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Adaptive Multi-Output Gradient RBF Tracker For

Nonlinear and Nonstationary Regression
Tong Liu, Member, IEEE, Sheng Chen, Fellow, IEEE, Kang Li, Senior Member, IEEE, Shaojun Gan,

Chris J. Harris

Abstract—Multi-output regression of nonlinear and nonsta-
tionary data is largely under-studied in both machine learning
and control communities. This paper develops an adaptive multi-
output gradient radial basis function (MGRBF) tracker for online
modeling of multi-output nonlinear and nonstationary processes.
Specifically, a compact MGRBF network is first constructed
with a new two-step training procedure to produce excellent
predictive capacity. To improve its tracking ability in fast time-
varying scenarios, an adaptive MGRBF (AMGRBF) tracker is
proposed, which updates the MGRBF network structure online
by replacing the worst performing node with a new node that
automatically encodes the newly emerging system state and acts
as a perfect local multi-output predictor for the current system
state. Extensive experiment results confirm that the proposed
AMGRBF tracker significantly outperforms existing state-of-the-
art online multi-output regression methods as well as deep-
learning based models, in terms of adaptive modeling accuracy
and online computational complexity.

Index Terms—Multivariate nonlinear and nonstationary re-
gression, multi-output gradient radial basis function network,
two-step training, online adaptive tracking

I. INTRODUCTION

Many real-world systems are nonstationary, and they operate

in real-time to continuously produce tremendous amount of

data in the form of fast arriving data streams [1]–[3]. A

regression model must be capable of adapting to the newly

emerging system state within a strictly limited processing time.

Recently, there is an increasing trend of applying deep learning

to nonlinear regression problem. Typically, deep networks

with multilevel feature extraction layers are adopted, such

as stacked autoencoder (SAE) [4], [5] or long short-term

memory (LSTM) recurrent neural network (RNN) [6], [7].

However, online adaptation of these deep nonlinear models

is very challenging if not impossible, since it is prohibitive to

adapt large deep networks within a small sampling period in

order to track fast time-varying system dynamics.

With the increasing demand for today’s complex decision

making, the traditional single-output modeling is not coping

well with multi-task predictions. Unlike single-output mod-

eling, multi-output modeling takes into account the complex
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interactions and compound dependencies among the multiple

outputs [8], [9]. Multi-output modeling becomes even more

challenging under nonstationary environment. Multi-output

data gathered from heterogeneous sources come in high speed,

and evolve over time with unforeseen drifts. This motivates

our current work to develop an effective multi-output online

predictive model to deal with fast time-varying characteristics

in multivariate data. Existing methods in the literature for

online regression can be classified into two groups: multiple

local model learning and single nonlinear model learning.

The multiple local model learning strategy has been suc-

cessfully applied to industrial adaptive soft sensor design

in the presence of frequent operating condition deviations

[10]–[12]. The essence of this local learning strategy is to

partition a nonlinear and nonstationary process into multiple

local regions with a moving window. Each region is considered

to be stationary and is modeled by a local linear model.

The selective ensemble based multiple local model (SEMLM)

learning grows local linear models online to automatically

identify newly emerged process states, and combines the

most up-to-date local models to make an accurate selective

ensemble regression (SER) based prediction [13]. The growing

and pruning SER (GAP-SER) can further prune the past

accumulated local models that are no longer relevant, thus

significantly reduce the online computation burden in making

prediction [14]. Although the GAP-SER can achieve excellent

online prediction performance for modeling nonstationary

data, while imposing much less averaged computation time

per sample (ACTpS) than the SEMLM, it is still restricted to

single-output modeling. The more recent multi-output GAP-

SER (MGAP-SER) adopts a novel adaptive local learning

strategy based on multivariate statistic that enables growing

and pruning multi-output local linear models [15]. Unlike the

single-output GAP-SER, the MGAP-SER exploits the complex

interactions between multiple output variables, and it attains

better prediction accuracy than using multiple single-output

GAP-SERs when modeling multi-output processes. A potential

drawback common to all multiple local model learning meth-

ods is that the size of the SER prediction model constructed

changes from sample to sample. It is hard to implement an

adaptive controller based on such a variable-size predictor.

The single nonlinear model learning strategy attempts to

capture the global nonlinear characteristics from the data using

a nonlinear model, such as a neural network. Among various

nonlinear models, the radial basis function (RBF) network

has become very popular, due to its elegant mathematical

formulation, ease of model optimization and strong modeling

performance [16]. By formulating the RBF model training as

a subset selection problem, the orthogonal least squares (OLS)

is used to identify appropriate RBF centers from training
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input data, and to estimate output weights simultaneously

in an efficient manner [17]–[21]. This procedure can be

easily extended to multi-output modeling, where the subset

selection is directly based on the trace of the error covariance

matrix [22]–[25]. Some other hybrid training algorithms have

also been proposed for multi-output RBF (MRBF) model

construction [26], [27]. The RBF model typically tracks the

changing process dynamics by updating its weight vector

using the recursive least square (RLS) algorithm [28]–[30].

However, in a highly time-varying environment, the process

dynamics can vary dramatically and weight updating alone

is insufficient. Hence, online model structure adaptation is

necessary. A typical way of online adapting the RBF structure

is to adaptively grow or prune RBF nodes based on their

significance, such as resource allocating network (RAN) [31]

and growing-and-pruning RBF (GAP-RBF) [32]. Such an

approach however produces variable-size nonlinear model,

which is not helpful for implementing adaptive controller. To

keep a fixed compact-size RBF model, the fast tunable RBF

(TRBF) of [33] adjust the individually tunable nodes to track

the time-varying process dynamics. Experimental results of

[33] show that this TRBF outperforms the RAN and GAP-

RBF for online modeling of nonstationary systems.

A novel extension to the RBF network, known as the gradi-

ent RBF (GRBF) network, was proposed to deal with time

series exhibiting homogeneous nonstationary characteristics

[34]. Instead of sensing the trajectory of the series itself, the

hidden nodes of the GRBF network react to the gradient of

time series. Not surprisingly, this GRBF network trained by the

OLS algorithm outperforms the classic RBF network in non-

stationary time series prediction [34]. To enhance its adaptive

prediction capability for highly nonstationary time series, a fast

adaptive GRBF (AGRBF) was proposed for online time series

prediction [35], which was further extended to online modeling

and identification of nonlinear and time-varying processes in

[36]. Similar to the TRBF, during online operation when the

current modeling error becomes unacceptable, the AGRBF

adapts the model structure by replacing an insignificant node

with a new node that automatically encodes the current data.

Owing to the local prediction property of the GRBF node,

the new node optimization is much more efficient than the

TRBF, which imposes little online computation. Extensive

experiments of [36] demonstrate that this AGRBF is superior

to various existing state-of-the-art adaptive nonlinear models,

including the TRBF and GAP-SER, in terms of both online

modeling accuracy and computational efficiency. Also the

fixed compact-size of AGRBF makes it more applicable in

an adaptive control scheme than the GAP-SER.

