
This is a repository copy of Modular Termination of Graph Transformation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/195046/

Version: Accepted Version

Book Section:

Plump, Detlef orcid.org/0000-0002-1148-822X (2018) Modular Termination of Graph
Transformation. In: Heckel, Reiko and Taentzer, Gabriele, (eds.) Graph Transformation,
Specifications, and Nets: In Memory of Hartmut Ehrig. Lecture Notes in Computer Science
. Springer , DEU , pp. 231-244.

https://doi.org/10.1007/978-3-319-75396-6

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1007/978-3-319-75396-6
https://eprints.whiterose.ac.uk/id/eprint/195046/
https://eprints.whiterose.ac.uk/

Modular Termination of Graph Transformation

Detlef Plump

University of York, United Kingdom

Abstract. We establish a machine-checkable condition which ensures
that the union of two terminating hypergraph transformation systems is
terminating. The condition is based on so-called sequential critical pairs
which represent consecutive rule applications that are not independent.
In contrast to a corresponding modularity result for term rewriting, no
restrictions on the form of rules are required. Our result applies to both
systems with injective rules and systems with rules that merge nodes or
edges.

1 Introduction

In the area of graph transformation, the problem of proving that a system will
terminate (admit only a finite number of rule applications) on arbitrary host
graphs has received surprisingly little attention. This is in contrast to the central
role of termination research in the area of term rewriting [1,2].

Work on proving termination of general graph transformation systems by
various methods includes [16,3,5,4]. There are also some papers on termination
in the specialised settings of term graph rewriting [15,17,14] and cycle rewriting
[23,21].

In this paper, we are interested in the problem of finding conditions that guar-
antee that the combination of terminating (hyper-)graph transformation systems
yields again a terminating system. The corresponding problem for term rewriting
systems received considerable attention after Toyama showed that even the com-
bination of systems with disjoint function symbols need not preserve termination
[22]. Interestingly, the latter phenomenon vanishes into thin air for acyclic term
graph rewriting [15,14] because rewrite steps create shared subgraphs instead of
copying subterms.

We prove in this paper that the union of two general hypergraph transforma-
tion systems preserves termination if there are no critical overlaps between the
right-hand sides of one system and the left-hand sides of the other system. This
idea is inspired by a result of Dershowitz [7] which shows that the corresponding
property for term rewriting systems holds if one of the systems is left-linear and
the other system is right-linear. In the case of graph transformation, it turns out
that no restrictions on the form of rules are needed.

The rest of this paper is organized as follows. In Section 2, we review the
basics of hypergraph transformation. In particular, we recall the concept of se-
quential independence which is crucial for our main result. Sequential critical
pairs are introduced in Section 3, in analogy to standard critical pairs for graph

transformation. Our main result is proved in Section 4 where we also give exam-
ples to demonstrate the application of the modularity criterion. We conclude in
Section 5.

2 Hypergraph Transformation

In this section, we recall some definitions and results of the double-pushout
approach to graph transformation which can be found, for example, in [11]. For
generality, we use here the setting of hypergraphs.

2.1 Hypergraphs

Our hypergraphs are directed and labelled. We use a type system where the
label of a hyperedge can restrict the number of incident nodes and their labels.
A signature Σ = 〈ΣV, ΣE,Type〉 consists of a set ΣV of node labels, a set ΣE of
hyperedge labels and a function Type assigning to each l ∈ ΣE a set of strings
Type(l) ⊆ Σ∗

V. This kind of typing allows to “overload” hyperedge labels by
specifying different admissible attachment sequences. Typing regimes covered
by this approach include the case of a singleton set Type(l) for each label l (as
in [6]) and the case of “untyped” hypergraphs given by Type(l) = Σ∗

V for each
l (as in [10]). Unless stated otherwise, we denote by Σ an arbitrary but fixed
signature over which all hypergraphs are labelled.

