 324.0 Hz

(Table 2). The mode frequencies of the beam model in

Fig. 3 are also calculated using finite elements (FE)

with ANSYS 15.0; the model consists of 50

BEAM188 and one MASS21 elements (the concen-

trated mass without rotary inertia). The mode fre-

quencies and shapes obtained from FE are listed in

Table 2 and Fig. 4, one can observe a proximity of the

FE results with the theoretical ones. The first and third

mode are symmetric mode shapes, while the second

one is antisymmetric. The first resonance frequency is

close to the one measured within the tests, and within

the upper frequency bound of 20 Hz used in the

experiments; the second resonance frequency is far

beyond that upper bound value. Those values are

justified by the very soft and light foam specimen used

in this work (the mass of the sample is always smaller

than 3 g, compared against the 68.4 g of the middle

mass). The middle nodal point in the second and third

modes is stationary (second mode) or relatively very

small (third mode), so the concentrated force at that

location will excite the first mode only. Therefore, the

second- and third-order mode vibration of the beam

sample has very small effect and can be ignored in this

work. Consequently, the continuous beam transverse

vibration model can be simplified as a single-degree-

of-freedom (SDOF) vibration system with concen-

trated parameters when the vibration of the beam is

close to the fundamental resonance of the system.

The stiffness and mass of the concentrated param-

eter SDOF system can be obtained via Energy meth-

ods, which are equivalent to the Rayleigh–Ritz method

when only the first order mode is considered [63, 65].

The Galerkin method can also be applied to this

problem andwould lead to the same results provided by

the Rayleigh–Ritz one, when only the first mode shape

is considered [63, 65, 66]. Firstly, the deformation

shape of the beam (Fig. 3) during vibration can be

simplified to be the same as the static deformation

function of a Euler beam (4) [67], where x represents

the position in the coordinate in Fig. 3 and y(x) is the

transverse displacement at position x under the central

force F. Equation (10) is piecewise with a separating

point at themiddle of the beam; the deforming shape of

the beam is symmetrical with respect to the vertical

middle line. In some cases, those deformation shapes

are simplified as a sinusoidal function [63, 65], which is

same of the transverse vibration of a beam, but without

the presence of the middle mass. As we will see in later

paragraphs, those two types of simplification lead to

similar results. It should also be noticed that the exact

deforming function should be (a.6), which gives quite

similar result to the one provided by (4), but with more

complex computations involved.

y xð Þ ¼
�
Fx 4x2 � 3L2ð Þ

48EI
0� x�

L

2

� �

F x� Lð Þ L2 � 8Lxþ 4x2ð Þ

48EI

L

2
\x� L

� �

8
>><
>>:

ð4Þ

ThestiffnessK l of the concentrated parameter SDOF

model can be obtained from Eq. (4) by substituting

x = L/2. The expression of K l is exactly the same as

the static transverse stiffness of the simply supported

Euler beam loaded in the centre (4). The foam beam

tested in this work has a nonlinear hysteretic modulus

E, which leads to a nonlinear stiffness K l, without

affecting the format of expression (5).

Table 2 Comparison

between resonance

frequencies of different

models

Model type Mode order

First Second Third

Continuous beam model 5.41 Hz 206.8 Hz 324.0 Hz

FE model 5.37 Hz 198.8 Hz 298.4 Hz

Concentrated parameter model 5.40 Hz – –

Fig. 4 The first (a), second (b) and third (c) mode shapes of the

beam with concentrated middle mass calculated via FE
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Kl ¼
48EI

L3
ð5Þ

The kinetic energy of the system can be written as:

T ¼
1

2

Z L

0

qlA _y2dxþ
1

2

Z L

0

qlI
o _y

ox

� �2

dxþ
M _y2l
2

ð6Þ

The kinetic energy (6) includes 3 parts [63]. The

first term describes the kinetic energy associated with

the vertical translation; the second is about the

rotational energy of the cross sections; while the third

is referred to the part associated with the concentrated

middle mass. The ql term refers to the density per

length of the beam specimen. _yl is the velocity of the

middle mass. Substituting (4) into (6), the kinetic

energy of the system results in:

T ylð Þ ¼
17mf

70
þ
12qlI

5L
þ
M

2

� �
_y2l

�
1

2
� M þ

17mf

35

� �
� _y2l ð7Þ

In the Euler beam theory, the shear deformation is

neglected, and the rotatory inertia and related energy

are also neglected. Therefore, the kinetic energy can

be further simplified as in (7). The term mf represents

the mass of the beam specimen. From (7), the massMl

of the concentrated parameter SDOF model can be

written as (8):

Ml ¼ M þ
17

35
mf ð8Þ

The Ml is the combination of concentrated middle

massM and the mass of beam specimen mf . When the

shape function of the beam during vibration is

simplified as a sinusoidal one instead of the (4) used

in this work, the coefficient 17/35 in (8) is replaced by

0.5, with a 3% of difference. Substituting now the

parameters of the dynamic system used in Table 2 into

(5) and (8), the resonance frequency of the concen-

trated parameter SDOF vibration model is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K l=Ml

p

and equal to 5.40 Hz; this value is extremely close to

the 5.41 Hz of the first resonance frequency of the

continuous beam model. This indicates that the

concentrated parameter model can well describe the

dynamic behaviour of the 3-point bending beam

vibration model, within the frequency range used in

this work.

It should be also noticed that the equivalent massmf

of the beam would be nonlinear if the beam has a

nonlinear stiffness, because the deforming shape will

be affected by the nonlinear stiffness Itself. Therefore,

the equivalent SDOF system of the foam beam with

concentrated middle mass should have a nonlinear

stiffness K l and a nonlinear mass Ml, because of the

nonlinear hysteretic modulus of the polyurethane

foam material. However, the mass of the middle

holder is 68.4 g, much larger than the\ 3 g mass of

the foam beam (the equivalent mass of the beam in the

SDOF is around half of the total mass mf , lower than

1.5 g). The equivalent mass of the foam beam

therefore only accounts for less than 2% of the total

concentrated mass in the SDOF model. Thus, the

effect of the nonlinearity of the equivalent mass in the

SDOF can be neglected.

