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Abstract

Raman spectroscopy shows promise as a biomarker for complex nerve and

muscle (neuromuscular) diseases. To maximise its potential, several challenges

remain. These include the sensitivity to different instrument configurations,

translation across preclinical/human tissues and the development of multivari-

ate analytics that can derive interpretable spectral outputs for disease

identification. Nonnegative matrix factorisation (NMF) can extract features

from high-dimensional data sets and the nonnegative constraint results in

physically realistic outputs. In this study, we have undertaken NMF on Raman

spectra of muscle obtained from different clinical and preclinical settings. First,

we obtained and combined Raman spectra from human patients with mito-

chondrial disease and healthy volunteers, using both a commercial microscope

and in-house fibre optic probe. NMF was applied across all data, and spectral

patterns common to both equipment configurations were identified. Linear
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discriminant models utilising these patterns were able to accurately classify

disease states (accuracy 70.2–84.5%). Next, we applied NMF to spectra obtained

from the mdx mouse model of a Duchenne muscular dystrophy and patients

with dystrophic muscle conditions. Spectral fingerprints common to mouse/

human were obtained and able to accurately identify disease (accuracy 79.5–

98.8%). We conclude that NMF can be used to analyse Raman data across dif-

ferent equipment configurations and the preclinical/clinical divide. Thus, the

application of NMF decomposition methods could enhance the potential of

Raman spectroscopy for the study of fatal neuromuscular diseases.

KEYWORD S

amyotrophic lateral sclerosis, data analysis, muscular dystrophy, neuromuscular disease,

non-negative matrix factorisation

1 | INTRODUCTION

Neuromuscular diseases are a group of neurological con-

ditions that cause progressive weakness, resulting in sig-

nificant morbidity and in many cases death. Examples

include amyotrophic lateral sclerosis, mitochondrial dis-

ease and Duchenne muscular dystrophy (DMD). A vari-

ety of different investigations are used to assess patients

for these conditions, including electromyography [1],

imaging (e.g. ultrasound and MRI) [2], muscle biopsy [3]

and genetic testing [4]. Each test has its own advantages/

disadvantages; for example, with electromyography, mul-

tiple muscles can be sampled, but findings can lack speci-

ficity, whereas muscle biopsy tends to have more limited

sampling but can provide a specific molecular diagnosis.

Although useful in identifying disease, many of these

investigations are not particularly suitable for monitoring

disease or are still under development for this purpose.

With increasing numbers of treatments being evaluated

in trials, there is a pressing need across the neuromuscu-

lar disease spectrum for translational biomarkers that

can objectively monitor symptom progression. Further-

more, quantitative readouts of disease state that cross the

preclinical/clinical divide and provide a translational

readout would help pull-through promising therapeutic

candidates into clinical trials.

Raman spectroscopy is a candidate biomarker for

complex neuromuscular diseases. We have recently dem-

onstrated spontaneous Raman spectroscopy of muscle as

a biomarker of muscle health through both in vivo

preclinical recordings [5] and ex vivo studies of human

tissue [6, 7]. The simplicity of the technique, which

requires no sample preparation and is quick to perform,

is in stark contrast to the complex and time-consuming

assays usually required to provide biochemical informa-

tion on clinical samples. Complementary to our studies

on muscle is a growing body of evidence on the potential

of Raman spectroscopy to analyse biofluids and tissue

specimens across a range of neurological disorders such

as amyotrophic lateral sclerosis [8–10], dementia [11]

and Huntington's disease [12].

As medical applications of Raman spectroscopy have

expanded, so too has an appreciation of the challenges

required to implement Raman in the study of human dis-

ease. A variety of equipment configurations are used to

study biomedical specimens, and the generation of cross-

platform data models has been identified as key develop-

ment need [13]. In addition, a wide variety of analytical

techniques have been applied to Raman data, including

different preprocessing methods, feature selection/

extraction approaches and class modelling algo-

rithms [14]. Significant progress has been made in devel-

oping a common understanding of the advantages/

disadvantages of different chemometric approaches,

which can in turn drive real world applications [15, 16].

Statistical modelling of Raman data typically begins

with dimension reduction, which makes data visualisa-

tion and further computational processes easier.

