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We analyse the spatial attendance spillover applying spatial panel-data models with

the Italian Football League data from 2001/2002 to 2016/2017. Our Quasi-Maximum

Likelihood empirical results suggest that no significant spatial interaction was evident in

earlier seasons (2001–2013), but modest spatial spillover was in play from 2013 to 2016.

In addition, cross-quality spillover exists only locally in the same cities. We use numerical

simulations to examine the potential impact of such spillover on attendance distribution

and then competitive balance; spillover implies an interaction between the two exclusive

markets that are the principal sources of competitive imbalance. Our numerical simulations

suggest that spatial spillover may create attendance variations across member teams. The

final outcome depends on the spillover sign, the network structure, and the market size

distribution. Combining the empirical results with numerical simulations, we find that a

recent, slightly positive spillover may modestly reduce attendance disparity.
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H. Jang and Y. Shin

Introduction

Empirical studies on fans’ demand for sporting matches have tested the uncertainty

of outcome hypothesis, and evaluated inelastic pricing, fan loyalty, and stadium

effects (see the review by Krautmann and Hadley (2006), Johnson and Fort (2022),

Schreyer and Ansari (2022)). Recently, the research topics have diversified some-

what. Several studies have analysed the competition for fan demand among teams

within and across leagues (see for example Winfree et al. (2004), Winfree and

Fort (2008), Mills et al. (2015), Mills et al. (2016) and Mondello et al. (2017)).

Mills et al. (2016) considered the importance of among-firm competition based on

the product quality. They explored the television viewership of North American

major league baseball (MLB), particularly teams in shared markets focusing on

cross-quality elasticity. The empirical evidence suggests that teams within shared

markets are complementary in terms of high quality, but substitutable in terms of

large disparities in quality. Winfree et al. (2004) linked space to MLB attendance,

and found that the neighbour teams influence the fans’ demand for a local team.

For example, incumbent team attendance fell when a new (expanded) team moved

into the area of the existing team. Such empirical results imply that fans’ demand

may be affected by the neighbours’ effects. Since information and communication

technologies, and transportation, have developed rapidly, fans may consider not

only the home team characteristics but also those of neighbouring or visiting teams

when formulating their demands for home matches.

Here, we use spatial panel data models to study the neighbour and spatial depen-

dence of attendance. Markets that are mutually proximate may share historical and

economic ties. Consumer preference tends to be spatially correlated (e.g. Müller and

Haase, 2015). Spatial panel data models have been developed to address endogenous

spatial spillover or network effects (see Yu et al., 2008). The fact that spatial econo-

metric models capture co-dependency across a known network has been invaluable

to economists and regional scientists (Baltagi, 2005). Henrickson (2012) applied

spatial models on four major team sports of the North American Leagues (NALs),

and found that the spatial spillover in terms of ticket price (a positive relationship

between local ticket prices and those of neighbouring games) was significant for all

four NALs. However, no prior empirical study had used spatial models to evaluate

the attendance data.

In this paper, we apply the spatial panel-data models to analyse the spatial atten-

dance spillover of a professional sports league. As Italian Football League, Serie A,

has relatively low sold-out matches than other European football leagues, we anal-

ysed Serie A from 2001/2002 to 2016/2017. We found that no significant spatial

interaction was evident in earlier seasons (2001–2013), but modest spatial spillover

was in play from 2013 to 2016. These findings are robust across the three different
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Spatial Attendance Spillover in Football Leagues

weight matrices employed, the inverse distance-based, the dynasty-based, and the

shared market-based spatial weight matrices.

Next, we aim to examine the potentially important issue of whether spa-

tial attendance spillover enhances or worsens attendance disparity and eventually

the competitive imbalance (CIB). Professional sports teams generally enjoy local

monopolies or oligopolies given their exclusive territories; the resulting revenue

disparities are the principal sources of CIB. Spatial attendance spillover implies

an interaction between two exclusive markets, suggesting that the mere existence

of, or changes in, such spillover may affect attendance disparity. We find that the

final outcome depends on the direction of spillover, the network structure, and the

territory market size. Combining these numerical simulations with the empirical

results, we may deduce that a recent, slightly positive spillover, estimated at about

0.1, may modestly reduce variations in attendance across member teams by about

10% of standard deviation. This is the first study to conduct numerical simulations

and investigate the effect of spatial spillover on attendance disparity.

The paper is structured as follows: The second section presents the econometric

models used. The third section describes the sample data and specifies the attendance

regression employed. The fourth section presents the principal empirical results. The

fifth section presents the numerical simulations. Finally, the sixth section offers

conclusions and mentions our planned future work.

Spatial Panel-Data Models

Consider the following spatial autoregressive (SAR) panel-data model:

yi j t = ρy∗
i j t + x ′

i j tβ + ui j t , ui j t = αi + γ j + λt + εi j t , (1)

for i, j = 1, . . . , N , j 6= i and t = 1, . . . , T , where yi j t is the scalar-dependent

variable given by the logged daily game attendance of a home team i against a

visiting team j in season t . The xi j t = (x1
i j t , . . . , x K

i j t)
′ is a K ×1 vector of exogenous

regressors with a K × 1 vector of parameters, β = (β1, . . . , βK )′. The SAR model

captures spatial correlation within a system via the dependence imposed on the

spatially-dependent variable y∗
i j t defined as

y∗
i j t ≡

N
∑

j=1

wi j yi j t = wi yi t with yi t
N×1

= (yi1 t , . . . , yi N t)
′,

where wi (wi1, . . . , wi N ) denotes a 1 × N vector of (non-stochastic) predetermined

spatial weights with wi i = 0 to prevent self-influence. The N × N spatial weight

matrix, W , is row-standardized (the row sum is one). As y∗
i j t is correlated with εi j t ,

the parameter ρis endogenous. We control for the home team-specific effect αi ,
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H. Jang and Y. Shin

the visiting team-specific effect γ j , and season effects λt ; all are unobserved but

possibly correlated with y∗
i j t and xi j t .

The spatial Durbin model (SDM) allows the explanatory variables of one unit

to impact the dependent variable of another unit both directly and indirectly via

their spatial impacts on the dependent variable. For example, an improvement in

school quality in one area directly improves house prices in neighbouring areas

whose residents may access the newly improved schools. Also, an indirect effect

is in play; rising house prices in one area increase prices in neighbouring areas.