Also, the dynamic Euler beammodel used here does

not consider the auxeticity of the material. Negative

Poisson’s ratio is, however, used to represent the beam

in the FE simulations. Auxetic structures can show

special local deformations with stronger resistance

under indentation [4] and synclastic behaviour under

bending [5]. In this work, the auxetic foam beam

samples are under 3-point bending, without large local

deformations fromindentation.The auxetic beamshows

slight synclastic deformation under bending, but it is not

very evident because of the small width of the beam

itself (20 mm). The purpose of the dynamic 3-point

bending tests here is to study the frequency-dependent

nonlinear hysteretic properties of the auxetic foams,

which are mainly driven by the deformations of the cell

architectures inside the foam and the viscoelasticity of

the polyurethane material. As mentioned above, those

dynamic properties under bending are important for

applications likehumanbody support [14], cushions and

personal protective equipment and apparel [36].

4.2 Modified normalized Bouc–Wen model

for the concentrated parameter vibration

system

The mechanical performance of the auxetic PU foams

under 3-point bending vibration is quite different from

the one predicted by a simple linear spring and viscous

dashpot; it shows hysteresis, nonlinearity and fre-

quency dependency. Therefore, a more sophisticated

model needs to be applied to replace the linear spring

(5) in the concentrated parameter SDOF vibration

model. The Bouc–Wen model (BW) is a widely used
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method to describe the amplitude-dependent hystere-

sis of magnetorheological [46, 47], piezoelectric

[48, 49] and elastomeric [50] materials, so it is

considered a suitable choice for this work. The

equivalent mass parameter Ml in Eq. (8) is the same

for the BW approach, because the BW model mainly

modifies the stiffness and damping performance of the

dynamic system, without effects on the equivalent

mass of the beam specimen; this is true when ones

assumes the vibration deforming shape of the beam is

like Eq. (4). Thus, the concentrated parameter SDOF

vibration system with the BW model is represented in

Fig. 5.

The vibration differential equation of the system is

written as:

M þ
17

35
mf

� �
€yþ Ff y tð Þ; z tð Þ; t½ � ¼ F tð Þ ð9Þ

The displacement yðtÞ in (9) corresponds to the

displacement of the middle point of the beam yl in (7).

The dynamic force from the foam specimen in (9) can

be written following the classical BW approach [52]

as:

Ff y tð Þ; z tð Þ; t½ � ¼ akBWy tð Þ þ 1� að ÞkBWz tð Þ

_z tð Þ ¼ A _y tð Þ � c _y tð Þj jz tð Þ z tð Þj jn�1�b _y tð Þ z tð Þj jn

�

ð10Þ

In (10), kBW is the elastic stiffness of the system; a is

the ratio between the final tangent and the elastic

stiffnesses and 0\a\1. The force Ff ðy tð Þ; z tð Þ; tÞ in

(10) contains two components: the linear elastic

component akBWyðtÞ and the hysteresis component

ð1� aÞkBWyðtÞ; the latter component depends on the

past history of the stresses and the strains. The

parameters b, c and n control the shape of the

hysteresis cycles, while A determines the slope of

the hysteresis at z = 0 and the parameter n governs the

discontinuity of the transition between the elastic and

post-elastic branches of the hysteretic loop [68, 69].

The aforementioned parameters (a, kBW , A, c, b, n)

of the classical BW model are redundant [49, 52, 70].

Therefore, a nondimensionalization needs to be per-

formed to remove the redundant parameters [71]. The

hysteresis displacement zðtÞ can be written as

z tð Þ ¼ n~z tð Þ ð11Þ

where n[ 0 and can be any constant. Substituting (11)

into (10), the modified BW model can be written as

Ff y tð Þ; z tð Þ; t½ � ¼ akBWy tð Þ þ 1� að ÞkBWn~z tð Þ

_~z tð Þ ¼
A

n
_y tð Þ � cnn�1 _y tð Þj j~z tð Þ ~z tð Þj jn�1�bnn�1 _y tð Þ ~z tð Þj jn

8
<
:

ð12Þ

With:

n ¼

ffiffiffiffiffiffiffiffiffiffiffi
A

cþ b

n

s
ð13Þ

which is the largest value of the variable z according to

[69, 71], equations (12) can be written as

Ff y tð Þ; ~z tð Þ; t½ � ¼ ~kyy tð Þ þ ~kz~z tð Þ

_~z tð Þ ¼ ~q _y tð Þ � ~r _y tð Þj j~z tð Þ ~z tð Þj j ~n�1� ~r� 1ð Þ _y tð Þ ~z tð Þj j ~n
h i

(

ð14Þ

The number of parameters of the normalized BW

model has been reduced from 6 in (10) to 5 in (14). The

relationship between the parameters of the normalized

BW model and the classical BW model is as follows:

~ky ¼ akBW
~kz ¼ 1� að ÞnkBW

~q ¼
A

n

~r ¼
c

cþ b
~n ¼ n

8
>>>>>>><
>>>>>>>:

ð15Þ

The parameter eq represents the inverse of the

apparent yield point of the nonlinear component of the

BWmodel, and er describes the ratio of the slope of the

hysteresis loop at the velocity direction changing point

versus the slope of the linear region [71]. The stiffness

Fig. 5 The single-degree-of-freedom vibration model with

concentrated parameters and Bouc–Wen model
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of the hysteretic loop is mainly determined by the

values of eky and ekz, while the shape of the loop is

driven by the five parameters together.

The classical BW model is not frequency-depen-

dent [47, 53, 72] and is therefore unable to capture the

noticeable effect of the frequency over the stiffness

and damping of the PU foams. According to Nagy’s

theory, the modulus of open-cell PU foams under

compression has a linear dependence to the strain rate

on log–log scale; the latter assumption is valid within

the low strain rate range of quasi-static and low-speed

dynamic and impact tests [54] as described in Eq. (16).