Although a variety of different techniques can be applied

to Raman spectra, principal component analysis (PCA) is

the most widely used [15, 16]. In PCA, preprocessed

Raman spectra are decomposed into a number of orthog-

onal components (principal components) which are pre-

sented in decreasing order of explained variance. PCA is

easy to implement, unsupervised and requires only lim-

ited user input, which is largely restricted to defining the

2 ALIX ET AL.
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components taken into classification models. These can

be selected according to, for example, the amount of total

variance explained across a number of components

(e.g. 90% of all variance), or a threshold for individual

component contributions to total variance. Disadvantages

of PCA relate to the interpretability of the output compo-

nents, which can cancel out and have negative values,

resulting in physically unrealistic representations of

Raman spectra.

We have recently explored non-negative factorisation

techniques with spectral data [17, 18]. Non-negative

matrix factorisation (NMF) produces a parts-based repre-

sentation of the original data, in which two smaller

matrices contain, in the context of Raman spectroscopy,

the dominant spectral patterns and their relative impor-

tance to each of the original spectra [19, 20]. The non-

negative constraint results in a realistic representation of

the data [17] and a further advantage is that, as an unsu-

pervised technique, the factorisation will find dominant

patterns across data without influence by class groupings.

Raman data from different equipment configurations and

tissue types can therefore be combined in a single

factorisation, allowing simultaneous analysis across the

combined data set.

We hypothesised that NMF would be able to find

disease-relevant spectral patterns across different equip-

ment configurations and data obtained from both preclin-

ical models and human patients. To test this, we applied

NMF to human muscle spectra collected using a com-

mercial Raman microscope and in-house fibre optic

probe, using samples taken from patients with mitochon-

drial disease and healthy volunteers. Next, we utilised

NMF on fibre optic probe spectra obtained from the mdx

mouse model of DMD, as well as human muscular dys-

trophy conditions. We found that NMF identified com-

mon spectral fingerprints across these paradigms and

thus might aid the development of Raman spectroscopy

as a methodology for the assessment of neuromuscular

diseases.

2 | METHODS

2.1 | Fibre optic and microscope Raman
spectroscopy

The fibre optic probe comprises a 0.5-mm fibre optic

Raman probe within a standard 21-guage hypodermic

needle, coupled to an 830-nm semiconductor laser

(Innovative Photonics Solutions) [21]. Identical low-OH

fibres (Thorlabs, Inc.) were used for delivery and collec-

tion of light. For removal of inelastically scattered light

and fibre-related fluorescence within the delivery path,

in-line laser wavelength bandpass filters were deployed

(Semrock Inc USA.). A long pass filter removed elasti-

cally scattered light in the return path. The collecting

fibre was optically coupled to the spectrometer (Raman

Explorer Spectrograph, Headwall Photonics, Inc. and

iDus 420BR-DD CCD camera, Andor Technology, Ltd.).

Laser power was 60 mW at the distal tip of the probe.

Microscope Raman spectra were collected using a

�50 objective, 830-nm excitation laser, coupled with a

Renishaw Raman spectrometer system (System 1000,

Renishaw Plc.). Laser power was 30 mW at the objective.

Acquisition time at each site for both the probe and

microscope was 40 s.

2.2 | Preclinical studies

Male mice (n = 8) of the C57/Bl10 mdx model of DMD

were used. As all mice in the colony carry the Dmdmdx

allele (breeding utilised homozygous female mice and

hemizygous males), wild-type male C57BL/10ScSnO-

laHsd (C57Bl/10) mice (n = 8) were used as a healthy

control (purchased from Envigo). Mouse breeding was

undertaken in a specified pathogen-free environment.

Experimental work was undertaken in a standard pre-

clinical facility (12-h light/dark cycle and room tempera-

ture 21�C). All procedures were undertaken with the

approval of the University of Sheffield Ethical Review

Sub-Committee and UK Home Office (licence number

70/8587), in accordance with the Animal (Scientific Pro-

cedures) Act 1986. The ARRIVE guidelines were followed

[22]. In vivo fibre optic Raman spectroscopy was under-

taken as previously described [5]. Briefly, mice were

anaesthetised, hindlimb fur removed and the fibre optic

Raman probe inserted into both the medial and lateral

heads of both gastrocnemius muscles.

