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DEFORMED CALOGERO–MOSER OPERATORS AND

IDEALS OF RATIONAL CHEREDNIK ALGEBRAS

YURI BEREST AND OLEG CHALYKH

Abstract. We consider a class of hyperplane arrangements A in C
n

that generalise the locus configurations of [CFV2]. To such an ar-
rangement we associate a second order partial differential operator of
Calogero–Moser type, and prove that this operator is completely inte-
grable (in the sense that its centraliser in D(Cn\A) contains a commuta-
tive subalgebra of Krull dimension n). The proof is based on the study
of certain ideals of (the spherical subalgebra of) the rational Chered-
nik algebra that may be of independent interest. Our examples include
the examples of deformed Calogero–Moser systems constructed by A.
Sergeev and A. Veselov in [SV1], M. Feigin in [F] as well as new ex-
amples recently proposed by D. Gaiotto and M. Rapčák in [GR]. Our
approach describes these and other examples in a general framework of
rational Cherednik algebras close in spirit to [BEG] and [BC].

1. Introduction

Let V be the Euclidean space Rn with standard inner product (·, ·). Con-
sider a collection A+ = {α} of nonparallel vectors in V with prescribed
‘multiplicities’ kα, which are assumed (for the moment) to be arbitrary real
numbers. Set A := A+ ∪ (−A+) and define k−α := kα for α ∈ A+. We
will refer to the pair (A, kα) as a configuration in R

n, abbreviating it often
as A for simplicity. With such a configuration we associate a generalised
Calogero–Moser operator of the form

LA := ∆−
∑

α∈A+

kα(kα + 1)(α, α)

(α, x)2
, (1.1)

where ∆ is the standard Laplacian on R
n. The usual (rational) Calogero–

Moser operator corresponds to the root system of type An−1 with all kα = k:

L = ∆−
n∑

i<j

2 k(k + 1)

(xi − xj)2
. (1.2)

The operator (1.2) can be viewed as a quantum Hamiltonian of a system of n
interacting particles on the line. This is a celebrated example of a quantum
completely integrable system: there exist n algebraically independent partial
differential operators L1, L2, . . . , Ln, including L, such that [Li, Lj ] = 0
for all i, j = 1, . . . , n. In contrast, the quantum Hamiltonian (1.1) is not
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2 YURI BEREST AND OLEG CHALYKH

expected to be integrable for an arbitrary configuration. For instance, we
have

Theorem 1.1. Let (1.1) be a completely integrable quantum Hamiltonian
such that its quantum integrals L1, . . . , Ln have algebraically independent
constant principal symbols p1, . . . , pn ∈ R[V ∗]. Assume furthermore that
kα /∈ Z for all α ∈ A. Then the polynomials pi are invariant under a finite
Coxeter group W ⊂ GL(V ), and α ∈ A form a subset of the root system R
of W .

This theorem is a simple consequence of the main result of [T1]. Indeed,
if sα is the orthogonal reflection corresponding to α ∈ A, then, as shown
in [T1], each pi must be invariant under sα. Now take α, β ∈ A, and
assume that sαsβ is of infinite order. Then pi must be invariant under an
arbitrary rotation in the two-dimensional plane spanned by α, β. However,
the ring of polynomials invariant under such rotations has Krull dimension
< n, which implies that p1, . . . , pn cannot be algebraically independent. By
contradiction, we conclude that sαsβ is of finite order for any α, β, therefore
the reflections {sα}α∈A generate a finite Coxeter group W , and so A is a
subset of the root system R of W .

Theorem 1.1 tells us that for non-integral parameters kα, the completely
integrable operators of the form (1.1) are closely related to Coxeter groups.
Indeed, by a theorem of Heckman [H1], the Calogero–Moser operator (in-
troduced in [OP])

LW := ∆−
∑

α∈R+

kα(kα + 1)(α, α)

(α, x)2
, (1.3)

is completely integrable for the root system R of an arbitrary finite Coxeter
group W and an arbitrary W -invariant function k : R → R. (For all
crystallographic groups W this was already shown in [O].)

On the other hand, in the case when all kα’s are integers, there are ex-
amples of completely integrable operators of the form (1.1) where A is not
contained in any root system (see [CFV2]). Instead, such configurations sat-
isfy certain algebraic conditions, called the locus relations. The purpose of
the present work is to study the intermediate case: namely, we are interested
in completely integrable operators of the form (1.1) where only some of the
kα’s are integers. Examples of such operators related to Lie superalgebras
were constructed in [SV1]. A common feature of these examples is that the
vectors in A with non-integral multiplicities form a root system R of a finite
Coxeter groupW , while those with integral multiplicities form aW -invariant
set. To ensure integrability, the vectors with integral multiplicities should
satisfy certain compatibility conditions analogous to the locus relations of
[CFV2]. We call such configurations the generalised locus configurations.
Our main result, Theorem 3.5, states that for any generalised locus con-
figuration, the operator (1.1) is completely integrable. More precisely, we
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show that, in this case, there is a commutative algebra of quantum integrals
containing the Hamiltonian (1.1), that is isomorphic to the ring of gener-
alised quasi-invariants QW

A (see Definition 3.4). The complete integrability
immediately follows from that. Note that the constructed commutative ring
of quantum integrals is, in general, of rank > 1 (see Remark 5.7). Also, we
prove that there exists a linear differential operator S intertwining LA and
LW , i.e.

LA S = S LW .

In various special cases the results of this kind can be found in [CFV1,
SV1, F, SV2]; our approach unifies them and applies to a wider class of
operators. We also extend some of our results to the case of the Calogero–
Moser operators with an additional quadratic oscillatory term.

We now explain how the generalised quasi-invariants QA,W are related to
rational Cherednik algebras. Our approach is inspired by [BEG] and [BC];
however, the Cherednik algebras play a different role in our construction.

If X is an affine algebraic variety, we write D(X) for the ring of (global)
algebraic differential operators on X. It is well known that when X is singu-
lar, the ring D(X) has a complicated structure. A natural way to approach
D(X) geometrically is to relate it to the ring of differential operators on a
non-singular variety Y , which is a resolution of X. Specifically (cf. [SS]),
assuming that the variety X is irreducible, one can choose a finite bira-
tional map π : Y → X with Y smooth and consider the space of differential
operators from Y to X :

D(Y,X) := {D ∈ D(K) : D[O(Y )] ⊆ O(X)} , (1.4)

where K is the field of rational functions on X. This space is naturally a
right module over D(Y ) and a left module over D(X), and the two mod-
ule structures are compatible: in other words, D(Y,X) is an D(X)-D(Y )-
bimodule. Taking the endomorphism ring of D(Y,X) over D(Y ) and map-
ping the differential operators in D(X) to (left) multiplication operators
on D(Y,X) gives an algebra homomorphism: D(X) → EndD(Y )D(Y,X),
which — under good circumstances — turns out to be an isomorphism.
In [BEG], this construction was used for the varieties of classical quasi-
invariants, X = SpecQm, in which case the resolution π : Y → X is given
by the normalization map, with Y = X̃ ∼= V .

In the present paper, we modify (‘deform’) the bimodule D(Y,X) re-
placing the ring D(Y ) of differential operators on a smooth resolution of
X by a (spherical) Cherednik algebra. To be precise, given a generalised
locus configuration (A, k,W ), we consider the variety X := SpecQW

A to-
gether with a natural map π : V//W → X corresponding to the inclusion
QW

A ⊂ C[V ]W (see Definition 4.2). Instead of applying (1.4) directly to π, we
first restrict to the subspace Vreg//W of regularW -orbits in V//W (obtained
by removing from V the reflection hyperplanes of W ), and define the ring
Qreg ⊆ C[Vreg]

W , using the same algebraic conditions as for Q = QW
A (see

(4.1)) but with C[V ]W replaced by C[Vreg]
W . Taking Xreg := SpecQreg,
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we then consider the bimodule D(Vreg//W,Xreg) associated to the natu-
ral map πreg : Vreg//W → Xreg. Since W acts freely on Vreg, we have
D(Vreg//W ) ∼= D(Vreg)

W , and therefore D(Vreg//W,Xreg) ⊆ D(Vreg)
W [δ−1] ,

where δ :=
∏

α∈A+\R(α, x)
kα . Now, the spherical subalgebra Bk of the ra-

tional Cherednik algebra Hk(W ) with k = {kα}α∈R embeds naturally into
D(Vreg)

W via the Dunkl representation (see (2.5)); thus, we can define

MA,W := D(Vreg//W,Xreg) ∩Bk .

This is a right Bk-module – in fact, an ideal of Bk – that we associate to
our generalised locus configuration.1

Main results.

Organisation of the paper. In Section 2 we recall a well-known relation
between Calogero–Moser systems and Dunkl operators, which goes back to
[D, H1, EG1]. In Section 3 we introduce locus relations and locus config-
urations, following [CFV2], and recall their link to quantum integrability.
In Section 4 we define generalised locus configurations and state our main
result, Theorem 3.5. The proofs are given in Section 5; the main idea is
to define and study, for each generalised locus configuration A, an ideal
MA (as briefly described above) in the spherical Cherednik algebra. This
is an extension of the earlier arguments in the theory of locus configura-
tions and quasi-invariants [B, C1, CFV2, BC], with ideals of Cherednik
algebras replacing the Baker–Akhiezer function, which was central in those
earlier works. Note that the idea that the Baker–Akhiezer function for the
Calogero–Moser system can be re-interpreted in terms of special ideals of
the n-th Weyl algebra goes back to [BEG]. The ideals MA have some in-
teresting algebraic properties which we discuss in Section 6. In Sections 7
and 8 we describe all generalised locus configurations currently known. In
Section 9 we extend our results to the generalised Calogero–Moser operators
in the presence of a harmonic oscillatory confinement. Finally, Section 10
briefly discusses the case of affine configurations.

Acknowledgments. We thank P. Etingof, M. Feigin, A. Sergeev and A. Veselov
for questions and stimulating discussions. We are especially grateful to
Misha Feigin who read the preliminary version of the paper and pointed out
several inaccuracies and misprints. The work of the first author is partially
supported by NSF grant DMS 1702372 and the 2019 Simons Fellowship.
The work of the second author is partially supported by EPSRC under
grant EP/K004999/1.

1For technical reasons, it is more convenient for us to work with a twisted ideal which is
obtained by replacing Qreg = O(Xreg) in the above construction by a rank one torsion-free
O(Xreg)-module UA, see (5.2).
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2. Cherednik algebras and Calogero–Moser systems

In this section we recall a well-known relation between rational Cherednik
algebras and Calogero–Moser systems. For more details and references, we
refer the reader to [EG1].

LetW be a finite Coxeter group with reflection representation V . Through-
out the paper we will work over C, so V is a complex vector space with a
W -invariant bilinear form (·, ·). Each reflection s ∈ W acts on V by the
formula

s(x) = x− 2
(α, x)

(α, α)
α , (2.1)

where α ∈ V is a normal vector to the reflection hyperplane. Denote by R+

the set of all these normals and put R = R+ ∪ −R+. Only the direction of
each normal α is important, so we may assume that they are chosen in such
a way that the set R is W -invariant (it is also customary to choose R+ to
be contained in some prescribed half-space). Let us choose a W -invariant
function k : R → C. The elements α ∈ R are called the roots of W , and
kα := k(α) is called the multiplicity of α. Note that we do not assume that
W is irreducible, and R may not span the whole V .

We set Vreg := {x ∈ V | (α, x) 6= 0 ∀α ∈ R} and denote by C[Vreg]
and D(Vreg) the rings of regular functions and regular differential operators
on Vreg, respectively. The action of W on V restricts to Vreg, so W acts
naturally on C[Vreg] and D(Vreg) by algebra automorphisms. We form the
crossed products C[Vreg] ∗W and DW := D(Vreg) ∗W . As an algebra, DW
is generated by its two subalgebras, CW and D(Vreg).

The Calogero–Moser operator associated to W and k = {kα} is a differ-
ential operator LW,k ∈ D(Vreg)

W defined by

LW := ∆− uW , uW =
∑

α∈R+

kα(kα + 1)(α, α)

(α, x)2
, (2.2)

where ∆ is the Laplacian on V associated with the W -invariant form (·, ·).
To describe the link between LW and Cherednik algebra, we first define

the Dunkl operators Tξ ∈ DW as

Tξ := ∂ξ +
∑

α∈R+

(α, ξ)

(α, x)
kαsα , ξ ∈ V . (2.3)

Note that the operators (2.3) depend on k = {kα} , and we sometimes write
Tξ,k to emphasize this dependence. The basic properties of Dunkl operators
are listed in the following lemma.

Lemma 2.1 ([D]). For all ξ, η ∈ V and w ∈W , we have
(1) commutativity: Tξ Tη − Tη Tξ = 0 ,
(2) W -equivariance: w Tξ = Tw(ξ)w ,
(3) homogeneity: Tξ is an operator of degree −1 with respect to the natural

homogeneous grading on DW .
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In view of Lemma 2.1, the assignment ξ 7→ Tξ extends to an (injective)
algebra homomorphism

C[V ∗] →֒ DW , q 7→ Tq . (2.4)

Identifying C[V ∗] with its image in DW under (2.4), we now define the
rational Cherednik algebra Hk = Hk(W ) as the subalgebra of DW generated
by C[V ], C[V ∗] and CW . The family {Hk} can be viewed as a deformation
(in fact, universal deformation) of the crossed product H0 = D(V )∗W (see
[EG1], Theorem 2.16). The above realization of Hk inside DW is referred
to as the Dunkl representation of Hk.

The algebra DW = D(Vreg) ∗W carries a natural differential filtration,
defined by taking deg(x) = 0, deg(ξ) = 1 and deg(w) = 0 for all x ∈ V ∗,
ξ ∈ V and w ∈ W . Through the Dunkl representation, this induces a
filtration on Hk for all k, and the associated graded ring grHk is isomorphic
to C[V × V ∗] ∗W ; in particular, it is independent of k. This implies the
PBW property for Hk, i.e. a vector space isomorphism

Hk
∼→ C[V ]⊗ CW ⊗ C[V ∗] . (2.5)

By definition, the spherical subalgebra ofHk is given by eHk e , where e =
|W |−1

∑
w∈W w . For k = 0, we have H0 = D(V ) ∗W and eH0e

∼= D(V )W ;
thus, the family eHke is a deformation (in fact, universal deformation) of
the ring of invariant differential operators on V .