The r0ðeÞ is the reference stress at the corresponding

reference strain rate _e0, while aN and bN are coeffi-

cients. Nagy’s model can be applied to the modified

BW model to capture the frequency-dependent stiff-

ness of the PU foams within a low frequencies range.

r eð Þ ¼ r0 eð Þ
_e

_e0

� �aNþbN e

ð16Þ

To obtain the variation of the parameters of the

normalized BW model versus the frequency, the param-

eters of the normalized BWmodel of different PU foams

with 5 amplitudes are inversely identified at each

frequency between 2 and 10 Hz. The identification is

performed using a Levenberg–Marquardt optimization

method, which will be introduced in detail in following

section. It is found that the stiffness eky is almost linear to

the frequency on log–log scale, similarly to Nagy’s

model. Therefore, the frequency-dependent stiffness

eky can be expressed as the first item in Eq. (17) by

revising the Nagy’s model (16), considering the strain

rate is proportional to the frequency. The term eky0
represents the stiffness parameter for the quasi-static

tests, f is the frequency in vibration test, Amp is the

displacement amplitude, a and b are coefficients. It is

also observed that the parameter en does not change

significantly with the frequency, thus it is assumed to

be constant. As for the other parameters ekz, eq and er,
they are almost linearly proportional to the frequency;

therefore, they can be written as items 2–4 in Eq. (17).

The eky0, ekz0, eq0, er0 and en0 are the parameters of the

normalized BW model for the quasi-static tests, while

a, b, c, d, p, q, r and s are all coefficients describing the

frequency dependency of the normalized BW model.

Equation (17) can be applied to PU foams under 3-

point bending low-frequency vibration.

~ky ¼ ~ky0 fð ÞaþbAmp

~kz ¼ ~kz0 cf þ dð Þ
~q ¼ ~q0 pf þ qð Þ
~r ¼ ~r0 rf þ sð Þ
~n ¼ ~n0

8
>>>><
>>>>:

ð17Þ

4.3 Parameter identification

Each auxetic foam specimen has been tested using

different frequencies and amplitudes. The results from

the quasi-static and dynamic tests need to be consid-

ered together during the parameter identification, so

that the nonlinearity and frequency dependency of the

auxetic foams can be captured by the inversely fitted

BW model. The displacement and force signals in the

time domain can be obtained directly from the tests

(Fig. 2). The force signal measured by the dynamic

force sensor includes two components: the inertial

force of the middle holder ðM þ 17=35mf Þ€yðtÞ and the

force of the foam beam Ff ðy tð Þ; z tð Þ; tÞ, as shown in

(9). The acceleration and the inertial force can be

derived from the measured displacement signal in the

time domain. Therefore, the dynamic actual force Ff

provided by the foam beam can be obtained by

excluding the inertial force term from the measured

total dynamic force using (9). During the quasi-static

tests, the force and displacement signals are the ones

obtained directly from the machine, without consid-

ering inertial effects.

The error function used for the identification of the

parameters in each foam specimen is written as:

v2 pð Þ ¼
XN1

i¼1

XN2

j¼1

1

N3Amp;j

XN3

k¼1

Ff�ij;k � Ff yij;k; ~p
	 
� �2

( )

ð18Þ

In (18), Ff�ij;k and yij;k are the measured dynamic

(or quasi-static) actual force and displacement of the

foam beam at frequency f i, amplitude Amp;j and time

tk. The term Ff ðyij;k; epÞ is referred to the calculated

dynamic and quasi-static actual force from the BW

model (14) for the same test case. The data related to 5

different amplitudes at specific frequencies (2 Hz,

4 Hz, 6 Hz, 8 Hz, 10 Hz for pristine and rc = 20–70%

auxetic foams; 2 Hz, 4 Hz, 6 Hz, 8 Hz, 10 Hz, 12 Hz

for the rc = 80% auxetic foam) are used for the data

fitting. The results of quasi-static tests are also

included in the error function (18) for parameter
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identification, and 3 different amplitudes in quasi-

static tests are involved. The large amplitude vibration

at the highest frequencies is beyond the optimal

operational conditions of the shaker, leading to noisy

hysteretic loops. The maximum frequency used in

most samples is therefore 10 Hz, which increases to

12 Hz for the rc = 80% auxetic foam case, because its

higher stiffness is less sensitive to the instabilities of

the shaker. The vector ep contains the 13 parameters

(eky0, ekz0, eq0, er0, en0, a, b, c, d, p, q, r and s) of the

modified normalized BW model in (14) and (17). For

each test case (frequency f i and amplitude Amp;j), only

data related to one period time T i (i.e. one hysteretic

loop) are used for the parameter identification. Since

the sampling frequency is constant, the higher fre-

quency f i leads to a smaller period time T i, thus less

data points obtained within one cycle. Larger ampli-

tudes can also lead to a larger absolute fitting error.

Therefore, the fitting error in each test case is divided

by the number of data points N3 and the amplitude of

the displacement Amp;j, which acts as a weight factor.

In this way, results from different test cases can play a

similar role in the error function.

The Runge–Kutta method (RK4) is used to solve

the differential equation in the BWmodel (14). During

the dynamic tests, the displacement signal in the time

domain is almost a pure sinusoid, so the sine function

can be used to fit the displacement signal and then used

for the calculation using a RK4 method. However, the

displacement signal in time domain during the quasi-

static tests is triangular wave. Therefore, Fourier series

(19) with order G of 20 have been used to describe the

triangular wave. When calculating the actual force

Ff ðyij;k; epÞ, two cycles of data points are used, and the
initial value of ezðtÞ at t1 is 0. The calculated actual

force will converge quickly in the second loop, so

calculated data from that loop only are used to

compute the fitting error function (18).

y tð Þ ¼
8Amp

p2

XG�1

g¼0

�1ð Þgþ1

2gþ 1ð Þ2
sin 2gþ 1ð Þx0tð Þ ð19Þ

The Levenberg–Marquardt (LM) Method is used to

minimize the error function (18), so that the material

parameters ep can be extracted. Because the LM

method can easily lead to identify local minima, the

initial ep vector provided for the start of the optimiza-

tion is very important. In this work, a grid search

method is applied to provide a proper initial value for

the LM optimization. The parameters ep of the

normalized BW model can be calculated using the

parameters p of the classical BW model from (15).

The parameters p have a clear physical meaning and

can provide a rough estimate based on data in open

literature [47, 70, 72, 73]. As for the coefficients of

frequency dependency in (17), the initial values for the

optimization can be obtained by identifying the 5

parameters of the normalized BW model (14) at each

frequency, and then fitting the curves of the param-

eters versus frequency. The LM optimization is

therefore carried by assigning different initial values

for each parameter of ep uniformly within their

possible range, and that obtains 1456 different com-

binations of initial values of ep. Although some

combinations of initial values can only result in local

minima with limited fitting accuracy, a large portion

(* 79%) of the different initial values can lead to the

same optimization results with the best fitting accu-

racy. These results indicate that the parameter iden-

tification approach used in this work is reliable.

