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A B S T R A C T

Humans can effortlessly assess the complexity of the visual stimuli they encounter. However, our understanding
of how we do this, and the relevant factors that result in our perception of scene complexity remain unclear;
especially for the natural scenes in which we are constantly immersed. We introduce several new datasets to
further understanding of human perception of scene complexity. Our first dataset (VISC-C) contains 800 scenes
and 800 corresponding two-dimensional complexity annotations gathered from human observers, allowing
exploration for how complexity perception varies across a scene. Our second dataset, (VISC-CI) consists of
inverted scenes (reflection on the horizontal axis) with corresponding complexity maps, collected from human
observers. Inverting images in this fashion is associated with destruction of semantic scene characteristics
when viewed by humans, and hence allows analysis of the impact of semantics on perceptual complexity. We
analysed perceptual complexity from both a single-score and a two-dimensional perspective, by evaluating
a set of calculable and observable perceptual features based upon grounded psychological research (clutter,
symmetry, entropy and openness). We considered these factors’ relationship to complexity via hierarchical
regressions analyses, tested the efficacy of various neural models against our datasets, and validated our
perceptual features against a large and varied complexity dataset consisting of nearly 5000 images. Our results
indicate that both global image properties and semantic features are important for complexity perception. We
further verified this by combining identified perceptual features with the output of a neural network predictor
capable of extracting semantics, and found that we could increase the amount of explained human variance
in complexity beyond that of low-level measures alone. Finally, we dissect our best performing prediction
network, determining that artificial neurons learn to extract both global image properties and semantic details
from scenes for complexity prediction. Based on our experimental results, we propose the ‘‘dual information’’
framework of complexity perception, hypothesising that humans rely on both low-level image features and
high-level semantic content to evaluate the complexity of images.

0. Introduction

It is readily apparent that humans are capable of implicitly deter-
mining the complexity of a given image upon perception; shown a
blank canvas and an abstract painting, it is easy to identify the more
complex of the two. However, it is less clear how humans perceive the
everyday complexity in which they are immersed: that of the natural
scene (see Fig. 1 for examples). It remains relatively unknown which
mechanisms underlie complexity perception. Determining these mech-
anisms may lead to a better understanding of how the human visual
system operates, and how it processes scene complexity. Complexity
research has implications for aesthetics research (Mayer & Landwehr,
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2018; Van Geert & Wagemans, 2020), and even potentially image

memorability research (Saraee et al., 2020). In addition to theoretic

advancements, there are also numerous practical applications for the

study and measurement of perceptual complexity. These include in-

fluencing users’ experience on webpages (Deng & Poole, 2012), and

marketing applications such as designing brand logos (Wang et al.,

2018), and car sales (Landwehr et al., 2011). It may impact psycho-

logical experiment design (you may want all your visual stimuli to

be of similar complexity to exclude a confounding factor), healthcare

applications (the evaluation of cognitive image processing disorders;

how easily a patient can process an image of known complexity),
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Fig. 1. Examples of low, medium, and high complexity images from the VISC-C dataset. Complexity ratings are gathered from human observer ratings.

and virtual reality environment development, where a simulated world
desiring realism should be capable of matching the complexity of
real environments, without appearing too simplistic, or overly com-
plex. The development of complexity models allows the extraction of
complexity values from scenes to take place automatically without
requiring a human-in-the-loop for each application. Without these mod-
els, the majority of practical applications become significantly more
difficult, requiring costly human intervention for every instance of the
application. Such modelling offers the ability to computationally de-
termine complexity; side-stepping the intensive data gathering process.
Computational models open up new, less intensive ways to approach
the understanding of these problems, and a way to move beyond
theoretical, into practical applications.

The first apparent quantification of what humans might perceive
as complexity appears in the early 20th century (Birkhoff, 1933),
defined as the count of elements in an image. Later work redefines
complexity as the intricacy or detail present in a line drawing (Snod-
grass & Vanderwart, 1980), or as the degree of difficulty involved in
generating a verbal description of a texture (Heaps & Handel, 1999), or
evaluates complexity in the context of aesthetics (Day, 1968). Birkhoff
hypothesises that aesthetic perception is in some manner based upon
the ratio between the level of order and the level of complexity present
in the stimuli. Later work builds upon this, finding that while order and
complexity may represent two different dimensions of perception, there
is likely to be some interplay between the two factors. That is, the level
of order present is capable of influencing how the complexity present
in the stimuli is perceived (Van Geert & Wagemans, 2020). Under this
view, explaining complexity may actually require measures of order, in
whole or in part, and models that combine various measures of com-
plexity may be capturing part of the interplay between complexity and
order. However, most research into complexity does not specifically
target scene perception, with initial research on complexity perception
in scenes (Olivia et al., 2004) finding evidence that clutter and mirror
symmetry play a key role in visual complexity, along with openness and
object organisation (e.g. factors based upon scene gist research (Oliva &
Torralba, 2001), where gist represents the general semantic content of
the scene). As computing systems became more powerful, and the field
of information science evolved, so too have definitions of complexity.

One computational technique often applied as an analogue of visual
complexity involves the calculation of the Shannon entropy of the
image (Cardaci et al., 2009; Yu & Winkler, 2013), under the hypothesis
that more complex images have a greater level of entropy (or disor-
ganisation), and simpler images contain more redundant information
(and hence, lower entropy). Entropy-based measures appear to be one
method of operationalising visual clutter (Rosenholtz et al., 2007), as
the more cluttered the image, the more disorganised the image, hence
the greater entropy. Another potential information theoretic measure
is Kolmogorov complexity (Kolmogorov, 1965). The Kolmogorov com-
plexity of an output defines the shortest length of a computer pro-
gram that could produce that output, and while uncomputable, can
be approximated (Rigau et al., 2007). Naturally, information-theoretic
measures are somewhat divorced from human perception, and the
applicability of entropy measures to scene images remains relatively
unclear. An image of random, coloured noise is high-entropy, yet

meaningless to a human. More recent research has turned to finding
combinations of metrics that predict visual complexity (Corchs et al.,
2016a; Nagle & Lavie, 2020), some information theoretic, some more
grounded in human perception. These models are capable of predicting
human complexity scores with an accuracy greater than any single
predictor alone. The most recent work focuses on developing neural
models of perceptual image complexity, finding that visual complex-
ity information arises within the feature maps of deep convolutional
networks (Saraee et al., 2020), and similarly that multiple regions
across the brain are involved with the representation of the complexity
inherent in naturalistic stimuli (Güçlütürk et al., 2018).

Progress in understanding human perception of visual complexity,
especially in the area of natural scene perception (Corchs et al., 2016a),
is made more difficult by a lack of high-quality, varied scene datasets
(Nagle & Lavie, 2020). Existing datasets are either small (sub-200
images) (Corchs et al., 2016b), or are object-focused, which leads
participants to evaluate the complexity of the object that fills the
frame rather than the image as a whole. While object complexity likely
contributes to the overall perception of complexity in a given scene, in
order to understand scene complexity these objects must be placed in
the wider context of their surroundings. Finally, drawing from image
memorability research, it is becoming more apparent that perceptual
image characteristics, while often represented as a single score for a
given image, are better represented as two-dimensional properties that
vary across an image (Akagunduz et al., 2019). Currently, available
datasets indicate that the complexity rating a human may give is based
on the entire image, which ignores the local properties of complexity
within that image.

Our aim is to address previous shortcomings by developing hu-
man observer based, high quality, two-dimensional scene complexity
datasets, and computationally operationalising psychological measures
of perceptual complexity to further understand how humans perceive
complexity. We choose four different metrics: clutter, symmetry, en-
tropy, and openness, each either hypothesised, or evidenced to have
some relation to complexity in prior work, though which have not
been examined in conjunction. We employ these measures together for
the first time in order to develop an understanding of exactly which
perceptual factors account for human perception of visual complexity,
‘factorising’ out the degree to which each metric helps to explain
human variance in complexity ratings. Our primary dataset, which
we call ‘Vischema-Complexity’ (VISC-C), is based upon a categorical
scene dataset (known as VISCHEMA (Akagunduz et al., 2019)), and
consists of 800 images with 800 complexity scores; giving a rating for
each image, obtained from a human observer experiment. In addition,
critically, it contains 800 ‘complexity maps’ that capture the image
regions that participants find simple or complex, and for the first
time reveal the image areas that contribute to perceptions of scene
complexity. We also introduce VISC-CI, a complexity dataset of com-
plexity scores and complexity maps from human observer experiment of
vertically flipped variants of our scene images. Vertical inversion results
in destroying or damaging the semantic content present in an image
(Epstein et al., 2006; Kelley et al., 2003; Neri, 2014; Walther et al.,
2009), when perceived by a human, thus allowing the quantification
of the effect of scene semantics on perceptions of image complexity.
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Fig. 2. Example of clutter algorithm working on a perceptually simple image and a more complex scene, as rated by humans.

Further we generalised our analysis to an existing image set, BOLD5000
(Chang et al., 2019). Finally, we develop and evaluate a neural network
model capable of simultaneously predicting complexity scores and two-
dimensional complexity maps. We examine which features these ‘‘black
box’’ neural models have learned to associate with perceptual com-
plexity by dissecting the network and examining individual artificial
neurons. Across our behavioural studies and computational analysis,
we find evidence that indicates that low-level features alone cannot
fully explain how humans perceive the complexity of scene images.
To account for this, we propose a ‘‘dual information’’ framework for
human complexity perception, which suggests both low-level features
and semantic information is used for the evaluation of the complexity
of scenes.

