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From Imperative to Rule-based Graph Programs

(Extended Abstract)

Detlef Plump

The University of York, UK

1 Introduction

The use of graphs to model dynamic structures is ubiquitous in computer science; prominent
example areas include compiler construction, pointer programming, natural language processing,
and model-driven software development. The behaviour of systems in such areas can be naturally
captured by graph transformation rules specifying small state changes. Domain-specific languages
based on graph transformation rules include Groove [4], GrGen.Net [5] and Porgy [3]. This
paper focusses on the graph programming language GP [6, 7] which aims to support formal
reasoning on programs (see [8] for a Hoare-logic approach to verifying GP programs).

We discuss the translation of (the core of) a simple imperative programming language to GP.
The motivation for this is threefold:

1. To prove that GP is computationally complete, in the strong sense that graph functions are
computable if and only if they can be directly computed with GP programs.

2. To identify a complete sublanguage of GP, by restricting as much as possible the form of rules
and control constructs in the target language.

3. To demonstrate in principle that imperative languages based on registers and assignments
can be smoothly translated to a language based on graph transformation rules and pattern
matching.

We use high-level random access machines (HRAMs) as a prototypical imperative language.
They differ from standard RAMs in that they operate on registers holding lists of integers and
use while loops and if-then-else commands. HRAM commands are translated into equivalent GP
commands working on graphs that consist of register-like nodes. The number of rule applications
of a translated program is linear in the number of operations executed by the source HRAM.

2 Graph Programs

We discuss a simple GP example program, see [7] for a language definition (the abstract syntax
is given in the Appendix). The principal programming construct in GP are conditional graph
transformation rules labelled with expressions. The program in Figure 1 checks whether a graph
G is cyclic and, depending on the success or failure of the macro cyclic, executes either program
P or program Q. The test is executed on a copy of G whereas P or Q is executed on the input G.
Cycles are detected by deleting as long as possible edges whose sources have no incoming edges,
and testing whether any edges remain. This is correct by the condition of delete: node 1 must
have no incoming edges and hence a step G ⇒delete H preserves both cycles and the absence of
cycles. Moreover, graphs irreducible by delete are cyclic if and only if they contain edges.

In general, programs are executed on graphs labelled with lists whose entries are integers or
character strings. Let G be the set of all host graphs and G⊕ = G ∪ {⊥, fail}. The semantics of a

graph program P is a function JP K : G → 2G
⊕

which maps an input graph G to the set JP KG of
all possible results (see [7] for a formal operational semantics).
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main = if cyclic then P else Q

cyclic = delete!; {edge,loop}

delete(a, x, y : list)

x y

1 2

a
⇒ x y

1 2

where indeg(1) = 0

edge(a, x, y : list) loop(a, x : list)

x y

1 2

a
⇒ x y

1 2

a
x

1

a ⇒ x

1

a

Figure 1: GP program for recognising cyclic graphs

3 From HRAMs to GP

Random access machines (RAMs) are a computational model characterised by an infinite sequence
of registers which can be randomly accessed [1]. Typically, each register holds an integer. In
contrast, the HRAMs of this paper consist of registers containing lists of integers.

Similar to the RAMs of [2], HRAMs can copy the contents of any register to any other register
without a detour via an accumulator. The conditional jump in RAMs has been replaced by an if-
then-else statement and a while loop. Other RAM models enhanced with high-level programming
constructs include RAM-ALGOL [2] and Pidgin ALGOL [1].

Appendix B lists the HRAM commands and their meaning. Formally, the effect of a HRAM
M is described by a function JMK : S → S⊕ which maps an initial state either to a final state, to
⊥ in case of divergence, or to the special element fail in case of failure.

We translate HRAMs into GP programs operating on graphs consisting of register-like nodes.
A register graph consists of nodes labelled a:l, where a is an address (a non-negative integer) and
l an integer list, such that all addresses are distinct. The set of all register graphs is denoted by
Greg and ̺ : Greg → S maps register graphs to corresponding HRAM states. For example, Figure
2 shows a register graph on the left and the corresponding HRAM state in the middle (where
registers not shown contain the empty list λ).