A hypergraph over Σ is a system G = 〈VG,EG,markG, labG, attG〉 consisting
of two finite sets VG and EG of nodes (or vertices) and hyperedges, two labelling
functions markG : VG → ΣV and labG : EG → ΣE, and an attachment function
attG : EG → V∗

G such that mark∗G(attG(e)) ∈ Type(labG(e)) for each hyperedge
e. (The extension f∗ : A∗ → B∗ of a function f : A→ B maps the empty string
to itself and a1 . . . an to f(a1) . . . f(an).)

In pictures, nodes and hyperedges are drawn as circles and boxes, respec-
tively, with labels inside. Lines represent the attachment of hyperedges to nodes,
where numbers specify the left-to-right order in the attachment string. For ex-
ample, Figure 1 shows a hypergraph with four nodes (all labelled with •) and
three hyperedges (labelled with B and S).

S

1

2

1

B
2 3

S

1

2

Fig. 1. A hypergraph

A hypergraph G is a graph if each hyperedge e is an ordinary edge, that is,
if attG(e) has length two. Ordinary edges may be drawn as arrows with labels
written next to them.

Given hypergraphsG and H , a hypergraph morphism (or morphism for short)
g : G → H consists of two functions gV : VG → VH and gE : EG → EH that
preserve labels and attachment to nodes, that is, markH ◦ gV = markG, labH ◦
gE = labG and attH ◦ gE = g∗V ◦ attG. A morphism incl : G→ H is an inclusion
if inclV(v) = v and inclE(e) = e for all v ∈ VG and e ∈ EG. In this case G

is a subhypergraph of H which is denoted by G ⊆ H . Morphism g is injective
(surjective) if gV and gE are injective (surjective). If g is both injective and
surjective, then it is an isomorphism. In this case G and H are isomorphic,
which is denoted by G ∼= H .

The composition of two morphisms g : G → H and h : H → M is the mor-
phism h ◦ g : G→M consisting of the composed functions hV ◦ gV and hE ◦ gE.
The composition is also written as G → H → M if g and h are clear from the
context.

2.2 Rules and derivations

A rule r : 〈L← K → R〉 consists of two hypergraph morphisms with a common
domain, whereK → L is an inclusion. The hypergraphs L and R are the left- and
right-hand side of r, and K is the interface. The rule is injective if the morphism
K → R is injective.

Let G and H be hypergraphs, r : 〈L ← K → R〉 a rule and g : L → G an
injective morphism. Then G directly derives H by r and g, denoted by G⇒r,g H ,
if there exist two pushouts as in Figure 2. Given a set of rules R, we write G⇒R

L K R

G D H

g

Fig. 2. A double-pushout

H to express that there exist r ∈ R and a morphism g such that G⇒r,g H .
We refer to [20] for the definition and construction of hypergraph pushouts.

Intuitively, the left pushout corresponds to the construction of D from G by
removing the items in L − K, and the right pushout to the construction of H
from D by merging items according to K → R and adding the items in R that
are not in the image of K.

A double-pushout as in Figure 2 is called a direct derivation from G to H

and may be denoted by G⇒r,g H or just by G⇒r H or G⇒ H . A derivation
from G to H is a sequence of direct derivations G0 ⇒ . . . ⇒ Gn, n ≥ 0, such

seq:

x

y

⇒

y

x

while: y

x

⇒

y

x

dec1:

y

x

⇒

y

x

dec2:
y

z

x

⇒
y z

x

Fig. 3. Hypergraph transformation system for flow-graph reduction

that G ∼= G0 and Gn
∼= H . We write G⇒∗ H for such a derivation or G⇒∗

R
H

if all rules used in the derivation are from R.

Given a rule r : 〈L ← K → R〉, an injective morphism g : L → G satisfies
the dangling condition if no hyperedge in EG − gE(EL) is incident to a node in
gV(VL − VK). It can be shown that, given r and f , a direct derivation as in
Figure 2 exists if and only if g satisfies the dangling condition [11].