The parameters of the normalized modified BW

model for the different pristine and auxetic foam

specimens are listed in Appendix Tables 3 and 4. The

mean absolute percentage error (MAPE) that describes

the fitting accuracy of theBWmodel is calculated using:

MAPE ¼
1

N1N2N3

XN1

i

XN2

j

XN3

k

Xij;k � ~Xij;k



 


Xij;k

ð20Þ

In (20), Xij;k and eX ij;k are the measured and

calculated results; those terms can represent either

the quasi-static and dynamic actual force of the foam

beam Ff in (14), or the frequency response function

(FRF) of the dynamic system in (9). TheMAPE values

of the actual force Ff of different foams are all

around * 95%, compared with the * 98% of the

FRF. The calculation of FRF also involves the inertial

force, which is much larger than the actual force of the

foam beam, so the fitting error of actual force has less

effect on the result of FRF. The 95% fitting accuracy

of actual force is good enough to describe the

mechanical behaviour of the foams in different

loading cases using the modified BW model. The

model in this work shares the same parameters in

different loading cases, i.e. frequency and amplitude,

which means 13 parameters are needed for each foam.

The parameters of the normalized BW model have

special physical meaning corresponding to the slope
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and shape of the hysteretic loops [71]. However, it is

difficult to use them directly to describe the stiffness

and damping properties of the auxetic foams. There-

fore, the phenomenological frequency and amplitude-

dependent stiffness and loss factor are applied for this

purpose. The phenomenological stiffness will be

calculated from the tested hysteretic loops of dynamic

actual force by using the slope of the line passing

through the tensile and compressive peaks of the loops

[72, 74], as shown in Fig. 6. Because the nonlinearity

of the loops at each amplitude is not severe, the

linearized secant stiffness K ij can well represent the

stiffness properties of the auxetic foams at frequency

f i and amplitude Amp;j. Besides, the corresponding

dynamic modulus Eij can be calculated using K ij from

(5), which corresponds to the modulus along the d2
direction of the auxetic foam material based on the

beam bending theory. The dynamic loss factor gij of

the hysteretic loop for the different testing cases can be

calculated using (21), where DW represents the energy

dissipated per cycle, U indicates the stored energy

[75, 76].

g ¼
DW

2pU
ð21Þ

5 Results and discussion

5.1 Quasi-static tests

The experimental and theoretical hysteretic loops of

rc = 60% auxetic foam acquired during the quasi-static

3-point bending test under cyclic compressive-tensile

loading with different amplitudes along the d1 and d3

directions are shown in Fig. 7a and b. The loops

obtained from the identified BW model always coin-

cide well with the experimental results related to the

different test cases especially at smaller displacements.

This means that the modified BW model in this paper

can capture well the quasi-static mechanical properties

of the different foams. The inclination angle of the loop

clearly decreases with the increase in amplitude of

displacement, indicating a decrease of stiffness. The

shape of the loops also changes noticeably with the

amplitude.With a 1 mm amplitude, the hysteretic loop

is narrow,with less energy dissipated.As the amplitude

increases, the hysteretic curves during unloading

become more convex, enlarging the loop area and the

energy dissipation. The shapes of the loops with a

bending force along d1 and d3 are also quite similar.

However, the force obtained from loading along d3 is

larger than that along d1 (0.27 N at 5 mm along d1
compared with the 0.35 N along d3), which means a

larger stiffness is present under loading along d3 than

d1. The effects of the amplitude on the hysteretic loops

of other auxetic foams are all similar with those shown

in Fig. 7a and b, so they are not repeated here.

The experimental and theoretical hysteretic loops

of the different auxetic and conventional foams loaded

along d1 and d3 with amplitude of 3 mm are shown in

Fig. 7c and d. The inclination angles of the loops

increase noticeably with the thermoforming compres-

sion ratio rc, denoting an increasing stiffness. The

shapes of the loops of the different auxetic foams are

all quite similar. The stiffness loaded along d3 is

always larger than the corresponding one along d1.

The quasi-static secant modulus Ec and loss factor

gc can be obtained from the hysteretic loops by using

equations (5), (21) and Fig. 6 [72, 74]. The experi-

mental and theoretical curves of Ec versus the

compression ratio rc loaded along d1 and d3 are shown

in Fig. 8a and b, with extremely good agreement

between test and model results. The Ec increases

gently with rc till 60% and then rise sharply at high rc.

The Ec always rises with the increase in amplitude,

with significantly larger Ec values (0.93 MPa for

rc = 50% auxetic foam loaded along d1) for the 1 mm

amplitude case, and closer values (0.66 MPa and

0.57 MPa correspondingly) for the 3 mm and 5 mm

amplitudes. The Ec obtained under bending load along

d1 is noticeably smaller than the one loaded along d3
(Ec=1.27 MPa, 0.87 MPa, 0.72 MPa for rc = 50%

auxetic foam loaded along d3 with amplitudes of
Fig. 6 Calculation of the linearized secant stiffness by

hysteretic loops
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1 mm, 3 mm, 5 mm). The Ec corresponds to the

modulus of the auxetic foam material along d2, which

should be the same in tests with a bending load along

d1 or d3, if the material was isotropic—according to

beam bending theory. However, the auxetic foams are

strongly anisotropic due to the uniaxially thermo-

forming compression process, and are significantly

softer along d1 and stiffer along d2 and d3 [25]. The

modulus obtained for the auxetic foams under bending

deformation along d1 and d3 shows indeed a difference

around 30%. The bending moduli of the auxetic foams

along d2 in Fig. 8 and the effect of rc are quite close to

the results obtained in previous papers [25, 26, 77] of

the same type auxetic foam under the cyclic quasi-

static compression/tension loading along d2. For

example, the modulus at 10% strain of auxetic foams

with different rc under quasi-static cyclic tensile

loading along d2 varies between 0.5 and 2 MPa, and

mostly clusters around 0.5 MPa [25, 26], which is

close to the value of the bending modulus correspond-

ing to the 5 mm amplitude. In comparison, the

modulus at 1% strain of the different auxetic foams

under quasi-static cyclic compressive-tensile loading

along d2 mainly ranges between 0.5 and 3 MPa, and

concentrates around 1 MPa [77], close to the bending

modulus at 1 mm amplitude. This difference can also

be justified by the fact that the bending modulus is

derived from a Euler–Bernoulli beam formulation that

neglects the shear deformation. Other aspects that may

affect the estimation here proposed are the local

deformation of the micro cells of the porous foam at

the supporting and loading positions, as well as the

effect of the boundary conditions.

