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Abstract

Insect–bacterial symbioses are ubiquitous, but there is still much to uncover about how these relationships establish, persist 

and evolve. The tsetse endosymbiont Sodalis glossinidius displays intriguing metabolic adaptations to its microenvironment, but 

the process by which this relationship evolved remains to be elucidated. The recent chance discovery of the free- living species 

of the genus Sodalis, Sodalis praecaptivus, provides a serendipitous starting point from which to investigate the evolution of this 

symbiosis. Here, we present a flux balance model for S. praecaptivus and empirically verify its predictions. Metabolic modelling 

is used in combination with a multi- objective evolutionary algorithm to explore the trajectories that S. glossinidius may have 

undertaken from this starting point after becoming internalized. The order in which key genes are lost is shown to influence 

the evolved populations, providing possible targets for future in vitro genetic manipulation. This method provides a detailed 

perspective on possible evolutionary trajectories for S. glossinidius in this fundamental process of evolutionary and ecological 

change.

DATA SummARy

The Python code for running the algorithm with an example 
data set is available from GitHub (https:// github. com/ St659/ 
SodalisFBAEvolution). The data generated by the simulations 
are available in the York Research Database (https:// pure. 
york. ac. uk/ portal).

InTRoDuCTIon

Symbioses are both fundamental and ubiquitous in nature. 
Understanding their evolution poses an ongoing challenge, 
as well as an expanse of unresolved research questions. 
Bacterial symbionts of insects provide a range of benefits, 
including stress tolerance [1, 2], protection from predation 
[1, 3, 4] and the provision of metabolites [5–10]. The latter 
forms arguably the strongest link within the symbioses. Host 
and symbiont frequently share metabolic substrates, as well 
as the products and components of individual biosynthetic 
pathways [7, 11–15]. These relationships typically enable the 

host to survive on a nutritionally restricted diet, such as blood 
[8, 16, 17] or plant sap [18–20].

Deciphering the evolutionary pressures that affect the organ-
isms within a symbiosis is an essential part of understanding 
the relationship. This includes establishing how the symbioses 
develop over time and the way in which the metabolism of 
the individuals is intertwined. It is, however, often hindered 
by biological difficulties. Symbiotic bacteria undergo genomic 
streamlining, may not be cultivatable in vitro, may no longer 
express stress response genes and might lack a sound outer 
membrane [4, 5, 21–25]. It is, therefore, impossible in many 
cases to test hypotheses about host–symbiont interactions in 
controlled experimental conditions. In these circumstances, 
computational techniques offer a viable, and currently the 
only, alternative to investigating metabolic potential and 
pseudogenization in symbiotic bacteria.

Computational biology is well established as a key tool of 
scientific discovery, now that vast amounts of data are gener-
ated quickly and cheaply from advancements in sequencing 
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technology [26, 27]. Genome- scale metabolic modelling 
of micro- organisms enables predictions to be made about 
metabolite preferences, transporter use and the function-
ality of biosynthetic pathways [26, 28]. Microbial metabo-
lism can be simulated using flux balance analysis (FBA), a 
constraint- based quantitative approach that reconstructs a 
metabolic network from a genome annotation [27, 29]. FBA is 
a powerful tool when based on a well- annotated genome and 
with the provision of in vitro experimental validation [29].

FBA is widely used for biotechnology applications, and this 
can be re- purposed to examine symbiosis. There are several 
published examples of using FBA to analyse the metabolism 
of symbiotic bacteria, including for Buchnera aphidicola 
[7, 30, 31], Sodalis glossinidius [32, 33], 'Candidatus Portiera 
aleyrodidarum' [34], Hamiltonella defensa [34] and strains 
of Blattabacterium [35]. There are also models published 
for the Synechocystis species used in the study of artificially 
induced symbiosis [36–40]. FBA is useful in this instance, as 
experiments that would not be possible empirically, due to 
culturability issues, can be performed in silico. Furthermore, 
the genomes of symbiotic bacteria are often unusual, with 
large pathway deletions or widespread pseudogenization 
[6, 25, 41, 42]. Analysis of the resulting metabolic network 
via FBA can suggest which pathways are being used when 
supplied with different media, and predict which external 
metabolites might be required to support growth in vitro.

FBA has been applied to several microbiological problems. 
Boolean logical operators have been incorporated into 
Escherichia coli metabolic models to investigate the impact of 
gene regulation on a system [43–46]. Dynamic FBA (dFBA), 
where a rate of change in flux constraints is included, has 
successfully modelled diauxic growth in E. coli [47]. FBA has 
been used to compare strains of Blattabacterium from sepa-
rate cockroach lineages to assess their divergence [35], and 
to predict the evolution of metabolism from E. coli experi-
mental data sets [48]. The evolution of metabolic networks in 
isolation has also been simulated with the aim of identifying 
key metabolites [49], and to investigate pseudogenizations 
in specific metabolic pathways [50]. FBA has not yet been 
harnessed to its full potential with regards to the investigation 
of symbiont evolution. This is perhaps surprising given that 
several models of E. coli metabolism are available as an evolu-
tionary starting point [51–56]. The evolution of B. aphidicola 
and Wigglesworthia glossinidia from an E. coli ancestor has 
been simulated using FBA [56, 57]. This work, whilst elegant, 
has a key limitation. Reactions that are lost at the start have 
no chance of being reintroduced. This limits the evolutionary 
space that can be explored, as the loss of a key reaction at the 
start will fundamentally affect which reactions can be lost 
subsequently. A similar approach to that used by Pál et al. [56] 
was used with dFBA to study the evolution of cooperation and 
cross- feeding in E. coli [58]. Using FBA in isolation to remove 
reactions successively, therefore, may not be the optimal way 
to simulate the evolution of symbiosis.