2.3 | Human tissue

Muscle tissue from a total of 20 patients with neuromus-

cular conditions was collected through either concho-

tome needle biopsy, open muscle biopsy, or at the time of

surgery and snap frozen. These included n = 14 patients

with genetically confirmed mitochondrial disease (n = 11

with m.3243A > G mutation, n = 3 POLG-related, n = 1

single large-scale DNA mutation; see Table S1 and Alix

et al. [6] for further details). Tissue was also obtained

from patients diagnosed with dystrophic myopathy

(n = 3 limb girdle muscular dystrophy and n = 1 desmin

myopathy; see Table S2). In addition, two samples were
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obtained from patients with DMD (at the time of spinal

surgery; Table S3). Lastly, muscle tissue was taken from

n = 10 healthy volunteers with no known neurological

illness at the time of surgery for anterior cruciate repair

(see Table S1 for further details). Each participant con-

tributed one sample to the analysis. The use of human

tissue was approved by NHS Research Ethics Committees

(references 16/YH/0261 and 09/H0906/75). For the

microscope/fibre optic probe factorisation, basic details

for the human participants detailed in Section 3.1 of the

main manuscript are found in Table S1. For the mdx

mouse/human factorisation (Section 3.2), we utilised

samples from healthy volunteers and adult patients with

dystrophic muscle conditions (Table S2). This is because

we were only able to obtain two DMD samples from chil-

dren but had access to four adult dystrophic myopathy

samples which will share some common pathological fea-

tures with the mice (e.g. necrotic fibres and regenerating

fibres). Furthermore, we did not have access to age-

matched healthy tissue from children.

Prior to experiments, all samples were stored at

�80�C. For Raman data collection, samples were thawed

to room temperature and placed on a calcium fluoride

slide. Spectra were first collected from the fibre optic

probe and then transferred to the microscope. With both

equipment formats, spectra were obtained from two to

six sites on each sample. Similar regions of each sample

were chosen for examination by both the microscope and

probe, accepting that this only defined a region for spec-

tral acquisition, rather matching the exact location across

both equipment formats.

2.4 | Data analysis

Analysis was performed using custom codes in MATLAB

(MATLAB R2021b The MathWorks, Inc., Natick, MA).

For probe versus microscope comparisons, spectra were

first windowed to 900–1700 cm�1; for probe-only mouse

versus human sample comparisons, spectra were win-

dowed to 900–1800 cm�1. The reason for removing below

900 cm�1 was that the spectra obtained from the fibre

optic probe are dominated by silica artefact below this

wavenumber. For all analyses, interpolation to integer

wavenumber spacing was undertaken, followed by back-

ground subtraction using the adaptive, iteratively

reweighted penalised least squares algorithm [23],

Savitzky–Golay smoothing (second order, frame length 5)

and standard normal variate normalisation. As the latter

produces spectra with an arbitrary negative intensity, the

minimum spectral intensity was then added to all spectra

to remove the negativity.

Hierarchical alternating least squares NMF factorisa-

tion was performed [24]. In order to ensure solution

stability, a non-negative singular value decomposition,

low rank correction algorithm was used [25]. NMF

approximates the data set of an n � m matrix,

A (n samples of length m), as the product of two low-

rank matrixes (W and H):

A¼WH ,

where for an r-rank factorisation, W is size n � r and H

is size r � m. The rank matrix, H, contains r modes,

which are the dominant spectral patterns within the orig-

inal data. In the weighting matrix, W, each sample is

assigned a weight corresponding to each spectral pattern,

which denotes the importance of a given pattern to that

sample.

To select the number of spectral patterns (or rank, r)

to be generated in the factorisation, recordings from

wild-type mice were used. This was done by separating

right leg and left recordings into two matrices, L and R.

The root mean square residual between these sides is cal-

culated as

N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1

Pm
j¼1jRij�Lijj

2

n�m

s

:

Because no biological difference between the two legs is

anticipated, N represents the biological noise within the

data. For each reconstruction, the root mean square

residual between the data set (A) and the approximation

(WH) was also determined:

D¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1

Pm
j¼1jAij� WHð Þijj

2

n�m

s

:

The solution which exceeded the approximation of left

leg/right leg (i.e. when D < N) gave the chosen rank.

Comparisons of spectral weightings between disease/

healthy groups were then undertaken using nested t-tests

(spectra nested within samples, GraphPad Prism, version

9). Statistical significance was taken as p < 0.05.

