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Figure 1. a) Location of the different volcanic zones of the Andes. b) Location of the four
subdivisions of the Southern Volcanic Zone. ¢) The Central Southern Volcanic Zone and
location of stratovolcanoes and the Liquifie-Ofqui Fault Zone (LOFZ). Location of the LOFZ
(solid and dashed lines) inferred from Cembrano et al. (1996) and Cembrano and Lara (2009).
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Figure 2. (a) Location of the Osorno volcano in Chile. (b) Location of Osorno, La Picada,
Puntiagudo, and Calbuco volcanoes and Cordén Cenizos volcanic chain, La Vigueria cone,
and the Liquifie-Ofqui Fault Zone (LOFZ, white dashed line). The alignment of Osorno, La
Picada, Puntiagudo and Cordon Cenizos is represented by a yellow, dashed line. Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital

Elevation Model (GDEM) image was obtained via EarthExplorer,

(http://earthexplorer.usgs.gov).
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Figure 3. Osorno volcano and the deposits of the first and second stages of the 1835 eruption.
Yellow stars represent locations where samples are collected from a lava flow, whereas lapilli
sample locations are represented by red stars. Locations and dates of the lava flows and fall
deposits are based on Moreno et al. (2010) and Lara et al. (2012). ASTER—-GDEM image
from EarthExplorer, USGS (http://earthexplorer.usgs.gov).
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Figure 4. (a) Backscatter electron (BSE) images of an isolated plagioclase phenocryst where
different compositional zones are found. Brighter greyscale colours are correlated to higher
density. (b) The arrow represents the profile measured by electron probe micro-analysis
(EPMA) and its direction. (c) Relation and coefficient of determination (r*) between BSE
greyscale profile and the measured anorthite content (An = 100xCa/(Ca+Na+K); in molar
proportions). “An” is a representative description of the composition of plagioclase because
in all crystals the K content remains constant throughout (details in Supplementary Data 2).
(d) Anorthite profile composition (An) by EPMA of the measured profile (circles) coupled
with the BSE profile based on greyscale values calibrated with the composition measured by
electron microprobe (solid line).
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Figure 5. (a) Olivine-hosted melt inclusion of ~110 um diameter. (b) Resorption feature
(embayment) in olivine phenocryst with glass and plagioclase microlites. The yellow dashed
line represents the olivine grain boundary.
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Figure 6. (a) BSE image of a crystal clot of olivine grains. (b) Zoom of the BSE image,
which shows interstitial glass between the crystals constituting the clot. (¢c) EBSD map
represents the diversity of olivine crystal orientations, consistent with the observation that
the glasses are interstitial and are not melt inclusions.
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Figure 7. Total alkali versus silica (Le Bas et al., 1986) plots of the Osorno 1835 volcanic
products (grey squares), the modified composition of Os-144 (Os-144*, yellow star), melt
inclusions (Group 1 of glass, red field), and glass from groundmass (Group 2 glass, green
field), La Vigueria cone products (pink triangles), La Picada volcanic products (Vander
Auwera et al., 2019, blue field), and Calbuco 2015 volcanic products (Morgado et al., 2019a,
yellow squares).
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Figure 8. (a) Variations of Ni (ug-g™!) versus SiO2 (wt. %), (b) K20 (wt. %) versus SiO2 (wt.
%), (c) FeO*/MgO versus SiO2 (wt. %), (d) K20 (wt. %) versus MgO (wt. %), (e) CaO (wt.
%) versus MgO (wt. %), and (f) Al2O3 (wt. %) versus MgO (wt. %) of Holocene erupted
products from Calbuco volcano (Castruccio et al., 2016; Morgado et al., 2019a; Arzilli et al.,
2019; Namur et al., 2020), Osorno volcano (Tagiri et al., 1993; Moreno et al., 2010; Bechon
et al., 2022; this study), and Cayutué-La Vigueria field (Lopez-Escobar et al., 1995a; this
study).
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Figure 9. (a) Primitive mantle-normalised (Sun and McDonough, 1989) incompatible trace
element diagram for Calbuco erupted products, taken from Lopez-Escobar et al. (1995b)
Morgado et al. (2019a). Major and trace element concentrations from Osorno and La
Vigueria are available in Table 2. (b) REE patterns of bulk rock samples from volcanic
systems of the region (La Vigueria, Osorno, Calbuco, and La Picada volcanoes).
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Figure 10. (a) "“Nd/'*Nd versus ¥St/*¢Sr of volcanic products of Osorno, Calbuco,
sediments from the CSVZ trench, granulite xenoliths, gabbro xenoliths and from the
basement, and granitoids from basement. (b) Comparison of '**Nd/'*Nd versus ®’Sr/%6Sr
with other volcanic zones from the SVZ (from Hickey-Vargas et al., 2016a and references