In silico evolution has been used increasingly in recent years 
to complement in vivo experimental evolution [59]. In silico 

evolution benefits from being able to test widely different 
ecological conditions, whilst controlling key variables [60]. 
For example, it allows the investigation of groups of muta-
tions that lead to a specific phenotype or mutations that are 
difficult to induce in vitro [61]. This has enabled the study of 
many aspects of evolution, including simulating the reduction 
of genome size in an individual [60]. Multi- objective evolu-
tionary algorithms (MOEAs) have been used in many disci-
plines for solving problems that have two or more conflicting 
objectives [62]. The use of MOEAs in combination with meta-
bolic models has been implemented for the design of minimal 
genomes [63] and for the production of industrially relevant 
molecules [64, 65]. It has, however, seen only limited use for 
in silico evolution [66]. When viewed computationally, the 
evolution of symbiosis can be considered as a multi- objective 
optimization; symbiotic bacteria undergo genome reduction, 
whilst trying to maximize their individual growth.

A free- living organism within the genus Sodalis has been 
characterized and sequenced only recently [67, 68]. Sodalis 
praecaptivus was isolated from a human wound, caused by an 
impalement on a crab apple tree branch, and it is assumed that 
the tree was the likely source of the S. praecaptivus infection. 
S. praecaptivus is a prototroph, capable of growth in minimal 
media and at 37 °C [68]. The annotated genome sequence for 
S. praecaptivus is also available [67]. It is of particular interest 
given its close relation S. glossinidius, secondary symbiont 
of the tsetse [25]. The tsetse, genus Glossina, is medically 
important as the vector for Trypanosoma brucei, causative 
agent of human African trypanosomiasis [69]. S. praecaptivus, 
therefore, provides a rich set of data from which to begin 
investigations into the origin of, and adaptations within, the 
tsetse–S. glossinidius symbiosis.

Here, we present a flux balance model for S. praecaptivus, 
iRH830. This model, and a previously presented model of  
S. glossinidius metabolism, iLF517 [33], both represent adap-
tations of the organisms to their contrasting environments. 

Impact Statement

Insect–microbe symbioses are challenging to study as 

the symbionts may not be amenable to in vitro culture 

or traditional genetic manipulation techniques. The 

establishment and tracking of symbiosis from initiation 

to infection also presents technical challenges. A meta-

bolic model of a free- living plausible starting organism is 

presented and verified against empirical data. This work 

provides a computational method to examine the poten-

tial evolutionary trajectories that symbionts may have 

taken once becoming internalized by a host. It enables 

new questions to be asked about genome reduction and 

niche adaptation by symbiotic bacteria. This technique 

has wider implications beyond symbiosis, with potential 

applications in directed evolution for industrial biotech-

nology.
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The Sodalis system is, therefore, an excellent candidate for 
assessing the ability of FBA to describe the evolution of 
symbioses. A MOEA has been used to evolve iRH830 under 
various biological conditions. The aim was to investigate 
computationally the route that S. glossinidius may have taken 
in its transition to symbiosis. It is not known whether the 
solutions found by S. glossinidius, described in iLF517, are 
the only possible outcomes given the metabolic constraints 
of the microenvironment, or whether the symbiont’s unusual 
metabolic network evolved by chance. The application of 
the MOEA to iRH830 enabled us to ask in which order of 
the evolutionary sequence key pseudogenizations may have 
occurred. The effect of exposing the ancestral Sodalis to 
contrasting diets was modelled to mirror the different trajec-
tories that this genus has taken within blood- and sap- feeding 
insects. The techniques used here could be applied to other 
symbiotic systems to drive forward the discovery of novel 
relationship criteria.

mETHoDS

Bacterial strains, growth conditions and reagents

S. praecaptivus was obtained from the DSMZ (German 
Collection of Microorganisms and Cell Cultures). Working 
stocks were established by incubating starter cultures on 
LB agar (Merck) plates overnight at 37 °C. A single colony 
was then sub- cultured onto a fresh LB plate and incubated 
overnight at 37 °C. A single colony was selected with a sterile 
pipette tip and used for downstream experimentation as per 
the protocol of Biolog, the manufacturer. Briefly, the colony 
was vortexed in IF-0 medium before a redox dye was added 
(Biolog). Phenotypic microplates were used to screen for the 
ability of S. praecaptivus to grow on a range of carbon sources, 
using PM1 and PM2A microplates (Biolog). A 100 µl bacte-
rial suspension in the relevant medium was added per well. 
Optical density was measured at 590 and 730 nm in a micro-
plate reader (Epoch; BioTek), and incubated with double 
orbital shaking at 37 °C for 24 h. Discrepancies between in 
silico and in vitro Biolog results were re- examined by estab-
lishing individual cultures of S. praecaptivus in M9 salts in 
96- well microplates, with supplementation with the metabo-
lite of interest at a range of concentrations from 25 mM to 
50 µM. Cultures were incubated in a microplate reader with 
double orbital shaking at 37 °C for 36 h.

Construction of the S. praecaptivus metabolic 
network

The annotated S. praecaptivus genome sequence, CP006569.1, 
was downloaded from the National Center for Biotechnology 
Information in GenBank format. Genes in S. praecaptivus 
with the same annotation as genes in the E. coli strain K-12 
substrain MG1655 genome (ASM584v2) were highlighted, 
and the reactions encoded by these genes extracted from the 
BiGG Models database [70]. These processes were automated 
using custom scripts written in Python.