1. Factorising complexity

Upon review of studies investigating human perception of visual
complexity it is evident that multiple factors contribute to this per-
ception, and in part some of these factors can be operationalised with
computational measures. However, it is difficult to ground complex
information-theoretic measures to human perception. As the first step
in our investigation, we instead define a set of four possible complex-
ity measures (entropy, clutter, symmetry and openness). These four
metrics are selected based on their existing grounding in cognitive
psychology that considers the complexity of scene images (Olivia et al.,
2004). While there are many existing and varied operationalisations of
‘‘objective complexity’’, it is impractical to consider all of them. Instead,
we aim to select measures that capture both information-theoretic
(entropy), as well as more perceptual (clutter, symmetry, openness)
aspects of complexity. We evaluate their success in explaining the vari-
ance inherent in human complexity perception obtained from human
observer studies and recorded in the VISC-C, VISC-CI and BOLD5000
datasets. As colour has been found to both relate (Corchs et al., 2016a),
and not relate (Ciocca et al., 2015) to complexity, we err on the
side of caution and include colour as integral part of the examined
factors, where appropriate (clutter, symmetry, openness). Each metric
has its own corresponding range of values, which is discussed in each
following section. However, for the purpose of analysis conducted in
the study all metrics are normalised to values between 0 and 1.0 over
the dataset as a whole.

1.1. Clutter

It is intuitive that the level of variation across an image would, in
some fashion, be related to the complexity of that image. Prior research

has revealed that human perception of clutter is one of the compo-
nents that correlates with scene complexity (Olivia et al., 2004). There
have been various attempts to characterise clutter, primarily through
information-theoretic measures (Rosenholtz et al., 2007). Here, instead
of an information-theoretic entropy-based approach, we characterise
clutter as the number of separable regions computed by a normalised
graph-cut of the region-adjacency graph of an image (Shi & Malik,
2000). The normalised graph cut here divides an image into a number
of ‘perceptually distinct’ regions. This has the effect of grouping similar
parts of the image together into one average-colour region. Our hypoth-
esis here is that images that are perceived to be more complex would
be decomposed into a greater number of distinct and separable regions,
whereas simpler scenes are segmented into less regions, as overall they
contain more ‘perceptually similar’ parts. The cost of dividing a graph
into two disjoint regions is the summed weights of the edges that
are removed in order to create the bisection. The optimal bisection
of this graph is the bisection with the lowest cost (i.e, that optimally
separates two perceptually distinct regions). The normalised cut of
graph 𝐆 = (𝐕,𝐄) into distinct sets 𝐴,𝐵 is given in Eq. (1). 𝐶𝑢𝑡(𝐴,𝐵)

computes the sum of edge weights removed, and 𝐴𝑠𝑠𝑜𝑐(𝐴, 𝑉 ) is the sum
of edge weights from 𝐴 to all vertices in the region-adjacency graph.
The normalised cut essentially finds the ‘cheapest’ way to divide an
image into distinct regions, by finding the best ‘cut’ between the regions
(which are groups of similar pixels). The lower limit of this measure is 1
(as all pixels in the image are similar enough to be grouped into a single
region, an occurrence highly unlikely for a natural scene dataset), while
the upper limit is theoretically unbounded, but in practice is limited by
the natural level of variation in a scene image. Intuitively, this measure
can be thought of as measuring the level of variation across a scene in a
without being as vulnerable to high-frequency elements as information
theoretic measures. This prevents frequent textural changes (i.e, those
that naturally occur across a grass field) from skewing the results too
heavily. This effect can be seen in Example 𝛽 in Fig. 2.

𝑁𝑐𝑢𝑡(𝐴,𝐵) =
𝐶𝑢𝑡(𝐴,𝐵)

𝐴𝑠𝑠𝑜𝑐(𝐴, 𝑉 )
+

𝐶𝑢𝑡(𝐴,𝐵)

𝐴𝑠𝑠𝑜𝑐(𝐵, 𝑉 )
(1)

1.2. Patch-based symmetry

There is no argument that symmetry is an important part of human
perception; symmetry detection is a flexible and rapid process (Treder,
2010). When asked to perceive symmetry, humans are capable of
doing so even at extremely rapid presentation times. However, even
when not asked to specifically detect symmetry, there is evidence that
symmetry is detected and used (for example, during visual search) at
a preattentive level (Wagemans, 1997). Certainly, it appears that the
detection of mirror symmetry enjoys some advantage over other forms



Cognition 231 (2023) 105319

4

C. Kyle-Davidson et al.

Fig. 3. Simplified diagram for symmetry computation with three different patch sizes.

of symmetry (rotational, or skewed) (Wagemans, 1995), with vertical
mirror symmetry enabling better detection of symmetric objects com-
pared to asymmetric (Machilsen et al., 2009). Much of the research
into how symmetry affects the perception of images is conducted with
‘‘global symmetry’’. This is defined as the difference between two re-
gions of an image generated by bisecting the image either horizontally
or vertically; equivalent to folding an image in half and determining
the degree to which each half matches the other. When participants
are asked to give rankings on the complexity of images, this global
symmetry of the image has been found to be a significant component of
those rankings (Olivia et al., 2004), and evidently relates to complexity
in some manner. Computationally, most symmetry extraction methods
focus on detecting the axis of symmetry of objects, or for determining
where rotational symmetry appears in an image (Hauagge & Snavely,
2012; Liu et al., 2010; Patraucean et al., 2013). These methods are
object-focused, and hence provide less information about the general
symmetry present in a scene. While symmetry (at least global sym-
metry) appears important for general perception, for which reasons
might it be important for complexity perception? The most obvious
answer is that symmetry is a measure of redundant information, and
that the more symmetries present, the less information is present in
the scene. For example, given perfect global symmetry along one axis
(say, vertical), the same scene could be exactly described by half of that
scene, by mirroring the image across the symmetry axis. The same may
hold for smaller, more local elements in the scene. In this sense, one
might consider symmetry to be a possible representation of the level of
order present in the scene. As order and complexity interact in complex
and unclear ways, but nonetheless interact, the effect of symmetry
on complexity perception may in-fact reduce down to the interaction
effect that order itself has on perceived complexity. To extract local
symmetries, we focus on extracting the symmetry of patches across the
image, a compromise between computationally intensive methods that
identify the symmetry of objects, and simpler methods that evaluate
global bilateral symmetry. Our approach in particular works well for
scenes, whose main semantic details are often aligned in a horizontal
plane.

In this work, we define local patch symmetry as the mean of
the horizontal and vertical symmetry contained within arbitrary-sized
patches across the scene image. Given an image patch 𝑁ℎ×𝑤×𝑐

𝑖𝑗
, at

location (𝑖, 𝑗), we bisect the patch vertically giving (𝐴
ℎ×

𝑤

2
×𝑐
, 𝐵

ℎ×
𝑤

2
×𝑐
),

where 𝐴𝑖𝑗 = 𝑁𝑖,0<𝑗<
𝑤

2
and 𝐵𝑖𝑗 = 𝑁𝑖,

𝑤

2
<𝑗<𝑤, defining 𝐹ℎ(𝐴) as the

horizontal flip of 𝐴, the horizontal symmetry of the patch is simply
𝑠𝑦𝑚ℎ(𝑁) =

√
(𝑓ℎ(𝐴) − 𝐵)2. The vertical case is similarly defined. Hence,

𝑠𝑦𝑚(𝑁) =
𝐻

𝑠𝑦𝑚
𝑛 +𝑉

𝑠𝑦𝑚
𝑛

2
, and the overall symmetry of image 𝐼 given by

𝑠𝑦𝑚(𝐼) =
1

|𝐾|
∑𝐼𝑐𝑜𝑙𝑠∕𝑠−1

𝑖=0

∑𝐼𝑟𝑜𝑤𝑠∕𝑠−1

𝑗=0
𝑠𝑦𝑚(𝑁ℎ×𝑤×𝑐

𝑖⋅𝑠,𝑗⋅𝑠
) where 𝐾 is the set of

patches extracted, and 𝑠 the stride. Intuitively, this method calculates
how symmetric (both horizontally, and vertically) a small region of
the scene is, and keeps track of this symmetry for a set of regions
that together, cover the entire scene. This allows the symmetry of
local objects to be considered when computing how ‘symmetric’ the
scene is as a whole. For example, a scene may be globally lacking in
symmetry, but may contain a highly symmetric region which decreases
that scene’s overall perceptual complexity. A simplified diagram of
this process is shown in Fig. 3. We choose patches systematically,
selecting sizes to capture large, medium, and small elements of the
scene. Our first patch is sized at 100 by 100 pixels, our next at 50
by 50, and our smallest by 25 by 25 pixels. Each patch was stepped
across the image by half its resolution, ensuring that elements that
would otherwise fall on the boundaries between patches are not missed.
Smaller/larger patches, and smaller step-sizes are possible, but increase
the computational requirements significantly. Our selected sizes, and
step distance, balance capturing a reasonable amount of scene elements
within them, with computing time required. The output of this measure
ranges from 0 (no symmetry at all) to 1.0 (perfectly symmetrical in all
locations). In practice, no scene images lie at these extremes.

