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Abstract: Background & aims: Iodine is important for thyroid function during pregnancy to support
fetal growth, but studies of maternal iodine status and birth outcomes are conflicting. We aimed to
quantify the association between iodine status and birth outcomes, including potential threshold
effects using nonlinear dose–response curves. Methods: We systematically searched Medline and
Embase to 10 October 2022 for relevant cohort studies. We conducted random-effects meta-analyses
of urinary iodine concentration (UIC), iodine:creatinine ratio (I:Cr), and iodide intake for associations
with birth weight, birth weight centile, small for gestational age (SGA), preterm delivery, and other
birth outcomes. Study quality was assessed using the Newcastle-Ottawa scale. Results: Meta-
analyses were conducted on 23 cohorts with 42269 participants. Birth weight was similar between
UIC ≥ 150 µg/L and <150 µg/L (difference = 30 g, 95% CI −22 to 83, p = 0.3, n = 13, I2 = 89%) with no
evidence of linear trend (4 g per 50 µg/L, −3 to 10, p = 0.2, n = 12, I2 = 80%). I:Cr was similar, but with
nonlinear trend suggesting I:Cr up to 200 µg/g associated with increasing birthweight (p = 0.02, n = 5).
Birthweight was 2.0 centiles (0.3 to 3.7, p = 0.02, n = 4, I2 = 0%) higher with UIC ≥ 150 µg/g, but not
for I:Cr. UIC ≥ 150 µg/L was associated with lower risk of SGA (RR = 0.85, 0.75 to 0.96, p = 0.01, n = 13,
I2 = 0%), but not with I:Cr. Conclusions: The main risk of bias was adjustment for confounding, with
variation in urine sample collection and exposure definition. There were modest-sized associations
between some measures of iodine status, birth weight, birth weight centile, and SGA. In pregnancy,
we recommend that future studies report standardised measures of birth weight that take account of
gestational age, such as birth weight centile and SGA. Whilst associations were modest-sized, we
recommend maintaining iodine sufficiency in the population, especially for women of childbearing
age on restricted diets low in iodide.

Keywords: Iodine; birth weight; infant; small for gestational age; meta-analysis

1. Introduction

Iodine has an important role in normal thyroid function, with demands for iodine
increasing during pregnancy to support fetal growth as well as compensating for increased
renal clearance [1,2]. Severe maternal iodine deficiency is considered an established risk
factor for maternal goitre and neurological impairment in the neonate [1,3], with possible
associations with subsequently less developed motor skills and intellectual capacity [4]. To
avoid these outcomes, pregnant populations are defined by the World Health Organization
(WHO) as having insufficient iodine where the median urinary iodine concentration (UIC)
is less than 150 µg/L [1,3].

Despite salt iodisation programmes available across many regions, the populations of
over 50 countries are still considered to be affected by iodine deficiency [5]. To avoid iodine
deficiency, WHO recommend an iodide intake of 150 µg/day in adults, and 250 µg/day
during pregnancy [3]. However, two thirds of European countries that monitor iodine in
pregnancy have reported inadequate iodine intake [6].
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Dairy and seafood are the main dietary sources of dietary iodine, excluding supple-
ments and fortified foods such as iodised salt. With recent increases in diets that restrict
intake of these foods, particularly in women of childbearing age, the iodine status of pop-
ulations previously considered sufficient are moving more towards mild deficiency [7,8].
Whilst the effects of severe deficiency are known, the extent to which adverse outcomes are
associated with milder levels of deficiency is less clear.

Two recent systematic reviews of observational studies of iodine and birth outcomes
drew differing conclusions [9,10]. Since these reviews were published, results on iodine
and birth outcomes from a number of large birth cohorts have become available, including
the Norwegian Mother and Child Cohort Study (MoBa) [11], the Screening for Pregnancy
Endpoints (SCOPE) cohort [12], the Born in Bradford (BiB) cohort [13], and results from
the Shanghai birth registry [14]. There is potential for studies in deficient populations to
draw substantially different conclusions from those in less-deficient populations, and for
effects to only be seen in individuals with particularly poor intakes. We therefore aimed to
systematically review the new and existing literature, additionally investigating potential
threshold effects.