FBA models of S. glossinidius (iLF517 [33]) and E. coli 
(iJO1366 [54, 55], iJR904 [53], iAF1260 [52]) were then used 

to aid the identification of missing reactions. The reactions 
and corresponding gene assignments in these published 
models were compared to the draft S. praecaptivus model. 
These gene assignments were then used to guide translated 
nucleotide and protein blast searches of the S. praecaptivus 
genome. KEGG [71, 72] and EcoCyc [73] databases were used 
to confirm the identity of the E. coli genes encoding each 
reaction. S. glossinidius gene assignments were taken from 
iLF517 [33]. These orthologues in E. coli and S. glossinidius, 
with sequences taken from UniProt [74], were used as blast 
search queries.

KEGG, BiGG Models and MetaCyc [75] were used to assign 
reaction stoichiometry. Candidate pseudogenes were aligned 
with known functional orthologues using ClustalX 2.1 [76]. 
Those with sequences missing or mutations in key residues 
were not included in the model. FBA and literature searches 
were used to identify and fill gaps in metabolic pathways 
appropriately [77]. The xylitol pathway components in Morga-
nella morganii subsp. morganii were identified using KEGG, 
with candidate protein sequences extracted from UniProt and 
used in a protein blast search against S. praecaptivus. KEGG 
was also used to identify known N- acetyl- d- galactosamine 
(GalNAc) degradation pathways.

FBA

FBA solutions were generated using the GNU linear 
programming kit (GLPK) integrated with custom soft-
ware in Java. Oxygen uptake was constrained to 20 mmol 
(g DW)−1 h−1, comparable to other models of free- living 
Gram- negative bacteria. The uptake of ammonia, water, 
phosphate, sulphate, potassium, sodium, calcium, carbon 
dioxide, protons and essential transition metals was uncon-
strained for all media conditions. Cofactor constraints 
were implemented by introducing these metabolites to the 
biomass functions at small fluxes [1×10−5 mmol (g DW)−1 
h−1] [7]. iRH830 was supplied with either 6 mmol GlcNAc 
(g DW)−1 h−1 and 1 mmol thiamine (g DW)−1 h−1 (‘famine’), 
a tsetse- specific medium (‘blood’; Table S1, available with 
the online version of this article) or a sap- inspired medium 
([77]; ‘sap’). Full recipes are provided in Supplementary 
Data 1. The phenotype was considered viable if the biomass 
production rate was greater than 1×10−4 g DW (mmol 
glucose)−1 h−1. Futile cycles, closed loops of a number of 
reactions, were detected by the presence of unsustainably 
large fluxes. Futile cycles often occur when several reversible 
reactions are present in which the product of one becomes 
the substrate of another. These reactions were examined 
individually, and solved by adjusting the reversibility with 
guidance from EcoCyc and BiGG Models.

To investigate the concordance between the in vitro screen 
and the in silico outputs, iRH830 was, where possible, supple-
mented with the carbon sources analysed at an exogenous 
concentration of 6 mmol (g DW)−1 h−1. A qualitative pres-
ence/absence of a positive biomass output was noted. A 
full description of the model is provided in Supplementary  
Data 1.
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Fig. 1. Process of the MOEA. A starting population of individuals is initialized, and the fitness calculated by solving the FBA model to 

calculate biomass output and the number of active reactions. For each generation, the population is allowed to mutate and then the 

fitness of each individual is evaluated from the biomass output and the sum of the active reactions. A new population is then selected 

using nondominated sorting, generating a Pareto front of biomass output to active reactions. The process of mutation and selection 

is repeated for 3000 generations resulting in a final population. Turquoise boxes represent the start and final populations; pink boxes 

represent the iterative process of mutation and selection.

Robustness analysis

Robustness analysis of the iRH830 network was executed 
using COBRApy [78] to conduct single reaction deletions. 
iRH830 was supplied with either famine or blood media 
under aerated conditions. The flux through reactions was 
set to zero individually and the resulting effect on biomass 
output measured. Reactions were categorized as essential 

if the resulting biomass output was less than 1×10−3 g DW 
(mmol glucose)−1 h−1.

Implementation of a moEA

A MOEA was used to explore possible evolutionary trajec-
tories in the genus Sodalis. An overview of the process is 
provided in Fig.  1. The Non- dominated Sorted Genetic 
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Table 1. In silico evolution conditions

Conditions under which iRH830 and iLF517 were evolved, including WT 

or reaction knockouts and media type.

Scenario Test Model Media

i Effect of growth media iRH830 (WT) Blood, sap, famine

ii Effect of gene loss iRH830 (∆ASPTA, 

∆PDH, ∆PPC)

Blood

iii Future of S. glossinidius iRH830 (WT), 

iLF517 (WT)

Blood

Algorithm (nsga- ii) [79] from the Distributed Evolutionary 
Algorithms in Python (deap) [80] package was used in 
combination with the COBRApy package [78] for FBA evalu-
ation. Equal weight was placed on reducing the number of 
reactions used in the model, whilst maximizing the biomass 
output. The Python code for running the algorithm with an 
example data set is available from GitHub (https:// github. 
com/ St659/ SodalisFBAEvolution). The full datasets gener-
ated by the simulations are available from the York Research 
Database (https:// pure. york. ac. uk/ portal).

Population initiation

Prior to starting an evolutionary run, reactions essential to 
growth were identified using a single reaction knockout. 
Essential reactions were defined as those producing a biomass 
output of less than 1×10−3 g DW (mmol glucose)−1 h−1. Reac-
tions that were identified as essential were not included in the 
subsequent mutation strategy; therefore, reducing the solu-
tion space and computational time taken to run the MOEA. 
The essential reactions were added back to the evolved popu-
lations for downstream analysis.