Definition 1 (Hypergraph transformation system). A hypergraph trans-
formation system 〈Σ,R〉 consists of a signature Σ and a finite set R of rules
over Σ. The system is injective if all rules in R are injective. It is a graph
transformation system if for each label l in ΣE, all strings in Type(l) are of
length two.

Note that since graph transformation systems are special hypergraph trans-
formation systems, results for the latter usually apply to the former, too.

Example 1. Figure 3 shows hypergraph transformation rules for reducing control-
flow graphs [20]. The associated signature contains a single node label • and
two hyperedge labels which are graphically represented by hyperedges formed
as squares and rhombs. Instead of using numbers to represent the attachment
function, we use an arrow to point to the second attachment node of a square
and define the order among the links of a rhomb to be “top-left-right”. The rules
are shown in a shorthand notation where only the left- and right-hand sides are
depicted, the interface and the morphisms are implicitly given by the node names
x,y,z. ⊓⊔

2.3 Sequential independence

Given injective rules r1 and r2, consecutive direct derivations G⇒r1 H ⇒r2 M

do not interfere with each other if the intersection of the right-hand side of r1
with the left-hand side of r2 in H consists of common interface items. In the
presence of non-injective rules, however, independence needs to be defined in
terms of the existence of certain morphisms. We give the general definition first
and then consider a simpler condition for the case of injective rules. For i = 1, 2,
let ri denote a rule 〈Li ← Ki → Ri〉.

Definition 2 (Sequential independence). Direct derivations G⇒r1 H ⇒r2

M as in Figure 4 are sequentially independent if there are morphisms R1 → D2

and L2 → D1 such that the following holds.

Commutativity: R1 → D2 → H = R1 → H and L2 → D1 → H = L2 → H .
Injectivity: R1 → D2 →M is injective.

L1 K1 R1 L2 K2 R2

G D1 H D2 M

Fig. 4. Sequentially independent direct derivations

The injectivity requirement for R1 → D2 → M is needed in case r2 is non-
injective. See [11] for an example that the steps G ⇒r1 H ⇒r2 M may not be
interchangeable without this condition.

If r1 and r2 are injective, the direct derivations of Figure 4 are independent if
and only if the intersection of R1 and L2 in H coincides with the intersection of
K1 and K2. Moreover, the injectivity condition of Definition 2 is automatically
satisfied.

Lemma 1 (Independence for injective rules). Let rules r1 and r2 in Figure
4 be injective. Then the following are equivalent:

(1) G⇒r1 H ⇒r2 M are sequentially independent.
(2) There are morphisms R1 → D2 and L2 → D1 such that R1 → D2 → H =

R1 → H and L2 → D1 → H = L2 → H.
(3) h(R1) ∩ g(L2) = h(b(K1)) ∩ g(K2) where h : R1 → H, g : L2 → H and

b : K1 → R1. (Note that K2 → L2 is an inclusion.)

Proof. The equivalence of (1) and (2) is an easy consequence of the fact that
with injective rules, all morphisms in Figure 4 are injective. The equivalence of
(2) and (3) is shown in [9,19]. ⊓⊔

The following theorem was originally proved in [8], in the setting of graph
transformation with arbitrary, possibly non-injective matching morphisms. This
proof was adapted in [19] to the setting of hypergraph transformation with in-
jective matching.

Theorem 1 ([19,11]). Given sequentially independent direct derivations G⇒r1

H ⇒r2 M , there exist direct derivations of the form G⇒r2 H ′ ⇒r1 M .

For instance, Figure 5 shows applications of the rules seq and dec2 from
Example 1. The steps are independent because the occurrences of the right-
hand side of seq and the left-hand side dec2 share only nodes y and z, which are
interface nodes in both rules. Hence the steps can be interchanged, leading to
the same result.