Hence, we also consider the SDM:

yi j t = ρy∗
i j t + x ′

i j tβ + x∗
i j t

′δ + ui j t , ui j t = αi + γ j + λt + εi j t , (2)

where

x∗
i j t

K×1

= (x1∗
i j t , . . . , x K∗

i j t )′ ≡





N
∑

j=1

wi j x
1
i j t , . . . ,

N
∑

j=1

wi j x
K
i j t





′

.

By applying the appropriate three-way within-transformation to Eqs. (1) and (2),

we can remove all of αi , γ j , and λt . Next, to deal with the endogeneity of the spatial

lagged variable y∗
i j t , we use the quasi-maximum likelihood (QML) technique to

obtain consistent estimators of ρ and β.

The Data and the Attendance Regression Specifications

We collect attendance and performance data for Serie A league from the ‘trans-

fermarkt’ website (www.transfermarkt.co.uk) and betting odds from the Football-

Data website (http://www.football-data.co.uk).Although the latter website contains

a great deal of European football league (EFL) betting data, we use the fixed decimal

betting odds provided by William Hill only because they include historical data for

Serie A. As our data access was limited, we collect information from 2001/2002

to 2016/2017 (16 seasons). We retrieve information on 5,544 matches among 42

teams in Serie A first division. The summary of the sample is revealed in Table 1.

As Serie A is characterized by relatively few sold-out matches (unlike other major

European football leagues), censoring is not a serious problem in this data set.

Because of relegation and promotion, several (i, j) pairs may be observed only

once or a few times. We then construct balanced panel data; there was a possibil-

ity that we would lose a great deal of information because only a few teams may

have remained in the first division for all 16 seasons. To mitigate this concern, we

construct five sets of balanced panel data for 2001/02–2003/04, 2004/05–2006/07,

2007/08–2009/10, 2010/11–2012/13, and 2013/14–2016/17 (each sample covers
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Spatial Attendance Spillover in Football Leagues

Table 1. Descriptive statistics.

Variable Mean Std. Dev. Min Max

Attendance 23,663 15,203 100.0 81,955

GU 0.141 0.097 0.000 0.500

CLQU 1.912 4.597 0.000 61.000

RU 1.527 4.321 0.000 85.000

HGOAL 1.283 0.456 0.000 4.000

HWIN 0.497 0.174 0.000 1.000

HOLIDAY 0.872 0.334 0.000 1.000

NIGHT 0.289 0.453 0.000 1.000

Note: The total number of observations was 5,544.

three or four seasons).1 There have been a few literatures analysing stadium atten-

dance demand for Serie A (Bond and Addesa, 2020; Jang and Lee, 2021) and to

the best of our knowledge, this is the first study that explore attendance spillover

effects in Serie A.

The dependent variable is the logged attendance at individual matches. We

include outcome uncertainties and other control variables as regressors. We consider

three different types of match uncertainty, denoted game uncertainty (GU), Cham-

pions League qualification uncertainty (CLU), and relegation uncertainty (RU). GU

is the absolute difference in win probability between the home and visiting teams.

This is identical to the absolute distance of the probability of a home team win from

0.5 given by

GUi j t = |pi j t − 0.5|, (3)

where pi j t is the probability that a home team i wins against a visiting team j in

season t (see Berkowitz et al. (2011)) for various measures of GU). We use betting

odds to obtain an estimate of pi j t . We convert the odds to implied probabilities.2 As

a robustness check, we also include pi j t and its square instead of GU. In all seasons,

Serie A teams compete not only for a league championship but also to qualify for an

international Champions League (CL). Thus, the fan demand for individual matches

may be influenced by the CL. In this context, any uncertainty in terms of eventual

CL qualification (CLU) may be an important demand determinant, especially if a

team ranks fourth near at the end of a season (and is thus almost out of contention for

the CL). Fans pay more attention to team performance if the team is in a tight race

for CL qualification. We measure CLU as the absolute difference in points (pointi t )

1Clubs not survived consecutive three or four years were dropped for balanced data.
2We calculated implied probability as pi = (1/di )/(1/d1 + 1/d2 + 1/d3), here, (d1, d2, d3) and

(p1, p2, p3) are the odds and probabilities of a home win, a home loss, and a draw, respectively.
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H. Jang and Y. Shin

gained by a home team in a match and the points (pointCt ) gained by the lowest-

ranked CL-qualified teams on each game day: |pointit − pointCt|. As the top three

Serie A teams proceeded to the CL in 2012/2013, pointCt represents the points of

the third-ranked team prior to a game. Thus, CLUi j t is absolute difference between

team i and third-ranked team in 2012/2013 season. CLUi j t represents the status of

team i in terms of CL qualification prior to the game between home team i and

visiting team j in season t . As discussed by Jang and Lee (2021), CLUi j t may be

local in the sense that it is relevant only to the top teams that may possibly advance

to the CL. We construct a dummy variable: CL contention (CLDUM), which is 1

if a team is ranked higher than eighth (seventh from the 2011/2012 season), and

otherwise 0. Thus, we construct CLQUi j t = |pointi t − pointCt | · CLDUMi t .

Relegation/promotion is another distinctive characteristic of open leagues such

as Serie A. Although fans of weaker teams may not expect those teams to win the

league championship or qualify for the CL, they are concerned that their team remain

in the first division; this is an important demand determinant. We measure relegation

uncertainty (RU) similarly to CLQU. We calculate the absolute difference between

the points of a home team and the points (pointRt ) of the highest-ranked team of the

relegated contenders: |pointi t − pointRt |. As the bottom three teams in Serie A are

relegated to Serie B, pointRt represents the points of the 18th-ranked team before

the match. RU is also local, being relevant to the fan demand of the bottom teams.

RDUM3 is 1 if a team is ranked lower than 17th and 0 otherwise. RUi j t represents the

status of team i (in terms of RU) before the game between the home team i and the

visiting team j in season t (RUi j t = |pointi t − pointRt | · RDUMi t). We also include

other control variables used in previous studies, such as the winning record and

the goals per game. The team-specific winning percentage (HWIN) captures home

team quality whereas goals per game for home teams (HGOAL) measure offensive

quality. We also control holiday and night matches. To control for team-specific

effects such as stadium capacity and the local population, we allow the existence

of unobserved individual team and time effects. Specific descriptions for variables

used in spatial regression are presented in Table 1.