1.3. Entropy

It is common in the literature on complexity to examine measures of
entropy and the relationship between entropy and complexity. Shannon
entropy is measured in ‘bits’, and represents the mathematical limit on
the degree of compression to which data can be losslessly compressed
(i.e, without losing information, such as degrading the quality of an
image). In the case of images, those with more variation tend to contain
more information, and as a result, require more bits of information
to losslessly describe. For the sake of completeness, we considered
the Shannon entropy of the image histogram 𝐻 = −

∑
𝑘 𝑝𝑘𝑙𝑜𝑔2(𝑝𝑘)

with 𝑝𝑘 representing the probability of finding a pixel of 𝑘 intensity
over the image. It is generally expected that entropy reflects perceived
complexity in some way, at least in the case of simplistic images such
as those shown in Fig. 4. Entropy can be thought of as being sensitive
to high-frequency information that contains minimal redundancy, and
hence aligns with the ‘‘complexity’’ property in the order-complexity
multidimensional space. Here, we compute the entropy over each
colour channel in the HSV (hue, saturation, value) space, at several
different resolutions via Gaussian pyramid (resolution 1, 0.5, 0.25, and
so on). This allows us to capture variation at multiple scales, while
taking colour information into account. Shannon entropy is minimally
bounded by zero, indicating no variation at all, and the maximal bound
depends upon the input. However, for all input, the maximal bound is
related to the Shannon entropy of random data (see Fig. 4).
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Fig. 4. Entropy values for different images.

Fig. 5. Examples of open vs closed images.

1.4. Openness

Despite human behavioural evidence for the influence of scene
openness (Olivia et al., 2004) on perception of complexity, this factor
remains relatively unexamined in computational approaches to percep-
tual complexity. Images with clear horizon lines and lack of boundaries
are said to be ‘open’ (e.g., a field), and scenes that lack these, to be
closed (e.g., a photograph of a kitchen taken perpendicular to a flat
surface). We computed openness following the methodology from Ross
and Oliva (2010), which calculates openness based upon the spatial
frequencies (Oliva & Torralba, 2001) present in the scene, and hence
predicts openness scores for every image in our dataset. In Ross et al., a
set of human ratings are gathered for a variety of scene images (7,138
total), including ‘‘openness’’ ratings. From these input images, GIST
features were computed, which provide a low-dimensional description
of the scene. GIST features are dependent upon the local response
of frequency filters at different scales and orientations that are run
over the input image. These low-dimensional features are combined
with a learning algorithm using the human-ratings as a target. The
fully trained learning algorithm is capable of estimating openness given
arbitrary input images (assuming said images have their GIST features
computed). Some examples of open vs closed images are shown in
Fig. 5. While openness has been found to potentially relate to human
perception of complexity (Olivia et al., 2004), it is unclear what powers
this effect. Seeing as openness is a measure that depends upon the
spatial layout of the scene, it may be that openness, like symmetry, is
a measure of ‘‘order’’. More open scenes tend to be more ordered (and
perhaps, globally symmetric) than closed scenes, which are more likely
to be disordered. For example, a wide picture of a field may be more
ordered than a closed-in photograph of a kitchen counter, containing
objects strewn over it. Openness is on a scale between 0 and 1.0, with 0
indicating a fully ‘closed’ scene, and 1.0 indicating a fully ‘open’ scene.
In practice, scene images tend not to lie at these extremes.

2. Study 1 — Two dimensional complexity

To evaluate which factors relate to human perception of complexity,
we conducted a study on human observers, and tested our predefined
computational measures against human complexity ratings. The study
was designed to capture both complexity scores and two-dimensional
annotations across a series of scene images. By evaluating our compu-
tational measures against the same images, we can determine which

factors explain human perception of complexity. We term the dataset
resulting from this study ‘‘VISC-C’’ for ‘‘VISCHEMA-COMPLEXITY.

2.1. Participants

A total of forty participants aged between 18 and 65, and fluent in
English participated in the study. There were no other preconditions.
Participants were paid for their participation and no personally iden-
tifiable information about participants was gathered or stored by the
authors. Participants informed consent was obtained, and they were
free to withdraw from the study at any time. The study was approved
by the ethics board of the University of York, UK.

2.2. Materials

The stimuli used were images from the VISCHEMA image set: a cat-
egorical scene dataset initially gathered for the purposes of image mem-
orability studies (Akagunduz et al., 2019). The dataset consists of 800
images with a resolution of 700 𝑥 700 pixels. The image-set is divided
into eight classes of 100 images each, with each class corresponding to
a commonly encountered scene category. Available classes are: kitchen,
living-room, conference-room, airport-terminal, work/home (contain-
ing images of houses/office buildings), public entertainment (amuse-
ment parks/playgrounds), populated outdoor scenes (pastures/golf
courses), and isolated outdoor scenes (mountains/badlands). Example
images are shown in Fig. 6.

2.3. Procedure

The study was conducted online via Prolific
(Prolific: https://www.prolific.co/, 2022), an online experimentation
platform. Participants were shown a continuous stream of 200 scene
images and completed the task at their own pace. Each stream was
built by randomly sampling from the total 800 image dataset. For each
image in the stream, they were first asked to rate the complexity of the
image on a scale between 0 (least complex) and 100 (most complex).
Once participants gave a rating, they were then asked to annotate
the image. Each participant was randomly asked to annotate either
complex regions or simplistic regions in the image. The randomisation
was balanced to ensure an identical amount in total of complex and
simple ratings per image. In no case was any participant asked to
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Fig. 6. A set of scenes sorted into ascending complexity, as rated by a group of human observers. The images below the arrow reveal the regions that humans labelled as complex
(in blue) or simple (in red). Regions labelled as simple often contain textural variation (e.g., grass in image 1, or the sky/clouds in image 3), yet are labelled simple nonetheless.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

annotate both the simple and complex regions of the same scene image.
In this manner we acquire independent annotations of both simple and
complex regions for each of the images in the dataset.

In our study, every image stream shown to a participant was first
randomised to minimise the sequential context effect and avoid po-
tential biasing issues (García-Pérez & Alcalá-Quintana, 2011; Ulrich
& Vorberg, 2009) that may arise in 2-Alternative Forced Choice style
complexity studies; hence no two participants saw the same stream
of images, and the average complexity score and annotations for the
image can be considered independent of the context of the other images
in the stream. We obtained 10 score ratings, and 10 annotations for
each of the 800 images (five complex annotations and five simple
annotations). A participant had to label at least one, and at most three,
rectangular regions in an image before continuing on to the next image.
Participants were free to choose the size of the annotation.

2.4. Data analysis

We employed a hierarchical regression analysis (HRA) to analyse
the contribution of each potential computational factor to perceived
complexity, considering the contribution of the previous factors. We
based our initial ordering of the factors on the order of their singular
degree of correlation with human complexity ratings. Manipulating the
order in which the factors were entered into the HRA, did not have
any significant effect on the result. Notably, we tested whether entropy
or clutter as the first factor results in decreased explanatory power of
whichever factor is added second, and find that this does not change the
outcome of the analysis. Hence, we start with clutter, then in turn add
entropy, patch-based symmetry, and openness. The complexity score
of any given image is defined as an average of scores from participants
who saw that image.

The two-dimensional data are analysed separately. We concatenated
all the per-image annotations into a singular two-channel ‘complexity
map’, which captures complexity in one channel, and simplicity in
the other. Annotation coverage is calculated by combining all of the
simple or complex annotations of that image, and determining, as a
percentage, how much of the image is covered by those annotations.
Annotation intensity refers to the per-pixel intensity of the complex
or simple channel from the complexity map image, and is related
to how many participants’ annotations capture a particular location
in that image. Our hierarchical regression analysis is only concerned
with the one-dimension complexity scores, a more advanced method is
necessary for predicting complexity maps (see Section 5).

Fig. 7. The distributions of human decided complexity scores for the VISC-C dataset.

2.5. Results

Fig. 7 shows that human complexity ratings follow a Gaussian
distribution across images, a property reasonably expected for a scene
dataset. Most images are unlikely to be either minimally or maximally
complex. The mean complexity score for the images was 51.25, and the
standard deviation was 13.14. We know from prior work that complex-
ity ratings given by humans for images are consistent. However, there
is little data on the consistency of complexity ratings purely for scene
images, and whether participants agree that the same regions of the
scene are simple or complex.

We evaluated both the consistency of participant scores and the
consistency of our two-dimensional complexity annotations. Participant
consistency was measured by dividing the participant data into two
splits, and computing both complexity maps and scores from each half
of the data. We compared the scores from each split via the Spearman’s
correlation, and the two-dimensional maps via the Pearson 2D Corre-
lation (𝑃 2𝐷), following prior literature (Akagunduz et al., 2019). We
evaluated 100 splits for the scores, and 25 splits for the complexity
maps. Participants show a strong agreement in their complexity scores
(𝑟 = 0.72). Correcting for split-half reliability (and hence estimating
for the entire dataset) via the Spearman–Brown (S–B) correction, this
increases to (𝑟 = 0.84). They also saw a good agreement on the complex
regions of an image (𝑃 2𝐷 = 0.41), and to a lesser extent, on the simple
regions of the image (𝑃 2𝐷 = 0.27). From the score consistency data,
we can say that, on average, a random symmetrical split of human
complexity ratings can explain 70% (based on corrected reliability)
of the variance of the other splits ratings, the other 30% is surmised
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Fig. 8. Relationship between annotation coverage, intensity, and complexity for scenes. As coverage and intensity of the complex channel increases, so does the human complexity
score ratings, and vice-versa for simplicity.