2. Material and Methods
2.1. Search Strategy

We conducted a systematic literature review of cohort studies that included relevant
information on both maternal iodine status and birth outcomes. We searched MEDLINE
and EMBASE databases through OVID, up to 10 October 2022 using a PICO structure, with
a cohort study search filter, synonyms relating to pregnancy, iodine status, and specific birth
outcomes, with adjacency terms and allowing for alternative spellings where appropriate.
The key words included synonyms relating to pregnancy, maternity, and birth (study
population); iodide, iodine, and urinary biomarkers of iodine (exposure); and birthweight,
fetal growth, head circumference, preterm, and spontaneous abortion (outcomes). The
complete search strategies are detailed in Supplementary Table S1).

We included preferred reporting items for systematic reviews and meta-analyses
(PRISMA) and followed guidelines for conducting meta-analysis of observational studies
in epidemiology (MOOSE) throughout the review. The review protocol was published on
PROSPERO (registration number CRD42016043748) prior to starting the study.

2.2. Study Selection

Eligible studies were cohorts, case-control studies nested within cohorts, and case-
cohort studies, with exposure measured during pregnancy. Relevant exposures were
urinary iodine concentration (UIC), urinary iodine excretion or iodine to creatinine ratio
(I:Cr), and iodide intake. Relevant outcomes were pre-specified as those related to fetal
loss, preterm birth, and birth size. Low birth weight and macrosomia were taken as birth
weight <2.5 kg and >4 kg, respectively.

Birth weight centile was based on standardized birth weight adjusting for at least
gestational age, using the study-specific definitions, and transforming z-scores to centiles
where necessary. Small for gestational age (SGA) was defined as birth weight <10th centile
and large for gestational age (LGA) >90th centile. Spontaneous abortion was defined as
fetal loss ≤24 weeks gestation and stillbirth as fetal loss >24 weeks gestation. Preterm
delivery was taken as spontaneous preterm birth <37 weeks, or any preterm delivery
<37 weeks if this information was not available.

2.3. Data Extraction and Quality Assessment

Titles and abstracts were screened by two independent reviewers (from CK, ET, JW,
LJH) using Screenatron and Disputatron [15], with disagreements resolved by a third
reviewer (DCG). Full text screening was conducted by two independent reviewers (DCG,
LJH) with disagreements resolved by consensus. Data were extracted by DCG and numeric
data independently checked by JW. Where two publications reported results from the
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same cohorts, data were extracted from the most complete report. Information was also
extracted from published study protocols or cohort profiles where necessary. For three
studies, investigators were contacted for additional data [12,13,16]. Non-English language
and unpublished articles and abstracts were excluded.

We assessed methodological quality of studies using the Newcastle–Ottawa scale
for cohort studies [17]. Studies were rated for representativeness of the exposed and
non-exposed cohorts, ascertainment of exposure, and the outcome not being present
before the study. Levels of exposure were considered comparable if length of gestation
was controlled for (apart from for preterm deliveries), either through adjustment or by
outcome definition, and adjustment for any other relevant confounder. Outcomes were
rated on being objective, followed until the end of pregnancy, with >90% of potential
participants following up. Quality was assessed independently by two reviewers (CK, ET)
with disagreements resolved by a third (DCG) for the first six consecutive studies retrieved,
after which all studies were assessed by DCG. All studies were included regardless of
perceived quality, but risk of bias was taken into account in the interpretation.