The Dunkl representation restricts to the embedding eHke →֒ eDWe . If
we combine this with (the inverse of) the isomorphism D(Vreg)

W ∼→ eDWe ,
u 7→ eue = eu = ue , we get an algebra map (cf. [H1])

Res : eHke →֒ D(Vreg)
W , (2.6)

representing the spherical subalgebra eHke by invariant differential opera-
tors. We will refer to (2.6) as the spherical Dunkl representation and denote

Bk := Res(eHke) ⊂ D(Vreg)
W . (2.7)

The differential filtration on Hk induces filtrations on eHke and Bk, with

grBk = C[V × V ∗]W .

Theorem 2.2 ([H1]). Let ξ1 . . . , ξn be an orthonormal basis of V , and q =
ξ21 + · · · + ξ2n ∈ C[V ∗]W . Then Res(eTq e) = LW is the Calogero–Moser
operator (2.2). Furthermore, the image of eC[V ∗]W under the spherical
Dunkl representation (2.6) forms a commutative subalgebra in D(Vreg)

W ,
and the operator LW , thus, defines a quantum completely integrable system.

Theorem 1.1 stated in the Introduction implies that if kα /∈ Z for all α,
then the commutative algebra constructed in Theorem 2.2 is a maximal (i.e.
coincides with its centralizer) in D(Vreg)

W . On the other hand, when kα’s
are integers, this algebra can be extended to a larger commutative algebra.
This stronger property is known as algebraic integrability [CV1, VSC]. To
state the result, let us make the following definition, cf. [CV1, VSC, FV1].
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Definition 2.3. Let {A, k} be a configuration with kα ∈ Z+ for all α ∈ A.
A polynomial q ∈ C[V ] is called quasi-invariant if

q(x)− q(sαx) is divisible by (α, x)2kα ∀α ∈ A+ . (2.8)

The set of all quasi-invariant polynomials in C[V ] is denoted by QA. It is
easy to check that QA is a subalgebra in C[V ].

In the case when A = R is a root system of a Coxeter group W , we
have C[V ]W ⊂ QA ⊂ C[V ], so the algebra of quasi-invariants Qk(W ) := QR

interpolates between the invariants and C[V ].

Remark 2.4. In the definition of QA one can replace 2kα by 2kα+1 in (2.8),
because q(x)− q(sαx) is skew-symmetric under sα.

Consider the Calogero–Moser operator (2.2) with W -invariant multiplic-
ities kα ∈ Z+ and write L = LW , L0 = ∆.

Theorem 2.5. (1) There exists a nonzero linear differential operator S ∈
D(Vreg) such that

LS = S L0 .

Equivalently, Lψ = (λ, λ)ψ, where ψ(λ, x) := Se(λ,x), λ ∈ V .
(2) For any quasi-invariant polynomial q ∈ Qk(W ) there exists Lq ∈

D(Vreg) such that Lqψ = q(λ)ψ. The operators Lq, q ∈ Qk(W ), pairwise
commute and the map q 7→ Lq defines an algebra embedding θ : Qk(W ) →֒
D(Vreg).

The first statement follows from the existence of the so-called shift oper-
ators, constructed explicitly (in terms of the Dunkl operators) in [H2]. Part
(2) is the result of [VSC]. �

The above theorem admits a generalisation where root systems of Coxeter
groups are replaced by more general systems of vectors called locus configu-
rations [CFV2]. Their definition will be recalled in the next section, where
we will also introduce a more general class of configurations for which a
result analogous to Theorem 2.5 exists.

3. Generalised locus configurations

Let (A, kα) be a configuration of vectors with complex multiplicities in a
(complex) Euclidean space V . We assume that the vectors of A are non-
isotropic, i.e. (α, α) 6= 0 for all α ∈ A ; the corresponding orthogonal
reflections sα can then be defined by the same formula as in the real case,
see (2.1). We write HA := {Hα} ⊂ V for the collection of hyperplanes
Hα := Ker(1 − sα) with α ∈ A . As in the Introduction, we associate to
(A, kα) the second order differential operator in D(V \HA):

LA = ∆− uA , uA :=
∑

α∈A+

kα(kα + 1)(α, α)

(α, x)2
. (3.1)

and recall from [CFV2] the following definition.
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Definition 3.1 ([CFV2]). Assume that kα ∈ Z+ for all α ∈ A. The config-
uration (A, kα) is then called a locus configuration if for each α ∈ A+, the
function uA in (3.1) satisfies the condition

uA(x)− uA(sαx) is divisible by (α, x)2kα . (3.2)

Here, we say that a rational function f on V is divisible by (α, x)2k if
(α, x)−2kf is regular at a generic point of the hyperplane Hα.

Explicitly, (3.2) can be described by the following set of equations [C1,
CFV2]:

∑

β∈A+\{α}

kβ(kβ + 1)(β, β)(α, β)2j−1

(β, x)2j+1
= 0 for (α, x) = 0 and j = 1, . . . , kα.

(3.3)

Remark 3.2. An important feature of (3.3) is that it is sufficient for them to
hold for any two-dimensional subconfiguration of A. See [CFV2] for details.

Note that the root system of any Coxeter group W with W -invariant in-
tegral kα obviously satisfies the condition (3.2): these are basic examples
of locus configurations. There exist also many examples of locus configura-
tions which do not arise from Coxeter groups (the so-called ‘deformed root
systems’); a complete classification of all such configurations is still an open
problem: the list of all known examples can be found in [C2].

In this paper, we generalise the notion of locus configurations by allowing
some of the multiplicities kα to take non-integral values. The locus condi-
tions (3.2) for the α’s in A with non-integer kα are simply replaced by the
symmetry condition under sα. More precisely,

Definition 3.3. Let R ⊂ V be the root system of a finite Coxeter group W
acting on V by reflections. A configuration A is called a generalised locus
configuration of type W if

(1) A contains R, and both A and k : A → C are invariant under W ;
(2) For any α ∈ A \ R one has kα ∈ Z+ and the locus condition (3.2)

holds.

Next, we introduce generalised quasi-invariant polynomials associated
with generalised locus configurations.

Definition 3.4. Let A be a generalised locus configuration of type W . A
polynomial q ∈ C[V ]W is called a generalised quasi-invariant if

q(x)− q(sαx) is divisible by (α, x)2kα ∀α ∈ A+ \R . (3.4)

Write QW
A for the space of generalised quasi-invariants. It is easy to check

that QW
A is a graded subalgebra of C[V ]W .

In the trivial case W = {e} and R = ∅ the above definitions reduce to
the usual locus configurations and quasi-invariants QA as defined in the
previous Section. Below we will always identify V and V ∗ using the bilinear
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form (·, ·), thus making no distinction between C[V ] and C[V ∗] and regarding
QW

A interchangeably as a subalgebra in C[V ]W or C[V ∗]W .
Before proceeding further, let us compare our class of configurations with

those introduced by Sergeev and Veselov in [SV1]. One difference is that
in [SV1] the authors assume that kα = 1 for α ∈ A \ R, while we allow
arbitrary kα ∈ Z+. Furthermore, instead of the locus conditions they impose
a condition, which they call “the main identity”, see [SV1, (12)]. In the
rational case this identity takes the following form:

∑

α 6=β,α,β∈A+

kαkβ(α, β)

(α, x)(β, x)
= 0 . (3.5)

Going through the list of configurations in [SV1, Section 2], one can check
that they all satisfy our definition (cf. a remark at the end of [SV1, Section
2]). However, as will become clear from the examples in Sections 7 and 8,
there exist generalised locus configurations that do not fit in the axiomatics
of [SV1]. Therefore, our approach covers a larger class of configurations.

With a generalised locus configuration A of type W we associate two
quantum Hamiltonians, L0 := LW ∈ D(Vreg)

W and L := LA ∈ D(Vreg \
HA)W . By Theorem 2.2, L0 is a member of a commutative family of higher-
order Hamitonians Lq,0 := Res(eTqe), q ∈ C[V ∗]W . Our goal is to prove the
following theorem that extends the main results of [CFV2] to generalised
locus configurations.

Theorem 3.5. Let A be a generalised locus configuration of type W .
(1) There exists a nonzero linear differential operator (‘shift operator’)

S ∈ D(Vreg \HA)W such that LS = SL0.
(2) Furthermore, for any homogeneous generalised quasi-invariant q ∈

QW
A there exists a differential operator Lq such that LqS = SLq,0 where

Lq,0 = Res(eTqe). The operators Lq pairwise commute and the map q 7→ Lq

defines an algebra embedding θ : QW
A →֒ D(Vreg \HA)W .

(3) The algebra QW
A has Krull dimension n = dimV , i.e. it has n al-

gebraically independent elements and so the quantum Hamiltonian LA is
completely integrable.

(4) The algebra θ(QW
A ) is a maximal commutative subalgebra in D(Vreg \

HA)W .

We will prove Theorem 3.5 in Section 5 after we develop an appropriate
algebraic framework in the next section.

4. Shift Operators

In this section, we develop an abstract algebraic approach to the problem
of constructing differential ‘shift’ operators. Our main result — Theorem 4.3
— provides necessary and sufficient conditions for the existence of such
operators under very general assumptions. In the next section, we will verify
these conditions for generalised Calogero-Moser operators, thus deducing
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our main Theorem 3.5 from Theorem 4.3. Our approach originates from an
attempt to understand examples and unify various ad hoc constructions of
shift operators known in higher dimension (n > 1). Some of the ideas go
back to old observations of the authors in [B] and [C1]; our main innovation
is in clarifying the role of localisation and ad-nilpotency (see Lemma 4.1)
as well as the use of a canonical ad-nilpotent filtration (Lemma 4.2) that
allows us to state and prove Theorem 4.3 in abstract ‘coordinate-free’ terms
.

4.1. Existence of shift operators. Throughout this section, k will denote
a fixed field of characteristic zero, and all rings will be k-algebras with 1.
If A and B are two rings and M is an A-B-bimodule, we consider M as a
left (A⊗B◦)-module, with an element a⊗ b ∈ A⊗B◦ acting on m ∈M by
(a⊗b)·m := amb. Then, for a ∈ A and b ∈ B, we say that the pair (a, b) acts
on M locally ad-nilpotently if a⊗1−1⊗ b ∈ A⊗B◦ acts locally nilpotently:
i.e., for every m ∈M , there is n > 0 such that (a⊗ 1− 1⊗ b)n ·m = 0. We
will use the following notation for this action:

ada,b(m) := (a⊗ 1− 1⊗ b) ·m = am−mb

Note that, using the binomial formula, we can write the elements adna,b(m) :=

(a⊗ 1− 1⊗ b)n ·m explicitly for all n ≥ 0 :

adna,b(m) =
n∑

k=0

(−1)k
(
n

k

)
akmbn−k (4.1)

When A = B and a = b, this becomes the adjoint action, in which case we
use the standard notation ada instead of ada,a ; we say that a acts locally
ad-nilpotently on M if so does (a, a). We call an element of a ring locally
ad-nilpotent if it acts locally ad-nilpotently on the ring viewed as a bimodule.

We begin with a general lemma from noncommutative algebra.

Lemma 4.1. Let B be a noncommutative integral domain, S ⊂ B a two-
sided Ore subset in B, and A := B[S−1] the corresponding ring of fractions.
Let L0 ∈ B be a locally ad-nilpotent element in B. Then, for L ∈ A, the
following conditions are equivalent:

(a) there exists a nonzero D ∈ A such that LD = DL0 in A ,
(b) there exists a nonzero D∗ ∈ A such that D∗L = L0D

∗ in A ,

(c) there exists δ ∈ S such that adN+1
L,L0

(δ) = 0 in A for some N ≥ 0.

Proof. The implication (c) ⇒ (a) is immediate: if (c) holds, choose the

smallest N ≥ 0 such that adN+1
L,L0

(δ) = 0, then D := adNL,L0
(δ) 6= 0 satisfies

(a).
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Now, assume that (b) holds. Since S is a right Ore subset in B, for
D∗ ∈ B[S−1], there is δ ∈ S such that D∗δ ∈ B. Then, by (4.1), we have

D∗ adnL,L0
(δ) =

n∑

k=0

(−1)k
(
n

k

)
D∗Lkδ Ln−k

0

=

n∑

k=0

(−1)k
(
n

k

)
Lk
0D

∗δ Ln−k
0 = adnL0

(D∗δ) , ∀n ≥ 0 .

Since L0 acts locally ad-nilpotently onB, there isN ≥ 0 such that adN+1
L0

(D∗δ) =
0. Since A = B[S−1] is a domain and D∗ 6= 0, the above formula implies

adN+1
L,L0

(δ) = 0. This proves (b) ⇒ (c).

Finally, assume that (a) holds. Since S is a left Ore subset in B, for
D ∈ B[S−1], there is δ∗ ∈ S such that δ∗D ∈ B. Then, by (4.1), we have
adnL0,L

(δ∗)D = adnL0
(δ∗D) for all n ≥ 0, which implies that adnL0,L

(δ∗) = 0

for n ≫ 0. Taking the smallest N ≥ 0 such that adN+1
L0,L

(δ∗) = 0, we

put D∗ := adNL0,L
(δ∗) 6= 0. This satisfies L0D

∗ = D∗L, proving the last

implication (a) ⇒ (b). �

In this paper, we are concerned with algebraic differential operators. To
proceed further we therefore make the following general assumption.

(A) An algebra B contains a commutative Noetherian domain R with a
multiplicative closed subset S and the quotient field K such that

S ⊂ R ⊂ B ⊂ D(K) ,

where D(K) is the ring of k-linear algebraic differential operators on
K, with R ⊂ D(K) being the natural inclusion.

By assumption (A), we may think of elements of the algebra B as usual
‘partial differential operators with rational coefficients’. More precisely, since
R is Noetherian, by Noether’s Normalization Lemma, we can choose finitely
many algebraically independent elements in R, say x1, . . . , xn , so that the
quotient field K of R is a finite extension of k(x1, . . . , xn). The module
Derk(K) of k-linear derivations of K is then freely generated (as a K-module)
by the ‘partial derivatives’ ∂/∂xi : K → K , and the ring D(K) can be
identified as

D(K) ∼= K [∂/∂x1, . . . , ∂/∂xn] .