Arbitrary HRAMs M are translated into corresponding graph programs PM . Lack of space
prevents to present the translation; we just demonstrate it on one command. A loop while B do

M is translated into

(try τJBK then τJMK else fail)! ;
try τJBK then fail else skip

where τJBK is a rule checking the condition B and τJMK is the translation of the while loop’s
body. The second try command is needed in case τJMK fails, for then the !-loop terminates with
the graph on which the loop’s body was entered for the last time.

Rule applications in PM are deterministic in that they either produce a unique graph or fail.
It follows that the semantic function JPM K can be considered as a function Greg → G⊕

reg.
1

Theorem 1. For every HRAM M and register graph G, ̺⊕(JPM KG) = JMK̺(G).

The target program PM belongs to the subclass of simple graph programs which are de-
fined by the following restrictions: (1) graphs are only changed by unconditional rules; (2) non-
deterministic rule selection (rule sets) and if-then-else statements are abandoned; (3) branching

1Given a class A of graphs or states, we write A⊕ for A ∪ {⊥, fail}. A function f : A → B is extended to
f⊕ : A⊕ → B⊕ by f⊕(⊥) = ⊥ and f⊕(fail) = fail.

2
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commands have the form try r thenP elseQ, where r is the call of a rule with identical left and
right graphs and possibly a condition x = y or m > n.

0:5

1:0:3

2:0:4:1

3:1:1:2:5

4:1:2:1:6:0

5:1:2:2:-2

7→
̺

0 5
1 0:3
2 0:4:1
3 1:1:2:5
4 1:2:1:6:0
5 1:2:2:-2
6 λ
...

...

7→
γ

3

4:1

5 6:0

-2

Figure 2: A register graph, the corresponding state, and the corresponding graph

The following corollary of Theorem 1 holds by the restricted form of the rules in PM and the
fact that termination and equivalence are undecidable for RAMs.

Corollary. Termination and equivalence are undecidable for the class of simple graph programs

with rules that are non-deleting and contain edge-less graphs of at most 3 nodes.

To define computable graph functions, we need to represent graphs as HRAM states. We use
register 0 to store graph size, followed by registers for nodes and edges (distinguished by a 0/1
flag). Edge registers contain, besides the label, the addresses of the edge’s source and target. The
set of all graph states is denoted by Sgra and γ : Sgra → G maps graph states to corresponding
graphs. Figure 2 shows a graph state in the middle and the corresponding graph on the right.

A function f : G → G⊕ is computable if there exists a HRAM M such that for all s ∈ Sgra,
JMKs ∈ S⊕

gra and γ⊕(JMKs) = f(γ(s)).

Theorem 2. For every computable function f : G → G⊕ there exists a simple graph program P

such that JP K = f .

Note that this is a strong form of completeness: program P computes f directly, not just
a corresponding function on register graphs; P has the form enc; PM ; dec, where enc encodes
graphs as register graphs representing graph states and dec decodes register graphs.

4 Conclusion

Simple GP programs can compute all computable graph functions. They modify graphs only
by unconditional rules, abandon non-deterministic rule selection, and use a branching command
which checks the occurrence of a graph pattern.

An aspect of the HRAM translation not discussed in the main text is that the number of rule
applications of program PM is linear in the number of operations performed by M . Also, the
number of rule applications for graph encoding and decoding equals graph size.

A practical application of the completeness result would be the automatic translation of
conventional graph algorithms to GP. For example, suppose that the C programs in [9] are re-
written as HRAM programs. Then the translation constructed in the proof of Theorem 2 would
provide a library of GP graph algorithms which can be used as macros.
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Appendix

A GP Syntax

The grammar in Figure 3 gives the abstract syntax of GP 2 programs. A program consists of
declarations of conditional rules and macros, and exactly one main command sequence. The
category RuleId refers to declarations of conditional rules in RuleDecl whose syntax is omitted.