2.4. Data Synthesis and Analysis

Data from each study were synthesised by meta-analysis, comparing dichotomous expo-
sures of UIC < 150 µg/L with ≥150 µg/L based on the WHO criteria [3] and I:Cr < 150 µg/g
with ≥150 µg/g, alongside linear and nonlinear dose-response trends.

Linear and nonlinear dose-response trends in relative risks for binary outcomes (low
birth weight, macrosomia, SGA, LGA, spontaneous abortion, still birth, and preterm
delivery) were derived using Greenland and Longnecker’s method [18,19]. The estimated
mean iodine status for each category of exposure was extracted, or the midpoint of each
category derived where the mean or median were not provided. For unbounded upper
limits, we assumed the category width was 1.5 times the adjacent one. If the reference
category was not the lowest, we used the Greenland and Longnecker fitted counts to
express adjusted risks relative to the lowest category [18,20]. This method also allowed us
to combine categories to estimate relative risks for dichotomised iodine status.

To compare dichotomised exposures, adjusted means were first combined using com-
mon (fixed) effect meta-analysis where necessary, then differences pooled using random-
effects meta-analysis. Linear trends in continuous outcomes (birth weight, birth weight
centile, birth length, and head circumference) were estimated using multivariate random-
effects meta-analysis [21,22] and presented per 50 µg/L higher UIC or 50 µg/g higher I:Cr.
Nonlinear trends for each study were estimated using restricted cubic splines fitted to
each study using knots at the 10th, 50th, and 90th percentiles [23], and then pooled using
multivariable random-effects meta-analysis, compared to a reference of 150 µg/L for UIC,
150 µg/g for I:Cr, and 150 µg/d for iodide intake [20]. Meta-analyses were only conducted
where more than two studies reported on the same outcome.

Between-study heterogeneity was expressed as the range of study estimates, and as a
percentage of total variation (I2) [24,25]. Potential heterogeneity was explored through a
limited number of pre-defined subgroup analyses where sufficient data were available as
follows: by mean week of gestation when the urine samples were provided, median UIC
of study population, high income vs. low-or-middle income country, by any adjustment
for potential confounding such as gestational age (other than for preterm delivery), and
by Newcastle-Ottawa domain score. Potential small-study effects such as publication
bias were explored through contour-enhanced funnel plots and Egger’s test, where more
than 10 studies reported on the same outcome. All analyses were conducted in Stata
version 17 [26].

3. Results
3.1. Literature Search

Two hundred and forty-seven unique references were identified by the literature search.
Of these, 53 were identified as potentially relevant after screening of titles and abstracts (with
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89% agreement between reviewers) and 26 were identified as relevant following reading of the
full texts (with 80% agreement between reviewers). These publications reported on 24 cohorts
containing 42,503 participants (Figure 1, Supplementary Table S2) [11–14,16,27–45].
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Figure 1. Article retrieval and screening process flow chart.

Eighteen cohorts reported UIC exposure, seven used I:Cr, three dietary intake and one
total intake including dietary and supplemental sources. Eleven (46%) studies were from
higher income countries, 14 (58%) were from iodine-deficient populations with median
UIC < 150 µg/L, including six (25%) with median UIC < 100 µg/L. Study characteristics
are presented in Table 1.

Study quality was assessed in duplicate for six papers (25%) with 89% agreement
between reviewers across all items, and the remainder extracted by one reviewer. Overall
study quality was generally good, with results based on established birth cohorts using
objective measures of exposures and outcomes. The main differences in risk of potential
bias derived from adjustment for confounding (Supplementary Table S3).
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Table 1. Characteristics of included studies.