⇒
seq

y

z

⇒
dec2

Fig. 5. Sequentially independent rule applications

3 Sequential Critical Pairs

Standard critical pairs represent conflicts between rule applications to the same
graph and are used to analyse graph transformation systems for local confluence
[20]. In the context of verifying termination, we adapt this concept to represent
conflicts between consecutive direct derivations.

Sequential critical pairs are minimal derivations of length two whose steps
are not independent. Due to the minimality, the set of critical pairs induced by
two hypergraph transformation rules is finite and can be constructed. We will
see that if this set is empty, then any pair of direct derivations with these rules
is sequentially independent. In the proof of the main result, this will enable us
to re-order the rule applications of infinite derivations.

Definition 3 (Sequential critical pair). Let ri : 〈Li ← Ki → Ri〉 be rules,
for i = 1, 2. A pair of direct derivations S ⇒r1 T ⇒r2 U as in Figure 6 is a
sequential critical pair if the following holds.

Minimality: T = h1(R1) ∪ g2(L2).
Conflict: The steps are not sequentially independent.

L1 K1 R1 L2 K2 R2

S D1 T D2 U

h1
g2

Fig. 6. A sequential critical pair

Sequential critical pairs S ⇒r1,g1 T ⇒r2,g2 U and S′ ⇒r1,g
′

1
T ′ ⇒r2,g

′

2
U ′

are isomorphic if there are isomorphisms i1 : S → S′ and i2 : T → T ′ such that
g′1 = i1 ◦ g1 and g′2 = i2 ◦ g2. (This implies that U and U ′ are isomorphic, too.)
From now on we equate isomorphic critical pairs. With the minimality condition
of Definition 3 it follows that every hypergraph transformation system has only
finitely many critical pairs.

Example 2. Figure 7 shows two sequential critical pairs of the rules of Figure 3.

x y

w

z

⇒
while

w

y

z

⇒
seq

w

z

x y

w

z

⇒
dec2

x z

w

⇒
while

w

z

Fig. 7. Two sequential critical pairs of the system of Figure 3

Lemma 2. For every pair of direct derivations G ⇒r1 H ⇒r2 M that are not
sequentially independent, there exists a critical pair of the form S ⇒r1 T ⇒r2 U .

Proof sketch. The steps G⇒r1 H ⇒r2 M can be restricted to a critical pair by
removing all nodes and edges that are not used by r1 or r2. That is, S is the
subhypergraph of G consisting of all items in the occurrence of the left-hand side
of r1 and all items that are preserved by G⇒r1 H and are in the occurrence of

the left-hand side of r2. See [19] for the precise construction. It is not difficult
to check that the restricted steps are minimal and in conflict. ⊓⊔

4 Modular Termination

A hypergraph transformation system 〈Σ,R〉 is terminating if there exists no
infinite derivation G0 ⇒R G1 ⇒R G2 ⇒R . . . The problem to decide whether a
system 〈Σ,R〉 is terminating is undecidable in general, even for graph transfor-
mation systems with injective rules [18].

Theorem 2 (Modular termination). Let 〈Σ,R〉 and 〈Σ,S〉 be terminating
hypergraph transformation systems. If there are no sequential critical pairs of
shape S ⇒R T ⇒S U , then the combined system 〈Σ,R∪ S〉 is terminating.

Note the symmetry in the statement of Theorem 2: it is sufficient that there
are no critical pairs of shape S ⇒R T ⇒S U or no critical pairs of shape
S ⇒S T ⇒R U .

Proof of Theorem 2. Let 〈Σ, R〉 and 〈Σ, S〉 be terminating hypergraph trans-
formation systems such that there are no critical pairs of shape S ⇒R T ⇒S U .
We proceed by contradiction. Suppose there exists an infinite derivation

G1 ⇒
R∪S

G2 ⇒
R∪S

G3 ⇒
R∪S

. . .