Empirical Results

We first test for cross-sectional dependence (CSD) using the residuals from fixed-

effects regression; we apply the CD statistic of Pesaran (2004, 2015). The test results

(Table 2) reveal that the null hypothesis of no or weak CSD is strongly rejected

except for the 2007–2009 seasons, suggesting that CSD is pervasive in terms of

3Although the dummies CLDUM and RDUM are ad-hoc, Jang and Lee (2021) found that estimations

derived using these dummies were qualitatively robust even when the dummies differed somewhat.
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Spatial Attendance Spillover in Football Leagues

Table 2. Pesaran’s test for cross-sectional dependence.

Period Teams Test Statistics p-value

2001–2003 11 2.202 0.028

2004–2006 15 2.240 0.025

2007–2009 15 −0.640 0.522

2010–2012 15 3.249 0.001

2013–2016 14 1.937 0.053

individual Serie A team attendance. We use three different spatial weight matrices

to capture potentially complex spatial interactions. The first is the distance between

the two teams. This popular measure4 assumes that the strengths of neighbouring

effects depend on the inverse distance. We use row-sum normalization (sum of

one). Therefore, the weight decreases as the distance between the two clubs is far.

Figure 1 shows the locations of Serie A teams. For example, the distance-based

weighting implies that Inter-Milan (located in the North) lacks any strong ties with

Bari (located in the South). If a spatial lag parameter is positive, attendance between

the two clubs is positively correlated and the correlation increases as the distance

between the two clubs is closer.

Next, we select a “dynasty” of the top four teams: Juventus, Milan, Inter, and

Roma. Table 3 lists the number of seasons for which these teams were in the top two

from 1930 to 1999. This selection may be ad-hoc, but we find that the estimations

are qualitatively similar when we choose different dynasties. Dynasty weight matrix

express connectivity between two teams. The element of dynasty weight matrix is

set as wi j = 1 if j club belongs to dynasty clubs. This weight matrix assumed that

matches between two clubs are connected to matches of dynasty clubs in a certain

round. If ρ shows a negative sign, it indicates that attendance of a club is affected

by the attendance of a dynasty club negatively.

The third sets of weights, shared market weight matrix, also indicates spatial

connectivity of the clubs. We assigned neighbour effects to only multiple teams

located within the same cities. Table 4 shows that five cities (Genoa, Milan, Rome,

Turin, and Verona) host two teams each. The element of shared market weight

matrix is defined as wi j = 1 if i 6= j , and i and j clubs are located in the same city.

This weight matrix considered that only clubs within the same city affect each other.

Positive spatial autoregression coefficient presents that attendance of two clubs in

the same city is positively related.

4Blonigen et al. (2007) used distance between two countries as a weight matrix to find out spatial

interdependence of FDI activity. You and Lv (2018) also used distance between two countries as a

weight matrix and they analysed the neighbouring effects in CO2 emission.
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H. Jang and Y. Shin

Fig. 1. Locations of individual teams in Italian Football League (Seria A).

Table 3. The number of seasons ranked at Top 2 over the period 1930–1999.

Teams Freq. Teams Freq.

Juventus 51 Torino 9

Milan 27 Bologna 8

Inter 23 Fiorentina 7

Roma 17 Ambrosiana-Inter 6

Napoli 11 Lazio 4
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Spatial Attendance Spillover in Football Leagues

Table 4. Teams sharing a city.

City Teams Teams

Verona Chievo Verona Hellas Verona

Milan Inter Milan AC Milan

Rome Roma Lazio

Turin Jeventus Torino

Genoa Genoa Sampdoria

In Tables 5–7, we present the estimations of the non-spatial fixed-effect model

(FEM), and the SAR and SDM with three different weights.5 In all estimations,

we control for unobserved home team, visiting team, and time effects, estimated

using the QML method. Table 5 presents the estimations derived using the distance-

based spatial weight matrix. As a benchmark comparison, we also include the FEM

estimations, which are both statistically significant and consistent with a priori

expectations. The impacts of GU on attendance are significant and positive in the

earlier periods, but the magnitude thereof declines from 0.59 in 2001/02–2003/04 to

0.21 in 2007/08–2009/10 and becomes insignificant from 2010 onwards.6 CLQU is

not a significant determinant of attendance in any sub-period; RU became significant

only recently (2013/14–2016/17). HWIN boosts attendance significantly in almost

all periods except 2001/02–2003/04.

We now turn to the estimations of the SAR and SDM; we use distance-based

weights to construct spatial lagged variables and regressors. The SAR coefficients

are insignificant and negligible in most sub-periods, except for 2013–2016, when

the spillover impacts were modest (0.11 and 0.10, respectively). However, the SDM

coefficients are insignificant and negligible in all seasons. Thus, the impacts of GU,

CLQU, RU, and HWIN are similar to those estimated by the FEM.

Tables 6 and 7 present the estimations derived using the dynasty-based and shared

market-based spatial weight matrices. Both sets of results are qualitatively and

quantitatively similar to those of Table 5. In particular, the SAR coefficients became

significant and positive only recently (2013–2016), with modest spillover impacts

of 0.09–0.11. Overall, spatial attendance spillover was historically insignificant in

Serie A, becoming significant only recently. This may reflect strong fan loyalty.

However, there is a noticeable finding in Table 7. The Durbin model is significant

5To save space, we do not report our estimates of other control variables. However, the signs of their

impacts are generally consistent with our a priori expectations.
6This result is consistent with Johnson and Fort (2022). They reviewed empirical works analyzing

uncertainty outcome hypothesis (UOH) and found that most empirical works with soccer leagues

have not supported UOH.
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Table 5. Attendance estimation of the spatial model with distance weight.