Note that (A) formally implies the assumptions of Lemma 4.1. Indeed,
D(K) is a noncommutative domain (see, e.g., [MR, Theorem 15.5.5]); hence,
being a subalgebra of D(K), B must be a domain as well. Furthermore, since
S ⊂ K, the elements of S are represented by zero order differential operators
on K which act, by definition, locally ad-nilpotently on D(K) (and hence a
fortiori on B). It follows that S is a two-sided Ore subset. Note that the
elements of S are actually units in D(K), hence, by the universal property
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of Ore localisation, the inclusion B →֒ D(K) extends to A := B[S−1] : thus,
if (A) holds, we have

S ⊂ R ⊂ B ⊂ A ⊂ D(K) .

Let L0 be a locally ad-nilpotent element in an algebra B. Following [BW],
we associate to L0 a (positive increasing) filtration on B:

F0B ⊆ F1B ⊆ . . . ⊆ FnB ⊆ Fn+1B ⊆ . . . ⊆ B

which is defined by induction:

F−1B := {0} , Fn+1B := {b ∈ B : adL0
(b) ∈ FnB} , (4.2)

or equivalently,

FnB := {b ∈ B : adn+1
L0

(b) = 0} for all n .

Since adL0
is a locally nilpotent derivation, {F∗B} is an exhaustive filtration

on B satisfying (FnB) · (FmB) ⊆ Fn+mB for all n,m ≥ 0. Note that F0B =
CB(L0) is the centralizer of L0, which is a (not necessarily commutative)
subalgebra of B.

Associated to (4.2) is the degree (valuation) function degL0
: B\{0} → N

defined by

degL0
(b) := n iff b ∈ FnB \ Fn−1B , n ≥ 0 . (4.3)

Note that degL0
(b) = n whenever adn+1

L0
(b) = 0 while adnL0

(b) 6= 0 in B.

It is convenient to extend degL0
to the whole B by setting degL0

(0) := −∞,
so that FnB = {b ∈ B : degL0

(b) ≤ n} for all n.
The next lemma shows that, under assumption (A), the above filtration

and the associated degree function on B extend to the localised algebra
B[S−1] .

Lemma 4.2. Assume that (A) holds. Let L0 be a locally ad-nilpotent ele-
ment in B with degree function degL0

: B → N ∪ {−∞}. Then, there is a

unique function deg : A → Z ∪ {−∞} on A = B[S−1] with the following
properties2:

(0) deg(b) = degL0
(b), ∀ b ∈ B ,

(1) deg (a1a2) = deg(a1) + deg(a2), ∀ a1, a2 ∈ A ,
(2) deg (a1 + a2) = max{deg(a1), deg(a2)}, ∀ a1, a2 ∈ A ,
(3) deg [adL0

(a)] ≤ deg(a)− 1, ∀ a ∈ A .

Proof. First, observe that the properties (1), (2), (3) hold for the function
degL0

on B. Indeed, for degL0
, property (2) is immediate from the definition

(4.3), while (3) follows from the inductive construction of the filtration (4.2).

2Just as the function degL0
on B, its extension to A depends on the ad-nilpotent

element L0. To distinguish between these two degree functions we suppress the dependence
of ‘deg’ on L0 in our notation.
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To verify (1) take two elements b1, b2 ∈ B with degL0
(b1) = n1 ≥ 0 and

degL0
(b2) = n2 ≥ 0. Then, by (4.3),

ad
n1+1
L0

(b1) = ad
n2+1
L0

(b2) = 0 , (4.4)

while ad
n1

L0
(b1) 6= 0 and ad

n2

L0
(b2) 6= 0. Since adL0

is a derivation on B, by
Leibniz rule, we have

adnL0
(b1b2) =

n∑

k=0

(
n

k

)
adkL0

(b1) ad
n−k
L0

(b2) .

for all n ≥ 0. In view of (4.4), for n = n1 + n2 + 1 , the above formula

implies ad
n1+n2+1
L0

(b1b2) = 0 , while, for n = n1 + n2,

ad
n1+n2

L0
(b1b2) =

(n1 + n2)!

n1!n2!
ad

n1

L0
(b1) ad

n2

L0
(b2) .

Since B is a domain, the last equation shows that ad
n1+n2

L0
(b1b2) 6= 0 , which

means that degL0
(b1b2) = n1 + n2 , or equivalently,

degL0
(b1b2) = degL0

(b1) + degL0
(b2) . (4.5)

Now, we define the function deg : A\{0} → Z by

deg(s−1b) := degL0
(b)− degL0

(s) (4.6)

where s−1b ∈ A with s ∈ S and b ∈ B. To see that this definition makes sense
consider two different presentations of an element in A by (left) fractions: say
a = s−1

1 b1 = s−1
2 b2 with s1, s2 ∈ S and b1, b2 ∈ B. Since S is commutative

(by assumption (A)), we have s2b1 = s1b2 in B, which, by (4.5), implies

degL0
(s2) + degL0

(b1) = degL0
(s1) + degL0

(b2) .

Whence

deg(s−1
1 b1) := degL0

(b1)−degL0
(s1) = degL0

(b2)−degL0
(s2) = deg(s−1

2 b2) ,

as required. Note that the same argument shows that

deg(bs−1) = degL0
(b)− degL0

(s) = deg(s−1b) (4.7)

for all b ∈ B and s ∈ S.
Now, with definition (4.6), the property (0) of Lemma 4.2 is obvious. To

prove (1) write elements a1 and a2 in A as left and right fractions: a1 = s−1
1 b1

and a2 = b2s
−1
2 , and use (4.7) to conclude:

deg(a1a2) = deg(s−1
1 b1b2s

−1
2 )

= degL0
(b1b2)− degL0

(s1)− degL0
(s2)

= degL0
(b1) + degL0

(b2)− degL0
(s1)− degL0

(s2)

= [ degL0
(b1)− degL0

(s1) ] + [ degL0
(b2)− degL0

(s2) ]

= deg(a1) + deg(a2) .
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Note that property (1) implies formally that deg(s−1) = − deg(s) for all
s ∈ S; together with (0), it entails (4.6), and hence the uniqueness of the
function ‘deg’.

To prove (2) take a1 = s−1
1 b1, a2 = s−1

2 b2 in A and assume (without loss
of generality) that deg(a1) ≥ deg(a2) . Note that, by (4.5) and (4.6), this
last condition is equivalent to

degL0
(s2b1) ≥ degL0

(s1b2) (4.8)

Now, using the fact that (2) holds for the degree function degL0
, we check

deg(a1 + a2) = deg[(s1s2)
−1(s2b1 + s1b2)]

= degL0
(s2b1 + s1b2)− degL0

(s1)− degL0
(s2)

≤ max{degL0
(s2b1), degL0

(s1b2)} − degL0
(s1)− degL0

(s2)

= degL0
(s2b1)− degL0

(s1)− degL0
(s2) [ by (4.8) ]

= degL0
(b1)− degL0

(s1) = deg(a1)

= max{deg(a1), deg(a2)} .
Finally, to prove (3) we take a = s−1b ∈ A and write adL0

(a) in the form

adL0
(s−1b) = s−1adL0

(b)− s−1adL0
(s) s−1b

Since

deg[s−1adL0
(b)] = degL0

[adL0
(b)]− degL0

(s) ≤ degL0
(b)− degL0

(s)− 1

and similarly

deg[s−1adL0
(s) s−1b] ≤ degL0

(b)− degL0
(s)− 1 ,

by property (2) we conclude

deg[adL0
(a)] ≤ degL0

(b)− degL0
(s)− 1 = deg(a)− 1 .

This completes the proof of the lemma. �

Using the degree function of Lemma 4.2, we can extend the filtration (4.2)
on the algebra B to a Z-filtration on the algebra A :

FnA := {a ∈ A : deg(a) ≤ n} , ∀n ∈ Z .

We write gr(A) := ⊕n∈Z FnA/Fn−1A for the associated graded ring, and for
each n ∈ Z, denote by σn : FnA ։ FnA/Fn−1A →֒ gr(A) the symbol map
of degree n. By definition, for a ∈ FnA , the symbol σn(a) = a + Fn−1A
is nonzero if and only if deg(a) = n. For example, we have σ0(L0) =
L0 + F−1A , since deg(L0) = 0 .

We can now state the main result of this section.

Theorem 4.3. Assume that an algebra B satisfies condition (A). In addi-
tion, assume that there is an R-submodule U0 ⊆ K such that B = {a ∈ A :
a[U0] ⊆ U0}, where A := B[S−1]. Let L0 be a locally ad-nilpotent operator
in B. Then, for an operator L ∈ A, there is a nonzero operator D ∈ A such
that

LD = DL0 (4.9)



DEFORMED CALOGERO–MOSER OPERATORS AND CHEREDNIK ALGEBRAS 15

if and only if the following conditions hold:

(1) there is a k-linear subspace U ⊆ K such that
a) U is stable under L, i.e. L[U ] ⊂ U ,
b) sU0 ⊆ U ⊆ s−1U0 for some s ∈ S ,

(2) σ0(L) = σ0(L0) (in particular, deg(L) = deg(L0) = 0).

Given a subspace U ⊆ K satisfying condition (1b), there is at most one
operator L ∈ A satisfying (1a) and (2) (and hence the identity (4.9)).

Proof. First, we prove that conditions (1) and (2) are sufficient for the exis-
tence of D. To this end, we consider the space of all operators in A mapping
U0 to U :

M := {a ∈ A : a[U0] ⊆ U} .
Note that M is a right B-module which, by (1b), contains the ideal sB and
is contained in s−1B :

sB ⊆ M ⊆ s−1B . (4.10)

On the other hand, by (1a), M is closed under the action of the operator
adL,L0

. We claim that this last operator acts on M locally nilpotently.
Indeed, by Lemma 4.2, it follows from the inclusion M ⊆ s−1B in (4.10)
that

deg(a) ≥ − deg(s) for all a ∈ M\{0} . (4.11)

On the other hand, letting P := L− L0 ∈ A, we can write

adL,L0
(a) = adL0

(a) + Pa .

By condition (2), we have deg(P ) ≤ −1, and hence

deg(Pa) = deg(P ) + deg(a) ≤ deg(a)− 1

for all a ∈ A. Then, by Lemma 4.2,

deg[adL,L0
(a)] ≤ max{deg[adL0

(a)], deg(Pa)} ≤ deg(a)− 1 (4.12)

Now, by (4.10), any element a ∈ M can be written in the form a = s−1b
with b ∈ B. If we take N = deg(b), then, for a = s−1b, (4.12) implies by
induction

deg[adN+1
L,L0

(a)] ≤ deg(a)−N − 1 = deg(b)− deg(s)−N − 1 = − deg(s)− 1 .

In view of (4.11), for a ∈ M, this means that deg[adN+1
L,L0

(a)] = −∞ , i.e.

adN+1
L,L0

(a) = 0. Thus adL,L0
acts on M locally nilpotently. Now, since

s ∈ M by (1b), we have adN+1
L,L0

(s) = 0 with N = 2deg(s). This implies the
existence of D by Lemma 4.1.

Conversely, suppose that there is D 6= 0 in A such that LD = L0D .
This last equation can be rewritten in the form adL0

(D) = −PD, where
P := L− L0. Hence, by Lemma 4.2,

deg(P ) + deg(D) = deg(PD) = deg[adL0
(D)] ≤ deg(D)− 1 ,

which implies deg(P ) ≤ −1 . Thus (2) holds.
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To construct a subspace U ⊆ K satisfying condition (1) we apply Lemma 4.1.

According to this lemma, there is an element δ ∈ S such that adN+1
L,L0

(δ) = 0

for some N ≥ 0. We put Dk := adkL,L0
(δ) for k = 0, 1, 2, . . . , N + 1, with

DN+1 = 0, and define U to be the smallest subspace of K that contains the
images of U0 under the Dk’s for all k : i.e.,

U :=

N∑

k=0

Dk[U0] ⊆ K .

Since Dk+1 = LDk −DkL0 , we have

LDk[U0] = Dk+1[U0] +DkL0[U0] ⊆ Dk+1[U0] +Dk[U0] ⊆ U

for k = 0, 1, . . . , N . Hence L[U ] ⊆ U , which is condition (1a). To prove
(1b) note that, by construction, all the Dk’s are in A, hence there are el-
ements δk ∈ S such that δkDk ∈ B for all k. Put s := δ δ1 . . . δN ∈ S .
Then

sU =
N∑

k=0

sDk[U0] ⊆
N∑

k=0

B[U0] = U0 .

On the other hand, since U0 is an R-module and S ⊂ R, we have

sU0 = δ (δ1 . . . δNU0) ⊆ δ U0 = D0[U0] ⊆ U .

Thus, sU0 ⊆ U ⊆ s−1U0 for s ∈ S, which is the required condition (1b).
To prove the last claim of the theorem consider two operators L1 and L2

in A satisfying (1a) and (2) for a given subspace U which satisfies (1b). Put
P := L1 − L2. Then, by (1a), P [U ] ⊆ U , while by (1b) and Lemma 4.2,

deg(P ) = deg(L1 −L0 +L0 −L2) ≤ max{deg(L1 −L0), deg(L2 −L0)} < 0 .

The first condition implies that P ∈ EndB(M) so that Pa ∈ M for all
a ∈ M, while by the second, deg(Pa) < deg(a) . Taking a 6= 0 to be of
minimal degree in M, we conclude Pa = 0 which means that P = 0 or
equivalently L1 = L2. This finishes the proof of the theorem. �

Remark 4.4. Note that an operator L ∈ A satisfies condition (2) of Theo-
rem 4.3 if and only if L = L0 + P with deg(P ) < 0 . By Lemma 4.2, the
last inequality holds for P ∈ A iff there is an s ∈ S and n ≥ 0 such that
sP ∈ B and adnL0

(sP ) = 0, while adnL0
(s) 6= 0 . In practice, these conditions

are easily verifiable. In applying Theorem 4.3 the main problem is to verify
condition (1).