Author, Year Cohort Country Study
Size Trimester

Mean
Gestational
Age (Weeks)

Median
UIC

(µg/L)

Exposure
Measures Outcome Measures

Abel, 2020 [11] MoBa Norway 2795 2 18.5 69 UIC, dietary
intake

birth weight, birth weight centile, SGA,
LGA, preterm

Bienertová-Vašků, 2018 [27] ELSPEC Czech
Republic 4711 3 32 151 dietary intake birth weight, birth length,

Charoenratana, 2015 [28] Chiang Mai University cohort Thailand 399 1–3 19 151 UIC birth weight, low birth weight,
SGA, preterm

Chen, 2018 [29] Tongji Maternal and Child
Health Cohort China 2087 1–2 13.8 178 I:Cr birth weight, birth length,

head circumference

Cui, 2022 [14] Shanghai birth registry China 7435 1–3 18 138 UIC birth weight, low birth weight,
macrosomia, birth length, preterm

Dillon, 2000 [30] Casamance and Senegal
Oriental cohorts Senegal 462 1–3 19 43 UIC miscarriage, stillbirth

Dong, 2021 [31] Xiangyang and Pingdingshan
cohorts China 870 1–3 18 172 UIC birth weight, macrosomia, birth length,

head circumference,
Farebrother, 2020 [32] UPBEAT UK 954 2 17 147 I:Cr birth weight, low birth weight, SGA,

Ghassabian, 2014 [33] Generation R The
Netherlands 1525 1–2 13.3 119 I:Cr birth weight

Hynes, 2017 [34] Gestational Iodine Cohort Australia 266 2 23.7 83 UIC birth weight, low birth weight, preterm
Kianpour, 2019 [35] Isfahan University study Iran 418 1 9.7 172 UIC miscarriage

Lean, 2013 [45] Maharashtra study India 234 2,3 17, 34 203, 211 UIC birth weight, birth length
Leon, 2015 [36] INMA Spain 2170 1–2 13.4 128 UIC birth weight, SGA, LGA, preterm

Nazarpour, 2020 [37] Tehran Thyroid & Pregnancy
Study Iran 1054 1 11 142 UIC birth weight, low birth weight, birth

length, head circumference, preterm

Ovadia, 2022 [38] Ashkelon study Israel 134 3 31 61 dietary intake

birth weight, low birth weight,
macrosomia, birth weight centile, SGA,
LGA, birth length, head circumference,

stillbirth, preterm

Rydbeck, 2014 [39] MINIMat Bangladesh 1617 1 8 300 UIC birth weight, birth length,
head circumference

Snart, 2019 [12] SCOPE UK 541 2 15, 20 134 UIC, I:Cr
birth weight, birth weight centile, SGA,

birth length, head
circumference, preterm
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Table 1. Cont.

Author, Year Cohort Country Study
Size Trimester

Mean
Gestational
Age (Weeks)

Median
UIC

(µg/L)

Exposure
Measures Outcome Measures

Snart, 2020 [13] BiB UK 6971 2 26 76 UIC, I:Cr birth weight, birth weight centile, SGA,
head circumference, preterm

Threapleton, 2021 [16] Hiba UK 246 1, 2, 3 14, 26, 36 122 UIC, I:Cr, dietary
intake, total intake

birth weight, low birth weight, birth
weight centile, SGA, preterm

Torlinska, 2018 [40] ALSPAC UK 1954 1–2 13 95 I:Cr birth weight, birth weight centile, SGA,
LGA, preterm

Xiao, 2018 [41] Liaoning Province China 1569 1 7 160 UIC birth weight, low birth weight,
macrosomia, miscarriage, preterm

Yang, 2018 [42] Henan Province cohort China 2347 2 27.1 204 UIC
birth weight, low birth weight,

macrosomia, SGA, birth length, head
circumference, preterm

Yoganathan, 2015 [43] University of Jaffna study Sri Lanka 477 3 39.3 140 UIC preterm

Zhang, 2022 [44] Peking University
International Hospital China 726 1 6 159 UIC

birth weight, low birth weight,
macrosomia, SGA, birth

length, preterm

UIC = urinary iodine concentration, I:Cr = urinary iodine to creatinine ratio, SGA = Small for gestational age, LGA = Large for gestational age.
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3.2. Birth Weight Outcomes