2001–2003 2004–2006 2007–2009 2010–2012 2013–2016

Variables FE SAR SDM FE SAR SDM FE SAR SDM FE SAR SDM FE SAR SDM

GU 0.592∗∗ 0.596∗∗ 0.595∗∗ 0.359∗∗ 0.357∗∗ 0.351∗∗ 0.205∗ 0.208∗ 0.208∗ 0.332† 0.333† 0.333† 0.061 0.066 0.069

(0.160) (0.154) (0.154) (0.129) (0.126) (0.126) (0.093) (0.091) (0.091) (0.182) (0.179) (0.179) (0.106) (0.104) (0.104)

CLQU −0.004 −0.005† −0.005† 0.002 0.002† 0.002† 0.002 0.002 0.003 0.006 0.006† 0.006† 0.002 0.002 0.002

(0.003) (0.003) (0.003) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.004) (0.004) (0.004) (0.002) (0.002) (0.002)

RU 0.005 0.005 0.005 0.002 0.002 0.002 −0.000 −0.000 −0.000 −0.005 −0.005 −0.005 0.008∗∗ 0.008∗∗ 0.008∗∗

(0.007) (0.007) (0.007) (0.002) (0.002) (0.002) (0.004) (0.003) (0.003) (0.006) (0.006) (0.006) (0.003) (0.003) (0.003)

HGOAL −0.003 −0.003 −0.004 0.079∗ 0.081∗ 0.073∗ 0.028 0.028 0.026 0.057 0.058 0.058 0.016 0.016 0.020

(0.034) (0.033) (0.033) (0.036) (0.035) (0.036) (0.026) (0.025) (0.026) (0.049) (0.048) (0.048) (0.026) (0.026) (0.026)

HWIN −0.055 −0.055 −0.054 0.233∗ 0.231∗ 0.233∗ 0.148∗ 0.149∗ 0.149∗ 0.455∗∗ 0.449∗∗ 0.448∗∗ 0.292∗∗ 0.295∗∗ 0.296∗∗

(0.118) (0.114) (0.115) (0.094) (0.092) (0.092) (0.075) (0.073) (0.073) (0.140) (0.138) (0.140) (0.082) (0.081) (0.081)

Spatial term

ATT 0.095 0.095 0.042 0.049 −0.038 −0.037 −0.061 −0.061 0.106† 0.102†

(0.068) (0.068) (0.046) (0.046) (0.067) (0.067) (0.087) (0.087) (0.055) (0.055)

HGOAL −0.013 −0.113 −0.036 −0.005 0.039

(0.093) (0.076) (0.078) (0.136) (0.060)

Observations 528 528 810 810 810 810 810 810 810 810 810 1,008 1,008 1,008

R2 0.495 0.434 0.381 0.276 0.313

Home Effects, Visitor Effects, Season Effects

Note: ∗∗ p < 0.01, ∗ p < 0.05, and † p < 0.1.

2
2

5
0

0
1

0
-1

0

Int. J. Emp. Econ. 2022.01. Downloaded from www.worldscientific.com
by UNIVERSITY OF YORK J.B. MORRELL LIBRARY on 01/09/23. Re-use and distribution is strictly not permitted, except for Open Access articles.



S
p

a
tia

l
A

tten
d

a
n

ce
S

p
illo

ver
in

F
o

o
tb

a
ll

L
ea

g
u

es

Table 6. Attendance estimation of the spatial model with dynasty weight.

2001–2003 2004–2006 2007–2009 2010–2012 2013–2016

Variables SAR SDM SAR SDM SAR Variables SAR SDM SAR SDM

GU 0.602∗∗ 0.602∗∗ 0.355∗∗ 0.366∗∗ 0.200∗ 0.196∗ 0.332† 0.345† 0.060 0.060

(0.155) (0.155) (0.126) (0.126) (0.092) (0.092) (0.179) (0.179) (0.104) (0.104)

CLQU −0.005† −0.005† 0.002 0.002† 0.002 0.002 0.006 0.007† 0.002 0.002

(0.003) (0.003) (0.001) (0.001) (0.002) (0.002) (0.004) (0.004) (0.002) (0.002)

RU 0.004 0.004 0.002 0.002 −0.001 0.000 −0.005 −0.005 0.008∗∗ 0.008∗∗

(0.007) (0.007) (0.002) (0.002) (0.003) (0.003) (0.006) (0.006) (0.003) (0.003)

HGOAL −0.003 −0.004 0.079∗ 0.068† 0.028 0.029 0.058 0.056 0.014 0.014

(0.033) (0.033) (0.035) (0.036) (0.025) (0.025) (0.048) (0.048) (0.026) (0.026)

HWIN −0.054 −0.051 0.236∗ 0.236∗ 0.148∗ 0.151∗ 0.448∗∗ 0.436∗∗ 0.299∗∗ 0.299∗∗

(0.114) (0.115) (0.092) (0.092) (0.073) (0.073) (0.138) (0.138) (0.081) (0.081)

Spatial term

ATT −0.058 −0.058 0.068 0.075 0.031 0.033 −0.036 −0.040 0.089† 0.088†

(0.060) (0.060) (0.059) (0.059) (0.057) (0.057) (0.070) (0.070) (0.052) (0.053)

HGOAL −0.020 −0.120† −0.085∗ −0.115 0.005

(0.050) (0.063) (0.039) (0.086) (0.042)

Observations 528 528 810 810 810 810 810 810 1,008 1,008

Home Effects, Visitor Effects, Season Effects

Note: ∗∗ p < 0.01, ∗ p < 0.05, and † p < 0.1.
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Table 7. Attendance estimation of the spatial model with shared market weight.

2001–2003 2004–2006 2007–2009 2010–2012 2013–2016

Variables SAR SDM SAR SDM SAR SDM SAR SDM SAR SDM

GU 0.605∗∗ 0.611∗∗ 0.361∗∗ 0.357∗∗ 0.205∗ 0.199∗ 0.332† 0.331† 0.057 0.060

(0.155) (0.156) (0.126) (0.126) (0.091) (0.091) (0.179) (0.179) (0.103) (0.103)

CLQU −0.004 −0.004 0.002† 0.002† 0.002 0.002 0.006 0.006 0.002 0.002

(0.003) (0.003) (0.001) (0.001) (0.002) (0.002) (0.004) (0.004) (0.002) (0.002)

RU 0.005 0.005 0.002 0.002 −0.000 −0.000 −0.005 −0.005 0.008∗∗ 0.008∗∗

(0.007) (0.007) (0.002) (0.002) (0.003) (0.003) (0.006) (0.006) (0.003) (0.003)

HGOAL −0.002 −0.005 0.077∗ 0.077∗ 0.028 0.026 0.058 0.058 0.021 0.028

(0.033) (0.034) (0.035) (0.035) (0.025) (0.025) (0.048) (0.048) (0.026) (0.026)