Although the AGRBF achieves great success in online

regression of nonstationary data, it is suitable only for single-

output modeling. Due to the particular geometry structure

of the GRBF network, we cannot extend it to multi-output

modeling by simply adding multiple output neurons to the

single-output-neuron GRBF structure, because this does not

realize its full predictive capability. Note that this is unlike the

MRBF network, which can be obtained by adding the multiple

output neurons to the single-output-neuron RBF structure.

Also the online adaptive strategies of the AGRBF [36], TRBF

[33], RAN [31] and GAP-RBF [32] are all restricted to

single-output modeling and they are not applicable to online

multi-output modeling. Although we may apply the multiple

single-output AGRBF models to identify multi-output systems,

this will not only increase the modeling effort considerably

but also degrades the achievable online modeling accuracy.

Therefore, it is necessary to develop new online adaptive

multi-output model by extending the highly desirable GRBF

network to multi-output regression. This paper proposes an

adaptive multi-output GRBF (AMGRBF) network for tracking

nonlinear and nonstationary processes. Our novel contributions

are summarized as follows.

1) We propose a new multi-output GRBF (MGRBF) net-

work with excellent predictive capacity for multi-output

modeling. Due to the multi-output nature of this new

MGRBF structure, the OLS learning cannot be directly

applied to model construction. Hence, we further propose

a new two-step training method to construct a compact

MGRBF model.

2) To improve its tracking ability in highly nonstationary

environments, we derive an adaptive mechanism to effi-

ciently adjust the MGRBF model online. During online

operation, the MGRBF network adapts its structure by

replacing an insignificant node with a new node that

automatically encodes the newly emerging system state.

This proposed online tracker fully exploits the geometric

structure of the MGRBF network, and it is capable

of timely capturing the fast-changing process dynamics

while maintaining a very low online complexity.

3) Extensive applications of real-world multivariate nonlin-

ear and nonstationary regression demonstrate that the pro-

posed AMGRBF significantly outperforms the existing

state-of-the-art online adaptive multi-output models, in-

cluding the MGAP-SER and the new multi-output TRBF,

as well as deep-learning based models.

II. THE PROPOSED MGRBF NETWORK

We consider the generic multi-input multi-output nonlinear

time-varying dynamic system that can be represented by

the following multivariate nonlinear autoregressive moving

average (NARMA) model [25]:

yt+(K−1) =fsys
(
xt; t

)
, (1)

where K≥1 is the prediction step, yt=
[
yt,1 · · · yt,no

]T
∈R

no

is the no-dimensional system output vector, fsys(•; t) is the

no-dimensional unknown and time-varying system mapping,

and the overall system input xt∈R
(nony+ninu) is given by

xt =
[
yT
t−1 · · ·y

T
t−ny

uT
t−1 · · ·u

T
t−nu

]T
, (2)

in which ut =
[
ut,1 · · ·ut,ni

]T
∈ R

ni is the ni-dimensional

system input vector, ny and nu are the system output and

input lags, respectively. Without loss of generality, we focus

on one-step-ahead prediction modeling, i.e., K = 1. All the

results are however equally applicable to the case of K>1.

Two special cases of this NARMA model is the multi-

variate nonlinear autoregressive (NAR) model or time series
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Fig. 1. The proposed MGRBF network structure.

prediction in which xt =
[
yT
t−1 · · ·y

T
t−ny

]T
, and the mul-

tivariate nonlinear moving average (NMA) model in which

xt=
[
uT
t−1 · · ·u

T
t−nu

]T
.

A. MGRBF Network Structure

The modeling task is to build a prediction model ŷt =
fmod

(
xt;Θ

)
to predict yt given the input xt of (2), where

Θ denotes the model parameter matrix. We propose a novel

MGRBF network, as illustrated in Fig. 1, to perform this

task. This MGRBF network is very different from the MRBF

network of [22]–[24]. It also has a significant difference with

the single-output GRBF network [36].

First, unlike the MRBF network, the input layer of the

MGRBF network automatically differences the past outputs

in xt to yield the actual network input vector x′
t∈R

nc as

x′
t=
[
(yt−1−yt−2)

T· · · (yt−ny+1−yt−ny
)T uT

t−1· · ·u
T
t−nu

]T
,

(3)

where nc=(no(ny−1)+ninu). Differencing helps to eliminate

trend and seasonality, and makes the series less time-dependent

[37]. For the NAR regression task, the input vector xt does

not contain the past system outputs, and the MGRBF network

will not implement this difference operation.

Also a MGRBF hidden node is very different from that

of the single-output GRBF network. Specifically, unlike the

single-output GRBF network, where each Gaussian node’s

response is modified by a single-output local predictor, the no
local predictors are required in each MGRBF hidden node. Let

M be the number of the hidden nodes in the MGRBF network.

Observe from Fig. 1 that each MGRBF hidden node contains

the no local one-step predictors that modify the Gaussian

node’s response. The response of ith local predictor in the

jth MGRBF node to the input vector x′
t is given by

φj,i(x
′
t) = exp

(
−∥x′

t − cj∥
2

2σ2

)
×
(
yt−1,i + δj,i

)
,

for i = 1, · · · , no, j = 1, · · · ,M, (4)

where σ is the width of Gaussian kernel, which is typically

set as the maximum Euclidean distance among nodes [38],

cj ∈R
nc is the node center, and δj,i is a scalar associated with

the ith local predictor of the jth node. It can be observed from

(4) that the multiple local predictors in the hidden node share

the same Gaussian center cj , but with different multiplication

terms
(
yt−1,i+δj,i

)
, 1≤ i≤ no. The term

(
yt−1,i+δj,i

)
can

be interpreted as a local one-step prediction of yt,i by the ith
local predictor. The essence of MGRBF node is that if the

input vector x′
t is very similar to the jth center cj , the value

of the jth Gaussian function is close to 1 and all the local

predictors
(
yt−1,i+δj,i

)
for 1≤ i≤no become fully active.

The output layer of the MGRBF network consists of the

no output nodes, which form the no linear combiners of the

M hidden layer responses to produce the model output vector

ŷt =
[
ŷt,1 · · · ŷt,no

]T
∈ R

no . Let φt,j ∈ R
no be the response

vector of the jth node to x′
t, i.e.,

φt,j =
[
φj,1(x

′
t) · · ·φj,no

(x′
t)
]T
, (5)

and denote the connection weight vector from the jth hidden

node’s response vector to the ith output node as

θi,j =
[
θi,j,1 · · · θi,j,no

]T
. (6)

Then the ith output of the MGRBF network is given by

ŷt,i =

M∑

j=1

φT
t,jθi,j . (7)

Further define the overall response vector ϕM̄,t ∈R
M̄ of the

hidden layer to the input x′
t as

ϕT
M̄,t

=
[
φT

t,1 · · ·φ
T
t,M

]
, (8)

where M̄ = noM , as well as the overall output layer

connection matrix ΘM̄×no
∈R

M̄×no

ΘM̄×no
=




θ1,1 θ2,1 · · · θno,1

θ1,2 θ2,2 · · · θno,2

...
...