Fifteen studies reported birth weight in relation to UIC. Comparisons of UIC < 150 µg/L
with ≥150 µg/L were derived for 13 studies, linear trends for 12 studies, and nonlinear
trends for 11 studies. One study did not quantify the UIC exposure so could not be
pooled [45]. There was no evidence that UIC ≥ 150 µg/L was associated with greater birth
weight than <150 µg/L (difference = 30 g, 95% CI −22 to 83, p = 0.3, n = 13, I2 = 89%),
nor of a linear trend (4 g per 50 µg/L, −3 to 10, p = 0.2, n = 12, I2 = 80%). Between-
study heterogeneity was high, but there was no evidence of nonlinearity (p = 0.2, n = 11)
(Figure 2a–c).
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Figure 2. Urinary iodine concentration (a–c), iodine to creatinine ratio and birth weight (grams) (d–f),
dichotomous (a,d), linear (b,e), and nonlinear (c,f) meta-analyses. CI: Confidence interval; ∆: Change
in outcome [11–14,16,28,29,31,33,34,36,37,39–42,44].
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Six studies reported birth weight in relation to I:Cr. There was no evidence that
I:Cr ≥ 150 µg/g was associated with greater birth weight than <150 µg/g (difference = 22 g,
−12 to 56, p = 0.2, n = 5, I2 = 0%), nor linear trend (3 g per 50 µg/g, −7 to 14, p = 0.5, n = 5,
I2 = 88%). However, there was evidence of nonlinearity (p = 0.02, n = 5), with an association
between I:Cr and increasing birth weight evident up to around 200 µg/g (Figure 2d–f).

There were too few studies reporting iodide intake with the same category boundaries
to conduct meta-analysis on the dichotomous exposure. There was no evidence of a linear
association between intake and birth weight (9 g per 50µg/day, −8 to 26, p = 0.3, n = 3, I2 = 85%),
but some evidence of nonlinearity (p < 0.001, n = 3) (Supplementary Figure S1a,b).

For the binary outcomes of low birth weight (<2.5 kg) and macrosomia (>4 kg) there
was no evidence of any association with UIC (Supplementary Figures S2 and S3) and too
few studies reported this outcome to conduct meta-analysis for I:Cr or iodide intake.

3.3. Standardised Birth Weight Outcomes

For birth weight centile, UIC ≥150 µg/L was associated with 2.0 centiles higher birth
weight than UIC < 150 µg/L (difference = 2.0 centiles, 0.3 to 3.7, p = 0.02, n = 4, I2 = 0%),
with no evidence of a linear dose-response trend (0.5 centiles per 50 µg/L, −0.5 to 1.4,
p = 0.3, n = 4, I2 = 86%), and no evidence of nonlinearity (p = 0.4, n = 4) (Figure 3a–c). There
was no evidence that I:Cr ≥ 150 µg/g was associated with higher birth weight centiles
than I:Cr < 150 µg/g (difference =0.8, −4.8, 6.5, p = 0.8, n = 3, I2 = 35%), nor evidence of a
linear trend (0.5 centiles per 50 µg/g, −0.3 to 1.3, p = 0.2, n = 5, I2 = 70%). There was also
no evidence of nonlinearity (p = 0.1, n = 4) (Figure 3e–f).