HWIN −0.060 −0.060 0.241∗∗ 0.246∗∗ 0.152∗ 0.154∗ 0.454∗∗ 0.455∗∗ 0.285∗∗ 0.257∗∗

(0.114) (0.114) (0.093) (0.093) (0.073) (0.073) (0.137) (0.137) (0.080) (0.080)

Spatial term

ATT −0.061 −0.061 0.033 0.030 0.040 0.050 0.012 0.011 0.102∗∗ 0.109∗∗

(0.045) (0.045) (0.047) (0.047) (0.033) (0.034) (0.051) (0.051) (0.028) (0.028)

HGOAL 0.012 0.046 −0.058∗ 0.009 −0.067∗

(0.041) (0.059) (0.029) (0.067) (0.026)

Observations 528 528 810 810 810 810 810 810 1,008 1,008

Home Effects, Visitor Effects, Season Effects

Note: ∗∗ p < 0.01, ∗ p < 0.05, and † p < 0.1.
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Spatial Attendance Spillover in Football Leagues

only in Table 7 and this implies that the performance of individual teams influences

their neighbours’ attendance directly. Comparing the weight matrices that are based

on shared market in Table 7 but are based on distance in Table 5 and dynasty in

Table 6, it may be that the Durbin spillover is more localized and it may occur only

statistically significantly between teams in the same city. Our Durbin coefficient is

related to cross-quality elasticity in shared markets that was analysed with MLB

television viewership by Mills et al. (2016). Its estimate is negative and then it

implies substitutable in terms of performance quality.

Next, we present the spatial estimations in terms of direct, indirect, and total

effects (see LeSage and Pace, 2014). We rewrite Eqs. (1) and (2) as their spatial

system representations:

yt = ρW yt + X tβ + ut , (4)

yt = ρW yt + X tβ + W X tδ + ut , (5)

where W = {wi j }
N
i, j=1 is the N × N spatial weight matrix. Then, Eqs. (4) and (5)

can be expressed as follows:

yt = (IN − ρW )−1(X tβ + ut)

=

K
∑

k=1

(IN − ρW )−1βk xkt + (IN − ρW )−1ut , (6)

yt = (IN − ρW )−1(X tβ + W X tδ + ut)

=

K
∑

k=1

(IN − ρW )−1βk xkt + (IN − ρW )−1Wδk xkt + (IN − ρW )−1ut . (7)

The impacts of a change in the kth time-varying regressor are given by the N × N

matrices of the partial derivatives:

∂yt

∂xkt

= (IN − ρW )−1βk, k = 1, . . . , K , (8)

∂yt

∂xkt

= {(IN − ρW )−1βk + (IN − ρW )−1Wδk}, k = 1, . . . , K . (9)

Note that the diagonal elements of Eqs. (8) and (9) are direct impacts that differ

across the cross-sectional units; the off-diagonal terms (indirect impacts) are not

zero, and the matrices are not symmetric. We thus have N direct effects and N (N−1)

indirect effects. LeSage and Pace (2014) suggest reporting only three summary

measures: The average of the N diagonal elements (a measure of the direct effect);

the average of the N (N −1) off-diagonal elements (the average indirect effect); and

the average total effect (the sum of the direct and indirect effects). In spatial models,
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H. Jang and Y. Shin

the coefficient of an explanatory variable cannot be interpreted as a marginal effect

that is also a function of the spatial parameter. A team in a spatial model is thus

simultaneously exporting spillovers to and importing spillovers from its neighbours.

The indirect effects measure the magnitude of the spillovers that are simultaneously

imported and exported. An indirect effect can be interpreted as the spillover exported

by a team, and is the average change in the dependent variable of all other teams,

following a change in the independent variable of one particular team. This may

be interpreted as the magnitude of spillover imported by a unit, thus the average

change in the dependent variable for a particular team follows the changes in the

independent variables of all other teams.

Tables 8–10 report the direct, indirect, and total effects of regressors on atten-

dance for the 2013–2016 seasons, but only when the SAR coefficient is significant.

From Table 8 (derived using the inverse distance-based spatial weight matrix), we

find that both the direct and indirect effects are always positive, but the former is

substantially larger than the latter. Thus, the estimated total effects are slightly larger

than those reported in Table 5. Further, the impacts of HWIN and RU are statisti-

cally significant. An increase in the HWIN of a team directly improves attendance;

fans are drawn to high-quality home teams. In addition, the outward spillover effect

Table 8. Marginal effects in 2013–2016: SAR with distance weight.

Direct Indirect Total

Coeff. t-stat Coeff. t-stat Coeff. t-stat

GU 0.066 0.640 0.008 0.590 0.074 0.640

CLQU 0.002 1.160 0.000 1.000 0.003 1.160

RU 0.008 2.630 0.001 1.480 0.009 2.610

HGOAL 0.016 0.620 0.002 0.590 0.018 0.620

HWIN 0.295 3.660 0.035 1.570 0.330 3.560

Table 9. Marginal effects in 2013–2016: SAR with dynasty weight.

Direct Indirect Total

Coeff. t-stat Coeff. t-stat Coeff. t-stat

GU 0.060 0.580 0.006 0.550 0.066 0.580

CLQU 0.002 1.140 0.000 0.960 0.002 1.140

RU 0.008 2.660 0.001 1.350 0.009 2.640

HGOAL 0.014 0.540 0.001 0.510 0.015 0.540

HWIN 0.299 3.710 0.029 1.410 0.328 3.590
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Spatial Attendance Spillover in Football Leagues

Table 10. Marginal effects in 2013–2016: SAR and SDM with shared market weight.

Direct Indirect Total

Coeff. t-stat Coeff. t-stat Coeff. t-stat

SAR

GU 0.057 0.550 0.003 0.550 0.061 0.550

CLQU 0.002 1.110 0.000 1.070 0.002 1.110

RU 0.008 2.720 0.000 2.170 0.009 2.720

HGOAL 0.021 0.830 0.001 0.800 0.023 0.830

HWIN 0.287 3.570 0.017 2.560 0.304 3.560

SDM

GU 0.060 0.580 0.004 0.570 0.064 0.580

CLQU 0.002 1.050 0.000 1.030 0.002 1.050

RU 0.008 2.630 0.001 2.170 0.009 2.630

HGOAL 0.024 0.920 −0.037 −2.420 −0.013 −0.420

HWIN 0.259 3.200 0.016 2.500 0.275 3.200

on the attendances of other teams is accompanied by an inward spillover effect.