Classification models were generated using linear dis-

criminant analysis (LDA) models. First, all modes were

input into the classifier, and a leave-three-out cross-

validation was performed (cv), in which data from three

samples or mice (not spectra) were left out. Different

combinations of three left out across 500 iterations with-

out replacement, i.e. each specific combination of three

was used only once. For both human and mouse data, cv

4 ALIX ET AL.
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FIGURE 1 Mitochondrial disease patients and healthy volunteers: average spectra and NMF modes from microscope and probe

formats. (A) Average spectra (with standard deviation shaded) from the two equipment formats. Wavenumber regions with prominent peaks

are highlighted. (B) Modes from the NMF analysis. Modes 1, 6 and 7 demonstrated significant differences between patients and healthy

volunteers in the same direction for both probe and microscope. Modes 2 and 3 detect patterns specific to microscope and probe formats,

respectively. New peaks of interest are denoted with wavenumber labels. Mitoc., mitochondrial; M'scope, microscope; HV, healthy

volunteers; NMF, non-negative matrix factorisation; ns, nonsignificant [Colour figure can be viewed at wileyonlinelibrary.com]
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was first done on an individual sample/mouse basis. For

this, spectral weights from each spectrum taken from a

given sample/mouse were averaged, so that the sample/

mouse input a single weight into the classifier. In addi-

tion, cv was repeated on an individual spectral basis, in

which all spectra from a given sample were left out, and

all remaining spectra classified individually. For compari-

son, PCA-fed LDA (PCA-LDA) was also performed using

the same cv approaches. The number of components cov-

ering 90% of the variance of the data was chosen for input

into the LDA. Accuracy, sensitivity, specificity and the

area under the receiver operating characteristic curve

(AUROC) were calculated.

3 | RESULTS AND DISCUSSION

3.1 | Same tissues: Different equipment
formats

Raman spectra were collected from muscle samples

obtained from patients with mitochondrial disease

(n = 14) and healthy volunteers (n = 10) using two dif-

ferent equipment formats (microscope and fibre optic

probe). The spectra obtained with both the microscope

and fibre optic probe demonstrated similar core features,

such as peaks at 1000 cm�1 (phenylalanine), 1445 cm�1

(CH modes [CH2 and CH3 deformations: bending and

scissoring] in proteins/lipids), 1550 cm�1 (tryptophan,

proteins) and 1656 cm�1 (amide I, proteins) (Figure 1A).

In addition, differences were also apparent, particularly

between 1200 and 1350 cm�1 (including peaks relating to

tyrosine, phenylalanine and the CH2CH3 deformation,

proteins/lipids), perhaps relating to differences in power

density and collection optics [6]. See Table S4 for further

tentative peak assignments and references relating to

average spectra.

NMF with a rank of 7 was applied across data from

both formats, and the spectral weightings were compared

(Figure 1B). Tentative peak assignments for new spectral

features arising outside the average spectra windows are

given in Table S5. Nested graphs showing between group

(mitochondrial disease vs. healthy volunteers) differences

are shown in Figure S1. Mode 1 demonstrated a signifi-

cant difference between the mitochondrial disease and

healthy groups for both the microscope (p = 0.02) and

probe (p < 0.0001), with this mode increasing in healthy

volunteers in both formats. Prominent peaks relating to

α-helical protein content were seen (935, 1315, 1356, and

1656 cm�1). α-helices are the dominant secondary pro-

tein structure in muscle [20], and the relative prominence

of these in healthy muscle suggests a transition to β-sheet

structures in myopathy [21]. In previous analyses of

microscope and fibre optic probe data, we observed a rel-

ative loss of α-helix-related peaks in both formats [6] and

so it is reassuring that this is evident in the combined fac-

torisation. Mode 7 was also significantly more prominent

in healthy volunteers across both equipment formats

(microscope p = 0.008; probe p < 0.0001) and shared

some similar features to mode 1. Mode 6 was significantly

TABLE 1 Classification

performance using all modes and only

modes with common differences in

both the microscope and probe.

All modes

Accuracy Sensitivity Specificity AUROC

Microscope

NMF-LDA 86.4% (4.1) 77.1% (6.6) 99.2% (2.6) 0.94 (0.03)

PCA-LDA (15 PCs) 59.1% (7.3) 62.2% (9.6) 54.6% (10.7) 0.63 (0.09)

Probe

NMF-LDA 81.0% (3.7) 88.5% (5.5) 70.5% (5.2) 0.77 (0.05)

PCA-LDA (15 PCs) 57.6% (6.9) 58.0% (8.6) 57.1% (11.3) 0.50 (0.07)

Modes with common differences in both probe and microscope

Microscope

NMF-LDA (1, 6 and 7) 70.5% (3.0) 66.0% (3.3) 76.9% (4.9) 0.80 (0.04)

Probe

NMF-LDA (1, 6 and 7) 84.3% (1.9) 87.5% (3.2) 80.0% (0.4) 0.85 (0.02)

Note: For comparison, results achieved by PCA-LDA are also provided. Mean (standard deviation) are

shown.