UIC was associated with lower risk of SGA, in terms of ≥150 µg/L vs. UIC < 150 µg/L
(RR = 0.85, 0.75 to 0.96, p = 0.01, n = 13, I2 = 0%), but with no evidence of a linear trend
(RR = 0.96 per 50 µg/L, 0.92 to 1.01, p = 0.1, n = 8, I2 = 52%). There was no evidence of
nonlinearity (p = 0.6, n = 7) (Figure 4a–c). There was no evidence of the same associa-
tion with I:Cr, either for dichotomised exposure (RR = 0.95, 0.70 to 1.28, p = 0.7, n = 5,
I2 = 66%) or as a linear trend (RR = 0.98 per 50 µg/g, 0.92 to 1.05, p = 0.6, n = 5, I2 = 70%).
However, there was evidence of nonlinearity, with the lowest risk around 150 µg/g and
higher risks associated with both lower and higher I:Cr (p = 0.003, n = 4). There were
sufficient studies of iodide intake and SGA only to investigate linear trend, where there
was no evidence of an association (RR = 0.95 per 50 µg/d, 0.87 to 1.05, p = 0.3, I2 = 35%)
(Supplementary Figure S4).

There were too few studies reporting LGA to conduct any meta-analyses for this outcome.

3.4. Birth Length and Head Circumference

There was no evidence of an association between birth length and UIC as a dichoto-
mous exposure (difference = 0.0 cm, −0.1 to 0.2, p = 0.6, n = 5, I2 = 0%), as a linear trend
(0.01 cm per 50 µg/L, 0.00 to 0.02, p = 0.1, n = 4, I2 = 0%), or any evidence of nonlinearity
(p = 0.5, n = 5) (Supplementary Figure S5a–c). There were not enough data to conduct
meta-analysis for I:Cr or iodide intake.

There was no evidence of an association between head circumference and UIC as
a dichotomous exposure (difference = 0.0 cm, −0.2 to 0.2, p = 0.9, n = 5, I2 = 78%), as
a linear trend (0.00 cm per 50 µg/L, −0.03 to 0.03, p = 0.8, n = 6, I2 = 16%), or any evi-
dence of nonlinearity (p = 0.4, n = 6) (Supplementary Figure S6a–c). Neither was there
evidence of an association between head circumference and I:Cr as a dichotomous exposure
(difference = 0.1 cm, −0.1 to 0.3, p = 0.4, n = 3, I2 = 0%), as a linear trend (0.01 cm per
50 µg/g, −0.03 to 0.05, p = 0.6, n = 3, I2 = 49%), or any evidence of nonlinearity (p = 0.6,
n = 3) (Supplementary Figure S7a–c). There were insufficient data to conduct meta-analyses
for iodide intake.
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Figure 3. Urinary iodine concentration (a–c), iodine to creatinine ratio (d–f) and birth weight centile,
dichotomous (a,d), linear (b,e), and nonlinear (c,f) meta-analyses. CI: Confidence interval; ∆: Change
in outcome [11–13,16,40].
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3.5. Pregnancy Outcomes

Preterm delivery was defined as spontaneous preterm birth in only two studies [11,12],
with the remainder using the broader definition of any delivery <37 weeks gestation. There was
no evidence of an association between preterm delivery and UIC dichotomised into ≥150 µg/L
vs. UIC < 150 µg/L (RR = 0.88, 0.72 to 1.08, p = 0.2, n = 12, I2 = 47%), or as a linear trend
(RR = 0.97 per 50 µg/L, 0.92 to 1.02, p = 0.2, n = 12, I2 = 56%). There was also no evidence
of nonlinearity in the trend (p = 0.1, n = 10) (Figure 5a–c). Similarly for preterm delivery and
I:Cr, there was no evidence of an association with dichotomised I:Cr (RR = 0.97, 0.75 to 1.25,
p = 0.8, n = 4, I2 = 14%) or as a linear trend (RR = 1.01 per 50 µg/g, 0.96 to 1.07, p = 0.7, n = 4,
I2 = 0%). There was also no evidence of nonlinearity (p = 0.1, n = 4) (Figure 5d–f). There were
sufficient studies of iodide intake and preterm delivery only to investigate linear trend, where
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there was no evidence of an association (RR = 0.99 per 50 µg/d, 0.95 to 1.04, p = 0.8, I2 = 0%)
(Supplementary Figure S8).
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There were insufficient studies categorising UIC consistently to dichotomise into
≥150 µg/L and UIC < 150 µg/L for meta-analysis of spontaneous abortion ≤24 weeks
gestation, however there was no evidence of a linear trend (RR = 0.88, 0.71 to 1.10, p = 0.3,
n = 3, I2 = 94%), albeit with large between-study heterogeneity (Supplementary Figure S9).
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There were insufficient studies to explore potential nonlinearity. There were not enough
studies to conduct meta-analysis for I:Cr or iodide intake of this outcome.