. . .
...

θ1,M θ2,M · · · θno,M


 . (9)

The output vector of the MGRBF network to x′
t is given by

ŷT
t =ϕT

M̄,t
ΘM̄×no

. (10)

Remark 1: Hidden neuron node in all the existing neural

network architectures produces single response to the input. By

contrast, hidden neuron node in our MGRBF network produces

multiple response to the input. This represents an innovative

idea in the artificial neural network design.

B. Two-Step Training of MGRBF

The task of building a MGRBF model is to choose appro-

priate centers cj , and scalars δj =
[
δj,1 · · · δj,no

]T
based on

the given set of training inputs and outputs {x′
t;dt,yt}

N
t=1,

where N is the total number of training samples, and

dt = yt − yt−1. (11)
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Fig. 2. Difference of the regression matrices between the MGRBF network and the RBF/MRBF/GRBF network.

Specifically, we choose the centers cj , 1 ≤ j ≤ M , from

the training input data {x′
t}

N
t=1. In particular, if x′

t is selected

as the jth center cj , we set δj = dt to ensure that the jth
hidden node response φt,j is a perfect local predictor of yt.

Thus by considering every data point (x′
t,dt) as a candidate

hidden node, the problem of constructing the MGRBF network

is equivalent to the task of selecting a M -term subset model

{cj , δj}
M
j=1 from the full N -term model {x′

t,dt}
N
t=1.

Formally, by using every (x′
t,dt) as a candidate hidden

node, we obtain the full N -hidden-node MGRBF network with

the overall output layer connection matrix ΘN̄×no
∈R

N̄×no ,

where N̄ = noN , as well as the overall response matrix

ΦN×N̄ ∈R
N×N̄ of the hidden layer to the inputs {x′

t}
N
t=1

ΦN×N̄ =




ϕT
N̄,1

ϕT
N̄,2
...

ϕT
N̄,N



=
[
Φ

(1)
N×no

Φ
(2)
N×no

· · ·Φ
(N)
N×no

]
, (12)

where Φ
(l)
N×no

∈ R
N×no is the response matrix of the lth

candidate node whose center vector is cl=x
′
l and scalar vector

is δl=dl. Since each hidden node contains no local predictors

and N hidden nodes are employed to form the full MGRBF

model, the size of regression matrix is N × N̄ . For 1≤ l≤N ,

Φ
(l)
N×no

can be expressed as

Φ
(l)
N×no

=
[
φ

(l)
N,1 φ

(l)
N,2 · · ·φ

(l)
N,no

]
(13)

with φ
(l)
N,i=

[
φl,i(x

′
1) · · ·φl,i(x

′
N )
]T

being the response of the

ith local predictor of the lth node to {x′
t}

N
t=1. Constructing the

M -term MGRBF network {cj , δj}
M
j=1 for M ≪N becomes

a subset selection problem of selecting the M matrix bases{
Φ

(lj)
N×no

}M
j=1

from the full regression matrix ΦN×N̄ .

Remark 2: Note that this subset selection problem is very

different from constructing a M -term MRBF network. The

latter task is to select a subset of the M basis vectors from

the full set of the N basis vectors, and the multi-output

OLS algorithm [22]–[24] can readily be applied to efficiently

solve this subset selection problem. By contrast, our current

subset selection problem is to select a subset of M basis

matrices from the full set of the N basis matrices, and it

is mathematically infeasible to directly employ the OLS to

select these basis matrices from the candidate pool. Fig. 2

highlights this main difference of the two subset selection tasks

by displaying the full regression matrices or candidate pools

for these two tasks. Also the hybrid constructive algorithms of

[26], [27] cannot be used to train the MGRBF network. To the

authors’ best knowledge, we are not aware any existing subset

selection algorithm which can select subset matrix bases.

We propose to solve the problem of constructing the

MGRBF network by separating it into two parts. First, we se-

lect appropriate centers from the training data set {x′
t;yt}

N
t=1.

This subset selection problem can be formulated as the prob-

lem of constructing an ‘equivalent’ M -term MRBF network

with the OLS algorithm. Second, with the selected centers

{cj = x′
tj
}Mj=1 from the constructed MRBF model, their

associated scalar vectors are assigned to {δj = dtj}
M
j=1 so

as to complete the MGRBF hidden layer. The output weight

matrix of this constructed M -node MGRBF network is finally

solved by the regularized least square (LS) estimation method.

This two-step construction procedure is detailed as follows.

OLS based center selection: The aim is to select the M
center vectors of the the MGRBF network from the training

data set. This is equivalent to construct a M -node subset

MRBF network with the OLS algorithm. By using every input

data x′
t as a candidate center vector, we can model the training

data set {x′
t;yt}

N
t=t with the full N -node MRBF network as

YN×no
=ΨN×NΘN×no

+EN×no
, (14)

where ΘN×no
∈R

N×no is the output-layer connection weight

matrix of the full N -node MRBF network, and ΨN×N ∈
R

N×N is the corresponding full regression matrix given by

ΨN×N=
[
ψ1 ψ2 · · ·ψN

]
=




ψ1,1 ψ1,2 · · · ψ1,N

ψ2,1 ψ2,2 · · · ψ2,N

...
...

. . .
...

ψN,1 ψN,2 · · · ψN,N


 (15)

in which ψt,j denotes the response of the jth node to x′
t, while

YN×no
=



yT
1
...

yT
N


 ∈ R

N×no , (16)
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and EN×no
∈R

N×no is the modeling residual matrix.

Let the orthogonal decomposition of ΨN×N be

ΨN×N =WN×NAN×N

=
[
w1 w2 · · ·wN

]




1 a1,2 · · · a1,N
0 1 · · · a2,N
...

. . .
. . .

...

0 · · · 0 1


 (17)

with orthogonal columns that satisfy wT
i wj=0, for i ̸=j. The

space spanned by the set of bases {wj} is the same space

spanned by the bases {ψj}, and (14) can be rewritten as

YN×no
=WN×NGN×no

+EN×no
, (18)

where the weight matrix GN×no
for the space spanned by the

columns of WN×N , namely,

GN×no
=



g1,1 · · · g1,no

... · · ·
...

gN,1 · · · gN,no


 (19)

is linked to the weight matrix ΘN×no
by the triangular system

AN×NΘN×no
=GN×no

. The classic Gram-Schmidt method

can be used to perform this orthogonal decomposition [22].