Because ⇒R and ⇒S are terminating, the derivation must contain infinitely
many steps of both kinds. By Lemma 2, any two steps Gk ⇒R Gk+1 ⇒S Gk+2

in the sequence are sequentially independent because there are no critical pairs
of shape S ⇒R T ⇒S U . By Theorem 1, the steps can be swapped such that
Gk ⇒S G′

k+1 ⇒R Gk+2. Thus all⇒S-steps can be pushed back to the beginning
of the derivation, resulting in an infinite sequence of ⇒S-steps. This contradicts
the fact that 〈Σ, S〉 is terminating. ⊓⊔

Figure 8 illustrates the infinite swapping process used to prove Theorem 2.
Any infinite derivation withR∪S must contain infinitely many S-steps and hence
pushing them to the beginning ad infinitum will build up an infinite derivation
of S-steps.

We now present a sequence of examples which demonstrate the application
of Theorem 2.

Example 3. Consider the following graph transformation system from [16]:

r1 :
x

a

y

b ⇒
x

a

y

c

r2 :
x

c

y

d ⇒
x

d

y

b

G0 ⇒R G1 ⇒R G2 ⇒S G3 ⇒R G4 ⇒S G5 ⇒ . . .

↓

G0 ⇒R G1 ⇒S G′
2 ⇒R G3 ⇒R G4 ⇒S G5 ⇒ . . .

↓

G0 ⇒S G′
1 ⇒R G′

2 ⇒R G3 ⇒R G4 ⇒S G5 ⇒ . . .

↓

G0 ⇒S G′
1 ⇒R G′

2 ⇒R G3 ⇒S G′
4 ⇒R G5 ⇒ . . .

↓

G0 ⇒S G′
1 ⇒R G′

2 ⇒S G′
3 ⇒R G′

4 ⇒R G5 ⇒ . . .

↓

G0 ⇒S G′
1 ⇒S G′′

2 ⇒R G′
3 ⇒R G′

4 ⇒R G5 ⇒ . . .

↓

...

Fig. 8. Infinite swapping process to create an infinite S-derivation

It is not obvious that this system is terminating because r1 reduces the number
of b-labels in a graph while r2 increases this number. Similarly, r2 reduces the
number of c-labels while r1 increases this number.

We can prove that this system is terminating by showing termination of
r1 and r2 separately and then applying Theorem 2. Each rule individually is
terminating because r1 reduces the number of b’s and r2 reduces the number
of c’s. Moreover, there are no critical pairs of shape S ⇒r2 T ⇒r1 U . This
is because the middle node in the right-hand side of r2 is created by the rule
and hence cannot have an incoming a-edge. Thus, by Theorem 2, the combined
system is terminating.

Note that the system does have a critical pair of shape S ⇒r1 T ⇒r2 U :

a b d ⇒
r1

a c d

⇒
r2

a d b

Moreover, if we replace rule r2 with r′2 by swapping labels d and b in the right-
hand side, then there is also a critical pair of shape S ⇒r′

2
T ⇒r1 U . Indeed,

this change makes the system non-terminating as the new critical pair is cyclic:

a c d ⇒
r
′
2

a b d

⇒
r1

a c d

⊓⊔

It is worth pointing out the mechanical nature of the termination proof in
Example 3. Combining a simple label counting algorithm with a generator for
sequential critical pairs would automatically determine that both rules are ter-
minating and that there are no critical pairs of shape S ⇒r2 T ⇒r1 U . Based
on Theorem 2, this method would then report that the combined system is
terminating.

Example 4. The graph transformation system in Figure 9 is shown to be ter-
minating in [5]. The technique used is to first simplify the system by removing

r1 :
x

0

y

L ⇒
x

L 1

y

1

r2 :
x

R

y

1 ⇒
x

0

y

R

r3 :
x

B

y

L ⇒
x y

R

r4 :
x

R

y

B ⇒
x

L

y

B

Fig. 9. A terminating graph transformation system [5]

rules r3 and r4, obtaining a system that is terminating if and only if the original
system is terminating. The argument is as follows: rule r3 decreases the number
of B-labels while no other rule increases this number. Hence any infinite deriva-
tion contains only finitely many applications of r3 and thus 〈Σ, {r1, . . . , r4}〉 is
terminating if and only if 〈Σ, {r1, r2, r4}〉 is terminating. After removing r3, one
can observe that rule r4 reduces the number of R-labels while neither r1 nor r2
increase this number. Hence r4 can be removed, too.