There were not enough data to conduct meta-analyses for stillbirth as fetal loss >24 weeks
gestation in relation to any outcome.

3.6. Subgroup Analyses and Small-Study Effects

There was no evidence that associations between birth weight and UIC differed by
timing of urine collection, median population UIC, income status of country, or any adjust-
ment for potential confounding (Supplementary Table S4, Supplementary Figures S10–S13).
Studies with lower scores for selection had higher estimates comparing UIC ≥ 150 µg/L
and <150 µg/L, but not with any other domains (Supplementary Figures S14–S16). There
was no evidence of associations between SGA and UIC differing by subgroup, other
than stronger linear trends seen in studies with lower Newcastle-Ottawa selection scores
(Supplementary Table S5, Supplementary Figures S17–S23). For preterm delivery asso-
ciations between higher UIC and lower risk of preterm delivery were stronger in low
and middle-income countries in analyses of dichotomous exposures (p = 0.01) and linear
trends (p = 0.02), and some differences between Newcastle-Ottawa comparability scores
(Supplementary Table S6, Supplementary Figures S24–S30). There were too few studies
reporting I:Cr or iodide intake to conduct subgroup analyses for these outcomes.

There was no evidence of any small-study effects such as publication bias for UIC and birth
weight or preterm delivery, where sufficient studies existed to investigate, with no evidence of
funnel plot asymmetry (Egger’s tests p = 0.4 and p = 0.9) (Supplementary Figures S31 and S32).

4. Discussion

Our systematic review and series of meta-analyses have included nearly four times as
many studies as the most recent reviews, involving analysis of iodine and birth outcomes
for more than five times as many participants [9,10]. In addition to UIC, we have also
included alternative measures of exposure, such as iodine to creatinine ratio and iodide
intake. Moreover, we have investigated continuous dose-response trends over the full
range of intakes, including both linear and potential nonlinear trends, to identify potential
threshold or plateau effects.

There was evidence of children born to mothers with UIC > 150 µg/L having higher
birth weight centile, and lower risk of SGA, but the association between these outcomes and
I:Cr was less clear. We also found evidence of an association between higher I:Cr and higher
birth weight, up to a threshold of around 200 µg/g, but not for UIC. The potential size of
the associations identified was relatively modest compared to other established modifiable
risk factors for lower birth weight and SGA, such as smoking [46–48], alcohol [49,50] and
caffeine [51–53], and small enough to be potentially explained by bias in study design,
analysis, or selective publication. There was no evidence of an association with preterm
delivery, though only two studies reported results for spontaneous preterm delivery.

Results were broadly consistent across studies collecting urine samples earlier in
pregnancy and those collecting later, and across different populations defined by median
UIC and geographical region, with adjustment for confounding making little difference too.

Our results are consistent with the most recent review, which found insufficient
evidence of an association UIC and low birth weight, but adds to this previous work with
findings on birth weight centile and SGA. Furthermore, we identified nonlinearity in some
of the dose-response curves and differences between subgroups, none of which would have
been apparent without the additional information provided by the more recent cohorts.
For example, we saw threshold effects in the associations between I:Cr and birth weight
and between iodide intake and birth weight, and noted a potential u-shaped association
between I:Cr and SGA.