For multi-output case, the contribution of a candidate basis

to the trace of the desired output covariance matrix is used

to define how significant this basis is, and the trace of the

covariance of YN×no
can be expressed as [22]–[24]

tr
(
Y T
N×no

YN×no
/N
)
=

N∑

j=1

( no∑

i=1

g2j,i

)
wT

j wj/N

+ tr
(
ET

N×no
EN×no

/N
)
. (20)

The error reduction ratio due to wk can be defined as

[err]k =

(∑no

i=1 g
2
k,i

)
wT

kwk

tr(Y T
N×no

YN×no
)
, 1 ≤ k ≤ N. (21)

Based on this radio, significant nodes can be selected in a

forward regression procedure. At the kth step of the selection

procedure, a candidate node with the largest value of [err]k
is selected, from among the rest of N − k+1 candidates.

The selection procedure is terminated when 1−
∑M

j=1[err]j
is smaller than a pre-set threshold, and this yields a regression

model with M hidden nodes or centers {cj=x
′
tj
}Mj=1.

MGRBF construction and weight estimation: After the

significant centers {cj = x′
tj
}Mj=1 have been obtained, they

are used as the centers of the M -node MGRBF network, and

the associated scalar vectors are assigned as {δj = dtj}
M
j=1.

This completes the construction of the hidden layer of the

MGRBF network. To determine the output layer connection

matrix ΘM̄×no
of the constructed MGRBF network, express

the network output matrix to the inputs {x′
t}

N
t=1 by

ŶN×no
=ΦN×M̄ΘM̄×no

, (22)

where ΦN×M̄ is the hidden-layer response matrix. We can

calculate the weight matrix ΘM̄×no
by minimizing the regu-

larized LS cost function

J =
∥∥∥YN×no

− ŶN×no

∥∥∥
2

+ λ
∥∥ΘM̄×no

∥∥2 , (23)

where λ≥0 is the regularization parameter. Typically, a small

positive λ is used, and λ=0 corresponds to no regularization.

The closed-formed regularized LS solution of (23) is given by

ΘM̄×no
=
(
Φ

T
N×M̄

ΦN×M̄ + λIM̄
)−1

Φ
T
N×M̄

YN×no
, (24)

where IM̄ denotes the M̄ × M̄ identity matrix.

III. MGRBF TRACKER

With the above two-step training procedure, we can con-

struct a compact MGRBF network by including the most

significant training data states to accurately modeling the

training data. Each selected hidden-node center encodes a

significant system state from the training data and the node

response vector is a perfect local predictor for the system

output related to this system state. In a time-varying scenario,

however, the process dynamics can vary dramatically and

new data states may emerge, making some of the past data

dynamics encoded in the hidden nodes of the MGRBF network

obsolete. Therefore, it is vital for the MGRBF network to

forget the most out-of-date old system states encoded in the

hidden layer so as to free up space for capturing the newly

emerged data dynamics as fast as these new states appear.

The single-output AGRBF [36] adopts an effective online

adaptive strategy to address the above-mentioned problem.

Specifically, it carries out weight updating at every sampling

time as usual. If the prediction performance of the GRBF

network becomes unacceptable, it replaces the hidden node

that contributes the least with a new node to capture the newly

emerging data dynamics. We modify this effective adaptive

strategy to be suitable for the MGRBF network, and propose

the MGRBF tracker, which contains the weight adaptation

and tunable node adaptation components.

A. Weight Adaptation

The weight matrix ΘM̄×no
of the MGRBF network can

be simply updated by the RLS algorithm to track smooth

data variations. At sample t, given x′
t, the MGRBF network

produces the output according to (10) as

ŷt =Θ
T
M̄×no,t−1ϕM̄,t (25)

where ΘM̄×no,t−1 is the weight matrix obtained at sample

t− 1. Then the prediction error et∈R
no is given as

et =yt −Θ
T
M̄×no,t−1ϕM̄,t. (26)

The RLS algorithm adapts the weight matrix according to




gt = Γt−1ϕM̄,t

(
γ +ϕT

M̄,t
Γt−1ϕM̄,t

)−1
,

Γt =
(
Γt−1 − gtϕ

T
M̄,t

Γt−1

)
γ−1,

ΘM̄×no,t
= ΘM̄×no,t−1 + gte

T
t ,

(27)

where gt ∈ R
M̄ is the Kalman gain vector, 0.9 ≤ γ < 1 is

the forgetting factor, and Γt ∈ R
M̄×M̄ is the inverse of the

covariance matrix which is usually initialized to Γ0 = ϑIM̄
with ϑ being a large positive constant.
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B. Tunable Node Adaptation

The RLS weight adaptation itself is insufficient under a

highly nonstationary environment. When the MGRBF network

performs poorly, the current MGRBF structure will need

updating. The normalized average output error is used to

measure the MGRBF performance at every sampling time

ẽt =∥et∥
2/

∥yt∥
2
. (28)

Based on this metric, we have the following criterion
{
if ẽt < ε : MGRBF structure unchanged,
if ẽt ≥ ε : worst node replaced by new node,

(29)

where ε is a pre-set threshold. In general, the smaller ε is,

the better modeling accuracy can be achieved, but the more

frequent node replacement may occur.

When ẽt ≥ ε, the worst node with the least contribution

to the overall performance is replaced with a new one. The

contribution of a node is revealed by its sum of squared

weighted local predictor outputs, which is defined by

contrij =

no∑

i=1

(
φT

t,jθi,j
)2
, 1 ≤ j ≤M. (30)

We find the node with the smallest contri

m =arg min
1≤j≤M

contrij , (31)

and replaced it by a new node. Since each MGRBF hidden

node contains a center and no local predictor scalars, they

need to be replaced together.

The center cm and scalars δm of the new replacement

node can be determined or ‘optimized’ easily by exploiting

the geometric property of MGRBF hidden node, similar to

the AGRBF [35], [36]. Specifically, we simply set cm = x′
t

and δm = dt to ensure that the new replacement node m
encodes the newest data state and is a perfect local multi-

output predictor of yt. Since the set of centers now contain a

new one, the Gaussian width σ needs to be updated based on

the new maximum Euclidean distance among the centers.

After the new node is determined, the weight matrix of the

updated network needs to be recalculated. We use the p latest

data {xt−i,yt−i}
p−1
i=0 to compute the regularized LS estimate

ΘM̄×no,t
=
(
Φ

T
p×M̄,t

Φp×M̄,t+λIM̄
)−1

Φ
T
p×M̄,t

Yp×no,t, (32)

where the desired output matrix Yp×no,t ∈ R
p×no and the

regression matrix Φp×M̄,t∈R
p×M̄ are given respectively by

Yp×no,t =




yT
t

yT
t−1
...

yT
t−p+1


 , Φp×M̄,t =




ϕT
M̄,t

ϕT
M̄,t−1

...