For the simplified system 〈Σ, {r1, r2}〉, a so-called weighted type graph over
the tropical semiring is constructed [5] which provides a decreasing measure for
both rules. We can give a simpler termination argument for this system by using
the approach of Example 3: r1 is terminating as it reduces the number of 0’s

and r2 is terminating as it reduces the number of 1’s. Also, it is easy to check
that there are no critical pairs of shape S ⇒r1 T ⇒r2 U or S ⇒r2 T ⇒r1 U .
Hence Theorem 2 guarantees that 〈Σ, {r1, r2}〉 is terminating. ⊓⊔

Similar to Example 3, our termination proof could be found automatically by
a tool that counts labels, eliminates rules that decrease label counts not increased
by the other rules, and finally generates sequential critical pairs.

Example 5. The hypergraph transformation system in Figure 10 checks, when
applied as long as possible, whether a host graph is 2-colourable (bipartite).
If this is the case, the rules colour the graph accordingly. We assume that the
initial hypergraph is a loop-free connected graph in which each node has exactly
one “colour flag” attached to it (a hyperedge e with |attG(e)| = 1). Moreover,
exactly one flag should be labelled r (or b) and all other flags should be blank.
To save space, we deviate from our usual drawing convention in that all ordinary
edges shown in the rules are interface edges.

Colour:
x

r

y
⇒

x

r

y

b

x

r

y
⇒

x

r

y

b

x

b

y
⇒

x

b

y

r

x

b

y
⇒

x

b

y

r

Invalid:
x

r

y

r

⇒
x y x

b

y

b

⇒
x y

Propagate:
x y

r

⇒
x y x y

b

⇒
x y

x y
⇒

x y

Fig. 10. Hypergraph transformation system for generating a 2-colouring

If the initial graph is 2-colourable, the system of Figure 10 will terminate
with a coloured version of the graph in which each node is coloured r or b. (A
graph is 2-colourable if its underlying undirected graph has no cycles of odd
length.) If the graph is not 2-colourable, this will eventually be detected by the
Invalid rules. The Propagate rules then make sure that all colour flags are black
in the final graph.

As in the previous examples, we can prove termination of the system by
label counting and Theorem 2. Subsystem Colour is terminating because all
rules reduce the number of blank flags. On the other hand, Invalid ∪ Propagate
is terminating as all rules decrease the number of non-black flags. It is easy to
see that there are no critical pairs of shape S ⇒Invalid∪Propagate T ⇒Colour U

(since all ordinary edges are interface edges) and thus the combined system is
terminating. ⊓⊔

We remark that termination of the system of Figure 10 can alternatively be
proved by removing the Colour rules and observing that the Invalid and Propa-
gate rules reduce the number of non-black flags. This works because the Colour
rules reduce the number of blank flags while the Invalid and Propagate rules do
not increase this number. However, the point of Example 5 is to demonstrate
that a non-trivial system can be decomposed into subsystems such that Theorem
2 is applicable, and where the components are proved terminating with different
measures.

Example 6. Our final example is about jungle evaluation, a framework in which
hypergraphs representing functional expressions are evaluated by transformation
rules [12]. Figure 11 shows the non-injective evaluation rule corresponding to
the term rewriting rule y+ 0→ y, where the notation x=y means that interface
nodes x and y are merged by the right-hand morphism. This rule is clearly

eval:
y

0

z

+

x

←
y

0

z

x

→

0

z

x=y

Fig. 11. Jungle evaluation rule for y+ 0→ y

terminating as it reduces the size of any hypergraph it is applied to. Rule copy
in Figure 12, on the other hand, enlarges any hypergraph it is applied to. The

copy:

x y

s s

0

z
←

x y

s

0

z
→

x y

s s

z

0 0

Fig. 12. Rule for copying a shared constant 0

rule copies an occurrence of the constant 0 that is shared by two s-functions.