Fig. 7 Quasi-static tests results: hysteretic loops of the

rc = 60% auxetic foam loaded along the d1 (a) and d3
(b) directions with different amplitudes; hysteretic loops of

the auxetic foams with different rc loaded along d1 (c) and d3 (d).

The Exp and Mdl in the legend represent the experiment and the

model, respectively
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The experimental and theoretical curves of static

loss factor gc versus the compression ratio rc loaded

along d1 and d3 are shown in Fig. 8c and d. The gc of

the different auxetic foams tested with amplitude of

3 mm and 5 mm all cluster between 0.2 and 0.25,

showing no significant effect provided by the com-

pression ratio. In comparison, the gc of 1 mm ampli-

tude is evidently smaller (ranging between 0.1 and 0.2)

and fluctuate more noticeably with rc. The experi-

mental and theoretical results show good agreement,

with slightly larger deviations at large amplitudes

(5 mm). The bending loss factors in this work are

noticeably larger than the ones of the same auxetic

foams obtained from quasi-static cyclic tension or

compression tests of 10% strain along d2, which

mainly vary between 0.1 and 0.2 [25, 26] (note that the

loss factors in [25] needs to be multiplied by 4 due to

the different loss factor formulations used). Apart

from the different deformation mechanisms under

bending (including shear and local deformations,

partially under tension and compression), the friction

at the end supports and the middle holder can also

possibly affect the experimental bending loss factors.

5.2 Dynamic test results

The force and displacement in time and frequency

domain of the rc = 60% auxetic foam loaded along d3
with amplitude of 3 mm at 12 Hz are shown in

Fig. 9a. Both the force and displacement signals are

purely sinusoidal, without components at other fre-

quencies. A phase lag around p is present between the

force and the displacement signals, because 12 Hz is

above the resonance frequency of this dynamic

system. At larger amplitudes and other frequencies,

the force signal may contain noticeable multi-fre-

quency components, showing the presence of slight

nonlinearity. However, the displacement signal has

Fig. 8 Static modulus (a) (b) and loss factor (c) (d) versus compression ratio rc loaded along d1 and d3, respectively
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always a pure and clean sinusoid for the different

specimens tested.

The hysteretic loops of the total dynamic force

(inertial force included) for the rc = 80% auxetic foam

flexed along d3 with an amplitude of 3 mm at different

frequencies are shown in Fig. 9b. The inclination angle

of the loops decreases gradually from positive at low

frequency to negative at high frequency, passing

through the 0 degree at * 11 Hz; this corresponds to

the resonance frequency of this dynamic system. The

actual force Ff provided by the foam beam during

vibration is overwhelmed by the large inertial force

provided by themiddle holder; this makes it difficult to

ascertain the mechanical properties of the foams from

the hysteretic loops related to the total dynamic force,

as in Fig. 9b. Therefore, as mentioned in Sect. 4.3, the

inertial force of the middle holder ðM þ 17=35mf Þ€yðtÞ

is eliminated from the total dynamic force using

Eq. (9) to obtain the dynamic actual force Ff of the

foam beams. The dynamic secant modulus Ed can be

calculated by using the slope of the line passing

through the tensile and compressive peaks of the

hysteretic loops of the actual force [72, 74], using

formula (5) and Fig. 6. The dynamic loss factor gd can

be obtained by (21) from the hysteretic loops of actual

force.

5.2.1 Effect of the amplitude

The experimental and theoretical hysteretic loops of

the actual force Ff (inertial force excluded) for the

rc = 60% auxetic foam loaded along d1 and d3 with

different amplitudes at 7 Hz are shown in Fig. 10a, b.

The loops obtained from the identified BW model

always coincide well with the experimental results for

the different test cases. The inclination angle of the

loops decreases with increase in amplitude, showing a

more evident convex loop shape, which indicates a

smaller stiffness and greater damping at large ampli-

tude; this is similar to the quasi-static test results in

Fig. 8. The shape of the loops with a bending load

along d1 and d3 are quite similar, having larger forces

along d3 (0.37 N loaded along d1 and 0.54 N along d3
at 5 mm).

The experimental and theoretical FRF curves for

the rc = 60% auxetic foam loaded along d1 and d3with

different amplitudes are shown in Fig. 10c, d. The

model shows a good agreement with the experimental

data, especially at medium amplitudes. At large

amplitudes (5 mm), the deviation between test and

model is more noticeable but still acceptable, because

the shape of the hysteretic loop at large amplitudes is

more complex and shows a stronger nonlinearity. The

resonance frequency of the FRFs clearly decrease with

the increase in amplitude (from 6.3 to 5 Hz loaded

along d1, from 7.5 to 6 Hz loaded along d3 as

amplitude increases from 1 to 5 mm). This is caused

Fig. 9 Vibration signals in time and frequency domain of the

rc = 60% auxetic foam loaded along d3with amplitude of 3 mm

at 12 Hz; hysteresis loops of total dynamic force (inertial force

included) for rc = 80% auxetic foam loaded along d3 with

amplitude of 3 mm at different frequencies
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by the softening of the foams with the amplitude, as

also observed from the quasi-static tests (see Fig. 7a,

b). The value of the peak of the FRF loaded along d1
increases monotonously with the amplitude, compared

with the first decrease and then gradually increases

when loaded along d3. The different performances of

the FRFs along d1 and d3 are mainly affected by the

combined effect of the different stiffness and damping

along the two directions. The effect of the displace-

ment amplitude on the hysteretic loops and FRFs of

other auxetic foams for the different volumetric

compression cases and frequencies is similar to the

one shown in Fig. 10, so they are not repeated here for

sake of simplicity.

The experimental and theoretical dynamic moduli

Ed of the different auxetic foams versus the amplitude

loaded along the d1 and d3 directions at 8 Hz are

shown in Fig. 11a and b. The moduli from the BW

model overlap remarkably well with the experimental

results. The Ed of the different auxetic foam all

decreases gently with amplitude. The modulus of the

auxetic foam with rc = 70% and 80% is always

noticeably greater than the one of the other foams.