ϕT
M̄,t−p+1



. (33)

In general, the number of the latest data p trades off estimation

accuracy and tracking performance. For severely drifting or

nonstationary data streams, a small p is preferred.

If the tunable node adaptation takes place at sample t, the

RLS weight updating (27) does not take place. Instead the

weight matrix is updated with the regularized LS estimate (32),

Algorithm 1 Adaptive MGRBF Tracker

1: Two-step training: Construct M -node MGRBF network

from N -sample training set with centers and local predic-

tors {cj , δj}
M
j=1 and weight matrix ΘM̄×no

.

2: Hyperparameters: Node replacement threshold ε, band-

width p, regularization parameter λ, forgetting factor γ.

3: Initialization: Set sample index t = 1, Γt−1 = ϑIM̄ ,

ΘM̄×no,t−1=ΘM̄×no
.

4: Online prediction: Given x′
t, compute MGRBF network

prediction ŷt with (25).

5: Online adaptation: When yt is available, compute ẽt with

(26) and (28).

6: IF ẽt < ε: Weight adaptation mode

7: Update weight matrix to ΘM̄×no,t
with RLS (27).

8: ELSE IF ẽt ≥ ε: Tunable node adaptation mode

9: Compute contributions for all M nodes with (30).

10: Find worst node m with (31), and replace it with new

node by setting cm=x′
t and δm=yt − yt−1.

11: Compute new Gaussian width σ with new maximum

Euclidean distance among centers.

12: Use p latest data {xt−i,yt−i}
p−1
i=0 to compute weight

matrix ΘM̄×no,t
with regularized LS estimate (32).

13: Calculate Γt according to (34).

14: END IF

15: Set t = t+ 1 and go to step 4.

and we need to initialize the inverse covariance matrix to

Γt =
(
Φ

T
p×M̄,t

Φp×M̄,t + λIM̄
)−1

. (34)

This ensures a smooth transition from one adaptation mode to

another at the next sample.

C. Algorithm Summary

The proposed MGRBF tracker is summarized in Algo-

rithm 1. During the online operation, our MGRBF tracker

adapts the model according to the current environment. If

the process undergoes smooth variation, it operates only by

the weight adaptation with the RLS algorithm. When abrupt

changes occur in the system, it updates the model structure

by replacing the worst performing node with the new one that

automatically encodes the newly emerged data state and acts

as the perfect local predictor of the current system output.

From a learning perspective, our MGRBF tracker achieves

a balanced trade-off between the ‘stability’ and ‘plasticity’

[35]. Specifically, it retains the acquired knowledge in the

hidden layer of the MGRBF network (stability), with each

node encoding an independent local data state learned from the

history. At the same time, it adapts to new knowledge with a

fast recovery (plasticity) – every time when a new system state

emerges, it ‘frees’ the memory by ‘forgetting’ the most out-

of-date knowledge to encode the newly emerged knowledge.

It can be seen that our MGRBF tracker is designed to have

fast tracking capability for accurately capturing the underlying

characteristics of nonstationary data, while maintaining low

online computation complexity.
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IV. NUMERICAL EXPERIMENTS

We perform extensive experiments, including modeling of

real-world river flow time series as well as two industrial

soft sensor applications, to evaluate the proposed MGRBF

network. Two metrics, the mean square error (MSE) and

the determinant of the error covariance log(det(Cov(E)))
over the test data, are utilized to evaluate each single-output

and multi-outputs online modeling performance, respectively.

Additionally, the coefficient of determination (R2) is also

utilized. Since each output has a R2 value, the averaged

R2 over all the outputs is used to evaluate the multi-outputs

modeling performance. The online computation complexity of

an adaptive model is quantified by ACTpS. The computer for

carrying out the experiments has the following configuration:

Windows 10, 16 GB of RAM, CPU i7-9750 (2.60 GHz), and

Matlab version R2018b.

A. State-of-the-Art Benchmarks

We compare with the following state-of-the-art benchmarks.

1) MGAP-SER [15], consisting of multi-output local model

growing and pruning as well SER based online multi-

output predictor, is a powerful multiple local model learn-

ing approach for multi-output nonstationary data model-

ing. The window size W , bandwidth p and threshold ξ
are the three algorithmic parameters, and their influence

on the modeling performance can be found in [13]–[15].

2) Multi-output TRBF (MTRBF) is an extension of the

single-output TRBF [33] to adaptive multi-output model-

ing. During online operation, it adopts a similar adaptive

mechanism of [33] to replace the worst performing node

with a new node. This new node replacement is achieved

by iterative gradient descent optimization to determine

the new center. Hence, the MTRBF imposes much higher

online complexity than our MGRBF tracker. We empir-

ically set the step size and the number of iterations for

gradient descend to 0.1 and 5, respectively. The node

replacement threshold ε and bandwidth p are the two

algorithmic parameters to be determined.

3) Multiple AGRBFs: We also employ the multiple (no)

AGRBFs, one for each output of the multi-output systems

in our experiments. The node replacement threshold ε and

bandwidth p are the two algorithmic parameters, and their

sensitivity analysis can be found in [35], [36].

4) SAE is a deep network that learns hierarchical feature

representations from data with multilevel feature layers

[4], [5], [39], [40]. First, multiple autoencoders (AEs)

are pre-trained in an unsupervised way layer by layer.

After pre-training, a linear regression layer with multi-

output neurons is added on the top of the stacked AEs,

and the whole SAE is trained by the stochastic gradient

descend algorithm. The trained SAE is fixed during online

operation, since it is impractical to adapt it in real-time.

5) LSTM is a variant of RNN that is designed to extract

dynamic temporal information from data [6], [7], [41]–

[43]. For the LSTM with single hidden layer and multi-

output neurons, Adam optimizer [44] is used to train the

model based on the MSE cost. The trained LSTM is fixed

during online operation, as it is impossible to adapt it in

real-time.

6) MRBF is a non-adaptive version of MTRBF. A compact

MRBF network is constructed by the multi-output OLS

algorithm [22]–[24] during the training, and the trained

model is fixed during online prediction.

7) Multiple LSSVMs: a least-squares support-vector ma-

chine (LSSVM) is a least-squares version of the SVM

[45]–[48]. The trained multiple LSSVMs are fixed during

online prediction, as it is difficult to adapt them online.

8) Multiple RVMs: The relevance vector machine (RVM)

has a similar form to the SVM but requires fewer ker-

nel functions and provides higher sparseness [49]–[52],

which is computationally more efficient than the SVM

for modeling. The trained RVMs are fixed during online

prediction, as it is difficult to adapt them in real-time.