therein).
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Figure 11. Olivine core compositions (Xo(Fe**/Mg) vs Xmen(Fe**/Mg)) for products of the
1835 Osorno eruption. Most of the olivine compositions from group 1 (Foz6.79) are in
equilibrium with the hosted melt inclusions, whereas the two olivine crystals from group 2
(Foeo-73) are in equilibrium with the hosted melt inclusions. The Fe?* in the melt is calculated
using the olivine-hosted spinel inclusions Fe**/Fe**. We calculate the equilibrium lines as
Xoi(Fe?*/Mg) = KpxXmen(Fe?*/Mg), where Kp is calculated via the Toplis (2005) procedure.
Dashed lines represent the uncertainty of the Toplis (2005) method.
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Figure 12. (a) BSE image of an olivine phenocryst and melt inclusions. (b) Zoom of the BSE
image, which shows the EPMA profiles in olivine and large melt inclusion. (c) Mg#
composition of olivine phenocryst traverse, which is flat (showing the absence of
disequilibrium), (d) MgO (wt. %) composition profiles of the melt inclusion shown in b),
which show depletion towards the rim. That depletion represents diffusion and the related
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Figure 13. Evolution of plagioclase phenocrysts zoning over time: first event (I) is nucleation
and growth of plagioclase phenocryst cores (Zone 1 composition); after that (II), growth of
plagioclase phenocryst rims and nucleation and growth of new plagioclase phenocrysts
occurred (Zone 2 composition). These two first crystallization events occurred during the
crystal mush formation. After the crystal mush building, another process generating
plagioclase-melt disequilibrium and resorption (we suggest volatile additions or heating)
occurred (IIT), and finally (IV), a last growth event occurred. We infer that the last growth
event occurred before or during the eruption triggering.



35 T T T 1 T Ll I Ll 1 L I 1 22

a) b)
N 420
30 F . [ |
A A
! ¢ {18
o8 ) ® ]
< O |22 1 |25 o0 16 g
= e = e B
3 4 g s ' z
m = =1 a
20 | B 17178 % 14
A 2 ]
A/Lv-lsz | |LV-152A 1
15 increasing fluid ‘A increasing fluid
i component N 7 | component N 110
» »
10 1 1 1 1 1 1 1 1 1 1 1 1 8
0 05 1 15 2 25 3 350 05 1 15 2 25 3 35
Rb/La Rb/Nd
6 T 1 1 1 T T T T T 120
ssh ¢) AI¥-152 1 d)
’ A L A /A 4 100
5t A - 5 LV-152
L | S 4 80
45r e ® . 3 o 2
o g 2 ®a =
S 40 |2E 1 F|E m 160 &
= %’o_; ® = ® 0
35} f & 0 =
5 R 4 40
P "9 o & F
3r |
Y | L 420
25 F = 1 more primitive products
2 1 1 1 1 1 1 1 1 1 0
48 50 52 54 56 58 0 50 100 150 200 250
Si0, (Wt%) Cr(ugg"
30 T T T T ] L]
e) ©
26 |
O B 1835 Osomo samples (this study)
22 + 5
é ® .1 [ Holocene Osorno samples (Tagiri et al., 1993;
= b1 d Moreno et al., 2010; Bechon et al., 2022)
e 18 g (€]
i:f 2 % [ 2015 Calbuco samples (Morgado et al., 2019b)
S 14tk |s
e é A L\?152 A Holocene La Vigueria samples (this study)
s @
10 ’ ® A (@ La Picada samples (Vander Auwera et al., 2019)
4 |
more primitive products
2 1 1 1 1 1 'I
02 03 04 05 06 07 08 09
108 Mg#