Hence, the effect of HWIN (home team quality) on attendance is greater than any

neighbour effect. The estimation results of Table 9 (derived using the dynasty-based

weight matrices) are qualitatively similar to those reported above. However, those

of Table 10 (derived using shared market-based weight matrices) are somewhat dif-

ferent. The negative and significant Durbin estimate of HGOAL in Table 7 results

in lesser effect of performance on attendance. The indirect effect of HWIN on atten-

dance is only 0.013 in Table 10 while it is 0.034 in Tables 8 or 9. One unit increase

in the win of a team draws more of its attendance and there is a positive outward

spillover effect which comes back to increase its attendance because of positive

inward spillover effect. This is common in Tables 8–10. However, the significant

Durbin estimate leads to another spillover result. One unit increase in goals of a

team draws more of its attendance and simultaneously it causes to decrease its

neighbour’s attendance in a shared market. The decrease comes back to decrease

its attendance because of inward spillover effect.

Numerical Analyses of the Effect of Spatial Spillover

on Competitive Balance

The spatial spillover effect may influence the distributions of attendance. Under the

profit-maximization hypothesis, the principal source of competitive balance (CB)

is the disparity of marginal revenue across member teams attributable to territorial
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H. Jang and Y. Shin

market disparity.7 Given a certain level of such disparity, the emergence of spa-

tial spillover may change the attendance distribution and thus the distribution of

marginal revenue. We address the important issue of whether spatial attendance

spillover improves or worsens attendance disparity and eventually, CB. The final

outcome depends on the sign of the SAR coefficient, the network structure (proxied

by the spatial weights), and the distribution of territorial market sizes. To investi-

gate the effect of spatial spillover on attendance disparity, we perform a numerical

simulation comparing the non-spatial model and the SAR as follows:

The non-spatial model: yi = α + ui . (10)

The spatial model (SAR): yi = ρy∗
i j + α + ui → y = (IN − ρW )−1(α + u).

(11)

For simplicity, we do not include any regressor other than a constant term. We then

compare attendance variations with and without spatial dependence using Eqs. (10)

and (11). We set α = 20,000 and generate a ui that is normally distributed with a

zero mean and a standard deviation of 10,000. We set the range of the SAR parameter

to ρ = (−0.5, −0.3, −0.1, 0.1, 0.3, 0.5) and the numbers of teams, N to 10 or 20.

The number of replications is 100,000.

We consider different network structures. Cross-sectional dependence is usually

characterized by a physical measure such as distance or contiguity. The first weight

matrix (W1) assumes that all member teams are assigned an equal weight, in which

case, we have a network that might be considered complete. This spatial structure

is not entirely practical because it assumes that every combination of two paired

teams is associated with an identical spillover. For example, the spillover effect of

Manchester United on Manchester City (located in the same city) is assumed to be

the same as that imposed on Southampton (in the far south), but also all other teams

of the English Premiere League. The second weight matrix (W2) insists that each

team has only two neighbours in either direction and no ties with any other team.

Thus, each team has at least two neighbours and/or a maximum of four neighbours.

The third weight matrix (W3) is similar to W2, but assumes that a team has only

one neighbour in either direction. Assuming that space is horizontal (the earth, for

our purposes, is flat), a team in either the far east or far west has only one border

(one neighbour) and all other teams two borders (two neighbours). Therefore, W2

and W3 impose arbitrary cut-offs of neighbour numbers (in the sense that such

numbers correlate with attendances). Such cutoffs are likely to be based on borders

within shared markets. The fourth weight matrix (W4) is based on distance; we do

not impose any cutoff. Again assuming that space is horizontal, the first and last

7See Fort and Quirk (1995).
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Spatial Attendance Spillover in Football Leagues

teams are located in the far west and far east, respectively, and the other teams in the

middle. The nearest-neighbour distances are assumed to be equal (for simplicity).

The elements of W4 depend on the inverse distance between any two teams; thus,

the nearest neighbour has the largest weight. In summary, W1 and W4 assume that

all teams are neighbours, but the extent of cross-sectional dependence between any

pair of teams differs in W4 but is identical in W1.

We write the first weight matrix (W1) in Eq. (12) below. We set all diag-

onal elements to zero, and assign the same values to all other elements after

row-normalization for N = 10. Thus, wi j = 1/(N − 1) = 1/9 for all i 6= j

W1 =











0 0.111 0.111 · · · · · · 0.111

0.111 0 0.111 · · · · · · 0.111
...

0.111 0.111 · · · · · · 0.111 0











. (12)

The first row of the spatial weight matrix represents the spatial structure of team 1.

Next, W2 is given in Eq. (13), in which team 1 has only two neighbours (teams 2

and 3), but team 3 has four neighbours (teams 1, 2, 4, and 5). Similarly, W3 is given

in Eq. (14).

W2 =















0 0.5 0.5 0 · · · · · · 0

0.33 0 0.33 0.33 0 · · · · · · 0

0.25 0.25 0 0.25 0.25 0 · · · 0
...

0 0 · · · · · · 0 0.5 0.5 0















, (13)

W3 =















0 1 0 · · · · · · 0

0.5 0 0.5 0 · · · · · · 0

0 0.5 0 0.5 0 · · · 0
...

0 0 · · · · · · 0 1 0















. (14)

In Eq. (15), we construct W4 in terms of (inverse) distances. The first row measures

the spatial weights for team 1, from which we find that w12 = 0.353 is the largest

because team 2 is the nearest neighbour, whereas w110 = 0.039 is the smallest

because team 10 is the furthest neighbour.

W4 =















0 0.353 0.177 0.118 · · · 0.039

0.270 0 0.270 0.134 · · · 0.034

0.122 0.244 0 0.244 · · · 0.035
...

0.039 0.044 · · · · · · 0.353 0















. (15)
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H. Jang and Y. Shin

Table 11. Comparison of standard deviations of attendance in non-spatial and spatial models.