And theEd loaded along d3 is mostly around 30%-50%

larger than the corresponding one loaded along d1. For

example, the dynamic modulus has values of

1.39 MPa, 1.08 MPa, 0.96 MPa for the rc = 50%

auxetic foam loaded along d1 with amplitudes of

1 mm, 3 mm, 5 mm at 8 Hz. The same type of foam

has, however, dynamic moduli with values of

1.92 MPa, 1.56 MPa, 1.36 MPa when loaded along

d3. On average, the dynamic modulus Ed is around 20–

Fig. 10 Hysteretic loops of the actual force (inertial force

excluded) for the rc = 60% auxetic foam loaded along d1 (a) and

d3 (b) with different amplitudes at 7 Hz; FRF of the rc = 60%

auxetic foam loaded along d1 (a) and d3 (b) with different

amplitudes. The Exp and Mdl in the legend represent the

experiment and the model, respectively
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40% larger than the quasi-static modulus Ec described

in Sect. 5.1.

The experimental and theoretical dynamic loss

factors gd of the different auxetic foams versus

amplitude loaded along the d1 and d3 directions at

8 Hz are shown in Fig. 11c and d. The values of gd for

the different auxetic foams mostly cluster between 0.2

and 0.3, compared with the larger gd value of the

rc = 80% auxetic foam. The gd loaded along d1 rises

first when the amplitude is enlarged from 1 to 2 mm,

and then slightly decreases or maintains an almost

unchanged value with the increase in amplitude. The

loss factors obtained with a bending load along d3
show a more noticeable increase versus the amplitude

compared with d1, following a similar large rise at

small amplitudes and then a slight increase at large

amplitude values. The dynamic loss factor gd of the

different auxetic foams are quite similar to the quasi-

static gc ones, and mostly are within the range of 0.2–

0.3. The curves of gd versus the amplitude calculated

by the BWmodel for the different auxetic foams agree

well with the experimental data. However, the devi-

ation between experimental and the theoretical gd
values is larger than the deviation of Ed, especially at

large amplitudes (5 mm), which has also been

observed in the FRF results (Fig. 10). Considering,

however, that the loss factors of the different auxetic

foams are mostly distributed between 0.2 and 0.3, with

no significant change, this slightly larger discrepancy

between tests and models of the gd values does not

invalidate the use of this BW model.

5.2.2 Effect of the frequency

The experimental and theoretical hysteretic loops of

the actual force Ff (inertial force excluded) for the

Fig. 11 Dynamic modulus and loss factors versus amplitude of different foams loaded along d1 (a) (c) and d3 (b) (d) directions,

respectively, at 8 Hz
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rc = 80% auxetic foam loaded along d1and d3 at

different frequencies with an amplitude of 3 mm are

shown in Fig. 12. The hysteretic loops at different

frequencies have quite similar shapes. The inclination

angle of the loops also slightly rises with the increase

in frequency, indicating a marginal enhanced stiffness

by frequency. The effect of the frequency is quite

similar in specimens under bending load along d1 and

d3. The hysteretic loops calculated using the BW

model agree well with the experimental ones at

different frequencies; this indicates that the modified

BW model developed in this work can satisfactorily

capture the frequency-dependent properties of the

auxetic foams at low frequencies. The effect of

frequency on the hysteretic loops of the other auxetic

foams is quite similar to the one shown in Fig. 12, so

they are not provided for brevity.

The experimental and theoretical modulus E (in-

cluding quasi-static and dynamic moduli Ec and Ed) of

the different foam beams versus frequency when

loaded along the d1 and d3 directions with amplitude of

3 mm are shown in Fig. 13a and b. The quasi-static

test loading rate is 3 mm/min, and the corresponding

frequency ranges between 0.0025 Hz and 0.0125 Hz

when amplitude decreases from 5 to 1 mm. The E of

the different auxetic foams increases * 20 to 40%

from quasi-static test to 2 Hz dynamic test and then

rises * 10% when the frequency rise from 2 to 10 Hz

(for example: from 0.80 MPa of quasi-static test to

0.97 MPa at 2 Hz and 1.09 MPa at 10 Hz loaded

along d1; from 1.11 MPa of quasi-static test to

1.36 MPa at 2 Hz and 1.56 MPa at 10 Hz loaded

along d3, for the rc = 60% auxetic foam). The effect of

the frequency on the dynamic modulus is monotonic

and almost linear in log–log scale within the low-

frequency range considered in this work, which

coincides well with the theory from Nagy et al.[54].

The curves of Ed versus the frequency for different

auxetic foams calculated using the modified BW

model show a very good agreement with the exper-

imental results, which means that the introduction of

frequency-dependent stiffness coefficients ky and kz to

the classical BW model in Eq. (17) is able to capture

the frequency hardening effect provided by the PU

foams.

The experimental and theoretical loss factors g

(including quasi-static and dynamic loss factor gc and

gd) of the different foams versus frequency when

loaded along the d1 and d3 directions with amplitude of

3 mm are shown in Fig. 13c and d. The g of the

different auxetic foams increase noticeably for * 20

to 40% from quasi-static test to dynamic test at 2 Hz,

and then decrease slowly for * 10 to 20% with the

increase in frequency till 10 Hz. The theoretical

results of g from the modified BW model provide

good agreement with the tested results, denoting that

the modified BW model can properly capture the

frequency dependency of the loss factor. The presence

of a single peak of loss factor–frequency curves of the

open-cell PU foams at low-frequency ranges has also

been observed by other researchers [78–80]. The peak

is caused by the pneumatic damping effect of the air

Fig. 12 Hysteretic loops of the actual force (inertial force

excluded) for the rc = 80% auxetic foam loaded along d1 (a) and

d3 (b) at different frequencies with an amplitude of 3 mm. Also

in this case, the Exp and Mdl in the legends represent the

experiment and the model, respectively
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flow trapped inside the porous soft material, according

to Gent’s model [78]. In this work, the exact resonance

frequency of loss factor cannot be captured because

not enough data points at extremely low-frequency

ranges between quasi-static test and 2 Hz are avail-

able. However, the single peak phenomenon of the

curve can be observed.