Table 1
Bivariate correlation table for low-level features (VISC-C/VISC-CI).

Clutter Entropy Openness Symmetry

Clutter – 0.38 −0.38 −0.71
Entropy – – −0.21 −0.44
Openness – – – 0.47

to be due to individual differences between participants. In compar-
ison, aesthetics judgements can only explain 19% of a symmetrical
split (Brielmann & Pelli, 2019), leaving much more up to individual
differences than in the case of complexity ratings.

To evaluate the two-dimensional annotations, we considered two
properties: annotation coverage, and average simple or complex in-
tensity. Intuitively, we assumed that a more complex image should
contain more complex annotations, and a simple image should con-
tain more simple annotations. The more intense these annotations in
the complexity map, the more agreement exists between participants
that the indicated region is of consequence, and the more complex
(or simple) the region. We find that both annotation coverage and
annotation intensity are strongly related to the complexity scores given
by the participants. Annotation coverage and intensity are predictive
of complexity score (multiple linear regression, 𝑅2 = 0.6, also see
Fig. 8) indicating the participants are labelling the images in-line with
their scores. These results indicate that our two-dimensional annotation
maps are indeed capturing both complexity and simplicity, and are
strongly associated with ‘‘single-score’’ measures of complexity.

However, it is still not clear which low-level image feature could
help explain the single-score complexity ratings that humans attribute
to scene images. To investigate this, we employ a hierarchical re-
gression analysis (HRA) to determine how much additional variance
each factor contributes to the overall score rating. Results for the
HRA are provided in Table 2, and we show correlation coefficients for
each low-level feature in Table 1. Symmetry and clutter are naturally
negatively correlated, explaining 50% of the variance of each other.
Intuitively, this makes sense, as the presence of more clutter reduces
the likelihood of local symmetry occurring, and perhaps reflects some
interplay between complexity and order. The rest of the unexplained
50% reveals why symmetry helps explain complexity beyond clutter
alone. Our HRA reveals that the computational complexity factors ex-
plain approximately 36% of the variance inherent in human complexity
ratings. Generally, we can say that any measure that approaches or
exceeds this ’target score’ of 70% captures complexity to the same
degree with which two disjoint groups of humans will agree with
each other on the complexity of an image. Thus, it appears that we
can capture just over half of the potential variance with low-level
measures. Lastly, the results indicate that human complexity ratings
are well explained by both clutter, and patch-based symmetry, and
that entropy and openness contribute little. Visual clutter explains the
most variance in complexity scores, followed by local symmetry. It
is intuitive that the more cluttered the scene, the more complex the

scene. Conversely, the more locally symmetrical features exist in the
scene, the less complex the scene is rated, as there is less locally
novel information to be processed. Entropy appears to have minimal
explanatory power for perceptual scene complexity, as does openness.
For completeness, we also compare against a prior complexity mea-
sure that has seen success in aesthetics research. Specifically, this
preexisting metric, based upon image compression, has been shown to
be relevant to processing fluency theory (Mayer & Landwehr, 2018),
and is associated with aesthetic liking of images. The ‘imagefluency’
complexity metric calculates the ratio of the compressed file-size to the
uncompressed file-size (via the ZIP/deflate algorithm), with the ratio
indicative of the level of complexity present in the image. We computed
this ratio over our dataset, and find that it explains 18% of the variance
of our human complexity ratings. This is approximately half that of
our low-level measures combined, and about 10% less than clutter as
a predictor alone. This may suggest that compression-based measures
are not sufficient for explaining perceptual complexity in scene-based
datasets.

3. Study 2 — The effect of semantics

The aim of our second study was to investigate the role scene
semantics play in perception of scene complexity. We ask to what
degree the participants’ complexity ratings depend upon the semantic
content of the scene. It is well accepted that inversion of stimuli
results in increased difficulty processing the content of the stimuli. In
the case of scenes, Epstein (Epstein et al., 2006) finds a behavioural
penalty for scene inversion, showing that inversion causes a reduction
in specific-scene processing ability (a reduction in PPA response), but
a greater response in the generic object-processing parts of the brain
(LO). In order to investigate this, we invert our scene dataset by
rotating each image 180 degrees, disrupting the processing of semantic
content for human observers. As with Study 1, we evaluated how our
computational factors explain the perception of complexity of inverted
scenes by human observers. These factors do not extract any semantic
information from the scene. If they explain a considerable amount
of variance inherent in inverted complexity scores, then perceived
complexity for inverted images is more likely to be bottom-up driven
and independent of semantic meanings. We term the dataset resulting
from this study ‘‘VISC-CI’’ for ‘‘VISCHEMA-COMPLEXITY INVERTED’’.

3.1. Participants

A new group of 40 participants, aged between 18 and 65 years of
age were recruited for the second study. Participants were made aware
they would be viewing inverted images and their informed consent to
participate was obtained prior to completing the study. This study was
approved by the ethics board of the University of York.
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Table 2
Results of a hierarchical regression analysis showing the contribution of each potential complexity factor towards explaining
variance (coefficient of determination, 𝑅2) in complexity ratings for our VISC-C dataset. Together, clutter and symmetry
explain 36% of human complexity (disjoint sets of human ratings explain 70% corrected of each other’s variance). Entries in
bold indicate significant increase in variance explained. Standard error of each linear model (Lm. Std.) and residual sum of
squares (RSS) are reported for completeness, and is already incorporated into reported 𝑅2.

Model RSS Adjusted 𝑅2 𝛥𝑅2 Lm. std. error Significance (𝑝)

(constant) 29.35 – – 0.19 –
Clutter (C) 20.57 0.2983 0.2983 0.16 <0.001
C, Entropy (E) 20.55 0.2983 0 0.16 >0.05
C, E, Symmetry (S) 18.84 0.3557 0.0574 0.15 <0.001
C, E, S, Openness 18.82 0.3557 0 0.15 >0.05

Fig. 9. Relationship between inverted scene complexity and 2d annotation metrics.

3.2. Materials & procedure

The images and the procedure in this study was identical to Study 1
except that the presented images were rotationally flipped, producing
an inverted variant of the scene. The data analysis employed in the
study was the same as reported in Study 1. We also conducted one-way
ANOVA to compare the results here and in Study 1.

3.3. Results

Complexity scores for inverted images show a mild skew towards
being rated as more complex (mean = 53.20, standard deviation =
13.31) compared to upright images. After applying a Mann–Whitney
test of directionality we find this effect to be significant (𝑝 < 0.001), in-
dicating inverted images are viewed as significantly more complex than
their upright counterparts. There was also a lower degree of agreement
in complexity scores among observers compared to upright images
(𝑟 = 0.60, 𝑟 = 0.75 S–B corrected). Despite these variations, complexity
scores between upright scenes and inverted scenes correlate strongly
together (r = 0.77), which suggests even when inverted (semantic struc-
ture disrupted) participants are still able to determine the complexity of
the image (though with a lower degree of inter-participant agreement).
While participants agreed to the same degree on the complex regions
of inverted images as they did for upright (𝑃 2𝐷 = 0.39), there was
a lower degree of agreement between participants for the simplistic
regions (𝑃 2𝐷 = 0.17). This reflects the increased difficulty of the task,
and is an initial indication that destruction of semantic structure affects
complexity perception, especially in the case of determining what is

simple. Participant consistency is decreased compared to Study 1, with
a split of human data explaining 54% (S–B corrected) of the variance
of its corresponding half. The difference between upright and inverted
complexity scores is significant (ANOVA 𝑝 < 0.01 95% CI [0.66, 3.25]),
as is the difference in consistency between upright and inverted simple
annotations (ANOVA, 𝑝 < 0.001 95% CI [0.08, 0.094]). However, there
is no difference in the consistency of the complexity annotations of the
participants (ANOVA, 𝑝 > 0.05 95% CI [-0.001, 0.003]).

The two-dimensional annotation properties of the delineated re-
gions (annotation size and coverage) correlate strongly with given
complexity scores (𝑟 = 0.66, Fig. 9). Interestingly, we find that by
inverting the scene images we caused a significant change in annotation
coverage (Fig. 10), with a greater percentage of the image being
indicated as complex or simple. This suggests that participants find it
more difficult to identify and localise exactly what within the image
is complex, or simple; defaulting to a global view of complexity for
the entire image. These results imply that for images with degraded
semantic information, humans fall back to lower-level, global features
when perceiving complexity, but do make use of semantic content
where it is present.