Remark 4.5. Under the assumptions of Theorem 4.3, for an operator L in
B, the identity LD = DL0 may hold (with nonzero D ∈ D(K)) if and only
if L = L0. This follows from the last claim of the theorem.

Remark 4.6. Theorem 4.3 extends naturally to the case when a single ad-
nilpotent operator L0 ∈ B is replaced by an abelian ad-nilpotent family
C0 ⊂ B (in the sense of [BW]). The filtration F∗B is defined in this case
by Fn+1B := {b ∈ B : adL0

(b) ∈ FnB for all L0 ∈ C0} , and the associated
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degree function on B determines — under the assumption (A) — a degree
function ‘deg’ on A = B[S−1] with the same properties as in Lemma 4.2.
The generalisation of Theorem 4.3 says that, for a family of operators C ⊂ A,
there is a nonzero D ∈ A such that CD = D C0 if and only if conditions
(1) and (2) hold for all L ∈ C. The family C is then necessarily abelian, and
the algebra generated by C in A is a commutative ad-nilpotent subalgebra
of EndB(M). We will construct examples of such subalgebras in Section 4.3
below.

We give a few basic examples of algebras of differential operators satisfying
the assumptions of Theorem 4.3.

Example 4.7. Let V be a finite-dimensional vector space over C. Take
R = C[V ] to be the algebra of polynomial functions on V , and B = D(V ) the
ring of differential operators on U0 = R = C[V ]. Then B ∼= An(C), where
An(C) = C[x1, . . . , xn; ∂1, . . . , ∂n] is the n-th Weyl algebra with n = dim(V ).
The algebra An(C) contains the commutative subalgebra C[∂1, . . . , ∂n] of
constant coefficient differential operators L0 = P (∂1, . . . , ∂n) which act lo-
cally ad-nilpotently on B. In the one-dimensional case (n = 1), there is
a well-known inductive construction of shift operators, using the classical
Darboux transformations, that works for an arbitrary L0. This elementary
construction does not extend to higher dimensions: for n > 1, only some
ad hoc constructions and a few explicit examples are known (see, e.g., [B],
[BK], [BCM], [C1], [CFV1], [CFV2] and references therein).

Example 4.8. Let B = Bk(W ) be the spherical Cherednik algebra associ-
ated to a finite Coxeter group W acting in its reflection representation V .
Take R = C[V ]W and U0 = C[Vreg]

W , where Vreg is the (open) subvariety of
V (obtained by removing the reflection hyperplanes of W ) on which W acts
freely (see Section 2) . It is well-known that B contains a maximal com-
mutative subalgebra of W -invariant differential operators Lq,0 = Res(e Tq e)
associated to q ∈ C[V ∗]W that act locally ad-nilpotently on B (see, e.g.,
[BEG]). The Calogero-Moser operator LW defined by (1.3) is a special ex-
ample of the Lq,0 corresponding to the quadratic polynomial q = |ξ|2 (cf.
Theorem 2.2). The generalised Calogero-Moser operators LA given by (1.1)
are examples of the operators L related to L0 = LW by a shift operator in
a properly localised Cherednik algebra; in the next section, we will describe
the subspaces U = UA associated to these operators explicitly in terms of
locus conditions. This is the main example of the present paper.

Example 4.9. Let G be a complex connected reductive algebraic group,
g = Lie(G) its Lie algebra. Take B = D(g)G to be the ring of invariant
polynomial differential operators on g with the respect to the natural (ad-
joint) action of G on g. The algebra B contains the subalgebra R = C[g]G

of invariant polynomial functions on g and acts naturally on U0 = C[greg]
G,

where greg ⊂ g is the (open) subvariety of regular semisimple elements of g
on which G acts freely. Moreover, B contains the commutative subalgebra
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C[g∗]G of constant coefficient invariant differential operators L0 which act
locally ad-nilpotently on B. A special example of such an L0 is the second
order Laplace operator ∆g defined for a G-invariant metric on g. Appli-
cations of Theorem 4.3 to this example seems to deserve a separate study.
Of particular interest is a relation to the previous example: specifically, the
question whether the generalised Calogero-Moser operators constructed in
this paper can be obtained via the (properly localised) deformed Harish-
Chandra map Φk : D(g)G → Bk(W ) constructed in [EG1]?

4.2. Morita context. We return to the situation of Theorem 4.3. We take
an operator L satisfying conditions (1) and (2) of the theorem, fix a subspace
U ⊆ K corresponding to L and consider the module M of all operators in A
mapping U0 to U (as defined in the proof of Theorem 4.3). This last module
has some interesting algebraic properties that we will describe next.

First, we remark that the subspace U satisfying condition (1) of The-
orem 4.3 is not uniquely determined by L. However, given two such sub-
spaces, say U1 and U2, their sum U1 + U2 also satisfies (1). Indeed, if
s1U0 ⊆ U1 ⊆ s−1

1 U0 and s2U0 ⊆ U2 ⊆ s−1
2 U0 , then sU0 ⊆ U1+U2 ⊆ s−1U0

for s = s1s2 ∈ S, while obviously L[U1+U2] ⊆ U1+U2 whenever L[U1] ⊆ U1

and L[U2] ⊆ U2. This implies that the poset of all subspaces U ⊆ K sat-
isfying (1) has at most one maximal element — the largest subspace Umax.
We will see that in our basic example — for the operator L = LA associ-
ated to a generalised locus configuration — such a subspace always exists
(Lemma 5.1). In what follows, we will therefore study the module M for
the maximal subspace U = Umax, assuming that the latter exists.

Next, we recall a few basic definitions from noncommutative algebra.
For a right B-module M, we will denote by M∗ := HomB(M, B) its
dual, which is naturally a left B-module (via left multiplication of B on
itself). Applying the Hom-functor twice, we get the double dual M∗∗ :=
HomB(HomB(M, B), B), which is a right B-module equipped with a canon-
ical map M → M∗∗. A B-module M is called reflexive if the canonical map
M → M∗∗ is an isomorphism. It is easy to see that every f.g. projective
(in particular, free) module is reflexive but, in general, a reflexive module
need not be projective. If B is a Noetherian domain, we write Q = Q(B)
for the quotient skew-field3 of B, and call M a fractional ideal if M is a
right submodule of Q such that pB ⊆ M ⊆ qB for some nonzero p, q ∈ Q.
Furthermore, if B is a Noetherian domain satisfying our condi tion (A),
then B ⊆ D(K) ⊆ Q; in this case, we call a fractional ideal M of B fat
if M ⊆ D(K) and M ∩ K 6= {0}. Finally, we recall the definition of the
B-module M from Theorem 4.3:

M := {a ∈ A : a[U0] ⊆ U} , (4.13)

3Recall, for a (left and/or right) Noetherian domain B, the set S = B\{0} of all nonzero
elements of B satisfies a (left and/or right) Ore condition (Goldie’s Theorem), and the
quotient skew-field Q(B) is obtained in this case by Ore localisation B[S−1].
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and in a similar fashion, we define the ring

D := {a ∈ A : a[U ] ⊆ U} . (4.14)

Proposition 4.10. Assume that the algebra B, the operators L0 ∈ B and
L ∈ A satisfy the assumptions of Theorem 4.3. In addition, assume that B
is Noetherian and the subspace U ⊆ K associated to L by Theorem 4.3 is
maximal. Then

(a) M is a fat reflexive fractional ideal of B;
(b) D ∼= EndB(M), where EndB(M) is the endomorphism ring of M.

Proof. (a) Note that M being a fractional right ideal of B follows immedi-
ately from condition (1b) of Theorem 4.3: see (4.10). We need only to prove
that M is reflexive. If M1 and M2 are two fractional (right) ideals of B,
we can identify (see [MR, 3.1.15]):

HomB(M1,M2) ∼= {q ∈ Q : qM1 ⊆ M2} . (4.15)

In particular,

M∗ ∼= {q ∈ Q : qM ⊆ B} (4.16)

Now, in addition to the right B-module M, we introduce the left B-module

N := {a ∈ A : a[U ] ⊆ U0} .
By condition (1b) of Theorem 4.3,

Bs ⊆ N ⊆ Bs−1 , (4.17)

which shows that N is a fractional left ideal. Since B = {a ∈ A : a[U0] ⊆
U0}, we have NM ⊆ B . With identification (4.16), this implies N ⊆ M∗ .
Dualizing the last inclusion yields M∗∗ ⊆ N ∗. On the other hand, for any
fractional ideal, we have M ⊆ M∗∗. Hence, to prove that M is reflexive it
suffices to show

N ∗ ⊆ M . (4.18)

We prove (4.18) in two steps. First, we define M◦ := {a ∈ A : adNL,L0
(a) =

0 for some N ≥ 0} and show that

N ∗ ⊆ M◦. (4.19)

Then, we will prove

M◦ ⊆ M . (4.20)

To see (4.19) we identify N ∗ ∼= {q ∈ Q : N q ∈ B} similar to (4.16). Since
s ∈ N , for any q ∈ N ∗, we have sq ∈ B, which implies q ∈ A. Hence
N ∗ ⊆ A . On the other hand, the inclusion N ⊆ Bs−1 in (4.17) implies
deg(a) ≥ − deg(s) for all a ∈ N . Then, the same argument as in the
proof of Theorem 4.3 shows that adL0,L acts on N locally nilpotently. In

particular, for s ∈ N , there is N = Ns ≥ 0 such that adN+1
L0,L

(s) = 0, while

adNL0,L
(s) 6= 0 . Set S∗ := 1

N ! ad
N
L0,L

(s) ∈ N , so that L0S
∗ = S∗L . Now,
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for any q ∈ N ∗, we have S∗q ∈ N N ∗ ⊆ B . Since L0 acts on B locally
ad-nilpotently, there is n ≥ 0 such that

adnL0
(S∗q) = S∗ adnL,L0

(q) = 0 .

This implies adnL,L0
(q) = 0 since S∗ 6= 0. Thus q ∈ M◦ for any q ∈ N ∗,

which proves (4.19).
To prove (4.20) it suffices to show (by induction) that for a ∈ A ,

adL,L0
(a) ∈ M ⇒ a ∈ M .

Note that, if adL,L0
(a) ∈ M, then

La[U0] = adL,L0
(a)[U0] + aL0[U0] ⊆ U + a[U0]

Hence, if we set Ũ := U + a[U0] ⊆ K, then L[Ũ ] ⊆ Ũ , i.e. Ũ satisfies
condition (1a) of Theorem 4.3. On the other hand, since a ∈ A, we can find
s′ ∈ S such that s′a ∈ B. Taking s̃ := ss′ ∈ S , with s ∈ S as in (1b) of

Theorem 4.3, we have s̃ U0 ⊆ sU0 ⊆ U ⊆ Ũ and

s̃ Ũ = s̃ U + s̃a[U0] = s′(sU) + s(s′a[U0]) ⊆ s′ U0 + sB[U0] ⊆ U0

Thus, s̃ U0 ⊆ Ũ ⊆ s̃−1 U0 for s̃ ∈ S, i.e. the Ũ also satisfies condition (1b) of

Theorem 4.3. Since U ⊆ Ũ , by maximality of U , we conclude that Ũ = U
which implies that a[U0] ⊆ U , i.e. a ∈ M. This proves (4.20).

Summing up, we have shown that

M ⊆ M∗∗ ⊆ N ∗ ⊆ M◦ ⊆ M .

Thus, all these subspaces in Q are equal. In particular, we have M = M∗∗,
which proves the reflexivity of M.

(b) By (4.15), we can identify EndB(M) ∼= {q ∈ Q : qM ⊆ M} .
Since M is naturally a left D-module, we have D ⊆ EndB(M) via left
multiplication in Q. We need only to show the opposite inclusion

EndB(M) ⊆ D (4.21)

This can be proved in the same way as (4.18) in part (a): first, one defines
the ring D◦ := {a ∈ A : adNL (a) = 0 for some N ≥ 0} and shows that
EndB(M) ⊆ D◦ , then one proves the inclusion D◦ ⊆ D arguing by induction
(downwards) in N . Note that, just as in part (a), the maximality of U is
needed only for the last inclusion. Thus we get the chain of subalgebras in
Q:

D ⊆ EndB(M) ⊆ D◦ ⊆ D ,

proving that all three are equal. This finishes the proof of the proposition.
�

Remark 4.11. The proof of Proposition 4.10 shows that

M = {a ∈ A : adNL,L0
(a) = 0 for some N ≥ 0} ,

D = {a ∈ A : adNL (a) = 0 for some N ≥ 0} ,
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which gives an intrinsic characterisation of (4.13) and (4.14) for the maximal
U . Dually, if we assume the maximality of U0, i.e. that the U0 is maximal
among all subspaces Ũ0 ⊆ U0[S

−1] such that L0[Ũ0] ⊆ Ũ0 and U0 ⊆ Ũ0 ⊆
s−1U0 with s ∈ S, then we get N = N ∗∗ = M∗ and

N = {a ∈ A : adNL0,L(a) = 0 for some N ≥ 0} ,
B = {a ∈ A : adNL0

(a) = 0 for some N ≥ 0} .

Proposition 4.10 shows that the quadruple (M, M∗, B, D) forms aMorita
context in the sense of [MR, 1.1.5]. It is natural to ask when this context
gives an actual Morita equivalence between the algebras B and D : i.e., when
do these algebras have equivalent module categories? Standard ring theory
provides necessary and sufficient conditions for this in the form (see [MR,
Cor. 3.5.4]):

M∗M = B and MM∗ = D .

In general, these conditions are not easy to verify; however, in our situation,
they hold automatically under additional homological assumptions on B:

Corollary 4.12. Assume that B is a simple Noetherian ring of global di-
mension gldim(B) ≤ 2 . Then D is Morita equivalent to B; in particular,
D is a simple Noetherian ring of global dimension gldim(D) = gldim(B) .
Moreover, if U0 is a simple B-module, then U is a simple D-module.