Prog ::= Decl {Decl}
Decl ::= RuleDecl | MacroDecl | MainDecl
MacroDecl ::= MacroId ’=’ ComSeq
MainDecl ::= main ’=’ ComSeq
ComSeq ::= Com {’;’ Com}
Com ::= RuleSetCall | MacroCall

| if ComSeq then ComSeq [else ComSeq]
| try ComSeq [then ComSeq] [else ComSeq]
| ComSeq ’ !’ | skip | fail

RuleSetCall ::= RuleId | ’{’ [RuleId {’,’ RuleId}] ’}’
MacroCall ::= MacroId

Figure 3: Abstract syntax of GP programs

The call of a rule set {r1, . . . , rn} nondeterministically applies any of the rules to the current
graph. The call fails if none of the left-hand graphs of the rules matches a subgraph. (Graph
matching is injective and fails if applying the rule would create dangling edges.) The command
if C then P else Q is executed on a graph G by first executing C on a copy of G. If this
results in a graph, P is executed on the original graph G; if C fails, Q is executed on G. The try
command has a similar effect, except that P is executed on the result of C’s execution. The loop
P ! executes the body P repeatedly until P fails. When this is the case, P ! terminates with the
graph with which the body was entered for the last time. The commands skip and fail have
the obvious meaning. They are equivalent to the rule ∅ ⇒ ∅ and the rule set {}, respectively.

Labels have type int, string, atom or list. Type atom is the union of int and string,
and list is the type of a (possibly empty) list of atoms. Lists of length one are equated with
their entries and hence every label is considered as a list. Given lists x and y, x:y denotes the
concatenation of x and y.

4
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B High-level RAMs

The syntax of HRAMs is given in Figure 4, together with an explanation of the commands’ effect
on a state s. Most operations should be self-explanatory. Note that integers are not distinguished
from lists of length one and that the colon operator is list concatenation. When writing concrete
lists in examples, the colon is also used to separate the entries of a list.

Commands Comments

Int ::= . . . Integer numerals
R, S,T ::= . . . Nonnegative integer numerals (addresses)

List ::= empty Empty list
| Int Integers are lists of length 1
| List : List Concatenation

B ::= R = S True if s(R) = s(S)
| R > S True if s(R), s(S) ∈ Z and s(R) > s(S)

M ::= M; M Sequential composition
| if B then M else M Branching
| while B do M Loop
| R := ’List’ Assign constant list to R
| R := S Copy s(S) to R
| R := head S Copy head of s(S) to R (fails if s(S) is empty)
| R := tail S Copy tail of s(S) to R (fails if s(S) is empty)
| R := S : T Assign s(S) : s(T) to R
| R := ∗S Copy s(s(S)) to R (fails if s(S) 6∈ N0)
| ∗R := S Copy s(S) to s(R) (fails if s(R) 6∈ N0)
| R := S + 1 Assign s(S) + 1 to R (fails if s(S) 6∈ Z)
| R := S− 1 Assign s(S)− 1 to R (fails if s(S) 6∈ Z)

Figure 4: High-level random access machines (HRAMs)

Registers are represented by nonnegative integers called addresses. In Figure 4, the letters R,
S and T stand for fixed addresses. The contents of a register r is a list of integers. Formally, a
state is a mapping s : N0 → Z

∗ with s(n) = λ almost everywhere. Here λ is the empty list which
in programs is represented by the keyword empty.

An assignment R := S copies the list contained in register S to register R. In contrast, R := ’L’
assigns the constant list L to R (the list is written in quotes to avoid confusion with addresses).
The assignments R := ∗S and ∗R := S use indirect addressing (pointers), that is, they interpret
the contents of starred registers as addresses.

A HRAM computation starts from a state s such that s(n) = λ for all n > s(0), where
registers 1, 2, . . . , s(0) contain the input. When the program terminates in a state s′ (rather than
fails or diverges), registers 1, 2, . . . , s′(0) contain the output.

HRAM failure is caused by type errors. For example, R := S+1 fails if s(S) is not an integer.
Similarly, ∗R := S fails if s(R) is not an address. A computation also fails if it finishes in a state
s such that s(0) is not an address.
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