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 12 

We welcome the Comment of Alves et al. (2022) as an opportunity to further discuss the 13 

stratigraphic record of continental break-up, offshore NW Australia. We here summarise 14 

Reeve et al. (2022), before discussing themes raised by Alves et al. (2022), specifically 15 

classification of our analysed stratigraphic succession as a ‘Breakup Sequence’ (as originally 16 

defined by Soares et al., 2012) and how we can interpret the processes driving unconformity 17 

development during continental breakup, particularly offshore NW Australia.  18 

 19 

Summary of Reeve et al. (2022) 20 

We used a dense 165,000 km2 grid of 2D seismic reflection surveys, 12 3D seismic volumes, 21 

and 165 boreholes from across parts of the Exmouth Plateau, Exmouth Sub-basin, Carnarvon 22 

Terrace, and Barrow Sub-basin to examine the stratigraphic record of continental breakup 23 

offshore NW Australia. We specifically analysed the geological and geophysical expression 24 

and distribution of three Early Cretaceous unconformities, as well as the sedimentology and 25 



architecture of the related stratigraphic succession. These unconformities, located in the 26 

proximal domain of the NW Australian rifted margin (see Peron-Pinvidic et al., 2019), have 27 

previously been linked to continental breakup between Australia and Greater India (e.g., 28 

Arditto, 1993; Romine and Durrant, 1996; Tindale et al., 1998; Marshall and Lang, 2013; 29 

Gard et al., 2016; Paumard et al., 2018).  30 

To assess the timing of unconformity development relative to recognised tectonic and 31 

geodynamic events, we recalibrated the age of dinoflagellate zones recorded within strata 32 

bounding the unconformities using calcareous nannofossil occurrences (see methodology in 33 

Gard et al., 2016). Critically, calcareous nannofossils, although not commonly preserved in 34 

Early Cretaceous sequences in our study boreholes, are well-calibrated to the global 35 

chronostratigraphic timescale and magnetic chrons (Gard et al., 2016). Our recalibration thus 36 

allowed us to use the abundant dinoflagellate microfossils found within the 165 studied 37 

boreholes, along with an assessment of sediment reworking and interpretation of seismic-38 

stratigraphic relationships, to tie unconformity development to magnetic chrons in the 39 

adjacent continent-ocean transition zone (COTZ) and oceanic crust. From these findings, we 40 

suggested that the three unconformities may have formed in response to: (1) localisation of 41 

magma-assisted rifting, linked to COTZ development and/or seafloor spreading, between 42 

134.98–133.74 Ma (Intra-Valanginian Unconformity); (2) generation of magmatic crust in 43 

COTZs between ~134–133 Ma (Top Valanginian Unconformity); and (3) full continental 44 

lithospheric breakup between ~132.5–131 Ma (Intra-Hauterivian Unconformity) (Reeve et 45 

al., 2022). Note that contrary to the claim made by Alves et al. (2022) (pXXX), we did not 46 

suggest that the end of the syn-rift phase was defined by the formation of a single 47 

unconformity. Instead, we recognised that breakup was “represented by multiple 48 

unconformities [and inherently the surrounding strata] reflecting a complex history of uplift 49 



and subsidence during the transition from continental rifting to seafloor spreading” (Reeve et 50 

al., 2022). 51 

 52 

Breakup Unconformities and Breakup Sequences 53 

Previous work on the evolution of continental margins has shown that breakup is “marked by 54 

the deposition of a breakup sequence rather than a single stratigraphic surface [i.e. an 55 

unconformity]” (Soares et al., 2012). We reiterate that we analysed a deepening-upwards 56 

(regressive) sedimentary succession (the deltaic Zeepaard Formation and overlying shoreface 57 

Birdrong Sandstone) containing three unconformities; we thus examined a Breakup Sequence 58 

(see Soares et al., 2012; Alves and Cunha, 2018; Alves et al., 2020), contrary to the assertion 59 

by Alves et al. (2022) that we did “not provide a coherent stratigraphic analysis of 60 

continental breakup and its constituting sequences” (pXXX). Of the three unconformities we 61 

mapped and classified as angular or simply disconformable, we acknowledge they could 62 

correspond to correlative conformities (i.e. surfaces that marks no deposition hiatus) away 63 

from our borehole constraints and/or in areas of little or no uplift (Alves et al., 2022). 64 

Critically, previous work (e.g., Soares et al., 2012; Alves and Cunha, 2018) and numerical 65 

modelling (e.g., Cloetingh et al., 1989; Kooi and Cloetingh, 1989; Kooi and Cloetingh, 1992) 66 

have shown that the geological characteristics of Breakup Sequences and their associated 67 

unconformities, in proximal margin settings such as our study area, can be broadly linked to 68 

spatial changes in uplift (and subsidence) during continental breakup. This lends confidence 69 

to our interpretation that the stratigraphic record we analysed can be tied to syn-breakup 70 

geodynamic processes.   71 

 72 

Interpreting unconformity development during breakup 73 



Alves et al. (2022) state that “seismic-stratigraphic boundaries identified on the proximal 74 

margin…[like our study area]…cannot be tied to what are essentially protracted geodynamic 75 

processes happening near the loci of continental breakup” (pXXX). We agree that reading 76 

the stratigraphic records of continental breakup is challenging and that the development of 77 

associated unconformities can be related to myriad local and regional processes (e.g., Soares 78 

et al., 2012; Gong et al., 2019; Monteleone et al., 2019; Peron-Pinvidic et al., 2019; Alves et 79 

al., 2020; Pérez‐Gussinyé et al., 2020). However, it is important to note that the statement by 80 