ρ −0.5 −0.3 −0.1 0.1 0.3 0.5

N = 10

w1 1.059∗ 1.034 1.011 0.989 0.968 0.947

w2 1.135 1.061 1.014 0.992 0.998 1.044

w3 1.308 1.107 1.018 0.996 1.033 1.150

w4 1.081 1.042 1.014 0.990 0.976 0.970

N = 20

w1 1.027 1.016 1.005 0.995 0.984 0.974

w2 1.109 1.045 1.009 0.998 1.021 1.098

w3 1.273 1.090 1.013 1.002 1.054 1.197

w4 1.046 1.023 1.009 0.996 0.992 0.998

Note: ∗Standard deviation in spatial model in Eq. (6)/standard deviation in non-spatial model

in Eq. (5).

In Table 11, we compare the differences between the average standard deviations

of attendance obtained from the non-spatial model in Eq. (10) and the spatial model

in Eq. (11); we construct the ratios of the two standard deviations. If a ratio is greater

than one, the variation in attendance imposed by the spatial model is greater than

that imposed by the non-spatial model. In such a case, we would conclude that the

spatial spillover creates a competitive imbalance. On the other hand, if a ratio is less

than one, the spatial spillover tends to reduce the attendance disparity (AD). In the

upper panel of Table 11, we report the outcomes for all four weight matrices with

N = 10. When the SAR parameter ρ is negative, the ratios are greater than one in

all cases. The ratio increases as ρ becomes more negative. Hence, negative spatial

spillover tends to worsen the AD. The effects of negative spillover on the AD are

more detrimental in the models employing matrices W2 and W3 than W1 and W4.

Note that, when W2 and W3 are employed, each team is spatially dependent on

only a few teams. However, when W1 and W4 are employed, all teams experience

mutual outward and inward spillovers.

Next, if ρ > 0, the ratios are usually, but not always, less than one. For the

spatial models employing W1 and W4, the ratios are less than one and continue to

decline as ρ rises. When W2 and W3 are employed, the ratios are less than one only

if ρ is relatively small, but greater than one at larger values of ρ. The results for

N = 20 (presented in the lower panel) are qualitatively similar to those reported

for N = 10, but the impact of spillover on AD is somewhat less.

In summary, the numerical simulation results presented in Table 11 suggest that

the effects of attendance spillover on CB depend on the direction of spillover, and
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Spatial Attendance Spillover in Football Leagues

the magnitude and structure thereof. If the spatial weight matrices are sparse (W2

and W3), spillover tends to compromise AD. However, if the spillover structure

lacks a cutoff (W1 and W4), the effects of spillover on AD depend on the sign of

the spillover direction.

Next, we explored how sensitively spillover affects AD in the context of the extent

of attendance heterogeneity. We compare different levels of attendance disparity

between the neighbours. We first consider the case of the minimum attendance dif-

ference (market size) between two neighbouring teams. We reset yi (= α + ui ) in

ascending order so that the difference between yi and yi+1 is minimized for any i . We

refer to this case as a “small market disparity” among neighbours. The second case

redistributes yi to maximize the attendance difference between the next two neigh-

bours; we term this a “large market disparity”. In Tables 12 and 13, we compare the

differences between the average attendance standard deviations obtained using the

non-spatial and the spatial models with N = 10 and 20, respectively in terms of the

small and large market disparities, respectively. The results differ substantially from

those of Table 11, except for the spatial model employing W1 (with equal weights);

the results are then invariant.8 The upper panel deals with homogenous neighbours

with small market disparities. A negative (positive) ρ improves (worsens) AD when

the spillover structure is sparse (W2 and W3). The spillover effects on AD are rather

Table 12. Comparison of standard deviations of attendance in non-spatial and spatial models:

Different distributions of attendance among neighbours and N = 10.

ρ −0.5 −0.3 −0.1 0.1 0.3 0.5

Small market disparity among neighbours

w1 1.059∗ 1.034 1.011 0.989 0.968 0.947

w2 0.789 0.850 0.940 1.072 1.272 1.593

w3 0.773 0.829 0.930 1.086 1.332 1.758

w4 0.874 0.916 0.940 1.034 1.115 1.215

Large market disparity among neighbours

w1 1.059 1.034 1.011 0.989 0.968 0.947

w2 0.960 0.961 0.981 1.026 1.111 1.269

w3 1.591 1.218 1.043 0.980 1.011 1.168

w4 1.080 1.037 0.981 0.995 0.996 1.015

Note: ∗Standard deviation in spatial model in Eq. (4)/standard deviation in non-spatial model

in Eq. (3).

8Note that the results obtained when employing W1 do not change because W1 assumes that all

member teams are neighbours and all paired combinations exhibit equal spillover strengths.

2250010-19

In
t.

 J
. 
E

m
p
. 
E

co
n
. 
2
0
2
2
.0

1
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 Y

O
R

K
 J

.B
. 
M

O
R

R
E

L
L

 L
IB

R
A

R
Y

 o
n
 0

1
/0

9
/2

3
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



H. Jang and Y. Shin

Table 13. Comparison of standard deviations of attendance in non-spatial and spatial models:

Different distributions of attendance among neighbours and N = 20.

ρ −0.5 −0.3 −0.1 0.1 0.3 0.5

Small market disparity among neighbours

w1 1.027∗ 1.016 1.005 0.995 0.984 0.974

w2 0.720 0.804 0.922 1.095 1.362 1.830

w3 0.714 0.795 0.918 1.100 1.388 1.898

w4 0.811 0.875 0.922 1.052 1.180 1.351

Large market disparity among neighbours

w1 1.027 1.016 1.005 0.995 0.984 0.974

w2 0.930 0.943 0.975 1.034 1.146 1.369

w3 1.621 1.227 1.044 0.982 1.028 1.230

w4 1.035 1.011 0.975 1.005 1.029 1.082

Note: ∗Standard deviation in spatial model in Eq. (4)/standard deviation in non-spatial model

in Eq. (3).

sensitive to changes in ρ. For example, if the spillover structure is given by W3,

AD improves by 22.7% with ρ = −0.5, but worsens by 75.8% with ρ = 0.5. The

spatial model employing W4 yields a pattern similar to those of models employing

W2 and W3, but the impacts are less sensitive to changes in ρ. The results reported

in the lower panel (which deals with heterogeneous neighbours with large market

disparities) are not unlike those of Table 11. For the spatial model employing W3,

the spillover effects on AD follow a U-shape; negative spillover worsens AD more

substantially than does positive spillover.