Proof. It is a standard fact of homological algebra that every nonzero reflex-
ive module over a Noetherian ring of global dimension ≤ 2 is f.g. projective
(see, e.g., [Bass]). Hence, by part (a) of Proposition 4.10, the B-module M
is f.g. projective; then part (b) — together with Dual Basis Lemma [MR,
3.5.2] — implies MM∗ = D . On the other hand, if B is a simple domain,
we have automatically M∗M = B , since M∗M is a (nonzero) two-sided
ideal in B. Thus, by [MR, Cor. 3.5.4], B and D are Morita equivalent al-
gebras. Being Noetherian, simple and having global dimension n are known
to be Morita invariant properties of rings, hence D shares these properties
with B.

To prove the last statement consider the map of left B-modules

f : M⊗B U0 → U

given by the action of operators in M on U0. The cokernel of this map,
Coker(f) = U/M[U0], has a nonzero annihilator in D: indeed, for s ∈ S as
in (1b) of Theorem 4.3, we have s2U = s(sU) ⊆ sU0 ⊆ sB[U0] ⊆ M[U0])
by (4.10). Hence Coker(f) = 0 , since D is simple. On the other hand, since
M is a progenerator in Mod(B), the D-module M⊗BU0 is simple, whenever
U0 is simple. Hence Ker(f) = 0. It follows that f is an isomorphism and U
is a simple D-module. �

Remark 4.13. In the last statement of Corollary 4.12, we can replace the
assumption that U0 is a simple B-module by U0 being a finite R-module.
The latter implies the former by an argument of [BW, Proposition 8.9].



22 YURI BEREST AND OLEG CHALYKH

4.3. Commutative subalgebras. The results of the previous section show
that the algebras B and D containing the operators L0 and L share many
common properties, provided L0 and L are related by the ‘shift’ identity
(4.9). In this section, we will construct two commuting families of operators
(including L0 and L) that generate two isomorphic commutative subalgebras
in B and D intertwined by a common shift operator S. It is interesting to
note that the operator S may differ from the operator D that appears in
(4.9): in general, there seems to be no simple relation between these two
shift operators.

We will keep the assumptions of Theorem 4.3 and keep using the notation
from the previous section. In addition, we will introduce a new notation:
for a “multiplicative” version of the operator ada,b defined in the beginning
of Section 4.1. Specifically, for an algebra A and a pair of elements a, b ∈ A ,
we define a linear map Ada,b : A → A[[t]] with values in the ring of formal
power series over A, by

Ada,b(x) :=

∞∑

n=0

tn

n!
adna,b(x) . (4.22)

(As in the case of ‘ad’, we will simply write Ada instead of Ada,a when
a = b.)

Note that (a, b) acts locally ad-nilpotently on x ∈ A if and only if Ada,b(x) ∈
A[t] , where A[t] ⊂ A[[t]] is the subring of polynomials in t with coefficients
in A. Moreover, (4.22) has the following useful ‘multiplicative’ property.

Lemma 4.14. For all x, y ∈ A, the following identity holds in A[[t]] :

Ada,c(xy) = Ada,b(x)Adb,c(y) (4.23)

Proof. The coefficient under tn in the left-hand side of (4.23) is 1
n! ad

n
a,c(xy) ,

while in the right-hand side,
∑

n1+n2=n

1

n1!n2!
ad

n1

a,b(x) ad
n2

b,c(y)

Thus (4.23) is equivalent to the sequence of identities in A:

adna,c(xy) =

n∑

k=0

(
n

k

)
adka,b(x) ad

n−k
b,c (y) , ∀n ≥ 0 ,

which can be easily verified by induction using the following ‘twisted’ version
of the Leibniz rule

ada,c(xy) = ada,b(x) y + x adb,c(y) .

An alternative way to prove (4.23) is to use the identity

Ada,b(x) = etax e−tb (4.24)

that formally holds in A[[t]]. To see (4.24) it suffices to notice that the both
sides of (4.24) agree at t = 0, while satisfy the same differential equation
dF (t)/dt = ada,b[F (t)] for F (t) ∈ A[[t]]. �
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Now, let L0 ∈ B and L ∈ A be as in Theorem 4.3, and let U ⊆ K be a
subspace (not necessarily maximal) associated to L. Recall the fractional
ideal M, see (4.13), and the algebra D, see (4.14), attached to U . As
shown in the proof of Theorem 4.3, adL,L0

acts locally nilpotently on M;

in particular, if we take s ∈ M as in (1b), then adN+1
L,L0

(s) = 0 for some

N ≤ 2 deg(s). We take the smallest N ∈ N with this property and put

S :=
1

N !
adNL,L0

(s) ∈ M (4.25)

so that S 6= 0 while LS = SL0 . Using (4.25), it is easy to show that L is
locally ad-nilpotent in D . Indeed, as DM ⊆ M, we have aS ∈ M for any
a ∈ D, and therefore adnL(a)S = adnL,L0

(aS) = 0 for n ≫ 0 , which implies

adnL(a) = 0 since S 6= 0.
Now, we define

Q := D ∩R = {q ∈ R : q U ⊆ U} (4.26)

which is a commutative subring in D. Note that Q is nontrivial: i.e. Q 6=
{0}, since at least s2 ∈ Q by condition (1b). Note also that Q ⊆ R ⊆ B,
i.e. Q is a common commutative subring of B and D. Using the fact that
L0 is locally ad-nilpotent in B and L is locally ad-nilpotent in D, we define
for every q ∈ Q :

Lq,0 :=
1

Nq,0!
ad

Nq,0

L0
(q) , (4.27)

Lq :=
1

Nq!
ad

Nq

L (q) , (4.28)

where Nq,0 ≥ 0 and Nq ≥ 0 are chosen to be the smallest numbers such

that ad
Nq,0+1
L0

(q) = 0 and ad
Nq+1
L (q) = 0 . Thus, by definition, Lq,0 ∈ B and

Lq ∈ D are nonzero operators satisfying [Lq,0, L0] = 0 and [Lq, L] = 0 . In
addition, we have

Proposition 4.15. The operators (4.27) and (4.28) commute in B and D :
i.e.,

[Lq,0, Lq′,0] = 0 , [Lq, Lq′ ] = 0 , ∀ q, q′ ∈ Q . (4.29)

Moreover, for all q ∈ Q, we have

Lq S = S Lq,0 (4.30)

where S is the operator defined by (4.25).

Proof. The commutation relations (4.29) and (4.30) are proved in a similar
way, using the identity (4.23) of Lemma 4.14. For example, to prove (4.30)
we apply (4.23) to x = q ∈ Q and y = s as in (1b):

AdL(q)AdL,L0
(s) = AdL,L0

(qs) = AdL,L0
(sq) = AdL,L0

(s)AdL0
(q)
(4.31)

Notice that, by ad-nilpotency, all the Ad’s in equation (4.31) take values
in the polynomial ring A[t]. Then, comparing the leading coefficients of
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polynomials in both sides of (4.31) gives precisely the identity (4.30). Also,
comparing the degrees (in t) of these polynomials shows that Nq = Nq,0 in
(4.27) and (4.28). �

It follows from Proposition 4.15 that the operators {L0, Lq,0} ⊂ B and
{L, Lq} ⊂ D generate two commutative subalgebras in B and D that are
isomorphic to each other, with isomorphism given by L0 7→ L and Lq,0 7→ Lq

for all q ∈ Q.

5. Proof of Theorem 3.5

Given a generalised locus configuration A, consider the polynomial δ ∈
C[V ]W defined by4

δ :=
∏

α∈A+\R
(α, x)kα . (5.1)

[The fact that δ is W -invariant follows from the W -invariance of A and kα:
indeed, we must have δ(sαx) = ±δ(x) for any α ∈ R, but δ(sαx) = −δ(x) is
impossible since δ does not vanish along (α, x) = 0 for α ∈ R.]

The set S = {1, δ, δ2, . . .} is a two-sided Ore subset in the Cherednik
algebra Hk, and we write Hk[δ

−1] and Bk[δ
−1] for Hk and Bk localised at

S. By (2.7) Bk ⊂ D(Vreg)
W , thus B := Bk, R := C[V ]W and the above S

satisfy the assumption (A) of Section 4. Note that the quotient filed K of R
is C(V )W where C(V ) denotes the field of rational functions.

The operator L0 acts on Bk locally ad-nilpotently (precise reference?),
so by Lemma 4.2 we can associate to it a degree function on B = Bk and
A = Bk[δ

−1]. An elementary calculation shows that for any f ∈ C[V ]W ,
degL0

f coincides with the usual homogeneous degree of f . It follows that
deg(L− L0) = −2, which verifies the condition (2) of Theorem 4.9.

Next, let us take U0 = C[Vreg]
W ; clearly, Bk(U0) ⊂ U0. Moreover, any

a ∈ Bk[δ
−1] that preserves U0 must be regular away from the reflection

hyperplanes of W , hence, a must necessarily lie in Bk. This proves that

Bk = {a ∈ Bk[δ
−1] | a(U0) ⊂ U0} . (5.2)

Our next and most important ingredient is the subspace UA ⊂ δ−1
C[Vreg]

W

consisting of functions f satisfying

f(sαx)− (−1)kαf(x) is divisible by (α, x)kα ∀α ∈ A+ \R . (5.3)

It is immediate from the definitions that

δC[Vreg]
W ⊆ UA ⊆ δ−1

C[Vreg]
W , QW

A UA ⊂ UA . (5.4)

The following properties of UA are crucial. These are, in fact, the only
properties where the locus relations (3.2) play a role.

4The polynomial (5.1) should not be confused with the discriminant of the Coxeter
group W , i.e.

∏
α∈R+

(α, x) , which is also denoted frequently by δ in the literature on

Cherednik algebras.
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Lemma 5.1 (cf.[C1, CEO]). The space UA is invariant under the action of
LA. Moreover, UA is maximal among all subspaces U with the properties
that U ⊆ δ−r

C[Vreg]
W for some r > 0 and LA(U) ⊆ U .

Proof. The first claim in the caseW = {e} goes back to [C1] while the second
is a slight reformulation of [CEO, Proposition 5.1], and the same arguments
work for the generalW . Namely, one works ‘locally’ by considering, for each
α ∈ A+ \R, Laurent expansions in direction α. Functions f ∈ UA are then
characterised precisely by the property that their Laurent expansions do not
contain terms (α, x)j with j /∈ {−kα+2Z≥0}∪{kα+1+2Z≥0}. On the other
hand, the locus relations (3.2) mean that in a similar Laurent expansion of
u there will be no terms of degree 1, 3, . . . , 2kα − 1. The invariance of UA
under LA immediately follows from that. Moreover, if f /∈ UA, then one can
repeatedly apply LA to f and obtain a function with a pole of an arbitrarily
large order. This, in its turn, would violate the condition U ⊆ δ−r

C[Vreg]
W ,

thus proving that UA is maximal. See the proof of [CEO, Proposition 5.1]
for the details. �

Remark 5.2. For L0 = LW a similar fact is true, namely, C[Vreg]
W is maximal

among all subspaces U0 ⊂ δ−r
C[Vreg]

W for some r > 0 such that L0(U0) ⊂
U0. The proof is similar (formally, it corresponds to setting kα = 0 in the
above arguments).

Proof of Theorem 3.5. Part (1). This follows from Theorem 4.3 applied to
B = Bk, A = Bk[δ

−1], L0 = LW , L = LA and U = UA. All assumptions
of Theorem 4.3 are satisfied, hence there exists D ∈ Bk[δ

−1] such that
LD = DL0. This proves part (1) of Theorem 3.5. Furthermore, the proof
of Lemma 4.1 shows that D can be taken to be

D = adNL,L0
(δ) , N = deg δ .

�

With the space UA we associate the following subspaces:

MA = {a ∈ Bk[δ
−1] | a(C[Vreg]W ) ⊂ UA} , (5.5)

M∗
A = {a ∈ Bk[δ

−1] | a(UA) ⊂ C[Vreg]
W } , (5.6)

DA = {a ∈ Bk[δ
−1] | a(UA) ⊂ UA} . (5.7)

We may also consider the subspace consisting of all a ∈ Bk[δ
−1] that preserve

C[Vreg]
W . However, any such a must be regular away from the reflection

hyperplanes of W , hence, a ∈ Bk. This proves that

Bk = {a ∈ Bk[δ
−1] | a(C[Vreg]W ) ⊂ C[Vreg]

W } . (5.8)

It is clear that DA is a ring which acts on MA (M∗
A, resp.) by left (right,

resp.) multiplication. In fact, MA and M∗
A can be viewed as DA -Bk and

Bk -DA bimodules in the obvious way. From (5.4), (5.8) we get that

δBk ⊂ MA ⊂ δ−1Bk , Bkδ ⊂ M∗
A ⊂ Bkδ

−1 , δDAδ ⊂ Bk . (5.9)
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In particular, δ belongs to both MA and M∗
A.

Recall the Calogero–Moser operators L0 := LW and L := LA. Since
L0 ∈ Bk and L ∈ DA, the ad-operators adL and adL0

act on DA and Bk,
respectively. We also have adL,L0

(resp. adL0,L) acting on the bimodule
MA (resp. M∗

A).

Lemma 5.3. (1) The operators adL and adL0
act locally nilpotently on DA

and Bk, respectively.
(2) The operators adL,L0

and adL0,L act locally nilpotently on MA and
M∗

A, respectively.
(3) We have gr(MA), gr(M∗

A), gr(DA) ⊂ C[V × V ∗]W , where ‘gr’ is
taken with respect to the differential filtration on Bk[δ

−1].

Proof. By (5.9), we must have

gr(MA), gr(M∗
A) ⊂ δ−1

C[V × V ∗]W , gr(DA) ⊂ δ−2
C[V × V ∗]W .

Below we will only check the properties of adL,L0
and gr(MA), all others

are proved in the same way.
Consider a positive increasing filtration on the ring D(V ), defined by

deg(x) = 1, deg(∂) = 0. This filtration naturally extends to a Z-filtration
on D(Vreg)[δ

−1]. It is easy to see that each application of adL,L0
lowers the

x-degree. On the other hand, considering the differential filtration, the fact
that gr(MA) ⊂ δ−1

C[V ×V ∗]W tells us that the x-degree of elements in MA
are bounded below by − deg δ. It follows that for any a ∈ MA adNL,L0

(a) = 0
for N sufficiently large.