For the LSSVM and RVM, the Gaussian function is adopted

as their nonlinear kernels. For the adaptive models, the forget-

ting factor of the RLS algorithm is set to γ = 0.98, and the

regularization parameter is set to λ=0.001. Other important

hyperparameters are chosen carefully and empirically, as de-

tailed in the following case studies.

B. River Network Flow Time Series

The river flow domain is a temporal prediction task designed

to test predictions on the flows in a river network for 48 hours

in the future at specific locations [53]. The datasets were ob-

tained from US National Weather Service and include hourly

flow observations for eight sites in Mississippi River network

in the United States from September 2011 to September 2012.

This domain is a natural candidate for multi-target regression

because there are clear physical relationships between readings

in the contiguous river network [53]. We select the 4 sites in

the river network with time-lagged observations from 6, 18

and 36 hours in the past as the model inputs

xt =
[
yt−6,1 yt−18,1 yt−36,1 yt−6,2 yt−18,2 yt−36,2

· · · yt−6,4 yt−18,4 yt−36,4

]T
∈ R

12, (35)

to predict the river flows at the 4 sites 48 hours in the future

yt+48 =
[
yt+48,1 yt+48,2 yt+48,3 yt+48,4

]T
∈ R

4. (36)

Fig. 3. Impact of node replacement threshold ε and bandwidth p on modeling
performance of adaptive MGRBF for river flow prediction.
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TABLE I
TEST PERFORMANCE COMPARISON OF MRBF, MULTIPLE LSSVMS, MULTIPLE RVMS, LSTM, SAE, MGAP-SER, MTRBF, MULTIPLE AGRBFS AND

PROPOSED METHOD FOR RIVER FLOW PREDICTION.

Methods Nodes/models
MSE (dB)

log(det(Cov(E))) averaged R2 ACTpS (ms)
site 1 site 2 site 3 site 4

MRBF 10 -16.0189 -11.2589 -12.8737 -18.7931 -8.0962 -1.4443 NA

multiple (4) LSSVMs NA -6.9514 -15.6354 -15.8206 -18.9504 -7.7754 -2.0772 NA

multiple (4) RVMs NA -10.7052 -10.5302 -10.5785 -12.9145 -7.3356 -4.5478 NA

LSTM 32 -11.8314±1.4558 -10.4837±1.4551 -13.8334±0.5648 -17.2837±2.2197 -7.6419±0.1807 -2.2374±0.7302 NA

SAE [9, 6, 3] -6.3909±2.1459 -7.9033±4.0252 -15.1941±2.0442 -9.7459±5.6262 -6.8673±0.5025 -14.1398±3.6912 NA

MGAP-SER 56 to 57 -41.0089 -34.3093 -40.1263 -36.9421 -15.2414 0.9841 2.6661

MTRBF 10 -40.6812 -34.9584 -40.4439 -36.4690 -15.6787 0.9836 0.8272

multiple AGRBFs 10×4 -41.5132 -36.5974 -41.4592 -37.1300 -15.6840 0.9866 0.5284

Proposed 10 -41.7907 -36.2358 -42.6381 -37.1156 -15.8511 0.9867 0.1159
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Fig. 4. Comparison of test log(det(Cov(E))) learning curves of various
models for river flow prediction.

From the 4 sites, 2000 samples are collected with the first 500

samples as the training set and the remaining 1500 samples

for online prediction and adaptive modeling.

The sizes of the MTRBF and each AGRBF network are

empirically chosen to be M =10, as suggested in [35], [36].

Hence, the no=3 AGRBFs have a total of 40 hidden nodes.

For a fair comparison, the MRBF and our proposed method

also have a network size of M = 10. The node replacement

threshold ε and bandwidth p are two key algorithmic param-

eters for the proposed method, and we conduct a grid search,

yielding the results depicted in Fig. 3. According to Fig. 3,

we set ε = 10e − 2 and p = 1 for our method. The node

replacement thresholds are empirically chosen to be 10e − 2
and 10e−3 for the AGRBFs and MTRBF, respectively, while

their bandwidths are both set to be 1. We set the window

size W = 50, bandwidth p= 5 and threshold ξ = 0.4 for the

MGAP-SER empirically. The LSTM network has 32 hidden

nodes, and the structure of the SAE model is [9, 6, 3]. The

learning rate and training epochs for both the SAE and LSTM

are 0.001 and 200, respectively. The Gaussian kernel widths

for the LSSVM and RVM are set to 1 and 10, respectively.

The online prediction performance by the 9 models are

tabulated in Table I, and their online error covariance learning

curves are compared in Fig. 4. It is well-known that the

performance of deep neural networks, such as SAE and LSTM,

depend on initialization. Therefore, the average MSEs and

log(det(Cov(E))) over 20 independent experiments together

with the corresponding standard deviations are listed in Ta-
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Fig. 5. Online prediction of river network flows by proposed adaptive
MGRBF: (a) site 1, (b) site 2, (c) site 3 and (d) site 4.

ble I for the SAE and LSTM. Observe that the nonadaptive

methods, including the MRBF, multiple LSSVMs, multiple

RVMs, LSTM and SAE, are the worst models, as evidenced by

their large test log(det(Cov(E))). In Table I, black boldface

value indicates the best performance and blue boldface value

indicates the second best one. Observe from Fig. 4 that all

the adaptive models significantly outperform the nonadaptive

models, while our method exhibits the fastest reduction in

the error covariance among the adaptive models. The test

prediction accuracies achieved by the four adaptive models

are quite close, but our method is undoubtedly the winner, in

terms of both online prediction accuracy and computational

complexity. In particular, its ACTpS is only 0.1159 ms, which

is nearly five times smaller than the second best multiple

AGRBFs. Fig. 5 depicts the river flow prediction results by the

proposed method, which clearly demonstrates that our method

is capable of effectively capturing the real-time time-varying

dynamics of the river flows in the four different sites.

C. Sulfur Recovery Unit Process

The sulfur recovery unit (SRU) [54] is used to remove

environment pollutions from the acid gas streams. Specifically,

TABLE II
VARIABLE DESCRIPTION IN SRU PROCESS.

Input and output variables Description

ut,1 MEA gas flow

ut,2 First air flow

ut,3 Second air flow

ut,4 Gas flow in SWS zone

ut,5 Air flow in SWS zone

yt,1 Concentration of H2S
yt,2 Concentration of SO2
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Fig. 6. Impact of node replacement threshold ε and bandwidth p on modeling
performance of adaptive MGRBF for online modeling of SRU process.

it is widely used in petrochemical industry to recover H2S as

elemental sulfur through the Claus reaction:

2H2S + SO2 ⇌ 3S + 2H2O

The sulfur recovery rate of the Claus process is about 95% to

97%. The tail gas normally contains unrecovered sulfur H2S
and SO2, which are harmful to human health. Therefore, their

concentrations must be properly monitored before released

to atmosphere. However, these two kinds of acid gas can

seriously damage hardware sensors by corrosion and conse-

quently the hardware instruments are frequently removed for

maintenance. To avoid this costly maintenance and to provide

continuously monitoring, soft sensors are often employed to

estimate the concentrations of H2S and SO2 online. Five

process variables and the concentrations of H2S and SO2 are

considered as the process inputs and outputs for the soft sensor,

which are tabulated in Table II.