Alves et al. (2022) at least partly emanates from analyses of the Iberia margin, where the 81 

proximal domain was situated >100–350 km from the locus of breakup (e.g., Soares et al., 82 

2012; Alves and Cunha, 2018). It appears Alves et al. (2022) compare our study area to the 83 

Iberia-Newfoundland margin because, it seems, they consider the Exmouth Plateau to be a 84 

Type I margin, like the Iberian margin, as defined by the numerical models of Huismans and 85 

Beaumont (2011). Type I margins involve narrow regions of crustal thinning, conjugate 86 

margin asymmetry, rift flank uplift, exhumation of continental mantle, delayed formation of 87 

oceanic crust, and limited magmatism (Huismans and Beaumont, 2011). Critically, as 88 

Huismans and Beaumont (2011) themselves state, the Exmouth Plateau, NW Australia (i.e., 89 

our study area) is not a Type I margin; they instead define it as a Type II margin because it 90 

comprises a wide zone of thinned crust (e.g., Stagg et al., 2004), contains largely undeformed 91 

late syn-rift strata (e.g., Reeve et al., 2022), is not associated with mantle exhumation, 92 

involved some syn-rift magmatism (e.g., Symonds et al., 1998), is partly underlain by an area 93 

of magmatic underplating (e.g., Frey et al., 1998), and the progression from breakup to 94 

seafloor spreading was relatively quick (e.g., Reeve et al., 2021). Given the limited amount of 95 

syn-breakup faulting in our study area, which is a primary mechanism invoked in previous 96 

work to explain localised uplift (e.g., Pérez‐Gussinyé et al., 2020), we thus suggest it feasible 97 



that unconformity development may be tied to regional geodynamic processes rather than 98 

purely local processes, such as fault-driven uplift. 99 

  100 

Proposed continental breakup events offshore NW Australia 101 

Based on the data presented in Reeve et al. (2022), previous studies, and their own work on 102 

other continental margins, Alves et al. (2022) offer their own interpretation of continental 103 

breakup offshore NW Australia, involving: (1) a phase of lithospheric breakup, implied 104 

mantle exhumation, and seafloor spreading along the Argo Abyssal Plain in the Oxfordian 105 

(~156 Ma), which produced a margin-wide Lithospheric Breakup Surface (i.e. an 106 

unconformity; Marshall and Lang, 2013); (2) formation of the Intra-Valanginian 107 

Unconformity in response to lithospheric breakup in the Cuvier Abyssal Plain, and the 108 

implied transition from continental rifting to mantle exhumation, and eventually seafloor 109 

spreading; (3) deposition of a conformable, net-regressive sedimentary sequence with no time 110 

gap at our proposed Top Valanginian Unconformity; and (4) full continental breakup only 111 

occurred in the Aptian (i.e. >10 Myr later than proposed by Reeve et al., 2022), with the 112 

Australian plate remaining pinned to Greater India and Antarctica until this time.  113 

We agree with Alves et al. (2022) that lithospheric breakup in the Argo Abyssal Plain 114 

may also have instigated formation of a substantially older, margin-wide unconformity in the 115 

Oxfordian, although exploring this was beyond the scope of Reeve et al. (2022). Our 116 

interpretation that the Intra-Valanginian Unconformity formed due to localisation of magma-117 

assisted rifting (Reeve et al., 2022) is also consistent with the suggestion of Alves et al. 118 

(2022) that it marks lithospheric breakup in the Cuvier Abyssal Plain. We acknowledge that 119 

the origin of Top Valanginian Unconformity is difficult to decipher and could be a local 120 

expression of faulting or some other process (Alves et al., 2022), although it could also 121 

represent generation of magmatic (not oceanic) crust in COTZs (Reeve et al., 2022). Yet we 122 



maintain it is plausible that the Intra-Hauterivian Unconformity (i.e. the top of the Breakup 123 

Sequence in the proximal margin domain), which coincided with the onset of seafloor 124 

spreading in the Gascoyne Abyssal Plain, marks full continental lithospheric rupture (Reeve 125 

et al., 2022). Here we note that Hauterivian and Barremian magnetic chrons within the 126 

oceanic crust of the Gascoyne Abyssal Plain and plate reconstructions support full 127 

lithospheric breakup of the NW Australian margin prior to the Aptian (e.g., Heine and 128 

Müller, 2005; Robb et al., 2005; Gibbons et al., 2012). Finally, we emphasise that our 129 

interpretations presented here and in Reeve et al. (2022) are hypotheses to be tested.  130 

 131 

Concluding remarks 132 

Variations in the style and diachroneity of continental breakup produce complex stratigraphic 133 

signatures. Although interpretations may differ, it is promising to see the overlap in ideas 134 

emanating from Reeve et al. (2022) and the discussion raised by Alves et al. (2022). We 135 

agree with Alves et al. (2022) that more work is required to test the hypotheses we advanced 136 

and to better understand the stratigraphic record of continental breakup offshore NW 137 

Australia, as well as other continental margins. For example, because biostratigraphic marker 138 

and magnetic chron ages are constantly being refined (e.g., Robb et al., 2005; Casellato and 139 

Erba, 2021), improving the resolution of these data provides a way to test our interpretations. 140 

Overall, we emphasise that our work supports a growing consensus “that the integration of 141 

seismic reflection and well-calibrated biostratigraphic data is critical to reading rocks that 142 

record the processes driving continental breakup” (Reeve et al., 2022). Critically, there is a 143 

vast array of geological, geophysical, and biostratigraphic data publically available from 144 

offshore NW Australia, and we strongly encourage its use.  145 
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