To prove that gr(MA) ⊂ C[V × V ∗]W , take an arbitrary a ∈ MA and
suppose it has order r as a differential operator. Then adL,L0

(a) is of order
at most r + 1, with the terms of order r + 1 given by

n∑

i=1

2∂i(a0)∂i , (5.10)

where a0 denotes the leading order terms of a. Suppose a0 has a pole of
order p > 0 along a hyperplane (α, x) = 0. Then it is easy to see that
the expression (5.10) has pole of order p + 1 along this hyperplane. As a
result, each application of adL,L0

increases the order of the pole, and so
adrL,L0

(a) remains nonzero for all r > 0. This contradicts part (2) of the
lemma. We conclude that the leading order terms of a are regular and
gr(MA) ⊂ C[V × V ∗]W , as needed. �

Corollary 5.4. With respect to the x-filtration, all elements of Bk, DA,
MA, M∗

A have non-negative degree.

Indeed, this follows immediately from the fact that their leading terms
w.r.t. the differential filtration are contained in C[V × V ∗]. �

We can now give an intrinsic characterisation of MA, M∗
A, DA and Bk

as subspaces in Bk[δ
−1].
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Theorem 5.5. Let A = Bk[δ
−1], L = LA, L0 = LW . Then for the spaces

defined by (??)–(??) we have: D = DA, M = MA, M∗ = M∗
A, D0 = Bk.

In other words, MA is the largest subspace in Bk[δ
−1] on which adL,L0

acts
locally nilpotently, and similarly for the other cases.

Proof. Let us prove that M = MA, other cases are similar. By Lemma
5.3(2), MA ⊂ M. It remains to prove that if for some a ∈ Bk[δ

−1] and
n ≥ 1, we have adnL,L0

(a) = 0, then a ∈ MA. By induction in n, it is enough

to show that adL,L0
(a) ∈ MA implies a ∈ MA. So let a ∈ Bk[δ

−1] and
b ∈ MA are such that

La− aL0 = b . (5.11)

The differential operators a, b, L, L0 act on C[Vreg]
W [δ−1]. Denote U0 =

C[Vreg]
W ; our goal is to show that a(U0) ⊂ UA. We have L0(U0) ⊂ U0,

b(U0) ⊂ UA, and L(UA) ⊂ UA. Now set U := a(U0)+UA, then (5.11) implies
that L(U) ⊂ U . Since δra ∈ Bk for some r > 0, we have a(U0) ⊂ δ−rU0.
Also, UA ⊂ δ−1U0, and therefore U ⊂ δ−rU0. We now use Lemma 5.1 to
conclude that U = UA, and thus a(U0) ⊂ UA. This proves that a ∈ MA,
and so M = MA, as needed.

For the remaining cases, proofs are essentially the same. For example,
for the proof of D0 = Bk, one replaces (5.11) with L0a − aL0 = b and set
U := a(U0)+U0. In this case instead of Lemma 5.1 one uses Remark 5.2. �

5.1. Proof of Theorem 3.5. Take any homogeneous polynomial f ∈ C[V ]W

of degree r. Using (5.10) repeatedly, we have

adrL0
(f) = 2rr!f(∂) + . . . ,

up to lower order terms w.r.t. differential filtration. Since each application
of adL0

lowers the x-degree by one, the x-degree of adrL0
(f) is zero. Using

the previous corollary, we obtain that adr+1
L0

(f) = 0. Hence, the least r such

that adr+1
L0

(f) = 0 is given by r = deg f . The same argument works for
the other cases, e.g. for f ∈ MA and repeated application of adL,L0

. For
instance, taking δ ∈ MA and denoting N := deg δ, we construct an operator

S =
1

2NN !
adNL,L0

(δ) .

By construction, S belongs to MA and it has the form

S =
∏

α∈A+\R
(α, ∂)kα + . . . (5.12)

with lower order terms “. . .” being of negative x-degree. As a result, adN+1
L,L0

δ =

0 and S intertwines L and L0. This proves part (1) of Theorem 3.5.
Applying the general construction of Theorem (??), we alos obtain the

following result.
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Proposition 5.6. For any homogeneous generalised quasi-invariant q ∈
QW

A of degree r > 0, define

Lq =
1

2rr!
adrL(q) , Lq,0 =

1

2rr!
adrL0

(q) . (5.13)

Then the assignment q 7→ Lq (q 7→ Lq,0, resp.) extends to an injective alge-
bra homomorphism QW

A →֒ DA (QW
A →֒ Bk, resp.). Moreover, the operators

Lq, Lq,0 have their leading order terms of the form q(∂) and satisfy

Lq S = S Lq,0 ,

where S is the shift operator (5.12).

Proof. In the setting of Theorem ??, consider B := Bk, A := Bk[δ
−1],

L := LA, L0 := LW , M := MA. We then have D = DA, D0 = Bk. Choose
the commutative subalgebras C = C0 = QW

A ⊂ D ∩ D0. We have δ ∈ M
and, obviously, Cδ = δC0. By the previous results, all the assumptions
of Theorem ?? are satisfied. As explained above, for any homogeneous
polynomial f ∈ C = C0 the smallest r such that adr+1

L f = 0 or adr+1
L0

f = 0

equals r = deg f . Thus, we obtain two commutative subalgebras C♭, C♭
0

generated by the operators Lq and Lq,0, respectively, and the shift operator
(5.12) intertwines these subalgebras. �

To finish the proof of part (2) of Theorem 3.5, we need to explain why
Lq,0 is the same as Res(eTqe). To see that, we notice that both operators
belong to Bk and have the same leading order terms q(∂). From the way
these operators are constructed, it is clear that their lower order terms have
negative x-degree. Corollary 5.4 then tells us that Lq,0 = Res(eTqe).

Finally, part (3) of Theorem 3.5 follows easily from the inclusion δ2C[V ]W ⊂
QW

A .
�

Remark 5.7. For the commutative ring {Lq | q ∈ QW
A } we can consider the

eigenvalue problem
Lqψ = q(λ)ψ ∀ q ∈ QW

A , (5.14)

where ψ = ψ(x, λ) is a function of x and the spectral variable λ ∈ V . The
dimension of the solution space to (5.14) for generic λ is usually referred to
as the rank of the commutative ring (cf. [BrEtGa]). By arguments close
to those in [C2, Section 3], one can show that the solution space to (5.14)
has dimension |W |, the cardinality of W . For the locus configurations, the
groupW is trivial, and the commutative ring has rank one (see [C2, Theorem
3.11]).

6. Fat ideals of the spherical subalgebra

Recall the DA -Bk bimodules MA (5.5). When viewed as right Bk-
modules, these modules have some very interesting properties. Recall that
the spherical subalgebra Bk contains a commutative subalgebra C[V ]W of
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polynomials. Following [BCM], we call a right Bk-module M fat if it is
isomorphic to an ideal Mx ⊂ Bk with Mx ∩ C[V ]W 6= {0}. The algebra
Bk contains another commutative subalgebra, denoted as C[V ∗]W , consist-
ing of the elements Res(eTqe) with q ∈ C[V ∗]W . A fat Bk-module M is
called very fat if, in addition, M is isomorphic to an ideal My ⊂ Bk with
My ∩ C[V ∗]W 6= {0}. We should remark that not every fat module is very
fat when dimV > 1 (for counterexamples, see [BCM]).

Proposition 6.1. For any generalised locus configuration A, the right Bk-
module MA is very fat.

Proof. Replacing MA by an isomorphic right Bk-module Mx := δMA, we
get Mx ⊂ Bk by (5.9). Also, it is clear that Mx ∩ C[V ]W 6= {0}; indeed,
δ2 ∈ Mx. Thus, MA is a fat Bk-module.

Recall a Bk -DA bimodule M∗
A (5.6). Since δ belongs to M∗

A, we may
consider

S∗ =
1

2NN !
adNL0,L(δ) , N = deg δ . (6.1)

It is clear that S∗ belongs to M∗
A. Now let My = S∗MA; then

My ⊂M∗
AMA ⊂ Bk .

By Lemma ??, we have

S∗S =
1

(2NN !)2
ad2NL0

(δ2).

Up to a constant factor, this is one of the operators Lq,0 appearing in The-
orem 3.5 and Proposition 5.6, namely, Lδ2,0 = Res(Tδ2) ∈ C[V ∗]W . We

conclude that My ∩ C[V ∗]W 6= {0}, so MA is very fat.
�

Remark 6.2. The above results remain true for the locus configurations
A ⊂ C

n (when R = ∅), with the same proofs. The Cherednik algebra
Bk in that case is simply replaced by the Weyl algebra An. Thus, the locus
configurations in C

n produce very fat right ideals of D(V ) ∼= An.

Remark 6.3. The most well studied case is that of Coxeter locus configu-
rations, when A ⊂ C

n is the root system of a Coxeter group W and kα’s
are integers. In this case it is known that the ring QA is Cohen–Macaulay
and Gorenstein [FV1, EG2]. Furthermore, by results of [BEG], the ideal
MA is projective, and the ring DA is a simple ring, Morita equivalent to
An. It is an interesting question which of these properties remain true in
the general case. For instance, for any locus configuration A ⊂ C

n, the right
An-module MA is reflexive. (For a proof, as well as for further interesting
properties of the class of fat/very fat reflexive ideals of An, see [BCM].) We
expect that the right Bk-modules MA are reflexive for all generalised locus
configuration. See also [BCES, ER] where the rings QA are shown to be
Cohen–Macaulay for some non-Coxeter cases.
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6.1. Non-twisted configurations. Many of the known examples of the
generalised locus configurations satisfy the additional property (3.5) or,
equivalently, the equation LA(δ−1) = 0. The identity (3.5) can be refor-
mulated as the following system of equations for each α ∈ A+:

∑

β∈A+\{α}

kβ(α, β)

(β, x)
= 0 for (α, x) = 0 . (6.2)

Note that these conditions hold automatically for each α ∈ R+, thanks to
the W -invariance. For α ∈ A+ \R, let us complement (6.2) by the stronger
conditions:

(α, ∂)2j−1
∏

β∈A+\{α}
(β, x)kβ = 0 for (α, x) = 0 and j = 1, . . . , kα . (6.3)

In many examples, we have kα = 1, in which case (6.2) and (6.3) coincide.
Also, (6.3) is automatic whenever A is invariant under the action of sα. Let
us call a configuration A non-twisted if it satisfies the conditions (6.3) for all
α ∈ A+ \ R, and twisted otherwise. For the rest of this subsection, assume
that A is non-twisted. In this case we can replace LA with

L̃A = δALAδ
−1
A = ∆−

∑

α∈A+

2kα
(α, x)

(α, ∂) .

Likewise, we define

L̃W = ∆−
∑

α∈R+

2kα
(α, x)

(α, ∂) .

Crucially, we have

L̃W (C[V ]W ) ⊂ C[V ]W , L̃A(Q
W
A ) ⊂ QW

A .

Let us modify the Cherednik algebra accordingly, namely, consider the Dunkl
operators

T̃ξ := ∂ξ −
∑

α∈R+

(α, ξ)

(α, x)
kα(1− sα) , ξ ∈ V , (6.4)

and set H̃k be the subalgebra of DW generated by CW , C[V ] and all T̃ξ.

As before, the spherical subalgebra is B̃k := Res(eH̃ke). Note that one has

L̃W ∈ B̃k and B̃k(C[V ]W ) ⊂ C[V ]W . We can also modify the definitions of
MA,DA appropriately:

M̃A = {a ∈ B̃k[δ
−1] | a(C[V ]W ) ⊂ QW

A } ,
D̃A = {a ∈ B̃k[δ

−1] | a(QW
A ) ⊂ QW

A } .

Note that every a ∈ M̃A maps C[V ]W to itself, thus M̃A ⊂ B̃k.

Let L = L̃A and L0 = L̃W . We then have the following analogues of the
previous results, with analogous proofs.
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Theorem 6.4. (1) The action of adL,L0
on M̃A is locally nilpotent.

(2) With respect to the differential filtration, we have gr(M̃A) ⊂ δC[V ×
V ∗]W and gr(D̃A) ⊂ C[V × V ∗]W .

(3) Define S = 1
2NN !

adNL,L0
(δ2), N = deg δ. Then LS = SL0. Moreover,

S belongs to M̃A (hence, S ∈ B̃k) and has δ(x)δ(∂) as its leading term.
(4) For any q ∈ QW

A with deg q = r, define Lq = 1
2rr!ad

r
L(q). Then

Lq(Q
W
A ) ⊂ QW

A , and the map q 7→ Lq defines an algebra embedding of QW
A →֒

D̃A.
(5) The right ideal M̃A ⊂ B̃k is very fat.

Assuming the algebra QW
A is finitely generated, it can be viewed as the

algebra of functions on a (singular) affine variety X = SpecQW
A , and so the

elements of D̃A are regular differential operators on X. For comparison, if
A is twisted, we define the ring Qreg ⊂ C[Vreg]

W , using the same algebraic
conditions as for Q = QA,W , see (4.1). Then we have a projective, rank-one
Qreg-module UA,W (i.e. a line bundle over Xreg = SpecQreg), and so the
elements of DA can be viewed as twisted differential operators.

7. Examples of generalised locus configurations

In this section we describe known examples of generalised locus configura-
tions in dimension> 2. The two-dimensional configurations will be discussed
in Section 8.

7.1. Coxeter configurations. The simplest examples can be obtained by
considering a pair W ⊂ W ′ of finite reflection groups acting on V . Let
R ⊂ R′ be the corresponding root systems with a W ′-invariant integral
multiplicities k : R′ → Z+. Then we can view A = R′ as a generalised locus
configuration of type W . In the special case when R coincides with one of
the W ′-orbits of roots in R′, we may allow non-integer multiplicities kα for
α ∈ R.

7.2. Examples related to Lie superalgebras. These examples were dis-
covered in [SV1]; there are two infinite series and three exceptional cases.

1. Type A(n,m)
Here V = C

n+m with the standard scalar product, and the group W =
Sn × Sm acts by permuting the first n and the last m of the coordinates.
We set

I1 = {1, . . . , n} , I2 = {n+ 1, . . . , n+m} . (7.1)

The configuration depends on one parameter k 6= 0. It consists of the vectors
α = ei − ej , i, j ∈ I1, i 6= j with kα = k, the vectors α = ei − ej , i, j ∈ I2,

i 6= j with kα = k−1, and the vectors ±(ei −
√
kej), i ∈ I1, j ∈ I2 with

kα = 1.