At the start of the algorithm an initial population of 100 geno-
type copies was created, with all non- essential reactions being 
active (Fig. 1). Each genotype consisted of a binary number, 
where a one or zero corresponded to the reaction being active 
or inactive, respectively. This is a proxy for gene loss, where a 
one- to- one gene- protein reaction mapping is assumed. Reac-
tions, rather than genes, were used to reduce the potential 
search space whilst maintaining the key phenotypic effect. 
All post- evolution analysis focused on the reactions lost or 
retained.

mutation

Mutation was performed on each genotype by flipping the 
value of each reaction with a probability of 0.005 (Fig. 1). 
The fitness of each individual is evaluated by solving the FBA 
model to calculate both its biomass output and the sum of 
number of active reactions.

Fitness evaluation and selection

The population was first evaluated for non- dominated indi-
viduals. This gave a population of individuals that has the 
highest biomass output for the current number of active 
reactions (Fig. 1). From the non- dominated population, the 
Euclidean distance between each individual was calculated. 
A greater priority was given to selecting individuals with a 
larger Euclidean distance. This prevented the clustering of 
similar potential solutions, thereby reducing the likelihood 
of becoming trapped in sub- optimal local minima within 
the search space. The resulting population maximized the 
convergence on the highest biomass output, lowest number of 
reactions and the distribution of those solutions. There will be 
a set of solutions whereby the number of reactions cannot be 
minimized further without also reducing the corresponding 
biomass output. This set of solutions is known as a Pareto front. 
The algorithm was repeated for 3000 generations to produce 

genotypes that converged. This indicated that minimal new 
solutions were being found. The biomass output from the slim 
optimization COBRApy function and the summation of the 
number of active reactions was used to evaluate the fitness.

moEA variations

The MOEA was run under several conditions in order to inves-
tigate aspects of symbiont evolution. Full details are provided 
in Table 1. Scenario i investigated the trajectories taken when 
the S. praecaptivus model was provided with blood, sap 
and famine growth media. In scenario ii, gene knockouts 
were simulated by removing individual reactions from the  
S. praecaptivus model prior to commencing the evolution. The 
reactions chosen were ASPTA (aspartate transaminase), PDH 
(pyruvate dehydrogenase) and PPC (phosphoenolpyruvate 
carboxylase). In scenario iii, the MOEA was applied to a 
model of S. glossinidius metabolism, iLF517 [33]. Here, iLF517 
was supplied with the blood medium for 3000 generations.

Analysis of evolved populations

For all conditions, the algorithm was independently run ten 
times, giving a total of 1000 final solutions. All of the solutions 
were pooled together for analysis. To identify key reactions 
in the evolved populations, individuals were selected from 
each condition and the remaining non- essential reactions 
extracted. The subset of reactions that were present in every 
individual selected were designated as ‘core nonessentials’, 
and are referred to hereafter as such. When examining the 
similarity between evolved models, exchange reactions and 
reactions carrying zero flux were discounted.

RESuLTS

model of S. praecaptivus metabolism – iRH830

In order to investigate computationally the path that S. glossi-
nidius has taken to symbiosis, a metabolic model describing 
its close, free- living relative S. praecaptivus was constructed 
(Fig.  2). Full details are given in Supplementary Data 1. 
iRH830 contains 830 genes, 891 metabolites and 1246 reac-
tions (excluding pseudoreactions), and is a prototroph for 
all essential amino acids. An iterative process of gap filling 
was undertaken by comparing the draft S. praecaptivus model 
to iLF517 (S. glossinidius) and iJO1366, a model of E. coli 
metabolism [54]. iRH830 is supplied with an oxygen uptake 
value of 20 mmol (g DW)−1 h−1, reflecting the highly aerated 



8

Hall et al., Microbial Genomics 2020;6

Fig. 2. The construction process for iRH830. The S. praecaptivus genome was mined for orthologues to metabolic genes in E. coli and  

S. glossinidius before compiling into a draft model. An iterative process of testing and gap filling was then performed, using information 

provided in various databases (see the key).

conditions the organism is grown in and to retain consistency 
with models of E. coli metabolism [53, 54].

A series of biochemical screens were conducted using Biolog 
phenotypic microplates to strengthen the model. In total, 
190 metabolites were tested for their ability to act as the 
sole carbon source for S. praecaptivus. Experiments were 
conducted in triplicate with full results detailed in Supple-
mentary Data 2. Through this phenotypic screen, it was found 
that S. praecaptivus was able to use 19 of the metabolites tested 
as a sole source of carbon (Table S2). When these metabolites 
were tested in silico by the exogenous addition to iRH830, 
it was found that all but two mirrored the in vitro data: 
GalNAc and xylitol. This was then confirmed quantitatively 
in a 96- well microplate with xylitol or GalNAc supplemented 

into M9 minimal medium (Fig. S1a, b). Neither models of  
S. glossinidius (iLF517 [33]) or E. coli (iJO1366 [54]) were able 
to produce a positive biomass output with xylitol or GalNAc 
as sole sources of carbon (Table S2).

Comparison of the S. praecaptivus genome to other known 
d- xylitol consumers, such as M. morganii subsp. morganii, 
revealed a highly conserved catabolic operon containing 
the distinguishing d- xylitol dehydrogenase (79.7 % iden-
tity between the S. praecaptivus orthologue, AFW03778/
Sant_3108, and the M. morganii subsp. morganii protein, 
UniProt ID Q59545). The cluster contains a xylulose reduc-
tase as the second enzyme required to convert d- xylitol to the 
central metabolite d- xylulose-5- phosphate (Fig. S1c) and a 
complete ABC transporter that is likely specific for d- xylitol. 
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Fig. 3. Robustness analysis of iRH830. (a) Essential reactions in famine (top) and blood (bottom) media. Essential reactions are 

categorized by subsystem. (b) Essential reactions involved in amino acid metabolism in iRH830 in famine (top) and blood (bottom) media.