The rule is terminating because each application reduces the measure

#G =
∑

v∈VG

indegree(v)2.

For, consider a step G⇒copy H and let n be the indegree of node z in G. Then
#H = (#G − n2) + (n − 1)2 + 1 < #G where the inequality holds because
(n− 1)2 + 1 < n2 for n ≥ 2, and n = indegree(z) ≥ 2.

It is not difficult to check that there are no sequential critical pairs of shape
S ⇒eval T ⇒copy U , and thus the combined system {eval, copy} is terminating
by Theorem 2. Note that it is not obvious how to combine graph size and the
value into a measure that decreases under rule applications of the combined
rule set. This is because copy always increases graph size and eval increases the
value when applied to certain hypergraphs. To see the latter, consider a step
G ⇒eval H where indegree(x) = 2, indegree(y) = 3 and indegree(z) = 1. Then
#H = #G− (4 + 9 + 1) + (42 − 1) = #G+ 1. ⊓⊔

5 Conclusion and Future Work

Termination is an undecidable property of graph transformation systems. We
have established a criterion based on the absence of certain sequential critical
pairs which guarantees that the union of two terminating systems is terminating.
This allows to split systems into component systems whose termination is then
verified separately, possibly using different techniques, and to conclude that the
combination of the components is terminating if the critical pair-criterion is
satisfied. The criterion is syntactic and can be machine-checked by generating
all critical pairs between rules from different component systems. Morever, the
method is a black-box approach in that the termination proofs of the component
systems need not be inspected.

An obvious topic for future work is to implement a tool that given a hyper-
graph transformation system, generates all sequential critical pairs and calculates
all possible partitions of the system into smaller components such that the con-
dition of Theorem 2 is satisfied. For each partition, the components can then be
proved to be terminating with whatever method seems suitable resp. has been
implemented. The tool could be used together with a termination prover such as
Grez, described in [5], which allows to choose different proof methods, including
weighted type graphs, label counting and node counting.

Future research may also attempt to generalize Theorem 2 in various ways. It
may be possible to allow critical pairs S ⇒R T ⇒S U and formulate conditions
under which arbitrary steps G⇒R H ⇒S M can still be swapped. A naive try is
to require that there exits a graph T ′ such that S ⇒S T ′ ⇒R U , which however
is insufficient as the dangling condition may prevent embedding the steps into
context. The situation has some similarity with the analysis of conventional
critical pairs to verify confluence: the mere joinability of all critical pairs does
not guarantee local confluence of a set of rules [20].

Finally, it would be desirable to extend the approach of this paper such that
rules with application conditions (of some form) can be handled. Even more
challenging is an extension to attributed graph transformation on which graph
programming languages such as GP 2 are based. This is because finite sets of
attributed rules typically induce infinite sets of sequential critical pairs in the
sense of this paper (see [13] for the corresponding problem with conventional
critical pairs).

References

1. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

2. Marc Bezem, Jan Willem Klop, and Roel de Vrijer, editors. Term Rewriting Sys-
tems. Cambridge University Press, 2003.

3. H.J. Sander Bruggink. Towards a systematic method for proving termination of
graph transformation systems. Electronic Notes in Theoretical Computer Science,
213(1):23–38, 2008.

4. H.J. Sander Bruggink, Barbara König, Dennis Nolte, and Hans Zantema. Prov-
ing termination of graph transformation systems using weighted type graphs over
semirings. In Proc. Graph Transformation (ICGT 2015), volume 9151 of Lecture
Notes in Computer Science, pages 52–68. Springer, 2015.