To evaluate the impact of low-level features on inverted complexity
perception, we again make use of a hierarchical regression analysis. We
find our complexity factors explain 38% of the variance in complexity
scores of inverted scenes ( Table 3), approaching the average human
consistency of 54%. In this case, low-level classical features appear to
explain more of the variance in the human ratings. Given that inverting
the scene damages the semantic information present in the image, we
can hypothesise that the remaining 30% of variance not captured in
the case of upright scenes we observed in Study 1 is due, in part, to the
semantic structure of the scene images shown. So far, these explanatory
regression analyses lack any notion of semantics. As we hypothesise the
inverted complexity scores involve a lower degree of semantics, we can
ask the question of how well the final linear model drawn from the
Study 1 HRA, can predict these inverted scores. If our hypothesis is
correct, the linear predictor with no semantic features should be able
to reasonably predict the human ratings for the inverted image set.
Conducting this analysis, we find that scores predicted via the Study 1
model correlate strongly with participant scores for the inverted images
(𝑟 = 0.614). The predicted scores explain 37.78% of the variance in the
actual inverted scores, explaining a significant chunk of the 54% human
variance, but based on low-level features alone. In the inverted case,
the remaining 16% is likely down to individual differences, though
it is possible that semantic information strong enough to survive the
inversion process, contributes here. Nonetheless, much more variance
is explainable by low-level features in the inverted case, than in the
upright case.

3.4. A note on semantics

Throughout this section, and in the rest of the paper, we make
several references to the ‘‘semantics’’ of the scene; both when discussing
how humans perceive scene information, and in reference to what
neural networks are extracting from images. However, exactly what is
meant by semantics can vary by discipline; and is further complicated
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Fig. 10. Complex/simple annotation coverage for upright (VISC-C, top) and inverted (VISC-CI, bottom) scenes. Coverage shows that much more of the image is indicated as
complex or simple when inverted, despite low-level textural properties remaining the same.

Table 3
Results of a hierarchical regression analysis run on human complexity ratings from the VISC-CI dataset
(inverted scene images). The main contributors are clutter and symmetry (38%), with minor contribution
from openness. Entries in bold indicate significant difference in variance explained. Std. Error is reported
for completeness, and is already incorporated into given 𝑅2.

Model RSS Adjusted 𝑅2 𝛥𝑅2 Lm. std. error Significance (𝑝)

(constant) 30.05 – – 0.19 –
Clutter (C) 20.59 0.314 0.314 0.16 <0.001
C, Entropy (E) 20.59 0.313 −0.001 0.16 >0.05
C, E, Symmetry (S) 18.80 0.372 0.059 0.15 <0.001
C, E, S, Openness 18.633 0.378 0.006 0.15 <0.01

by the fact that ‘‘scene semantics’’ is an umbrella term that encompasses
several related, yet distinct, types of scene information. Hence, to avoid
confusion, here we will describe the type of semantic information
relevant to complexity perception.

A useful taxonomy of different scene semantics has been put forth
by Wu et al. (2014), who categorises the types of scene semantics into
‘‘gist’’, scene–object relationships", and object–object relationships (so-
occurrences & spatial dependency)". In this work, we define semantics
as information extracted from sets of scene elements, and the associa-
tions between them, as well as the associations between these sets and
the scene itself. We define the rather ambiguous term ‘‘scene elements’’
as shorthand for visual items present in a scene, for example: everyday
objects, surfaces, or meaningful textural compositions (such as foliage,
or beach pebbles). These elements are often constrained by some form
of layout, or are unified in some manner (for example, individual leaves
can be ‘‘unified’’ as foliage). Importantly, when we talk about semantics
we do not mean the semantics of the individual scene elements; but
collections of these elements together and their corresponding relation-
ships. Specifically, how these collections relate to both the complexity
of the scene as a whole, and the complexity of the region of the scene
that these collections reside in. For example, the object–object relation
includes the relationship between a bed and a floor segment, or a lamp
and a cupboard face (‘‘a surface’’). Given that Wu et al.’s use of ‘‘object’’
is similar to our use of ‘‘scene element’’, our definition of semantic
information fits firmly into both the ‘‘object–object relations’’ category,
as well as the ‘‘scene–object relations’’ category of types of semantic
information, and is similar to that discussed by Hayes and Henderson
(2021), in which they define semantics, in part, as ‘‘the relationships
between the scene category and the objects it contains’’.

4. Study 3 — Generalising to a different dataset

Study 3 examines how well our computational factors generalise to
another existing more varied, image set: BOLD5000. BOLD 5000 is a
dataset of 4914 images for which there is accompanying neuroimaging
data primarily used for training and testing computer vision models
(Chang et al., 2019). The images in the BOLD5000 dataset are an
amalgamation of images drawn from several different source image
sets: COCO, depicting objects (Lin et al., 2014), ImageNet, depicting
diverse content of objects and scenes (Deng et al., 2009), and scene
images based on categories from SUN (Xiao et al., 2010).

4.1. Participants

We recruited 1118 participants from Amazon Mechanical Turk and
compensated them for their participation. We only recruited partici-
pants in Canada or the USA who had approval rates greater than or
equal to 75%. The study was approved by the University of Toronto
Research Ethics Board.

4.2. Materials

For the purpose of our study, we used 4914 images from BOLD5000.
Each image in the dataset has a resolution of 375 𝑥 375 pixels. These
images consist of 1999 images from COCO, 1915 images from Ima-
geNet, and 1000 scene images based on categories from the SUN image
set. Images from COCO were collected to depict objects and images
from ImageNet either depict objects or scenes.
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Table 4
Bivariate correlation table for low-level features (BOLD5000).

Clutter Entropy Openness Symmetry

Clutter – 0.5 −0.4 −0.57
Entropy – – −0.41 −0.48
Openness – – – 0.3

4.3. Procedure

For the study we collected complexity ratings from participants for
selected images from the BOLD5000 image set. The study ran on each
participant’s computer using the Inquisit
(Inquisit: https://www.millisecond.com, 0000) software. The images
were pseudo-randomly assigned into groups such that each image
received ratings from 50 participants. The images were presented
sequentially in a random order to each participant and each participant
viewed and rated 252 images. Participants provide three different
ratings for each image on a 5-point Likert scale. Question 1 was: ‘‘How
symmetric do you think this image is?’’; Question 2: ‘‘How simple or
complex is this image?’’; the response options were 1 = ‘‘very simple’’,
2 = ‘‘simple’’, 3 = ‘‘neutral’’, 4 = ‘‘complex’’ and 5 = ‘‘very complex’’.
Lastly, Question 3: ‘‘How much do you enjoy looking at this image?’’.
Participants needed to respond to all three ratings in sequence before
the next image appeared.

4.4. Data analysis

We established exclusion criteria to ensure high data quality. To
detect participants always giving the same response we computed
the variance of responses for each participant in a 15-rating sliding
window. We excluded participants with a variance less than or equal
to 0.2 on average. We also excluded participants with average variance
between 0.2 and 0.5 and mean reaction time shorter than or equal to
250 ms. Data from participants who did not finish the entire study were
also discarded. These criteria resulted in the exclusion of the data of
143 participants (12.8%). We continued data collection until we had 50
valid ratings per image. For purposes of this study, we examined only
the complexity ratings for each of the images. Ratings for complexity
were converted to z-scores separately for each participant by subtract-
ing the mean of their responses and dividing by the standard deviation.
Z-scored ratings for each image were averaged over participants for
further use, giving a standardised continuous score from the original
discrete ratings. We conducted a hierarchical regression analysis similar
to that in Studies 1 and 2, with complexity ratings as the dependent
variable and our computational factors as independent variables.

4.5. Results

First, we evaluated the consistency in human complexity ratings
over the BOLD5000 dataset. On average, a random split explains
27.56% (corrected) of the variance in the other split after normalisation
within each participant. The consistency in human ratings is lower in
this study than in Study 1 or 2. This is most likely caused by both the
high diversity in the image set, and due to the dataset being primarily
object-focused, all of which might result in lower consistency across
participants compared to a scene dataset that consists of commonly
encountered real natural scenes. A post-hoc analysis showed that the
rating consistency is higher in a subset of images that consists only of
scenes, than the other, more object-focused categories. On average, a
random split in COCO images explains 16.71% of the variance in the
other split, a random split in ImageNet images explain 21.12% of the
variance in the other split, and a random split in scene images based
on SUN explains 24.81% of the variance in the other split. This may
be because the scenes contain a greater degree of information than
object-focused images.

A correlation table of all measures is given in Table 4, and the
results of the hierarchical regression analysis are shown in Table 5.
Our computational complexity factors explain approximately 11% of
the variance inherent in human complexity ratings, which is close to
half of the rating consistency across participants. Interestingly, this
result closely matches that found in Study 1. The hierarchical regres-
sion analysis shows that all four computational factors contribute to
explaining variance in human ratings. Compared with Studies 1 and 2,
more of the role of entropy and openness for ratings in this image set
might be explained by the higher diversity of images from BOLD5000.
Nonetheless, the results here confirm results in Study 1, that our
computational factors are able to explain a reasonable proportion of
variance in human complexity ratings. It indicates that our analysis
is generalisable to a larger and more diverged set of images. If we
compute our computational metrics purely for the scene focused part
of the BOLD5000 dataset, we find that we can explain 15.14% of the
variance (human variance, 24.81%). Interestingly, in this case, exactly
as in Study 1, only clutter and symmetry are significant contributors
to the explanation of variance. The remaining 9% may be due to
uncaptured semantic information.