Interestingly, the pathway is also complete in the reduced 
S. glossinidius genome (Table S3), suggesting that this is a 
conserved metabolic trait of the genus Sodalis. The cluster is 
not present in E. coli, with only weakly matching homologues 
found fragmented over the genome (Table S3). The proposed 
pathway for GalNAc metabolism was also constructed using 
known pathways (Fig. S1d).

Robustness analysis of the S. praecaptivus 
metabolic network

Robustness analysis was used to examine reaction essentiality 
and, therefore, redundancy in the iRH830 network. iRH830 
was run on a simple, tsetse- specific nutrient- limited medium 
(famine) and a blood medium simulating the internal tsetse 
environment and informed by S. glossinidius requirements 
[33] (blood; Table S1). All media are detailed in Supplemen-
tary Data 1. Reactions were removed individually and the 
resulting effect on biomass output noted. The same analysis 
was also run on iLF517 in blood as a comparison.

There are 282 essential reactions in iRH830 when the medium 
(famine) is nutritionally limited, and 228 in the tsetse- specific 
blood medium (Fig. 3a). The overall pattern for the two condi-
tions is very similar. The subsystem most represented in either 
condition is for cofactor and prosthetic group biosynthesis, 
with 88 and 87 essential reactions for the famine and blood 
media, respectively. The main difference at the subsystem level 
can be attributed to amino acid metabolism; 15.8 % of the 
total number of essential reactions in blood and 29.8 % in 
the famine medium that does not contain amino acids are 
involved in these pathways. Of these, the essential reactions 
involved in l- arginine, l- proline, l- threonine and l- lysine 
metabolism are highly prevalent in both media types (Fig. 3b).

media provisioning affects evolutionary trajectories

nsga- ii is a heuristic multi- objective optimization algo-
rithm used to evaluate multi- objective problems without 
giving weight to any specific outcome. Evolution within a 
constrained environment, such as the tsetse microenviron-
ment, can be considered a multi- objective optimization 
problem of trying to reduce the genome size to increase 
replication speed, while still retaining sufficient capacity 
to grow [81]. The MOEA was used to explore the potential 
evolutionary trajectories of S. praecaptivus when exposed 
to similar environmental conditions to S. glossinidius. A 
graphical description of the MOEA is provided in Fig. 1. A 
key feature of this is the option of reactions that have been 
removed being re- introduced later in the simulation. This 
helps to prevent the model from consistently finding the same 
solutions and instead allows a greater evolutionary space to 
be explored. The conditions under which iRH830 and iLF517 
were evolved are detailed in Table 1. In scenario i, iRH830 
was evolved in blood and famine growth media, as well as a 
medium that mimics plant sap (Supplementary Data 1), to 
examine the effect of metabolite availability. In scenario ii, 
three key reactions, ASPTA, PDH and PPC, were removed 
from iRH830 prior to evolution to compare the trajectories 
that arise as a result of pseudogenizations, and to investigate 
if these were possible adaptations prior to symbiont establish-
ment. The gene encoding PPC is thought to be pseudogenized 
in S. glossinidius, whereas the PDH and ASPTA reactions are 
predicted to be functional [33]. In scenario iii, the MOEA 
was applied to iLF517 to investigate the possible future of  
S. glossinidius as a symbiont.

Species of the genus Sodalis have been found in insects 
that feed on a variety of contrasting diets, including blood  
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Fig. 4. iRH830 evolved under different starting conditions. (a) Evolution of iRH830 in a tsetse- specific blood medium (left), a nutritionally 

limited famine medium (centre) and a medium mimicking plant sap (right). (b) iRH830 evolution in a blood medium with the reactions 

ASPTA (left), PDH (centre) and PPC (right) removed at the start. The MOEA was run for 3000 generations, with the plot depicting new 

populations every 50 generations (blue to green). Black boxes indicate individual solutions selected for further analysis.

(e.g. tsetse [25] and ticks [82–84]) and plant tissue (e.g. weevils 
[85]). To replicate Sodalis evolution in different environments, 
the MOEA was applied to iRH830 that was supplied with 
a tsetse- specific blood medium, a famine medium and a 
medium that mimics plant sap (Table 1, scenario i). Sap was 
chosen as a comparison medium as Sodalis- allied symbionts 
have been identified in a range of phytophagic insects [86–91]. 
The algorithm underwent ten runs of 3000 generations and 
the resulting solutions were collated.

In all conditions, the models evolved to completion, 
demonstrated by the convergence of solutions to the left of 
the plots (Fig. 4a). The number of reactions decreases over 
evolutionary time, with the majority of solutions clustering 
at the maximum biomass output. This is an indication that 
sub- optimal solutions are being removed successfully. After 
3000 generations, there are a range of solution sizes at the 
maximum biomass output found in sap, whereas in blood and 
famine all solutions at this time point cluster at the minimum 
number of reactions. The two complex media, blood and sap 
(Fig. 4a), produce a lot of metabolic flexibility, with a complete 
range of possible biomass outputs produced by the smallest 
models. When grown in the simple famine medium, there 
is significantly less flexibility in terms of possible solutions 
found (Fig. 4a). Here, the majority of the solutions cluster at 
the minimum reactions/maximum biomass output. This is as 
expected, given the fitness function of the MOEA. In blood 
and sap, the biomass outputs reach near zero, made possible 
by the variety of available substrates. In famine, the options 
for streamlining are limited, resulting in few solutions that 
are able to deviate away from what is selected by the fitness 
function.