We have included results from studies reporting iodine exposure as both UIC and I:Cr,
with the latter identifying stronger associations with birth outcomes. I:Cr may hold some
advantage for epidemiological studies in pregnancy, because UIC cannot adequately esti-
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mate iodine status of individuals because of day-to-day variation in iodine status and urine
dilution. Results from our review support this, with less between-study heterogeneity with
I:Cr, and clearer associations despite the smaller number of studies. However, in addition
to maternal kidney function, creatinine excretion may also vary with age, physical activity
levels, and body mass index, which themselves may be associated with fetal growth [11].

One well-conducted case-control study nested with the Finnish Medical Birth Register
using serum iodide as a measure of iodine status was excluded as outside our pre-defined
list of exposures in our protocol [54]. The authors found serum iodide was associated
with higher odds of preterm birth, but not with SGA. Serum iodide offers an additional
measure of iodine status for consideration. In addition, two studies were excluded for using
pre-conception measures of iodine status not specified in our pre-defined protocol [55,56].
However, this timeframe is very relevant and may offer a good measure of maternal iodine
resources early in pregnancy.

Taking risk of bias into account, we interpret results for preterm delivery cautiously,
because of potential reverse causality, with the decision to deliver influenced by fetal
growth up to that point. Otherwise, our assessment of study quality mostly differed by
choice of covariate adjustment. Standardised measures of birth weight, such as birth weight
centile and SGA controlled for important potential confounding, led to broadly reduced
between-study heterogeneity in our results, and potentially provide more informative
outcomes for obstetricians and paediatricians.

Our review was partly limited by the available data. As with all observational studies,
residual confounding within each study is a potential source of bias, with covariate adjust-
ments differing between studies. Self-reported intake is also prone to measurement error,
which can bias associations in either direction. In addition, not all studies reported all birth
outcomes or all measures of iodine status. Whilst there was no evidence of small study
effects such as publication bias for the more widely reported outcomes of birth weight
and preterm delivery, there is more opportunity for publication bias in the less frequently
reported outcomes, which we could not assess for small study effects using Egger’s test
because of insufficient data.

Very few randomised controlled trials of iodine supplementation or fortification have
been conducted outside severely iodine-deficient settings [57], so we have focused on
meta-analysis of well-conducted cohort studies as the next strongest evidence. However,
without random allocation, our ability to infer causality is limited due to potential residual
confounding. All but one study of iodide intake reported only dietary sources, so we in-
cluded both dietary and total iodide intake in the same meta-analyses. However, because of
high supplement use in pregnancy, supplemental sources make a large contribution to total
iodine intake [16]. Therefore, studies of dietary intake alone that contribute towards our
meta-analyses may have underestimated total intake and overestimated any associations.

Most studies reviewed measured iodine status in spot urines for pragmatic reasons.
These are prone to greater variability than 24-h urine collections, so subsequent results are
inevitably less precise. Furthermore, the timing of the urine collections was averaged within
each study for subgroup comparisons, potentially masking some within-study variation.

Our review is strengthened by the large number of well-conducted birth cohorts
that have recently published on this topic allowing greater precision in our results and
allowing us to identify potential threshold effects and differences between pre-defined
subgroups. We have also been able to explore urine dilution-adjusted results using I:Cr,
with novel findings, as well as including self-reported iodide intake. We have conducted a
comprehensive review, in terms of the range of different measures of iodine status and birth
outcomes that give an overall picture of the association between maternal iodine status and
birth outcomes.

5. Conclusions

In conclusion, we have found evidence of modest associations between some measures
of iodine status, birth weight, birth weight centiles standardised for gestational age. In
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pregnancy, we recommend reporting iodine status accounting for urine dilution variability
using I:Cr as well as the more usual UIC, because of inconsistency in findings between
the two measures. Any future studies should also report standardised measures of birth
weight for more accurate comparison of outcomes. Whilst the associations are small and
not found in all outcomes, they are potentially still important at a population level, and
we recommend consideration of methods to maintain iodine sufficiency in the population,
especially for women of childbearing age on restricted diets.
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