Based on expert knowledge and physical insight, the input

vector to the SRU process can be expressed as [54]

xt =
[
ut,1 ut−5,1 ut−7,1 ut−9,1 ut,2 · · ·

ut−9,4 ut,5 ut−5,5 ut−7,5 ut−9,5

]T
∈ R

20, (37)

and the process output vector is yt =
[
yt,1 yt,2

]T
∈ R

2.

Because the xt does not contain the past system output, we

have x′
t = xt. Total 3000 samples are collected from the

SRU dataset, among which the first 1000 samples are used for

training and and the rest of 2000 samples for online prediction.

Similarly, we set node replacement threshold ε = 10e − 2
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Fig. 7. Comparison of test log(det(Cov(E))) learning curves of various
models for online modeling of SRU process.

and bandwidth p = 2 for the proposed method according to

Fig. 6. The node replacement thresholds are set to be 10e− 2
and 10e−3 for the AGRBFs and MTRBF, respectively, while

their bandwidths are both set to be 2. We set window size W =
90, bandwidth p = 4 and threshold ξ = 0.9 for the MGAP-

SER by trail and error. The LSTM network has 128 hidden

nodes, and the structure of the SAE model is [15, 10, 7]. The

structure parameters for the MRBF, LSSVM, RVM, LTSM

and SAE are identical with the previous simulation.

Table III lists the online prediction results attained by the

9 models, and Fig. 7 compares their online learning curves.

The average R2 of the SAE is extremely poor, as it can

hardly predict this process. Our method attains slightly better

prediction accuracy than the second best AGRBFs, while

imposing a ACTpS half of the later. The MGAP-SER and

MTRBF achieve comparable performance, but the former costs

much higher computation time. Again, the nonadaptive models

are inferior to the adaptive models. The online prediction

results of H2S and SO2 by our method are shown in Fig. 8,

which again demonstrates its excellent tracking capacity.

The aforementioned results are the one-step-head predictive

models’ performance. Our proposed method is equally appli-

cable to the multi-step prediction, similarly to the other multi-

output adaptive models. We further compare the multi-step

ahead prediction performance of three multi-output adaptive

models, namely, the MGAP-SER, MTRBF and our proposed

method in Fig. 9. It is evident that the proposed method con-

TABLE III
TEST PERFORMANCE COMPARISON OF MRBF, MULTIPLE LSSVMS, MULTIPLE RVMS, LSTM, SAE, MGAP-SER, MTRBF, MULTIPLE AGRBFS AND

PROPOSED METHOD FOR ONLINE MODELING OF SRU PROCESS.

Methods Nodes/models
MSE (dB)

log(det(Cov(E))) (dB) averaged R2 ACTpS (ms)
H2S SO2

MRBF 10 -22.6132 -21.9699 -4.8827 -4.5430 NA

multiple (2) LSSVMs NA -24.5532 -22.9210 -5.0276 -2.8162 NA

multiple (2) RVMs NA -31.5518 -27.1409 -6.2441 0.0009 NA

LSTM 128 -29.9898±0.7944 -26.7115±1.6079 -6.0864±0.1645 -0.3132±0.2427 NA

SAE [15, 10, 7] -9.2133±5.1917 -1.1580±3.9066 -1.8591±0.9642 -465.627±459.5 NA

MGAP-SER 97 to 99 -43.6743 -39.9716 -8.3931 0.9434 2.5112

MTRBF 10 -46.5586 -42.4370 -8.9619 0.9695 0.6439

multiple AGRBFs 10×2 -51.0393 -48.7857 -10.0409 0.9910 0.0683

Proposed 10 -51.4999 -48.7655 -10.1409 0.9915 0.0344
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TABLE IV
TEST PERFORMANCE COMPARISON OF MRBF, MULTIPLE LSSVMS, MULTIPLE RVMS, LSTM, SAE, MGAP-SER, MTRBF, MULTIPLE AGRBFS AND

PROPOSED METHOD FOR ONLINE MODELING OF WWTP.

Methods Nodes/models
MSE (dB)

log(det(Cov(E))) (dB) averaged R2 ACTpS (ms)
SND XND Flow rate

MRBF 10 -31.9835 -36.7155 -12.0979 -8.8920 0.6646 NA

multiple (3) LSSVMs NA -25.9981 -27.8330 -12.0723 -8.6290 0.6392 NA

multiple (3) RVMs NA -31.5492 -35.9096 -11.6451 -8.8968 0.6276 NA

LSTM 64 -29.5306±0.7073 -29.8652±1.7440 -10.4257±0.1561 -8.1325±0.1170 0.5000±0.0167 NA

SAE [5, 4, 3] -29.1925±6.7376 -36.7223±5.7536 -9.8310±0.7487 -9.9372± 0.8495 0.4233±0.0832 NA

MGAP-SER 209 to 210 -67.3247 -49.5914 17.4971 -9.9418 -299.0 4.8829

MTRBF 10 -34.2170 -35.8245 -30.6560 -10.0960 0.9909 0.0907

multiple AGRBFs 10×3 -31.8713 -35.3647 -26.3281 -9.4047 0.9809 0.3084

Proposed 10 -34.7267 -38.0835 -31.5260 -10.5854 0.9927 0.0600
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Fig. 8. Online modeling of SRU process by adaptive MGRBF: (a) H2S, and
(b) SO2.
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Fig. 9. Comparison of multi-step-ahead prediction performance for SRU
process by MGAP-SER, MTRBF and proposed method.

sistently outperforms the other two methods at any prediction

step. In terms of online computational complexity, a multi-

step-ahead predictor has similar ACTpS as its one-step-ahead

counterpart. The best multi-step-ahead prediction accuracy

and the lowest online computational complexity together with

a fixed compact network size makes our adaptive MGRBF

network ideal for adaptive controller implementation.

D. Wastewater Treatment Plant

Wastewater treatment plant (WWTP) [55] is a large nonlin-

ear and time-varying system subject to large perturbations in

influent flow rate and pollutant load, together with uncertain-

ties concerning the composition of the incoming wastewater.

Fig. 10. Schematic overview of WWTP.