A number of individual solutions that were representative 
of the biomass output of iLF517 [33] were then selected 
from each of these simulations (Fig.  4, black boxes). The 
raw, binary data were translated back into reaction names 
and these were subsequently processed to produce a list of 
‘core non- essential reactions’. These reactions are found in all 
individuals selected, and do not produce a lethal phenotype 
when removed. A full list of all core non- essential reactions 
described here can be found in Table S4. There are 14 core 
non- essential reactions found in all 1194 of the individuals 
examined when iRH830 was supplied with blood: AGDC, 
ARGabc, ASNt2r, G6PDA, H2Ot, HISt2r, ILEt2r, NH4t, RPE, 
TKT1, TKT2, TMK, TRPt2r and TYRt2r. In sap, only one 
non- essential reaction is found in all 1888 individuals: the 
l- arginine ABC transporter reaction ARGabc. As anticipated, 
when grown in the limited famine medium, there are a higher 
number of core nonessential reactions (22 found in each of 
the 2989 individuals tested): ATPS4r, CO2t, ENO, FORt, 
GAPD, GHMT2r, GLUDy, ORNDC, PAPSR, PGCD, PGK, 
PGM, PPPGO3, PSERT, PSP_L, RPE, TALA, THRAi, TKT1, 
TPI, TRDR and TRPS1.

The rare core non- essential reactions were then calculated. In 
famine, there are 73 unique reactions that occur in less than 
0.1 % of the 2989 evolved models. This is significantly more 
than for sap (13 in less than 0.1 % of 1888 models) and blood 
(5 in less than 0.1 % of 1194 models).

These core non- essential reactions were then analysed by 
subsystem to assess themes across the different conditions. 
In blood, over half (8 of 14) of these are secondary trans-
porter reactions (Fig. 5a). This reflects what is observed in 
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Fig. 5. Core non- essential reactions in evolved iRH830 populations. (a) The proportion of core non- essential reactions per condition by 

subsystem when the ancestral iRH830 is exposed to blood (left), famine (centre) or sap (right) media. (b) Core non- essential reactions in 

∆ASPTA (left), ∆PDH (centre) and ∆PPC (right) iRH830 models in a blood medium, grouped by subsystem.

S. glossinidius, which has retained, for example, secondary 
amino acid transporters, as well as losing metabolic pathways, 
whilst maintaining functional transporters in order to scav-
enge free metabolites [33, 92]. As mentioned previously, the 
only core nonessential reaction in sap is a transport reaction. 
In contrast, the set of core nonessentials are more varied when 
metabolites are limited (famine), with a particular emphasis 
towards central metabolism and amino acid metabolism.

order of gene loss can be estimated

A characteristic of S. glossinidius and other symbiotic 
bacteria is their propensity to accumulate pseudogenes [41]. 
It is not known whether certain genes are lost early in the 
tsetse–Sodalis symbiosis in order to facilitate the establish-
ment of the relationship, or whether their loss is an inevitable 
consequence of genomic streamlining. To investigate the 
effect that pseudogenizing key genes early in evolutionary 
time has on the trajectory of a symbiont, the MOEA was 
run on iRH830 with one of three reactions involved in the 
TCA (tricarboxylic acid) cycle removed at the start, with the 
resulting solutions compared to WT (Table 1, scenario ii). An 
assumption is made in these simulations that pseudogenes are 
non- functional. The first reaction selected was PPC (Fig. 6). 
The gene encoding this reaction, ppc, is pseudogenized in  
S. glossinidius [33] and it was thought that the loss of this 
gene would have had a significant impact on the resulting 
evolution of the symbiont. The two other reactions selected 
were PDH and ASPTA. These reactions are both encoded by 
genes predicted to be functional in S. glossinidius (Fig. 6). It 
was hypothesized that the loss of PPC may result in a different 
evolutionary trajectory compared to the loss of PDH or 
ASPTA, with the former potentially producing solutions that 
were more similar to S. glossinidius metabolism.

When considering the population plots, there is minimal 
qualitative difference between ∆PDH and ∆PPC (Fig. 4b). 
∆ASPTA, in contrast, produces solutions with a much lower 

biomass output and with fewer individuals that deviate away 
from the optimum as defined by the fitness function. A selec-
tion of individuals was then examined and the number of 
core non- essential reactions in the evolved models analysed as 
described previously (Fig. 4b, black boxes). There are 1, 11 and 
9 core non- essential reactions in the WT, ∆PDH and ∆PPC 
solutions, respectively, whereas there are 61 in ∆ASPTA. These 
61 reactions function in a variety of subsystems, particularly 
transport, central metabolism, amino acid metabolism and 
nucleotide salvage pathways. There are minimal differences 
between the core non- essential reactions at the subsystem 
level between ∆PDH and ∆PPC (Fig. 5b). The main differ-
ence of note is the presence of reactions involved in amino 
acid metabolism in the ∆ASPTA, but not the ∆PDH or ∆PPC 
solutions. This could be of relevance given the amino acid- 
rich haematophagic tsetse diet. The order in which key pseu-
dogenizations occurred can, therefore, be estimated using 
the resulting evolutionary trajectories as a guide. The gene 
encoding PPC could have been lost early by S. glossinidius 
in the sequence of pseudogenizations with minimal impact 
on its fitness.