2. Type B(n,m)
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We keep the notation of the previous case, so V = C
n+m with the standard

Euclidean product. The configuration depends on parameters k 6= 0 and a, b
related by

2a+ 1 = k(2b+ 1) .

It consists of the vectors α = ±ei ± ej , i, j ∈ I1, i 6= j with kα = k, the
vectors α = ±ei ± ej , i, j ∈ I2, i 6= j with kα = k−1, the vectors α = ±ei,
i ∈ I1 with kα = a, the vectors α = ±ei, i ∈ I2 with kα = b, and the vectors
±ei ±

√
kej , i ∈ I1, j ∈ I2 with kα = 1.

Let us write down the corresponding Calogero–Moser operator. Using
Cartesian coordinates x1, . . . , xn, y1, . . . , ym on V , we obtain:

LBC(n,m) = ∆− 2k(k + 1)
n∑

i<j

(xi ± xj)
−2

− 2k−1(k−1 + 1)
m∑

i<j

(yi ± yj)
−2

− a(a+ 1)
n∑

i=1

x−2
i − b(b+ 1)

m∑

i=1

y−2
i

− 2(k + 1)
n∑

i=1

m∑

j=1

(xi ±
√
kyj)

−2 .

The first three lines of this expression describe the Calogero–Moser operator
for the root system R = Bn×Bm; the remaining sum is invariant under the
action of the Coxeter group W =W (Bn)×W (Bm).

Remark 7.1. In [SV1], the operator LBC(n,m) is written in the trigonometric
case, and in non-Cartesian coordinates. Our parameters a, b, k are related
to the parameters p, q, r, s, k in [SV1] as a = p+ q and b = r + s.

3. Type AB(1, 3)
In this case V = C

4, and the corresponding Calogero–Moser operator in
Cartesian coordinates (x1, x2, x3, y) is given by

LAB(1,3) = ∆−
3∑

i=1

a(a+ 1)x−2
i − b(b+ 1)y−2 − 2c(c+ 1)

3∑

i<j

(xi ± xj)
−2

− 2(3k + 3)
∑

±
(
√
3ky ± x1 ± x2 ± x3)

−2 .

Here the last sum is over all 8 possible combinations of the signs. The
parameters a, b, c, k are related by

a =
3k + 1

2
, b =

1

2
(k−1 − 1) , c =

3k − 1

4
.
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The configuration of type AB(1, 3) contains a Coxeter configuration of type

R = B3 × A1. The remaining vectors α = (±1,±1,±1,±
√
3k) have multi-

plicities kα = 1.

Remark 7.2. In [SV1], the formula for LAB(1,3) contains a misprint: the

numerical factor in front of the last sum in [SV1, (14)] should be 1
2 , not

1
4 .

4. Type G(1, 2)
In this case V = C

4, and the corresponding Calogero–Moser operator in
Cartesian coordinates (x1, x2, x3, y) is given by

LG(1,2) = ∆− 2p(p+ 1)
3∑

i<j

(xi − xj)
−2

− 3q(q + 1)

3∑

i 6=j 6=l

(xi + xj − 2xl)
−2

− r(r + 1)y−2 − 4(k + 1)
3∑

i 6=j

(
√
2ky − xi + xj)

−2 .

The parameters p, q, r, k are related by

p = 2k + 1 , q =
2k − 1

3
, r =

3

2
(k−1 + 1) .

The configuration of type G(1, 2) contains a Coxeter configuration of type

R = G2 × A1. The remaining vectors α = ±(−ei + ej +
√
2ke4) have

multiplicities kα = 1.

Remark 7.3. The configuration of type G(1, 2) is contained in the hyperplane
x1 + x2 + x3 = 0 in C

4. In [SV1], the operator LG(1,2) is restricted onto this
hyperplane (in non-Cartesian coordinates). Our parameters p, q, r, k are
related to the parameters a, b, c, d, k in [SV1] as p = a, q = b and r = c+ d.

5. Type D(2, 1, λ)
In this case V = C

3. Let λ1, λ2, λ3 be arbitrary non-zero parameters.
Introduce

mi =
λ1 + λ2 + λ3

2λi
− 1 (i = 1, 2, 3) .

The configuration D(2, 1, λ) consists of the vectors α = ±ei with kα = mi

and eight additional vectors α = ±
√
λ1e1 ±

√
λ2e2 ±

√
λ3e3 with kα = 1.

The corresponding Calogero–Moser operator is given by

LD(2,1,λ) = ∆−
3∑

i=1

mi(mi + 1)x−2
i

− 2(λ1 + λ2 + λ3)
∑

±
(
√
λ1x1 ±

√
λ2x2 ±

√
λ3x3)

−2 .
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7.3. Type An−1,2 configuration. It consists of the following vectors in
C
n+2: 




ei − ej , 1 ≤ i < j ≤ n, with kα = k ,

ei −
√
ken+1, i = 1, . . . , n , with kα = 1 ,

ei −
√
k∗en+2, i = 1, . . . , n , with kα = 1 ,√

ken+1 −
√
k∗en+2 with kα = 1 .

Here k is an arbitrary parameter, k∗ = −1−k, and W = Sn. For k ∈ Z this
is a locus configuration from [CV2].

7.4. Restricted Coxeter configurations. Another class of generalised
locus configurations can be found in [F]. These configurations appear as re-
strictions of Coxeter root systems onto suitable subspaces (parabolic strata).
They are labelled by pairs (Γ,Γ0) of Dynkin diagrams where Γ0 ⊂ Γ is
possibly disconnected. For a given Γ, the admissible sub-diagrams Γ0 are
characterized by a certain geometric condition (see [F], Theorems 1-3).
The classical case Γ = An, Bn, Dn leads to special cases of the configu-
rations already listed above. The list of possibilities for the exceptional
cases Γ = F4, E6−8, H4, H3 includes 43 cases and can be found in Section 6
of [F]. For example, one has the following configuration (F4, A1) in C

3, see
[F, (27)]:





±ei, 1 ≤ i ≤ 3, with kα = 2c+ 1
2 ,

±ei ± ej , 1 ≤ i < j ≤ 3 , with kα = c ,
±e1 ± e2 ± e3 with kα = 1 .

We have checked, case-by-case, that all two-dimensional configurations in [F]
satisfy the generalised locus conditions (and, in fact, can be constructed by
the method of Proposition 8.1 below). Apart from the two-dimensional and
Coxeter configurations, the list in [F, Section 6] contains 23 additional cases.
Note that the fact that all of these are indeed generalised locus configurations
does not follow directly from their construction in [F], and so one has to
rely upon case-by-case verification. We expect that all configurations in [F]
satisfy Definition 3.3, though we have not checked this for all of the cases.
Note that, similar to Remark 3.2, it is sufficient to check the conditions of
Definition 3.3 for all two-dimensional subconfigurations.

Remark 7.4. The configurations described in 7.1, 7.2 and 7.4 are non-twisted.
This is obvious for the case 7.1; for the cases in 7.2 it can be checked di-
rectly. For those cases in 7.4 where kα = 1 for α ∈ A \ R, this follows
from [F, Proposition 2]; for the remaining cases it can be verified directly,
case by case. The An−1,2 configuration is twisted; also, the configurations
constructed in Proposition 8.1 below are twisted in general.

Remark 7.5. Locus configurations can be obtained from the above cases by
specialising parameters. The complete list of known locus configurations
consists of: (1) Coxeter configurations, with all kα ∈ Z, (2) A(n, 1) with
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k ∈ Z, (3) B(n, 1) with k, a, b ∈ Z, (4) An−1,2 with k ∈ Z, and (5) the
Berest–Lutsenko family in C

2 (see [BL, CFV2, C2]).

8. Two-dimensional configurations

For this class of configurations, V = C
2 and W = IN , N ≥ 2 is the

dihedral group of order 2N . A systematic way to produce generalised locus
configurations in C

2 uses Darboux transformations. Let us analyse first the
case of W = I2 with R = {±e1,±e2}. The corresponding Calogero–Moser
operator is written in polar coordinates r, ϕ as

L =
∂2

∂r2
− r−2L0 , L0 = − ∂2

∂ϕ2
+
g(g − 1)

sin2 ϕ
+
h(h− 1)

cos2 ϕ
,

where L0 is known as the Darboux–Pöschl–Teller (DPT) operator. We used
parameters g, h in L0 instead of the multiplicities ke1 , ke2 , in accordance
with the common tradition. It is well-known that L0 has a family of eigen-
functions of the form

ψn(x) = (sinx)g(cosx)hP
g− 1

2
,h− 1

2
n (cos 2x) , n = 0, 1, 2, . . . ,

where Pα,β
n (z) are the classical Jacobi polynomials. Since L0 is stable under

the change of parameters g 7→ 1−g or h 7→ 1−h, we obtain three additional
families of (formal) eigenfunctions by replacing g, h accordingly in the above
ψn. Let F denote the union of these four families of functions.

Proposition 8.1. For distinct f1, . . . , fm ∈ F , the potential defined by

U =
1

r2

(
g(g − 1)

sin2 ϕ
+
h(h− 1)

cos2 ϕ
− 2

d2

dϕ2
logW

)
, W = Wr(f1, . . . , fm) ,

satisfies the conditions (3.2) and its singularities form a generalised locus
configuration in C

2 of type W = I2.

Proof. Let

u0 =
g(g − 1)

sin2 ϕ
+
h(h− 1)

cos2 ϕ
, u = u0 − 2

d2

dϕ2
logW

By a standard result on Darboux transformations (see e.g. [Cr]), the oper-
ators

L0 = − ∂2

∂ϕ2
+ u0 L1 = − ∂2

∂ϕ2
+ u

are intertwined by a unique monic differential operator D of order m whose
kernel is spanned by all of fi. From the choice of fi it is easy to see that D
and L1 will be I2-invariant, and the intertwiner D will have meromorphic
coefficients. The operator L1 typically will have additional singular points
compared to L0. Clearly, for generic E ∈ C the intertwiner D sets up a
bijection between solutions of the eigenvalue problems L0ψ0 = Eψ0 and
Lψ = Eψ. Since the coefficients of D are meromorphic, both ψ0 and ψ
remain meromorphic (single-valued) away from the singular points of L0.
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Invoking Proposition 3.3 from [DG], we conclude that near every additional
singular point ϕ = ϕi of L1 one has that

u(ϕ) ∼ ki(ki + 1)(ϕ− ϕi)
−2 + o(1) , with some ki ∈ Z+.

Moreover, by the same result, one has that

u(ϕ)− u(siϕ) is divisible by (ϕ− ϕi)
2ki ,

for the reflection si : ϕ 7→ 2ϕi−ϕ about ϕ = ϕi. This implies the generalised
locus conditions (3.2) for U = r−2u. �

Remark 8.2. As explained in Section 4, the existence of shift operators (and
hence complete integrability) for the Calogero-Moser operators L with po-
tentials described in Proposition 8.1 follows immediately from Lemma 4.1.
The question whether Proposition 8.1 gives all generalised locus configura-
tions in C

2 is more delicate and will be discussed elsewhere.

The family constructed above can be seen as a generalisation of the
Berest–Lutsenko family of locus configurations [BL, CFV2]. For compar-
ison, in the Berest–Lutsenko family one has W = {e} and u is constructed

by applying Darboux transformations to L0 =
∂2

∂ϕ2 .

In the case of W = IN , the Calogero–Moser operator can be written as
L = ∆− r−2u0, where

u0 =

{
g(g − 1)N2 sin−2Nϕ for N odd ,

g(g − 1)n2 sin−2 nϕ+ h(h− 1)n2 cos−2 nϕ for N = 2n even .

The group W is generated by the reflection ϕ 7→ −ϕ and rotation ϕ 7→
ϕ+2π/N . Note, however, that any configuration is automatically invariant
under ϕ 7→ ϕ+ π. Thus, even when N is odd, the full symmetry group can
be taken as W = I2N . This allows us to consider the case of odd N as a
subcase of W = I2N , with h = 0. Thus, below we restrict ourselves to the
case W = I2n.

A generalised locus configuration A is obtained by adding to the roots of
W = I2n a number of vectors with integral multiplicities. The configuration
A and multiplicities must be invariant under ϕ 7→ ϕ + π/n. Therefore, we
must have

LA =
∂2

∂r2
−r−2L1 , L1 = − ∂2

∂ϕ2
+
g(g − 1)n2

sin2 nϕ
+
h(h− 1)n2

cos2 nϕ
+
∑

i

ki(ki + 1)n2

sin2 n(ϕ− ϕi)
,

for some ϕi ∈ C and ki ∈ Z+. The conditions (3.2) for every α = (cosϕi, sinϕi)
translate into

u(ϕ)− u(siϕ) is divisible by (ϕ− ϕi)
2ki ,

for each of the reflections si : ϕ 7→ 2ϕi − ϕ. As we see from the proof
the previous proposition, the generalised locus conditions (3.2) express the
property that eigenfunctions of L1 are single-valued near each of the singular
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points ϕ = ϕi. Clearly, this property is preserved under rescaling ϕ 7→ ϕ/n.
Under such rescaling, L1 takes the form

L1 = n2

(
− ∂2

∂ϕ2
+
g(g − 1)

sin2 ϕ
+
h(h− 1)

cos2 ϕ
+
∑

i

ki(ki + 1)

sin2(ϕ− ϕi)

)
.

Thus, we obtain the following result which reduces the classification problem
in type W = I2n to that in type W = I2.

Proposition 8.3. Every generalised locus configurations A of type W = I2n
is produced from some generalised Calogero–Moser operator L of type W =
I2,

L =
∂2

∂r2
− r−2

(
∂2

∂ϕ2
− u(ϕ)

)
,

by the formula

LA =
∂2

∂r2
− r−2

(
∂2

∂ϕ2
− n2u(nϕ)

)
.

Let us illustrate this with two examples of typeW = I2, with the Calogero-
Moser operator of the following form:

L = ∆− k1(k1 + 1)

x21
− k2(k2 + 1)

x22
− k3(k3 + 1)(1 + a2)

(x1 − ax2)2
− k3(k3 + 1)(1 + a2)

(x1 + ax2)2
.