109  Figure 14. Plots of fluid mobile/immobile elements of Holocene volcanic samples of the
110  region: (a) Ba/La versus Rb/La and (b) plot of Ba/Nd versus Rb/Nd. (c¢) plot of La/YDb versus
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SiOz. (d) plot of Ni (ug-g!) versus Cr (ug-g'). (e) plot of Rb (ug-g!) versus Mg#. In a) and
b) the arrows represent the direction in which the fluid component in the source is increasing.
In c) the arrow represents the direction in which partial melting degree of the source is
increasing. The arrows in d) and e) represent the direction in which the products are more
primitive. We calculated Mg# assuming Fe**/Fe** = 3 (the same ratio we reported in this
article via titration) in those samples from studies in which only Fe>O3) is reported (Moreno
et al., 2010; Bechon et al., 2022).
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120  Figure 15. "*Nd/"Nd vs. ¥’S1/*Sr of whole-rock compositions of the samples from the
121 regional crustal rocks (granulite, gabbro, and granitoids; Hickey-Vargas et al., 1995; Aragén
122 et al, 2011), Calbuco and Osorno stratovolcanoes, La Vigueria small eruptive centre, and
123  samples representing mantle compositions (DMM and EM-I; Workman and Hart, 2005;
124  Garapi¢ et al., 2015) and mixing lines showing possible fluid composition supplies
125  considering the ranges of 8’Sr/*Sr ratio and '**Nd/'**Nd for trench sediments in Kilian and
126  Behrmann (2003). The sediment compositional end-members are modelled in a) and b),



127  respectively. The mixing lines are built according to the isotopic values presented in Table
128 3.
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Parasitic cone

Osorno volcano
main crater

Crystal framework (crystal mush)
within the magma reservoir beneath
Osorno volcano. During the crystallisation
of mineral phases, volatiles are exolved
and accumulated at the top of the reservoir.

b)

A perturbation triggers crystal mush
disaggregation (and resorption textures
in minerals). Subsequently, plagioclase

phenocryst rims (Zone 3 composition) and
microlite growth occurs.

¢)

Crystals and clots are disaggregated
from the crystal mush, released
from the crystal framework, and

incorporated into the eruptible magma.
d)

The main crater and parasitic cones erupt lava flows and fall deposits.

The sequence occurred for both eruptive events: January-February 1835
and November 1835-January 1836. Volatile accumulation events
during magma evolution and their subsequent release could have

triggered the relatively explosive first event in January 1985.

Figure 16. Schematic representation of the evolution of the shallow reservoir beneath Osorno
volcano before the 1835 eruption. Figure (a) shows the initial crystal mush, which is
perturbed (by heating and/or volatile addition), as represented in Figure (b). Figure (c) shows
how crystals are disaggregated from the crystal mush and incorporated to the eruptible
magma. Figure (d) shows when the eruption is triggered, it occurs in the main crater as well
as the parasitic cones (image not to scale). The main crater and parasitic cones erupt lava
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flows and fall deposits. The sequence occurred for both eruptive events: January-February
1835 and November 1835-January 1836. Volatile accumulation events during magma
evolution and their subsequent release could have triggered the relatively explosive first
event in January 1985.