Prediction of the evolutionary future of  
S. glossinidius as a symbiont

S. glossinidius is a secondary symbiont. Both bacterium and 
insect can survive independently of one another, and the 
former is likely a more recent acquisition [25]. It is, however, 
unclear how recently S. glossinidius was captured or, given 
the pseudogenizations already present, how much more 
streamlined its genome can become. The algorithm was, 
therefore, applied to iLF517 in a blood medium with the aim 
of evaluating potential future evolutionary trajectories within 
the bounds of its relationship with host and primary symbiont 
(Table 1, scenario iii). There is a spread of biomass outputs 
found at the end of the simulation (Fig.  7a), as observed 
when iRH830 was evolved in blood. The smallest solutions 
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Fig. 6. TCA (tricarboxylic acid) cycle reactions examined by the MOEA. Three reactions were removed from iRH830 to investigate the 

resulting trajectories following application of the MOEA: ASPTA, PDH and PPC. Blue arrows show reactions functional in S. praecaptivus 

and S. glossinidius; the white arrow shows a reaction not functional in S. glossinidius. Gene associations in S. praecaptivus and  

S. glossinidius are given in blue and black text, respectively. Adapted from previous work (Hall et al.) [33].

contain approximately 300 reactions. After 3000 generations, 
the iLF517 model retained 51±1.1 % of the starting 606 reac-
tions compared to iRH830, which was reduced to 27±1.8 % 
of the 1247 starting reactions. The S. glossinidius genome can, 
therefore, reduce its potential coding capacity for metabolic 
genes to approximately half the size that it is currently.

The evolved solutions were then compared to the evolved 
iRH830 models to assess their similarity. iLF517 converges on 
a minimum after approximately 1000 generations, compared 
to the 2500 generations taken by the evolved iRH830 model to 
find the minimum number of reactions (Fig. S2). The greater 
standard deviation of the iRH830 solutions compared to 
iLF517 is likely due to the larger starting point of the free- 
living model. The evolved iRH830 and iLF517 solutions 
ultimately converge at a similar point. To investigate this 
further, ten evolved models for both iRH830 and iLF517 
were analysed. All exchange reactions and those that carried 
zero flux were removed from further analysis. Full evolved 
models with fluxes can be found in Supplementary Data 3. 
Of the 383 unique reactions that carry flux in the evolved 
iRH830 models, 289 (75.5 %) are found in all ten. For the 
iLF517 solutions, 301 of the 316 (95.3 %) unique reactions that 
carry flux are found in all ten. This suggests that the smaller  
S. glossinidius model has fewer viable trajectories compared to 
the larger S. praecaptivus model. Of the 441 unique reactions 
across the 20 evolved models, 225 (51 %) were found in all 
of the iRH830 and iLF517 evolved solutions; they are core 
across the two species. The biomass outputs for the evolved 
iRH830 and iLF517 solutions range from 0.064 to 0.281 g 
DW (mmol glucose)−1 h−1, and 0.075 to 0.331 g DW (mmol 

glucose)−1 h−1, respectively (Fig. 7b). Given the differences 
between the solutions from the two simulations, and the lower 
proportion of core conserved reactions, it is possible that  
S. praecaptivus may not be the free- living species of Sodalis 
most closely related to S. glossinidius, and that there may be 
others yet to be discovered, or may now be extinct or unrec-
ognizable from the S. glossinidius progenitor.

DISCuSSIon

Classical studies of microbial evolution, whilst useful, are 
ultimately limited by their inherent inability to replicate adap-
tations over large evolutionary timescales. Here, we present 
a computational approach by combining a MOEA with FBA, 
with the Sodalis system as a model for this. The genus Sodalis 
is ideal for the study of the evolution of symbiosis in this 
way, as within the genus are a free- living and a host- restricted 
species, both well defined with complete genome sequences 
and existing protocols for culture.

Here, we present a model for S. praecaptivus metabolism, 
iRH830, accompanied by experimental verification, that 
has been used in subsequent in silico evolution experiments. 
Supplying the ancestral iRH830 with contrasting growth 
media demonstrates the effect that nutrient provisioning 
may have on evolutionary trajectories of symbiotic bacteria. 
Exposure to the famine medium reflects what might be 
expected in a nutrient- limited environment in vivo, in which 
evolutionary pressures result in the retention of pathways to 
synthesize key, essential metabolites. Here, this has shown to 
be particularly evident in the pathways retained for glycolysis/
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Fig. 7. Evolution of iLF517. (a) Evolution of iLF517 in a blood medium. MOEA was run for 3000 generations (blue to green). (b) Biomass 

output [g DW (mmol glucose)−1 h−1] and the number of reactions carrying flux in evolved iRH830 (blue triangles) and evolved iLF517 

(yellow circles) models. The evolved solutions produce comparable biomass outputs. Ten evolved solutions are given for each, some 

duplicates are present.

gluconeogenesis, the pentose phosphate pathway and amino 
acid metabolism. This indicates that key pathways in central 
metabolism are being retained when the external environment 
is nutrient limited. The evolved solutions, therefore, reflect 

what is observed in symbiotic bacteria; the retention or loss of 
pathways can be used to inform about the microenvironment 
it resides within. Some reactions in these pathways are also 
likely to be retained as they produce essential components of 
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the biomass reaction. It is expected that the biomass reaction 
for symbiotic bacteria will change over evolutionary time and, 
therefore, this work is limited by maintaining a consistent 
biomass reaction throughout the simulation. Incorporating a 
biologically accurate, variable biomass reaction, for example, 
one which will at certain time points lose components that 
the host can synthesize, would be an interesting progression 
to this work.

It has been shown in the simulations presented here that the 
evolved famine solutions contain a much greater number 
of core non- essential reactions that are present in a small 
percentage of the solutions. This suggests a lack of flexibility 
in the evolved network; either the reaction is found repeatedly 
or not at all. This is not observed in the solutions provided 
with complex media (blood or sap), where a greater degree of 
flexibility is demonstrated by more reactions being included 
repeatedly across the evolutionary space. This implies that, in 
vivo, there are many possible trajectories for an early symbiont 
if there are sufficient nutrients in the microenvironment.