Re-using our approach from Study 2 and employing the Study 1
linear predictor to predict BOLD5000 complexity scores, we find this
model can explain 5.34% of the variance of the entire BOLD5000
dataset. This lower degree of explanation is likely due to both the
Study 1 model not making use of entropy or openness, and due to the
lack of semantics. Considering the bivariate correlations, for the more
varied dataset, the relationship between clutter and symmetry appears
to decouple, with symmetry only explaining 32% of the variance of
clutter and vice-versa.

5. Modelling complexity with neural networks

In Studies 1 and 2 we established that annotation statistics for
simple and complex regions extracted by human observers are strongly
associated with overall global image complexity score, and that low-
level computational measures explain a large proportion of variance
inherent in complexity ratings. We now examine the efficacy of em-
ploying deep neural networks to predict both scene complexity scores
and complexity maps. A neural network is a type of machine learning
algorithm composed of an ensemble of ‘artificial neurons’ and the
connections between them. Based originally on models of biological
learning in the brain, the neural network is ‘taught’ the relationship
between the input and output. Given a certain input and desired output,
the difference in the neural networks actual output and the target
output serves as an error with which the ‘weights’ between artificial
neurons are updated. It is these weights that encode the information the
neural network has learned; much like the strength of inter-neuronal
connections in the brain. We select a convolutional neural network,
a type of network well suited to image understanding, with neurons
that can efficiently learn from visual input. In the context of neural
networks, ‘deep’ (‘deep neural network’) refers to a network with many
layers. Neural networks have seen state-of-the-art results for object
detection (He et al., 2016a, 2016b), scene understanding (Gu et al.,
2019), segmentation tasks (He et al., 2017), and image generation
(Patashnik et al., 2021). Further we ask whether neural networks are
capable of capturing the semantic component of image complexity,
given their general success in semantic extraction (Saxe et al., 2019;
Zhou et al., 2014). Of interest is discovering whether deep neural
networks learn features which can be used in conjunction with classical
clutter and symmetry features to explain human perception of image
complexity. Hence to explore this, we develop a neural complexity
model that can predict 2D complexity maps and scores simultaneously.
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Table 5
Hierarchical Regression Results for the BOLD5000 dataset. Best explanatory model uses all factors, likely an effect of the more
varied dataset, explaining 11.32% of variance in complexity ratings. These factors come close to explaining half the variance
of humans over the dataset (27.56% corrected).

Model RSS Adjusted 𝑅2 𝛥𝑅2 Lm. std. error Significance (𝑝)

(constant) 90.994 – – 0.14 –
Clutter (C) 88.674 0.0253 0.0253 0.13 <0.001
C, Entropy (E) 84.238 0.0739 0.0486 0.13 <0.001
C, E, Symmetry (S) 82.176 0.0964 0.0225 0.13 <0.001
C, E, S, Openness 80.625 0.1132 0.0168 0.13 <0.001

Fig. 11. Basic Complexity Prediction Architecture, with optional complexity map prediction head.

5.1. Predicting complexity scores & maps

We performed transfer learning upon five architectures: VGG16,
VGG19 (Simonyan & Zisserman, 2014), and ResnetV2 (He et al., 2016a,
2016b) with 50, 101 and 152 layers, to develop a different variants of
complexity prediction network, which we term ‘ComplexityNet’. Each
network has its classification head removed, and a four-layer convolu-
tional regression head attached at a selected point in the network (as
shown in Fig. 11). In this context, transfer learning refers to taking an
already-trained neural network, and re-using the final output of these
already-trained networks for some other purpose. Here, the networks
are trained for object detection, but we extract the intermediate (but
high-dimensional) features (which serve as an encoding of the objects
and other relevant elements in the scene), and repurpose these with
additional neural layers that can re-use these features for complexity
detection. While there has been work towards the artificial prediction
of memorability maps (Kyle-Davidson et al., 2019), two-dimensional
map prediction remains unexplored for complexity prediction. To re-
solve this, we include an optional fully-convolutional complexity map
prediction head, tasked to generate complexity maps for the input
images. To evaluate the effect of network depth on complexity pre-
diction, we systematically attach the regression head after each major
processing block in each target network (results shown in Fig. 12). Each
ComplexityNet variant is then trained for 100 epochs with RMSProp
(learning rate: 0.0001), and cross-validated on 8 splits of the data. In
cross-validation, the data is divided into a training set of 700 images,
and a test set of 100 images. This is done eight times, to ensure that
all data is either used for training, or testing. The data is randomised
prior to being divided into train/test sets, to ensure there is no specific
category weighting in either the train or test set. This cross-validation
ensures the network is not trained on the images on which it com-
putes predictions, preventing the network from simply memorising the

Fig. 12. Effect of network depth on complexity score prediction performance.
Performance peaks in the penultimate processing block of each model, then plateaus.

human complexity scores for the test split of the data. From this cross-
validation, we obtain predictions for every image in the VISC-C dataset.
When the complexity map prediction head is enabled, the network is
trained simultaneously with both scores and maps as inputs. We use
the standard mean squared error for both score and map regression,
and use ReLU activation functions throughout the network, aside from
each output, which terminates with a sigmoid activation. The training
process takes approximately six hours on a single NVidia Tesla V100
GPU.

Our complexity prediction model performs well at predicting com-
plexity scores for scene images. When considering complexity map
prediction, ComplexityNet achieves good performance for both scores
and maps, with the best-performing model (when considering both
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Fig. 13. Correlation with human ratings for both scores and complexity maps for
different base network architectures.

scores and maps) achieving a Spearmans correlation of 𝜌 = 0.67 with
human scores, and generating complexity maps that correlate with
human complexity maps (complex annotations: 𝑃 2𝐷 = 0.54, simple
annotations: 𝑃 2𝐷 = 0.49). Samples of predicted complexity maps and
their human observer-based maps can be seen in Fig. 14, and prediction
results from all tested architectures in Fig. 13.

5.2. What neural networks learn about complexity

Do neural networks learn mostly low-level features, or do they ex-
tract semantic features with relations to complexity? A neural network
will only learn to extract features that are relevant to the task that it is
being trained to accomplish. This means that if low-level features are
important to predicting complexity scores, the network is highly likely
learn to extract said features. Likewise, if semantic elements are also
required, the neural network will learn semantic feature extractors. It
is generally understood that earlier layers in the network learn more
basic, lower-level features, while more ‘semantic’ features are learned
by the upper layers of the network. If only lower-level features were
required, we would expect prediction performance to not increase as
network depth increases. However, we clearly see a drastic increase
in performance between early, and later, DNN layers (Fig. 12). This
suggests that it is not just the lower-level features the network has
learned to extract. To investigate this further, and determine whether
neural networks learn features orthogonal to low-level computational
complexity measures, we combine the previous results of our hierar-
chical regression analyses with the predicted score outputs from our
best performing ComplexityNet (based on RESNETv2-152). If the neural
network adds little additional variance explained, we assume that the
neural prediction is based primarily on low level features. On the other
hand, if the network can explain more variance inherent in complexity
in addition to low-level features, this implies the network is learning
semantic features that relate to complexity. In order to investigate this
question we employed two different approaches. In one we examined
the network by dissecting it (Bau et al., 2020). In the other, we combine
the prediction scores of the network with our computational factors
to examine how much of human complexity ratings can be explained.
Network dissection allows us to ‘take apart’ our neural model. This
allows us to determine which image features are important for com-
plexity prediction, and to examine which image features the network
is considering when predicting complexity scores for scene images. We
dissect our best-performing ComplexityNet model, and examine each
neuron from the final convolutional layer of the complexity prediction
head, 16 neurons in total. Each neuron is assigned a set of images
that best activate that neuron. Tens of thousands of varied images are
presented to the network, and each neurons activation is recorded for

each image. The images that cause an activation in that neuron, and the
regions in that image the neuron responds to, are recorded and sorted
by strength of activation.

This neural network dissection reveals the images that activate a
sample of the trained neurons (shown in Fig. 15). Each set of images
represent the activations of a single neuron. With this dissection we
make our ‘‘black-box model’’ transparent, and can analyse the fea-
tures that each neuron in the output layer of the network searches
for in the input scene image. We find in the network an emergence
of both neurons that can detect low-level repeated features, such as
checkerboard patterns or lined surfaces, as well as neurons focused
on semantic structures such as skies, architectural elements, and road
surfaces. This is indicative of the importance of semantic information in
complexity perception. Additionally, we find the emergence of neurons
that appear to detect object clutter and activate strongly for images
which contain large amounts of assorted objects. This reinforces prior
literature suggesting that visual clutter influences perception of com-
plexity, even inside neural networks modelled after human perception.
To further explore the neural networks semantic extraction faculties,
we run the same analysis as in Study 1, but with our predicted scores
rather than the actual human scores. In this case, clutter and symmetry
together explain 35% of the variance of the neural network scores —
close to the same amount explained by those measures in the actual
human scores. As with the human data, entropy and openness are not
significant contributors. As clutter and symmetry can explain some of
the variance of the neural network scores, this reflects the ‘‘lower-level’’
feature extractors learned by the neural network. However, as the low-
level measures cannot explain a much larger proportion of the variance
in the neural network scores, this is suggestive that the predicted scores
additionally contain the contribution of semantic feature extractors —
which lower-level features cannot capture.