Abbreviations: AUROC, area under the receiver operating characteristic curve; LDA, linear discriminant

analysis; NMF, non-negative matrix factorisation; PCs, principal components; PCA, principal component

analysis.

6 ALIX ET AL.

 1
0
9
7
4
5
5
5
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://an
aly

ticalscien
cejo

u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/jrs.6

4
8
0
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

9
/0

1
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



greater in mitochondrial disease (microscope p = 0.03;

probe p = 0.0009) with prominent peaks relating

to nucleotides (1180 cm�1), tyrosine/phenylalanine

(1210 cm�1) and amide III random coil/β-sheet configu-

rations (1245 cm�1). Modes 2 and 3 found patterns rela-

tively specific for the microscope and probe, respectively,

with, for example, the aforementioned 1200–1350 cm�1

region differing between the two.

We next used linear discriminant models to further

assess the ability of NMF outputs to identify disease

(Table 1). Analyses utilising either all modes or only

those which shared common patterns across the two

equipment formats (modes 1, 6 and 7) demonstrated

high classification performances. A comparison to

PCA-LDA is also shown, with NMF-LDA demonstrating

superior performance. Classification performance at the

level of individual spectra yielded similar results

(Table S6).

3.2 | Human and mouse tissue: Same
fibre optic equipment

Raman spectra were acquired from muscle samples

obtained from patients with dystrophic muscle disease

and a preclinical model of DMD, the mdx mouse. Promi-

nent peaks at 1000 cm�1 (phenylalanine), 1450 cm�1

(CH modes, CH2 and CH3 deformations: bending and

scissoring in proteins/lipids) and 1655 cm�1 were present

in both mouse and human spectra (Figure 2A). In the

1250–1350 cm�1 region, more prominent features were

evident in the mdx and human dystrophy samples, than

in their respective healthy controls.

NMF with a rank of 5 was applied (Figure 2B; nested

plots of spectral weights are shown in Figure S2). Mode

1 demonstrated dystrophy (mdx or human) versus

healthy differences in both the mouse and human data

(mdx p = 0.0005; human p = 0.04), with greater promi-

nence of this mode in healthy muscle. Peaks associated

with α-helical structures were seen. A similar trend was

also seen for mode 2, although this did not reach statisti-

cal significance in the human group (human p = 0.08;

mdx p = 0.0006). Prominent features in this mode

included 978 cm�1 (phospholipids), 1047 cm�1 (pro-

teins), 1190 cm�1 (proline/valine), 1196 cm�1 (cytosine)

and 1335 cm�1 (CH2CH3 deformation, proteins/lipids).

Further healthy versus disease differences were evident

in the mdx data in modes 4 and 5.

The balance between α-helix and β-sheet structures

appears to be a robust biomarker of muscle health, noted

not only in the preceding microscope/probe analysis on

human tissue but also in our previous work in mice [5],

human samples using more standard PCA feature extrac-

tion [6, 7] and the work of Gautam et al. in fly models of

myopathy [26]. Biomarkers of disease that cross the pre-

clinical/clinical divide and can provide an equivalent

readout of disease state in both settings are a priority area

in fatal neuromuscular conditions [27–29]. Our previous

in vivo work in mice demonstrated no post-Raman func-

tional muscle impairment or tissue injury [5], and thus,

successful in vivo human muscle recording could provide

a quantitative, translational measure of muscle health

suitable for preclinical and clinical studies.

As only a small number of human muscle samples

were available, we did not perform multivariate model-

ling with the human data. Classification performance

data for the mdx mice are shown using all modes and

only modes 1 and 2 (Table 2). NMF-LDA again outper-

formed PCA-LDA. Spectral-level classification results

were similar (Table S7). It is worth noting that classifica-

tion performances as high as this raise the possibility of

overfitting of the data. Ideally, we would have had sepa-

rate, unseen, data to validate as a test set (both in this

and the preceding analysis). In the absence of this, cross-

validation is a standard approach to reduce overfitting,

although we accept that the lack of dedicated test data is

a weakness that could be addressed in future, larger

studies.