Consider the spatial model employing W3; this assumes that there is/are only

one or two neighbours. A positive spillover between any two homogenous neigh-

bour teams (for example, the top two teams with respect to attendance) renders the

attendances of these two teams remote from the attendances of other teams. Thus,

AD worsens as ρ becomes more positive. On the other hand, a negative spillover

moves the attendances of the two teams in opposite directions; AD improves as ρ

becomes more negative. Now, deliver a positive random shock to the team with the

largest attendance whose only neighbour is the second largest team. If the spatial

spillover is positive, the shock raises the attendance of the second largest team, but

does not directly impact the attendances of other teams.9 Thus, the overall standard

deviation of league attendance increases. On the other hand, if the spatial spillover

is negative, the positive random shock to the largest team reduces the attendance of

9The random shock exerts indirect impacts; an attendance change for the second largest team would

influence the attendance of the third largest team, and this effect ripples downward.
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the second largest team, and the overall attendance standard deviation declines. In

the other spillover structures with W2 and W4, changes in AD are not as extreme

as those evident when W3 is employed. The results with N = 20 (Table 3) are

qualitatively similar, but the standard deviation ratios are slightly more sensitive to

changes in ρ.

In sum, if neighbours are homogenous in terms of market size, negative (posi-

tive) spatial spillovers improve (worsen) the AD. On the other hand, if neighbours

are heterogeneous, the impact of spatial spillover on attendance variations is signif-

icantly less. This suggests that the impact of spillover on the AD may be sensitive to

the attendance distributions among neighbours. Merging the numerical simulations

and the positive estimates of SAR coefficients allows the evaluation of the impacts

on attendance disparity. For example, the distance weight and the size of Serie A

are similar to those of W4 and N = 20, respectively. Referring to Tables 5 and 11,

the preference change causing spatial spillover in 2013–2016 mildly reduced the

attendance disparity by about 1% in standard deviation of the attendance.

Concluding Remarks

We address an important issue: Have neighbour spillover effects influenced Serie A

attendances from 2001/02 to 2016/17? We perform spatial panel-data modelling

and simulate the impact of attendance spatial spillover on the attendance disparity

and eventually CB. Our principal empirical findings are summarized as follows:

First, we find no significant spatial interaction effects during earlier seasons (2001–

2013) but modest spatial spillovers from 2013 to 2016. These findings are robust

across the three different weight matrices employed, the inverse distance-based, the

dynasty-based and the shared market-based spatial weight matrices. Second, the

estimation results suggest that the indirect effect of HWIN is positive and signifi-

cant. This implies that win performance has a (slightly) larger effect on attendance

in recent periods (2013–2016). Third, Durbin spillover of HGOAL is statistically

significant only in shared-markets and particularly, negative spillover implies sub-

stitutability with respect to cross-quality among neighbours. Fourth, spatial atten-

dance spillover may significantly affect the attendances of member teams (and thus

the distribution of attendance) either positively or negatively. The final outcome

depends on the sign of the spatial spillover, the network structure, and the market

size distribution among neighbours.

These results have several important implications. Mills et al. (2016) and Hen-

rickson (2012) present empirical evidence that multiple teams in a city, or teams

otherwise in proximity in North America, influence fan demand and ticket prices.

These are simultaneously determined and become equilibrated. Significant cross-

quality demand elasticity is apparent. Henrickson (2012) found that a neighbour
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effect increases the ticket prices. On the other hand, we find that the spatial interac-

tion within Serie A has generally been insignificant, which may reflect strong fan

loyalty. Unlike North America, where the major professional sports leagues include

baseball, football, basketball, and ice-hockey, Europe features football only. Thus,

Serie A may enjoy stronger fan loyalty than North American sports leagues; there

is no substitute for Serie A. The demand for home games of a team with strong fan

loyalty is likely to be insensitive to changes in demand determinants, including the

performance of neighbour teams. Therefore, team spillover may be both unsubstan-

tial and masked by strong fan loyalty.

However, we find empirical evidence of changes in fan preference attributable to

neighbour effects in recent seasons. The spatial parameter has become statistically

significant since 2013/14. We conjecture that the growing importance of Champion

League (CL) may be the principal reason for this preference change, suggesting that

in-depth analysis of the dynamics of fan demand would be an important topic for

future study. Given the developments in information and communication technolo-

gies and transportation, the increasing popularity of the inter-league competition

acquaints fans not only with their home teams but also other teams. We also find

empirical evidence that there are significant spillover effects of win performance

but only within the same city. That is, the cross-quality effect is localized.

These complex spillover structure may influence the attendance distribution

across member teams. We combine the SAR estimates with the numerical simula-

tion results to explore the impact of preference change (in terms of spatial spillover)

on the attendance disparity since 2013. We find that the impact is sensitive to the

market size distribution among neighbours and the direction and magnitude of spa-

tial spillover. The spatial spillover is positive and its magnitude is about 0.1. These

findings are robust across the three different weight matrices employed. In spillover

structures based on distance or borders, the closest neighbours are teams that share

the same city. In general, the market sizes and attendances of teams in the same city

are more-or-less homogenous. In this regard, changes in the attendance distribution

caused by preference changes since 2013 are apparent in the upper panel of Table 3

with N = 20. The fourth column shows that the CB may worsen by a minimum

of 5.2% or a maximum of 10%, depending on the spillover structure imparted by

the spatial weight matrices W2, W3, and W4. For example, W3 lies close to the

shared market spillover structure because any team has only one or two neighbours.

If the inward and outward spillovers of fan demand strengthen over time, sports

leagues must pay more attention to changes in attendance distribution which may

influence CB. For example, if the spillover coefficient is 0.3, the standard deviation

of attendance may increase by a minimum of 18% and a maximum of 39%.

Macdonald (2017) stresses that a new generation of panel-data models are

required by sports economists who research consumer demand; the models must
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control unobservable factors such as market competition and various match quali-

ties. Our empirical study is in line with this suggestion, in the sense that we consider

not only the absolute and relative qualities of a match but also market competition

mediated via spatial effects. Similar empirical studies on spatial spillover in other

European football leagues would be interesting. Also, it would be intriguing to

examine spatial spillover in North American team sports.
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