The work here demonstrates the power of evolutionary 
algorithms in the study of symbiont evolution. A strength 
of this system is that removal of a reaction from the model is 
not irreversible; it is possible for a reaction to be added back 
into an individual at any point. This reduces the likelihood of 
repeatedly encountering the same evolutionary solutions as a 
result of losing the same key reaction, or reactions, early in the 
simulation. Although according to Muller’s ratchet [93] the 
reduction of symbiont genomes should be irreversible [81], 
S. praecaptivus is as yet not obligately intracellular. A simple 
model to allow the (re- )acquisition of reactions is, therefore, 
appropriate for this system. Whilst there is no evidence 
currently for horizontal gene transfer within species of the 
genus Sodalis, the nsga- ii algorithm is only intended to be 
used as a tool to explore the possible evolutionary space rather 
than as a biologically accurate model of genome reduction. 
Previous examples of evolving minimal metabolic networks 
do not allow for full exploration of the possible evolutionary 
space [50, 56, 57]. Decisions that are made at the start of 
process persist, which, whilst biologically relevant, does not 
allow the full complement of evolutionary routes to be exam-
ined. Expanding this algorithm to include the possibility of 
the model acquiring reactions that are not currently encoded 
by S. praecaptivus, therefore more closely reflecting horizontal 
gene transfer, may be an interesting avenue of future research.

This tool can produce biologically relevant simulations that 
accurately reflect the metabolic pressures that symbionts are 
exposed to. An example of this was demonstrated by the inves-
tigation of key knockouts in S. glossinidius. The symbiont has 
a pseudogenization in ppc, a key gene in central metabolism 
[33]. It is not possible to deduce when this loss occurred from 
the genome annotation alone. Reactions are related to genes 
in multiple ways through the gene- protein- reaction relations, 
which may or may not be 1 : 1; here, we evolve reactions to 
focus on the phenotypic effects. As the MOEA enables a flex-
ible search methodology this will cause minimal difference in 
outcomes to a gene- centred approach. By removing the PPC 

reaction from S. praecaptivus at the start of the simulation, 
the resulting trajectories can be analysed and compared to 
WT. The loss of PPC appeared to have minimal effect on the 
evolved populations compared to WT, in contrast to what 
was observed when the ASPTA reaction was removed at the 
start (Fig. 4). This would indicate that, in vivo, the loss of 
the gene encoding the ASPTA reaction would have a greater 
impact on a bacterial symbiont if it was lost early in the 
relationship in comparison to the lower burden that the loss 
of the genes encoding PDH or PPC would have. This result 
can then be used to infer the possible sequence of gene loss 
in the tsetse–S. glossinidius symbiosis. S. glossinidius has lost 
the ppc gene, whereas it has retained the genes encoding the 
PDH (SG0467-9) and ASPTA (SG1006) reactions [25, 33]. 
As the profile of ∆PPC evolution is similar to that of WT, it 
could be suggested that the ppc gene could have been lost early 
in evolutionary time without heavily bottlenecking S. glossi-
nidius evolution subsequently. The gene encoding the ASPTA 
reaction may have been retained by S. glossinidius because of 
the detrimental impact that its loss may have caused. This is, 
therefore, a useful tool for making general predictions about 
when key pseudogenizations in insect–bacterial symbioses 
may have occurred.

It has been shown here that is it possible for S. glossinidius to 
reduce its metabolic network to approximately half of the size 
that it is currently. This provides support for the published 
hypothesis that S. glossinidius is a recent acquisition by the 
tsetse [25]. The number of reactions remains slightly higher 
in evolved iRH830 models compared to evolved iLF517 
solutions, possibly due to difficulties in finding the minima 
from a larger starting point. iRH830 can, however, be reduced 
down to look phenotypically similar to iLF517 at the level of 
biomass output, but with differences at the individual reaction 
level (Supplementary Data 3). These results suggest, therefore, 
that the route that S. glossinidius has taken within the tsetse 
is perhaps just one of several possible routes. The differences 
also indicate that S. praecaptivus may not be the ancestor that 
initiated the tsetse–S. glossinidius symbiosis. The unusual 
ability of S. praecaptivus to metabolize xylitol may be related 
to the frequent presence of the genus Sodalis as a symbiont 
amongst sap- feeding insects, by hinting that it may naturally 
subsist on this important plant- derived sugar.

A possible, if challenging, extension to this work could be to 
incorporate the influence of the host and other members of 
the microbiome on the evolution of Sodalis. We acknowledge 
that this modelling method does not account for changes in 
host fitness that may arise from the evolution of the symbiont. 
The host could, for example, constrain the population of 
symbiont when it increases beyond a certain density, as 
demonstrated by the weevil Sitophilus oryzae, which produces 
antimicrobial peptides to constrict the symbiont population 
size [94]. Alternatively, the host may benefit from reduced 
costs of symbiont maintenance [95], or an increased fitness 
or efficiency of the symbiont via the provision of metabolites. 
It may also suffer if the bacterial population becomes less fit. 
The latter is less likely to be an issue here, given that it is 
not yet known for certain whether S. glossinidius provides a 
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benefit to the tsetse. This level of nuance is not captured by 
FBA as it focuses entirely on the fitness of an individual, with 
the only reference here to a population being the selection of 
the next generation. This tool is, therefore, most useful as a 
technique to examine broad changes that may occur during 
microbial evolution.

Previous uses of metabolic models to simulate evolution have 
focused on E. coli and B. aphidicola as a proof of concept 
[56, 57]. The availability of both a genome sequence and a 
culturable organism for a free- living and symbiont of the same 
genus makes the Sodalis system a candidate model system to 
investigate the evolution of symbiosis. The work described 
here has augmented knowledge about the loss of key genes 
in S. glossinidius central metabolism. Combining FBA with a 
MOEA in this way could be used for any organism for which 
a well- annotated genome is available. It could be applied not 
only to the evolution of symbiosis but to the directed evolu-
tion of, for example, industrially relevant micro- organisms or 
to the study of rapid genome evolution in pathogenic bacteria.
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