NMF has been shown to effectively reduce high-

dimensional data and capture important features in

different areas of medical research, including Raman

spectroscopy [30]. The non-negative constraint is particu-

larly useful for facilitating the interpretation of latent fac-

tors within spectral data. The majority of NMF methods

are iterative and converge to a local minima; however,

the initialisation of the algorithm is important in

determining the outputs, and random initialisation can

influence the convergence and stability of the final solu-

tion [31]. Herein, we used a method shown to generate

sparse initial factors [25], although other approaches are

available [31]. One of the advantages of the NMF

technique not explored in the present work is that once a

particularly important spectral pattern (or mode) is

found, this can be used for initialisation of new data.

Alternatively, only a given pattern can be sought within

new data. Thus, NMF may be particularly suitable for

identifying and then utilising disease-specific spectral

patterns.

The variable equipment configurations used in bio-

medical applications of Raman spectroscopy are seen as a

potential barrier to clinical translation. Although our sys-

tems underwent matching calibration, recent work has

demonstrated that this does not overcome the differences

between equipment platforms [13]. Average spectra from

ALIX ET AL. 7

 1
0
9
7
4
5
5
5
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://an
aly

ticalscien
cejo

u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/jrs.6

4
8
0
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

9
/0

1
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



the microscope and probe demonstrated many similari-

ties but also clear differences. Such differences are not

unexpected given the differences between the microscope

and probe in, for example, sampling volume, resolution

and power density. In addition, although spectra were

windowed to exclude silica-related artefact, the fibres

may still make a small contribution to the overall spectral

profile. To facilitate the transfer of data between equip-

ment, computational solutions have been called for, and

model transfer techniques, in which a data model

FIGURE 2 Dystrophic mouse and human muscle: average spectra and NMF modes from a fibre optic Raman probe. (A) Average

spectra (with standard deviation) from mouse and human tissue. Wavenumber regions with prominent peaks are highlighted. (B) Modes

from the NMF analysis. Mode 1 is significantly different in both the mouse and human comparisons in the same direction. Modes 2 is

significantly different for mdx with the human samples trending in the same direction but not reaching statistical significance. NMF, non-

negative matrix factorisation [Colour figure can be viewed at wileyonlinelibrary.com]
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constructed using one set of conditions (or equipment) is

used to predict new data acquired with under a different

set of conditions, have been explored [32, 33]. Our

approach here differs as all data were pooled, rather than

obtained and analysed separately. Although we do not

propose NMF decomposition as a single solution for this

complex problem, our data suggest that it may provide a

useful analytical framework. We would anticipate that

application of NMF to equipment sets more similar in

configuration, such as two microscopes or two fibre optic

probes, would likely be equally, if not more, successful in

identifying key disease-related spectral profiles.

A limitation of our present work is the small number

of samples available, particularly the paucity of DMD

muscle tissue for the mdx/human modelling. The human

diseases studied are all considered rare, and muscle tissue

can only be obtained with an invasive biopsy. Acquiring

such tissue can therefore be challenging, particularly in

children. Although the adult dystrophy samples will

share some common pathological features to the mdx

mouse, a comparison with DMD tissue would have been

preferable. During the study, we did obtain two DMD

muscle samples; however, the lack of age-matched

healthy muscle tissue adds an additional uncertainty to

the interpretation of the NMF outputs. We did attempt

analysis using DMD tissue together with our youngest

healthy volunteer tissue (see Table S3) and achieved simi-

lar results to the adult human dystrophy analysis

(Figure S3 and Table S8). Thus, a study utilising a larger

number of samples and/or more closely matched human/

mouse samples would be useful. The characteristic

spectral patterns and disease classification performance

may, of course, change in such a study. A small study

such as ours does, however, provide early data that can

be used to calculate sample sizes in future studies and

help ensure the scientific (and ethical) validity of more

costly studies. Encouragingly, previous Raman works

that have moved from small sample size, proof of

concept stages to larger testing have generally demon-

strated preserved diagnostic performance [34, 35]. Recent

proposals on data sharing to generate large databases for

modelling purposes may be also useful in testing how

robust NMF-based decompositions are in disease

detection [13].

4 | CONCLUSIONS

In this paper, we have shown that NMF can be used to

extract common spectral patterns in data acquired from

different equipment formats and human/mouse muscle.

The NMF outputs were able to classify disease with

greater accuracy than standard PCA-LDA models. NMF

decomposition methods may help combine data in multi-

centre studies and facilitate the translation of preclinical

work to human patients.
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