By combining our computational factors with the predicted score
outputs from our best performing ComplexityNet (based on RESNETv2-
152) in a hierarchical regression analysis, we can explain an additional
17% of complexity score variance (on top of the 35% explained by low-
level features), orthogonal to global image features such as clutter and
symmetry. In total, this explains a total of 52% of the variance inherent
in human complexity, more closely approaching the variance that can
be explained in one set of human ratings by another randomly chosen
set of human ratings (70%). This suggests that complexity perception
functions as a combination of both global image features (clutter,
symmetry) and semantic information (architectural details, presence of
roads, or skies), and that to predict complexity accurately, both are
necessary. If the neural network did not require semantic features to
help predict complexity, those features would not have been learned by
the network. Equally, lower-level features the network has evolved are
likely to be explained by our lower-level features. Certainly, elements
such as checkerboarding/lined surfaces can be detected by the entropy
feature extractor, and would cause effects in both clutter and symmetry
detectors. For this reason we suspect the contribution to variance
explained from the neural network comes from the semantic feature
extractor neurons; elements we cannot capture with our low-level
measures (e.g., ‘‘there is a building present in this scene’’ or ‘‘there is
an arrangement of objects’’). It is these object–scene and object–object
relations that both appear to contribute to complexity perception, and
are readily extractable by a neural network. The network can certainly
learn that the detection of certain objects together raises the chance
of a given region to be labelled as complex; just as it can learn that
other objects or elements lead to a decrease in perceptual complexity.
The network is also capable of determining the relationship between
object and scene: it has been proven that in scene detection networks,
neural object detectors arise automatically (Zhou et al., 2014) even if
the network is not trained to find objects. Evidently, these objects reveal
classification clues about the scene. Given this, it is highly likely that
the relation between scene and object can be co-opted for complexity
prediction also.
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Fig. 14. Examples of predicted complexity maps and their ground-truth counterparts.

Fig. 15. Images which activate a sample of neurons from the final layer of a complexity prediction network. The network appears to learn both low-level and semantic features.
Each set of images represent the category of images that best activate a singular neuron. The darkened areas in each image do not cause a strong activation for that neuron.

Discussion

Prior work has shown that human observers are capable of evalu-
ating the complexity of images in general and show good agreement
in this evaluation. However, most complexity datasets are either small
(Corchs et al., 2016b), consist of simple images designed to investigate
low-level processing (polygons, line drawings) (Heaps & Handel, 1999;
Snodgrass & Vanderwart, 1980), or contain a mixture of images with
only a small scene component (Saraee et al., 2020). It remains unclear
exactly which features contribute to human perception and subsequent
evaluation of the complexity of scenes. What is more, prior work tends
to treat image complexity as a single rating for the whole image, which
may obscure details on how complexity varies across a scene. In these
cases, complexity is often defined in terms of the count of elements in
a stimulus, variance in element size and element type, self-similarity,
or even the number of bends in a polygon. These attempts to define an
item’s visual complexity are complicated further by the introduction of
an element of ‘‘order" drawn from aesthetics research, which describes
the degree of organisation or disorganisation in a stimulus. Order and
complexity are not hypothesised to lay on the same singular dimension,
with order at one end, and complexity at the other. Instead, each is
thought to lie on their own separate descriptive axis, yet with some
degree of interplay between them (Van Geert & Wagemans, 2020). It
remains unclear whether these definitions carry over to scene images
with the same explanatory power. In our studies, we have the benefit
of two dimensional complexity information. Empirically we can find
examples of complex regions containing many objects, and complex
regions containing textural variations. Even simple images can contain
complex regions, suggesting that for scenes, it is not quite as simple
as element count or variation. Nonetheless, as we have shown in
Study 1, when asked to simply rate complexity, humans are highly
consistent, requiring no instruction on how to evaluate complexity. This
implies a commonality in how complexity is perceived: the same visual
and mental machinery is being employed across the human observers.
And since this commonality largely exceeds the level of agreement
in aesthetic judgement (Brielmann & Pelli, 2019), understanding the
common mechanism in perceived complexity grants us the potential
access to quantify aesthetics.

In turn, this implies that an image to a certain extent has its own
intrinsic level of complexity, and that, on average, most people will
perceive the complexity of that image in a similar fashion. Our data
suggests a two-dimensional space that defines human perception of
complexity. An image’s complexity is perceived via a combination of
low-level image features that capture textural elements (e.g., varied

patterns, such as foliage), and high-level semantic elements (objects
upon a desk). This allows for perception of complexity for both se-
mantically impoverished stimuli (textures), and allows semantic under-
standing to influence what is perceived as complex. Additionally, we
suggest that image complexity is not a ‘‘global property’’ of a scene,
but localised to individual regions within the scene which contribute
to the overall rating given by participants. This implies that an image
rated as simple is not necessarily simple everywhere, there are regions
of complexity within simple images, and vice-versa. Thus, while more
complex scenes may contain a higher count of elements, it is not
necessarily all the elements that contribute to the complexity.

In this paper we began by considering how effective the psycho-
logically grounded lower-level features explain the variance in human
complexity perception for scene images. In Study 1 we find that par-
ticipant complexity ratings are both highly consistent, and correlate
strongly with the two-dimensional annotations given by the partic-
ipants. We selected four potential measures that either have been
shown, or hypothesised, to relate to human perception of complexity in
prior research. We employed computational methods for operational-
ising clutter and openness based on work from Olivia et al. (2004),
and entropy based on its frequent appearance in the literature, and
as it can capture informational content. Finally, we computationally
operationalise local symmetry, under the hypothesis that symmetry
can reveal locally redundant information, and hence may be related
to complexity perception. Our findings indicate that we can describe
a portion of human variance in perceived scene complexity (36%)
with our selected low-level measures; in the case of upright images,
clutter and symmetry. It appears that while low-level features can
explain a reasonable portion of variance in scene complexity, they do
not capture all of it, leaving a significant portion unexplained. This
results in a notable difference between human performance, and the
performance of image-statistic based measures. It appears evident that
scene complexity is not determined purely by the low-level statistics
present in the scene. However, upon scene inversion (Study 2), this
difference between human performance and that of low-level statistics
significantly diminishes. Given that low-level statistics tend to remain
the same when the scene is inverted (for example, the number of edges
does not change, nor the overall Shannon entropy, or our patch sym-
metry measure), it is reasonable to hypothesise that some other factor
is affecting the participants perception of scene complexity. As image
inversion is associated with inducing difficulties in processing the
semantics of that image we conclude that there is another dimension,
or level, at which complexity is perceived: a more semantic dimension.
Therefore, we propose that scene complexity perception is based upon
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the results of processing of two different levels of information (‘‘dual
information’’), that flexibly work together to allow for judgements of
complexity to be made on a wide variety of different stimuli. These
levels are: 1. Extraction of the low-level features present in the image
(clutter and symmetry in this work) and 2. Extraction of the semantic
elements and meaning present in the scene.

For example, a scene containing a laptop computer may be consid-
ered complex both due to the texture and frequency variation present,
and because a laptop computer may be considered a ‘‘structured ele-
ment’’ that serves as a unit of perception. Upon scene inversion, the
laptop computer becomes more difficult to process as said ‘‘structured
element’’, and hence the semantics of said object become harder to ex-
tract, and hence has a reduced impact on the perception of complexity.
Between the upright and inverted images the low-level features that are
relevant to complexity perception appear to be shared. However, the
question remains why these features relate to complexity perception.
From the aesthetics viewpoint, one can reasonably frame clutter as a
measure of complexity, and symmetry as a measure of order. In the
upright case, both these measures contribute towards explaining the
variance of human scores. This suggests that, as aesthetics literature
proposes (Van Geert & Wagemans, 2020), that there is indeed an
interrelation between ‘‘order’’ and ‘‘complexity’’, and that estimations
of both are required to approximate human complexity perception.
However, as these are both low-level measures, this suggests that this
complex interplay occurs in the lower-level features of the image, at
least for scene images. Additionally, it is hypothesised that order is not
equivalent to simplicity, yet we find that higher levels of symmetry, a
possible measure of order, is associated with a scene being viewed as
more simplistic; and is directly (though not fully) opposed to clutter,
a measure of complexity. Indeed, clutter can explain roughly 50%
of the variance in symmetry and vice-versa (naturally, more clutter
generally means less symmetry), revealing that while there is certainly
an interrelationship between these potential measures of order and
complexity, they also contribute to complexity perception in their
own separate fashions. This interplay may result from our choice of
local symmetry, rather than global mirror symmetry. An image that
is more globally symmetric may be more ordered, but at the level
of local symmetry both global disorder and local order is possible
(e.g. randomly thrown paperclips are still locally symmetric about some
axis). How this extrapolates to the more complex objects that make up
scenes remains unknown, but there may be a need to consider how
order and complexity contribute to each other at the local level, and
determine what effect this has on the global image. Certainly we find in
the case of two-dimensional complexity annotations that there is strong
variation across a scene with regards to what is considered complex or
simple.