5.2.3 Effect of the manufacturing compression ratio

The experimental and theoretical hysteretic loops of

the actual force Ff (inertial force excluded) for

different auxetic foams loaded along d1 and d3 with

3 mm amplitude at 8 Hz are shown in Fig. 14a and b.

The loops calculated by the BW model coincide well

with the experimental results for all different auxetic

foams. The inclination angle of the loop increases

evidently with the compression ratio rc, indicating an

increase of stiffness, especially for the auxetic foams

with rc = 70% and 80%. The loops of the pristine and

auxetic foams with rc ranging between 20 and 60% all

cluster together, showing small differences in terms of

stiffness. The force of the loops loaded along d3 is

always larger than the one along d1 for the auxetic

foams with the same value of rc. The shape of the

hysteretic loops of the different auxetic foams in the

dynamic tests are quite similar to those obtained

during the quasi-static experiments (Fig. 8). One small

difference is about the quasi-static loops having

sharper tips, compared with the smooth ends observed

in the dynamic experiments. This is because the quasi-

static tests uses triangular displacement waveforms

with extremely slow loading rate (frequency ranging

between 0.0025 and 0.0125 Hz), while the dynamic

tests use a sinusoidal displacement wave and fast

loading rates.

Fig. 13 Modulus and loss factors of different foams versus frequency loaded along d1 (a) (c) and d3 (b) (d) directions, respectively,

with amplitude of 3 mm
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The experimental and theoretical FRFs of the

different foams loaded along d1 and d3 with 3 mm

amplitude are shown in Fig. 14c and d. The model

shows an extremely good agreement with the exper-

imental data. It is evident that the resonance frequency

increases with the increase in compression ratio while

the peak of the FRF decreases significantly with rc,

because of the enhanced stiffness.

The experimental and theoretical dynamic moduli

Ed of the auxetic foam versus the manufacturing

compression ratio rc loaded along the d1 and d3
directions at 8 Hz are shown in Fig. 15a and b. The

curves of Ed calculated by BW model at different

amplitudes always overlap well with the experimental

ones. The values of the dynamic moduli obtained via

experiments at small amplitudes are always higher

than those at large amplitude, similarly to what

discussed in Sect. 5.2.1. The Ed increases slowly with

the compression ratios when rc ranges between 0 and

0.6, and then rise sharply when rc reaches 0.7 and 0.8.

For example, when tested with amplitude of 3 mm, the

dynamic modulus for the pristine foam loaded along

d1 is 0.78 MPa and then increases to 0.86 MPa,

1.07 MPa and 2.24 MPa when rc goes from 0.4, 0.6 to

0.8; the corresponding values when the foam has the

bending load along d3 are 1.11 MPa, 1.57 MPa and

4.42 MPa. For the majority of the auxetic foams, the

values of Ed derived when the bending force is applied

to the d3 direction is * 30 to 50% larger than along

d1; the same modulus is, however, almost 100%

enhanced when rc = 80%. The variation of the

dynamic modulus Ed versus rc is quite similar to the

one observed for the quasi-static modulus Ec in Fig. 8,

Fig. 14 Hysteretic loops of the actual force (inertial force excluded) for different auxetic foams loaded along d1 (a) and d3 (b) with

3 mm amplitude at 8 Hz; FRF of different auxetic foams loaded along d1 (a) and d3 (b) with 3 mm amplitude
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although the dynamic modulus is again 20–40% larger

than the corresponding static value.

The experimental and theoretical dynamic loss

factors gd of the auxetic foams versus rc when the

foams are loaded along the d1 and d3 directions at 8 Hz

are shown in Fig. 15c and d. The gd fluctuates with rc
and mostly clusters within the range 0.2–0.3, showing

no evident effect provided by the volumetric com-

pression ratio. The dynamic loss factor for rc = 80% is

noticeably larger than in the case of other foams. The

experimental gd value at small amplitudes (1 mm) is

lower than those with larger amplitudes, especially for

beam specimens with a bending load along the d3
direction. The results of the dynamic loss factor gd
versus rc are quite close to those observed in the quasi-

static test (Fig. 8). The gd values of the different

auxetic foams calculated using the BW model show a

good agreement with the experimental data at small

amplitudes, however, exhibit some discrepancies at

larger amplitudes (5 mm). Overall, the deviation

between experimental and model loss factors is more

noticeable than in the case of the dynamic modulus

results, as already discussed in Sect. 5.2.1.

6 Conclusions

A custom 3-point bending vibration test rig has been

designed and used to perform dynamic tests on auxetic

PU foam beams at low-frequency ranges (1–20 Hz). A

feedback controlling system is applied and 5 different

displacement amplitudes (1–5 mm) are used at each

frequency. A modified normalized Bouc–Wen model

has also been developed to capture the amplitude and

Fig. 15 Dynamic modulus and loss factors of the pristine and auxetic foams versus the manufacturing compression ratio rc loaded

along d1 (a) (c) and d3 (b) (d) directions, respectively, at 8 Hz

123

Hysteretic behaviour of uniaxially thermoformed auxetic foams under 3-point 1039



frequency-dependent properties of the conventional

and auxetic foams, and shows good agreement with

the results from the tests. The auxetic foam evaluated

in this work is manufactured following a simplified

and relatively low-cost uniaxially thermoforming

compression process, which leads to the production

of foams with transverse isotropic characteristics. In

this work, auxetic foam beam samples made following

two different cutting orientations and different ther-

moforming compression ratios rc (20–80%) are con-

sidered. The dynamic bending modulus of the foams is

extracted from a Euler–Bernoulli-based formulation

of a beam subjected to vibration and central mass, all

representing the realistic conditions existing in the 3-

point bending rig. The dynamic modulus Ed increases

with rc, and ranges between 0.5 and 5 MPa, while the

dynamic loss factor gd changes little with the

compression ratio used for the production of the

foams, and mostly clusters between 0.2 and 0.3. The

auxetic PU foam has a noticeable amplitude-depen-

dent behaviour, with decreasing Ed and increasing gd
versus the enlarged displacement amplitude. The

auxetic foam also shows an evident frequency-depen-

dent performance; the modulus Ed rises gently with

increasing frequency while gd rises first and then

reduces with frequency. The dynamic modulus Ed and

loss factor gd are 20–40% larger than the quasi-static

tested ones. The testing and modelling analysis of the

bending behaviour of auxetic foams within low-

frequency ranges can benefit a better understanding

of the mechanics of these and other porous materials

for applications in areas such as apparel, cushioning

and personal protective equipment, in which the

reduction of low-frequency vibration is important.
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Appendix

A.1 Validation of the use of the Euler–Bernoulli

beam model without geometric nonlinearity

The Euler–Bernoulli (EB) beam used in this work

neglects the shear deformation of the beam and the

geometric nonlinearity. It has been verified that the

nonlinearity, hysteresis and frequency dependency

observed in these dynamic tests are mainly originated

by the deformation of the cell structures inside the

auxetic foam and the viscoelasticity of the Polyur-

ethane material.