As shown in Fig. 10, the benchmark plant contains a five-

compartment activated sludge reactor consisting of two anoxic

tanks followed by three aerobic tanks. The activated sludge

reactor is followed by a secondary clarifier. The aim of this

process is to remove organic matter and to perform nitrification

and denitrification. The purpose of this study is to establish an

adaptive multi-output soft sensor to simultaneously estimate

the soluble biodegradable organic nitrogen SND, particulate

biodegradable organic nitrogen XND and flow rate, which are

three key variables. The process inputs and outputs are listed

in Table V. Hence, the process input vector is

xt =
[
ut,1 ut,2 ut,3 ut,4 ut,5

]T
∈ R

5, (38)

and the process output vector is

yt =
[
yt,1 yt,2 yt,3

]T
∈ R

3. (39)

The influent data are collected under severe weather condition

(a combination of dry weather and a long rain period), which

makes the underlying process dynamics strongly nonstationary

and imposes an enormous challenge on the performance of soft

sensor [56]. We collect 1300 samples from the WWTP dataset,

among which the first 500 samples are used for training, while

the rest of them are for online prediction.

TABLE V
VARIABLE DESCRIPTION IN THE WWTP.

Input and output variables Description

ut,1 Readily biodegradable substrate

ut,2 Particulate inert organic matter

ut,3 Slowly biodegradable substrate

ut,4 Active heterotrophic biomass

ut,5 NH+
4 +NH3 nitrogen

yt,1 SND

yt,2 XND

yt,3 Flow rate

Again, we carefully set all algorithmic parameters of the 9

models by trail and error. From Fig. 11, the node replacement

threshold and bandwidth for the proposed method are set
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to ε = 10e − 2 and p = 2, respectively. The MTRBF has

the identical algorithmic parameter settings with the proposed

method, while the AGRBFs choose ε = 10e − 1 and p = 1
to achieve the best performance. For the MGAP-SER, we set

window size W =15, bandwidth p=1 and threshold ξ=0.9.

The LSTM network has 64 hidden nodes, and the structure of

the SAE model is [5, 4, 3]. The MRBF, LSSVM and RVM have

the identical structure settings with the previous simulation.

Table IV presents online modeling performance achieved

by the 9 models, and Fig. 12 compares their online error

covariance learning curves. The results again show that our

proposed method achieves the best online estimation accuracy

while imposing the lowest computational complexity. It is

interesting to observe that although the MGAP-SER attains

the smallest MSEs for estimating SND and XND, its flow rate

prediction is the worst among all the models, which is also

reflected in its extremely poor average R2. This may be due

to that the local multi-output linear models of the MGAP-

SER do not handle the severe nonlinear relationship between

the multiple output variables. The SAE achieves a comparable

performance with the MGAP-SER and is slightly better than

the multiple AGRBFs. However, its performance has a large

fluctuation. Another interesting phenomenon can be seen from

Fig. 12 is that the performance of all the 9 models degrade

significantly at nearly 800 samples. This can be explained from

Fig. 13, which depicts the three process outputs. It can be

clearly seen that all the three process outputs experience abrupt

changes around t = 800, particularly for the flow rate. As

mentioned before, this dataset is collect under severe weather

condition, and this abrupt drift can be contributed to the abrupt

weather changes. The online prediction results of SND, XND

and flow rate by our method are depicted in Fig. 13, in

comparison with the three true outputs of the WWTP. The

results of Fig. 13 clearly demonstrates the excellent tracking

capacity of the proposed MGRBF tracker.

Since multi-step ahead process control is essential for

WWTP, we also compare the multi-step ahead prediction

performance of the three adaptive multi-output models, and

the results are presented in Fig. 14. Again, our method

consistently outperforms the other two methods. Our method

has the additional advantage of imposing the lowest online

computational burden.

Experimental results involving three real-world multi-output

Fig. 11. Impact of node replacement threshold ε and bandwidth p on modeling
performance of adaptive MGRBF for online modeling of WWTP.
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Fig. 12. Comparison of test log(det(Cov(E))) learning curves of various
models for online modeling of WWTP.

501 700 900 1100 1300

Sample (t)

0

0.2

0.4

0.6

0.8

1

Output 1

Predicted by proposed

(a)

501 700 900 1100 1300

Sample (t)

0

0.2

0.4

0.6

0.8

1

Output 2

Predicted by proposed

(b)

501 700 900 1100 1300

Sample (t)

0

0.2

0.4

0.6

0.8

1

Output 3

Predicted by proposed

(c)

Fig. 13. Online modeling of WWTP by adaptive MGRBF: (a) SND, (b) XND

and (c) Flow rate.
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Fig. 14. Comparison of multi-step-ahead prediction performance for WWTP
by the MGAP-SER, MTRBF and proposed method.
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nonlinear and nonstationary processes demonstrate that the

proposed adaptive MGRBF tracker achieves the state-of-the-

art adaptive modeling performance. Our method not only

consistently attains the best tracking accuracy but also imposes

very low computational complexity in online adaptation. Un-

like adopting multiple single-output AGRBFs, our method is

capable of capturing the complex interactions among the mul-

tiple process outputs and simultaneously tracking fast time-

varying dynamics of the different process outputs. Moreover,

the proposed method has excellent multi-step-ahead predic-

tion capability, which is highly desired for nonlinear model

predictive control design.

V. CONCLUSIONS

We have proposed a novel adaptive MGRBF network for

online modeling of multi-output nonlinear and time-varying

processes. First, we have designed a new MGRBF network

structure with strong multi-output predictive modeling ca-

pacity. A two-step training procedure has been proposed to

construct a compact MGRBF network, with each hidden node

encoding an independent data state and acting as a perfect

local predictor of the system output vector corresponding to

this system state. Second, we have designed a new adaptive

tracking mechanism to efficiently adapt the MGRBF network

in real time. Specifically, during online operation, the MGRBF

tracker replaces the worst performing node with a new one that

automatically captures the newly emerged process state. Exten-

sive experiments involving real-world river network flow time-

series prediction and two industrial soft sensor applications

have demonstrated that our proposed adaptive MGRBF model

outperforms the existing state-of-the-art online multi-output

modeling methods, in terms of both online prediction accuracy

and computation complexity. Our results have also confirmed

that state-of-the-art online adaptive models are superior over

nonadaptive deep neural networks for online adaptive model-

ing of multivariate nonlinear and fast time-varying data. With

the advantages of excellent adaptive modeling capability and

very low online computational complexity together with small

fixed-size network structure, our proposed adaptive MGRBF

network offers an ideal platform for implementing adaptive

nonlinear control scheme.

In addition to nonlinear and nonstationary characteristics,

many real-world systems are high dimensional with strong

correlations among variables. A popular way to deal with

high dimensionality is to employ deep-learning models to

extract deep latent features from raw data. Due to the complex

architecture of deep neural networks, it is difficult to adapt

them online to track fast time-varying data dynamics. Hence,

the integration of deep-learning models with the proposed

adaptive MGRBF offers an important future research direction

for handling high-dimensional nonlinear and nonstationary

data tracking.
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