The parameters k1, k2, k3 and a are as follows:

(1) k1, k2 arbitrary, k3 = 1, a =
√

2k1+1
2k2+1 ;

(2) k1 =
3a2

4 − 1
4 , k2 =

3
4a2

− 1
4 , k3 = 2, a arbitrary.

In both cases, the locus conditions (3.3) for α = e1 ± ae2 are easy to verify
directly. The first case corresponds to m = n = 1 in the B(n,m) family.
The second case was proposed and studied in [T2], where the integrability
of L (including its elliptic version) was confirmed. Note that the first case
can be obtained by setting m = 1, f1 = ψ1 in Proposition 8.1.

Now let us apply the substitution ϕ 7→ 2ϕ in accordance with Proposition
8.3. This leads to the Calogero–Moser operators of type W = I4 of the form

L = ∆− k1(k1 + 1)

x21
− k1(k1 + 1)

x22
− k2(k2 + 1)

(x1 + x2)2
− k2(k2 + 1)

(x1 − x2)2

− k3(k3 + 1)(1 + b2)

(x1 − bx2)2
− k3(k3 + 1)(1 + b2)

(x1 + bx2)2

− k3(k3 + 1)(1 + b2)

(x2 − bx1)2
− k3(k3 + 1)(1 + b2)

(x2 + bx1)2
.

Here k1, k2, k3 are the same as above, while a and b are related by a =
2b/(1− b2). In the case k3 = 1, the above L coincides with [F, (28)].
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As another example, applying the substitution ϕ 7→ 3ϕ to the case

(k1, k2, k3, a) = (13 , 4, 1,
√
5

3
√
3
), one obtains the configuration that coincides

(up to an overall rotation) with the configuration (H4,A2) in [F].

Remark 8.4. Most configurations constructed in Propositions 8.1, 8.3 are
twisted. For the study of non-twisted planar configurations we refer to [FJ]
(see, in particular, Proposition 3.1 and Theorem 3.4 in loc. cit.).

9. Deformed Calogero–Moser operators with harmonic

oscillator confinement

With a generalised locus configuration A ⊂ V one can associate the
Calogero–Moser operator with an extra “oscillator term”:

Lω
A := ∆− ω2x2 −

∑

α∈A+

kα(kα + 1)(α, α)

(α, x)2
, (9.1)

where x2 = (x, x) is the Euclidean square norm in V = R
n, and ω is an

arbitrary parameter. In particular, when A = R is the root system of a
Coxeter group W , we have

Lω
W := ∆− ω2x2 −

∑

α∈R+

kα(kα + 1)(α, α)

(α, x)2
. (9.2)

For the classical groups W = An, Bn, Dn the operator Lω
W is known to be

Liouville integrable (see [F] and references therein). For the exceptional
groups this does not seem to be known (for dihedral groups the complete
integrability is easy to show, see below). Still, for any Coxeter group the
operator Lω

W has several hallmarks of integrability, and some of them are
also shared by Lω

A.

Theorem 9.1. Let A ⊂ C
n be a generalised locus configuration of type W .

(1) Let Sω = e−ωx2/2Seωx
2/2, where S is the shift operator (5.12). Then

Lω
AS

ω = Sω(Lω
W − 2ωN) , (9.3)

where N = deg δ is the degree of the polynomial (5.1). Moreover, if (Sω)∗

is the formal adjoint of Sω, then the operator Sω(Sω)∗ commutes with Lω
A.

(2) For any homogeneous q ∈ C[V ]W define Lω
q,0 = e−ωx2/2Lq,0 e

ωx2/2,

where Lq,0 = Res(eTqe). Then

Lω
q,0L

ω
W = (Lω

W + 2ωr)Lω
q,0 ,

where r = deg q. As a result, for any q ∈ C[V ]W , the operator Lω
q,0L

−ω
q,0

commutes with Lω
W .

(3) For any homogeneous q ∈ QA define Lω
q = e−ωx2/2Lq e

ωx2/2, where Lq

is the operator constructed in Proposition 5.6. Then

Lω
q L

ω
A = (Lω

A + 2ωr)Lω
q ,



DEFORMED CALOGERO–MOSER OPERATORS AND CHEREDNIK ALGEBRAS 39

where r = deg q. As a result, for any q ∈ QA, the operator Lω
q L

−ω
q commutes

with Lω
A.

Proof. Define

Lω
0 = eωx

2/2Lω
W e

−ωx2/2 , Lω = eωx
2/2Lω

Ae
−ωx2/2 .

By direct calculation, Lω
0 = LW − 2ωE and Lω = LA − 2ωE, where E =∑n

i=1 xi∂i is the Euler operator. By the homogeneity of LW , LA, S, we have

[E,LW ] = −2LW , [E,LA] = −2LA , [E,S] = −NS .
Thus, using that LAS = SLW , we obtain

(LA − 2ωE)S = S(LW − 2ωE) + 2ω[E,S] = S(LW − 2ωE − 2ωN) ,

or LωS = S(Lω
0 − 2ωN). Conjugating this relation by eωx

2/2 gives (9.3).
Furthermore, taking formal adjoints in (9.3), we obtain (Sω)∗Lω

A = (Lω
W −

2ωN)(Sω)∗. Combining this with (9.3) gives LASω(Sω)∗ = Sω(Sω)∗LA.
This proves part (1).

For part (3), we first note that the expression for Lq given in Proposition
5.6 is obviously homogeneous of degree −r. Using this and LqLA = LALq,
we get

Lq(LA − 2ωE) = (LA − 2ωE)Lq + 2ωrLq ,

or LqL
ω = LωLq + 2ωrLq. Conjugating this by eωx

2/2 gives Lω
q L

ω
A = (Lω

A +

2ωr)Lω
q , as needed. From this we get L−ω

q Lω
A = (Lω

A − 2ωr)L−ω
q . The fact

that Lω
q L

−ω
q commutes with Lω

A is then obvious. This proves part (3). Part
(2) is entirely similar. �

Remark 9.2. For the locus configurations (when W = {e}), the existence of
an intertwiner Sω satisfying (9.3) was established in [CO] by a considerably
more involved argument.

Remark 9.3. When W = IN is the dihedral group, one additional opera-
tor commuting with Lω

W is sufficient for complete integrability. The ring
of invariants C[V ]W in this case is generated by two homogeneous elements
q1 = x2 and q2. Thus, the complete integrability of Lω

W follows from part
(2) of the theorem. Similarly, when A ⊂ C

2 is a generalised locus configu-
ration, the operator Sω(Sω)∗ is sufficient to conclude that Lω

A is completely
integrable.

10. Affine configurations

Our main results can be easily extended to affine (i.e., noncentral) hyper-
plane arrangements. As before, we start with a Coxeter group W with root
system R, in its reflection representation V equipped with a W -invariant

scalar product (·, ·). Let V̂ be the vector space of affine-linear functions on

V . We identify V̂ with V ⊕Cδ, where vectors in V are considered as linear
functionals on V via the scalar product (·, ·) and where δ ≡ 1 on V . The

action ofW extends onto V̂ in an obvious way, with w(δ) = δ for all w ∈W .
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For any α̃ = α + cδ ∈ V̂ we have the orthogonal reflection with respect to
the hyperplane α̃(x) = 0 in V ,

sα̃(x) = x− 2α̃(x)α/(α, α) , x ∈ V .

Given a finite affine hyperplane arrangement in V with prescribed multi-

plicities, we encode it in a finite set A+ = {α̃} ⊂ V̂ and a set of kα̃ ∈ C. The
hyperplanes that pass through the origin 0 ∈ V will be thus associated with
vectors α ∈ V . If the configuration is central (with all hyperplanes passing
through 0), we are back to the previously considered case. As before, we ex-
tend the map k : α̃ 7→ kα̃ to A := A+ ∪ (−A+) by putting k−α̃ = kα̃. With
such a configuration of hyperplanes we associate a generalised Calogero–
Moser operator

LA = ∆− uA , uA =
∑

α̃∈A+

kα̃(kα̃ + 1)(α, α)

(α̃(x))2
. (10.1)

Definitions 3.3, 3.4 require obvious modifications in the affine case.

Definition 10.1. An affine configuration A is a generalised locus configu-
ration if

(1) A contains a Coxeter configuration of type W , and both A and k :
A → C are invariant under W ;

(2) For any α̃ ∈ A \R one has kα̃ ∈ Z+ and

uA(x)− uA(sα̃x) is divisible by α̃2kα̃ .

Definition 10.2. Let A be a generalised locus configuration of type W .
A polynomial q ∈ C[V ]W is called a generalised quasi-invariant if, for any
α̃ ∈ A \R,

q(x)− q(sα̃x) is divisible by α̃2kα̃ .

In the affine case the ring QW
A of generalised quasi-invariants is no longer

graded. Let (QW
A )0 be the associated graded ring, and gr : QW

A → (QW
A )0

be the corresponding linear map.

The following results are proved by the same arguments as Theorem 3.5
and Proposition 5.6.

Proposition 10.3. Define δ ∈ C[V ]W by δ =
∏

α̃∈A+\R α̃
kα̃, and let N =

deg δ. Let S = 1
2NN !

adNL,L0
(δ), where L = LA, L0 = LW . Then S =∏

α̃∈A+\R(α, ∂)
kα̃ + . . . with lower order terms being of negative x-degree.

Furthermore, LS = SL0.

Proposition 10.4. For any homogeneous element q ∈ (QW
A )0 with deg q =

r, define Lq =
1

2rr!ad
r
L(q̃), where q̃ ∈ QW

A is arbitrary such that gr(q̃) = q.

The operators Lq, q ∈ (QW
A )0 commute with LA and with each other.

Each of Lq has the form Lq = q(∂) + . . . , and LqS = SLq,0, where Lq,0 =
Res(eTqe).
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This implies that Theorem 3.5 remains true for affine configurations, with
(QW

A )0 replacing QW
A and with further minor modifications in the proof.

Therefore, the operator LA is completely integrable.

Let us apply this result in dimension one, with W = Z2, where we can
see a close connection to the results of Duistermaat and Grünbaum [DG].
In this case we have an operator of the form

L =
d2

dx2
− u(x) , u(x) =

k(k + 1)

x2
+
∑

p∈P

kp(kp + 1)

(x− p)2
, (10.2)

where P is a finite subset of C\{0}, symmetric around 0, and where kp ∈ Z+

with k−p = kp. The generalised locus conditions mean that (cf. [DG, (4.45)–
(4.46)])

k(k + 1)

p2j+1
+

∑

q∈P\{p}

kq(kq + 1)

(p− q)2j+1
= 0 for 1 ≤ j ≤ kp and all p ∈ P. (10.3)

Therefore, we obtain the following result.

Proposition 10.5. For any operator L (10.2) satisfying the conditions
(10.3), there exists a nonzero differential operator S with rational coeffi-

cients such that LS = SL0, where L0 =
d2

dx2 − k(k+1)
x2 . In other words, L can

be obtained from L0 by a higher order rational Darboux transformation.

This should be compared with Proposition 4.3 from [DG]. In fact, using
the results of [DG], we can prove a stronger result.

Proposition 10.6. For any operator L (10.2) satisfying (10.3) with P 6= ∅,
we have (1) k ∈ 1

2+Z, and (2) L can be obtained from L0 =
d2

dx2 +
1

4x2 by ap-
plying a finite number of rational, first order Darboux transformations. (In
other words, L belongs to the “even family” of bispectral operators introduced
in [DG].)

We omit the proof. The main idea is to use Proposition 10.5 to conclude
that L is bispectral. Hence, by the classification result [DG, Theorem 0.1], it
must belong either to the ”KdV family” or to the ”even family” (see [DG],
Sections 3 and 4). Note that u in (10.2) is even, u(x) = u(−x). However,
from the explicit description of the KdV family (see e.g. [AM]) one can
conclude that the only even KdV potentials are u = k(k+1)x−2 with k ∈ Z.
Hence, L must belong to the “even family”.

In view of Propositions 10.5, 10.6, we may regard the generalised lo-
cus conditions and the corresponding Calogero–Moser operators as a multi-
variable generalisation of the “even family” from [DG]. (It is interesting
that in dimension > 1 the multiplicities kα for α ∈ R do not have to be
half-integers.) Unfortunately, we know very few genuinely affine generalised
locus configurations in dimension > 1. Here is one two-dimensional example;
it is of type A2, and it can be viewed as a deformation of the root system

of type G2. It can be realised in R
3 as G̃2 = A2 ∪ Ã2, where:



42 YURI BEREST AND OLEG CHALYKH

A2 = {±(ei − ej), 1 ≤ i < j ≤ 3},with kα = −1/3 ,

Ã2 = {±(3ei − e1 − e2 − e3 + cδ), 1 ≤ i ≤ 3} ,with kα = 1 .

The corresponding Calogero–Moser operator is

L
G̃2

= ∆− 4

9

∑

1≤i<j≤3

1

(xi − xj)2

− 12

(2x1 − x2 − x3 + c)2
− 12

(2x2 − x1 − x3 + c)2
− 12

(2x3 − x1 − x2 + c)2
.

(10.4)

Here c is arbitrary; for c = 0 we have a G2 configuration.

Remark 10.7. Further examples in dimension > 1 can be obtained by taking
direct sums of one-dimensional configurations. Another possibility is to
apply the procedures of isotropic reduction and isotropic projectivization as
described in [CFV2, Sec. 5.3].

Remark 10.8. By analogy with the results of [DG], it is natural to expect
that the Calogero–Moser operators for generalised locus configurations are
bispectral. In particular, we expect them to be bispectrally self-dual when the
configuration is central (cf. [CFV2, Theorem 2.3]). Affine configurations,

such as G̃2, should lead to examples of non-trivial bispectral duality.

Remark 10.9. In [SV2], a trigonometric version of deformed Calogero–Moser
operators was considered. Our methods cannot be applied verbatim to that
case and require a non-trivial modification. We hope to return to this prob-
lem elsewhere. Some results about the trigonometric locus configurations
can be found in [C2, Section 4]. Let us also mention a recent paper [FVr],
where a trigonometric generalisation of the operator (10.4) is proposed.
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