Shear effect

The Timoshenko beammodel can include the effect of

shear deformation in beams with small span to depth

ratios. The beam used in this work has a support span

of 100 mm and thickness of 10 mm; therefore, the

span to depth ratio is 10. A direct comparison between

Euler and Timoshenko beams with different span to

depth is done by Ghannadiasl et al. by using theoret-

ical modelling [59], and Gaur et al. by using finite

elements [60]. The two models provide very close

results, with a * 2% difference of stiffness, when the

span to depth ratio reaches 10 and the beam is simply

supported at two ends. We therefore conclude that the

span to depth ratio of the foam beam used in our work

is sufficiently large to neglect the effect of the shear

deformation.

Geometric nonlinearity

A finite element model of the foam beam has been

developed using the ANSYS code composed of 50

Timoshenko beam elements (BEAM188) with support

span L = 100 mm, beam width b = 20 mm, beam thick-

ness h = 10 mm, modulus E = 1 MPa, density

q = 76.92 kg/m3 and Poisson’s ratio m=-0.3. The
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maximum displacement in the middle of the beam is

5 mm. The calculation was carried out with the

geometric nonlinearity option on and off, separately.

The stiffness of the beam including the geometric

nonlinearity is 79.51 N/m, compared with the

78.72 N/m of the beam without. The difference is

less than 1%; therefore, one can conclude that the

effect of the geometric nonlinearity is small enough

for neglect.

A.2 Continuous beam transverse vibration model

The differential equation representing the dynamic

system based on the Euler–Bernoulli beam theory is

Eq. (1). The boundary conditions (BCs) are:

y 0; tð Þ ¼ 0; EI
o
2y 0; tð Þ

ox2
¼ 0;

y 2l; tð Þ ¼ 0; EI
o
2y 2l; tð Þ

ox2
¼ 0;

ða:1Þ

The BCs in (a.1) imply that no transverse displace-

ment and moment occur at the two simply supported

ends of the beam. The typical solution of Eq. (1) can be

written as (a.2), where wðxÞ represents the vibration

deforming shape of the beam.

y x; tð Þ ¼ w xð Þejxt ða:2Þ

Substitute (a.2) into Eq. (1) and (a.1), and then

perform the Laplace transform of (1), one obtains:

w sð Þ ¼ L w xð Þ½ �

¼
1

s4 � k4
s2w0 0ð Þ þ w000 0ð Þ þ

x2Mw lð Þ

EI
e�ls

� �

ða:3Þ

where:

k4 ¼
qAx2

EI
ða:4Þ

The inverse Laplace transform of (a.3) leads to:

w xð Þ ¼ L�1 w sð Þ
� �

¼
w0 0ð Þ

2k
sinh kxð Þ þ sin kxð Þ½ �

þ
w000 0ð Þ

2k3
sinh kxð Þ � sin kxð Þ½ �

þ
x2Mw lð Þ

2k3EI
sinh k x� lð Þ½ � � sin k x� lð Þ½ �f gu x� lð Þ

ða:5Þ

In (a.5), uðx� lÞ represents the unit step function.

The constants w0 0ð Þ and w000 0ð Þ in (a.5) can be

determined by substituting (a.3) into the two boundary

Table 3 Inversely fitted parameters of the normalized modified Bouc–Wen model for different auxetic foams. Part I: basic

parameters of the normalized BW model

Load direction rc Parameters of modified normalized Bouc–Wen model

Part I: basic parameters of the BW model

Fitting accuracy

MAPE

eky0(N/mm) ekz0(N/mm) eq0 er0 en0 Loops FRF

/ 0% 0.0321 0.0384 1.1683 0.5776 1.1195 0.950 0.981

d1 20% 0.0329 0.0335 1.3314 0.7547 1.2101 0.945 0.968

30% 0.0392 0.0388 1.0339 0.9401 1.1934 0.950 0.981

40% 0.0384 0.0383 1.1800 0.6084 1.0966 0.953 0.979

50% 0.0406 0.0398 1.1696 0.5351 1.0261 0.951 0.979

60% 0.0482 0.0484 1.0517 0.5200 1.0217 0.953 0.977

70% 0.0765 0.0758 1.0210 0.7116 1.0000 0.950 0.971

80% 0.1018 0.0821 1.4300 0.9894 1.0000 0.948 0.979

d3 20% 0.0408 0.0450 1.3480 0.5635 1.0000 0.949 0.976

30% 0.0505 0.0541 1.2257 0.6228 1.2261 0.954 0.979

40% 0.0460 0.0510 1.0713 0.4782 1.2613 0.953 0.978

50% 0.0499 0.0587 1.1621 0.3583 1.1842 0.952 0.980

60% 0.0643 0.0720 0.9518 0.4495 1.4117 0.955 0.976

70% 0.0970 0.0931 0.7694 0.8763 1.1228 0.956 0.975

80% 0.1596 0.2101 1.3095 0.6574 1.2568 0.950 0.970
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conditions of (a.1) at x ¼ 2l. The resulting beam

deforming function wðxÞ is:

w xð Þ ¼
x2Mw lð Þ

4k3EI

sin kxð Þ

cos klð Þ
�
sinh kxð Þ

cosh klð Þ

� ��

þ2u x� lð Þ sinh k x� lð Þð Þ � sin k x� lð Þð Þ½ �g

ða:6Þ

Substituting x ¼ l in (a.6), the characteristic func-

tion of the beam vibration model in Fig. 3 can be

obtained as Eq. (2).

A.3 Inversely fitted parameters of the normalized

modified Bouc–Wen model for different auxetic

foams

See Tables 3, 4.
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