Does this notion of order and complexity hold for more varied
stimuli? To answer this question, in Study 3 we investigate a large
dataset of varied images (BOLD5000), only a small proportion of which
are scenes. While this dataset lacks two-dimensional annotations, it
does have complexity ratings for each image. The results for BOLD5000
mirror those from Study 1, showing that low-level features work well
for explaining the variance in human complexity ratings across this
dataset, though a portion remains uncaptured. However, the overall
participant consistency is significantly lower than that of our pure
scene dataset. This may be because the dataset itself contains a much
broader set of image types, including a vast array of different object
photographs, and while the scene component consists of a broad variety
of categories; each category consists of roughly four images (VISC-C
contains 100 scenes per category). Additionally, VISC-C was specifically
chosen to not include objects, whereas the BOLD5000 dataset does in-
clude object-focused images. We use these datasets together to evaluate
our complexity measures: VISC-C provides depth and two-dimensional
data, BOLD5000 has less depth, but significant variety in image types. It
is hence not surprising that we find all four of our computational factors
become significant over the BOLD5000 dataset, due to the variety in

image types (for example, entropy appears relevant for objects, but not
scenes). Furthermore, if we compute our measures only on the scene
part of the dataset, we find we can explain 15.14% of the variance,
with only clutter and symmetry contributing significantly. This is a
proportion of, but not all of, the human variance of (corrected) 24.81%;
the remaining proportion may be explainable by semantics. A natural
consequence of entertaining the ‘‘dual information’’-based complexity
perception is that it helps to explain why humans can consistently
evaluate the complexity of different forms of stimuli, and yet each
stimuli appears to require different objective complexity measures. In
the case of simple line/polygon stimuli, and texture images, only low-
level features are necessary; and exactly which low-level features are
needed varies, depending upon the type of stimuli. For more complex
stimuli, such as object and scene images, semantics begins to play a role
in participant judgements of complexity. This may additionally explain
why participants are less consistent for inverted scenes, as there is less
information that they can draw upon in order to generate complexity
ratings, due to the missing semantic element.

The dual information framework also explains why two-dimensional
complexity annotations are significantly larger in the inverted case than
in the upright case. Generally, regions containing low-level features
are being annotated, rather than specific semantic details. However, it
is unlikely that these two processing streams are completely separate,
and there is likely to be some degree of interplay between them: a
scene image with a lot of semantic content may also contain more low-
level features. This does not necessarily work the other way around;
an image with a lot of textural variation does not need to contain
more semantic content (e.g., an image of tropical rainforest canopy
or a Jackson Polock paining). This proposed framework is supported
both by our own findings, and additionally appears to have supporting
evidence from neuro-imaging studies. The work of Güçlütürk et al.
(2018) finds that representations of stimulus complexity appear both in
the early visual cortex, and in later areas such as the PPA, suggestive
that complexity is processed both at early and later stages throughout
the visual stream.

Given we hypothesise that semantics play a role, how might said
semantics be extracted for potential analysis? Notably, classic image
processing techniques lack any concept of ‘‘semantics’’, instead focusing
on low-level image statistics. Older work in computer vision has ex-
plored scene classification and object recognition in a similar fashion to
current perceptual complexity work, through the use of combinations of
hand-picked lower-level features. Invariably, these methods have been
far surpassed by the introduction of deep neural networks, machines
which learn a highly powerful, compressed representation of the input.
This representation is often considered to have extracted the ‘‘seman-
tics’’ – or meaning – of the input, lending the network its powerful
scene classification abilities. However, there are types of semantic
information a neural network can capture, and types that it cannot. A
deep learning model cannot capture the singular meaning of an object
present in the scene, if there is no relevant training data that it can learn
from to ascribe that meaning. For example, upon detecting a coffee
cup, it does not ‘‘know’’ that a coffee cup can be used for the action of
drinking. This is a natural consequence of the training data; drinking is
an action, and our network is to be trained upon static images of scenes
with no action labelling. To extract this kind of semantic information
requires a different task (and different architecture) altogether. How-
ever, the network can certainly learn that the presence of the ‘‘hoop’’
and the ‘‘cylinder’’ along with a hand grasping, or facial proximity, or
the fact it is simply placed on a coaster, makes the detected object more
likely to be a coffee cup. This suggests the network is capable of learn-
ing an understanding of the ‘‘object–object relation’’ type of semantic
information. Neural networks can also learn to employ generic scene
cues; an ambiguous metal and glass structure on a road is more likely to
be declared a car — but against a blue backdrop; a plane. Interestingly
enough, this kind of scene–object linking can cause the network to
misclassify; objects in unusual contexts are harder for the network to
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correctly detect. A neural network can learn to extract object–object
and scene–object relationships by learning to detect which features,
in concert together, promote or impede scene complexity as perceived
by humans. In this fashion, the network will have learned to extract
relevant semantic information from the scene. It is this information,
the relationship between collections of scene elements, that contributes
to the ‘‘high-level’’ features relevant to complexity perception. This
extracted semantics is what we hypothesise as being part of the reason
for a specific region being labelled as ‘‘complex’’ or ‘‘simple’’ by a
human, and which is naturally unextractable by low-level computer
vision techniques. Research exploring the internal representations of
neural networks (Bau et al., 2020; Zhou et al., 2014) have shown that it
has learned to individually extract semantically relevant features from
the scenes it is shown: from picking out wings and beaks to identify a
bird, to detecting chairs and tables to identify a living room. Notably,
the network learns that it is the combinations of these elements (i.e,
the association between scene elements) that identifies the bird, or the
living room. This representation has also been shown to correlate with
fMRI activations from both animal and human visual cortices (Cichy
et al., 2016; Horikawa et al., 2019; Khaligh-Razavi & Kriegeskorte,
2014), and relate to human semantical development (Saxe et al., 2019).
Hence, we trained and evaluated ComplexityNet, and combined its
‘‘semantic features’’ with our global image features, and found this
significantly boosts the level of variance in human complexity ratings
we can explain. Dissecting the network (Bau et al., 2020) revealed both
low-level (checkerboards, lined surfaces) and semantic features (sky,
architectural details) extractors arise in the neurons of such a model.

These results are consistent with what we observe in Study 1-3, that
both low-level image features and semantic structure appear necessary
to model human complexity perception. It is for this reason we suggest
that our neural network model is adding the trait of ‘‘semantics’’ to
our analysis, and hence the reason that the network performs so well
at predicting human complexity evaluation for scenes. We observe
that while the neural network does learn low level feature extractors,
indicating their usefulness for complexity perception, it also learns
semantic feature extractors. Neural networks are unlikely to learn to
extract features that are not useful for the task they are given (given
they tend to take the simplest possible approach towards solving a
problem). If semantic information was not valuable to the network,
feature extractors that capture it would not have been learned. It
would additionally be highly surprising if the network found semantic
information useful, but the human visual system does not; given that
the general robustness, capabilities, and complexity of the visual system
far surpass the average neural network. There is the additional caveat
that neural networks can extract some types of semantic information
(object–object, and object–scene relations), but certainly not every type
of semantic content. This implies that the actual semantic information
humans make use of for complexity perception is highly likely to be
richer than the portion we have captured here via neural network.
While neural networks are unable to extract a semantic representation
as rich as a humans, the information they can extract appears powerful
enough to improve complexity prediction performance beyond that
which can be explained by low-level features.

There are many potential avenues for further research. We primarily
focus on a collection of 800 scenes, with a brief foray into investigat-
ing a more object-focused dataset. There is plenty of opportunity to
explore larger and different datasets, especially in a two-dimensional
fashion. The relation between complexity and other image properties,
notably aesthetics, remains unclear — investigating whether aesthet-
ically pleasing image regions are complex, or simple, or both, may
reveal additional clues as to how the visual system processes stimuli.
The same question could be asked about image memorability: are
memorable images more complex? So far, we have found evidence
indicative of a dual information complexity framework only for scene
images, though it seems unlikely that semantics only play a role in
estimating the complexity of scenes. Additionally, we did not explore

the ‘‘flexible interplay’’ between semantics and lower-level features; it
is unknown exactly how one trades off against the other. A texturally
complex image may lack semantics, but a semantically rich image is
unlikely to lack low-level features, making it difficult to gauge the
impact of semantics alone. Does the presence of more semantics lead to,
and enable, less use of lower-level features for complexity perception?
Or is the information additive, building first from low-level, and then
semantics?

In conclusion, in this work we specifically set out to both investigate
scene complexity as a property that may not be constant across a
scene, and to determine how scene complexity itself can be explained;
including evaluating the potential effect of semantics upon complexity.
Our findings reveal evidence for a potential dual information frame-
work that describes how humans perceive complexity, based both on
extracting low-level features, and semantic meaning. Where semantic
information is impaired, lower-level features present in the image
enable the evaluation of that image’s complexity, and in the cases
where semantic information is present, humans are capable of drawing
on that information in addition to the lower-level image statistics.
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Supplementary material

The VISCHEMA-COMPLEXITY (VISC-C) dataset can be found at the
following repository: https://data.mendeley.com/datasets/7943zgtsr7/
1.

This dataset contains upright (Study 1) and inverted (Study 2) scene
images, their corresponding two-dimensional complexity maps, and a
complexity score for each image.
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