5. H.J. Sander Bruggink, Barbara König, and Hans Zantema. Termination analysis
for graph transformation systems. In Proc. Theoretical Computer Science (TCS
2014), volume 8705 of Lecture Notes in Computer Science, pages 179–194. Springer,
2014.

6. Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 5.
Elsevier, 1990.

7. Nachum Dershowitz. Termination of linear rewriting systems (preliminary version).
In Proc. Automata, Languages, and Programming (ICALP 1981), volume 115 of
Lecture Notes in Computer Science, pages 448–458. Springer, 1981.

8. Hartmut Ehrig and Hans-Jörg Kreowski. Parallelism of manipulations in multidi-
mensional information structures. In Proc. Mathematical Foundations of Computer
Science, volume 45 of Lecture Notes in Computer Science, pages 284–293. Springer,
1976.

9. Hartmut Ehrig and Barry K. Rosen. Commutativity of independent transforma-
tions on complex objects. Research Report RC 6251, IBM Thomas J Watson
Research Center, Yorktown Heights, 1976.

10. Annegret Habel. Hyperedge Replacement: Grammars and Languages, volume 643
of Lecture Notes in Computer Science. Springer, 1992.

11. Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph trans-
formation revisited. Mathematical Structures in Computer Science, 11(5):637–688,
2001.

12. Berthold Hoffmann and Detlef Plump. Implementing term rewriting by jungle
evaluation. RAIRO Theoretical Informatics and Applications, 25(5):445–472, 1991.

13. Ivaylo Hristakiev and Detlef Plump. Towards critical pair analysis for the graph
programming language GP 2. In Recent Trends in Algebraic Development Tech-
niques (WADT 2016), Revised Selected Papers, Lecture Notes in Computer Science.
Springer, 2017. To appear.

14. Madala R.K. Krishna Rao. Modular aspects of term graph rewriting. Theoretical
Computer Science, 208(1-2):59–86, 1998.

15. Detlef Plump. Implementing term rewriting by graph reduction: Termination of
combined systems. In Proc. Conditional and Typed Rewriting Systems (CTRS’90),
volume 516 of Lecture Notes in Computer Science, pages 307–317. Springer, 1991.

16. Detlef Plump. On termination of graph rewriting. In Proc. Graph-Theoretic Con-
cepts in Computer Science (WG’95), volume 1017 of Lecture Notes in Computer
Science, pages 88–100. Springer, 1995.

17. Detlef Plump. Simplification orders for term graph rewriting. In Proc. Mathemat-
ical Foundations of Computer Science (MFCS’97), volume 1295 of Lecture Notes
in Computer Science, pages 458–467. Springer, 1997.

18. Detlef Plump. Termination of graph rewriting is undecidable. Fundamenta Infor-
maticae, 33(2):201–209, 1998.

19. Detlef Plump. Computing by Graph Rewriting. Habilitation thesis, Universität
Bremen, Fachbereich Mathematik und Informatik, 1999.

20. Detlef Plump. Confluence of graph transformation revisited. In Processes, Terms
and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan Willem Klop
on the Occasion of His 60th Birthday, volume 3838 of Lecture Notes in Computer
Science, pages 280–308. Springer, 2005.

21. David Sabel and Hans Zantema. Termination of cycle rewriting by transformation
and matrix interpretation. Logical Methods in Computer Science, 13(1), 2017.

22. Yoshihito Toyama. Counterexamples to termination for the direct sum of term
rewriting systems. Information Processing Letters, 25:141–143, 1987.

23. Hans Zantema, Barbara König, and H.J. Sander Bruggink. Termination of cy-
cle rewriting. In Proc. Rewriting and Typed Lambda Calculi (RTA-TLCA 2014),
volume 8560 of Lecture Notes in Computer Science, pages 476–490. Springer, 2014.

	Modular Termination of Graph Transformation
	Detlef Plump

