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Abstract

In the present paper we show how simple monetary policies can mitigate real effects

of credit frictions. We consider stationary overlapping generations economies in which

consumers are not equally efficient in producing capital and cannot commit to repay

loans. The presence of money in itself does not mitigate the real effects of credit fric-

tions. Equilibrium allocations are generally not Pareto optimal unless the returns on

money and capital production are identical for more productive consumers. However,

printing money and distributing it to young consumers increases their incomes allow-

ing young more productive consumers to produce more capital. Consequently money

printing increases output.
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1 Introduction

Overview of paper Simple monetary policies in form of printing money can mitigate the

effects of frictions in credit markets in situations like the financial crisis where agents had

limited access to credit. How money transfers are distributed is important for the effective-

ness of these policies. In the present paper we study economies in which consumers cannot

commit to repay loans and examine the effects on output and welfare of monetary policies

in form of printing money and distributing it to agents.

We consider overlapping generations (OG) economies with production. There are four

commodities: a consumption good, capital, labor and money. Consumers live for two dates,

consume both when young and old, and work when young. Moreover they produce capi-

tal by use of the consumption good. Some consumers are more productive than others in

production of capital. Firms produce the consumption good by use of capital and labor.

Productivities of consumers are common knowledge. Therefore from an efficiency point

of view less productive consumers should leave capital production to more productive con-

sumers.

We assume that there is a friction in the credit market: consumers cannot commit to

repay loans. Since consumers live for two dates, usual penalties such as exclusion from

taking loans or exclusion from both taking and making loans are ineffective. Hence debt is

constrained to zero. Consequently there is no transfer of resources between consumers in

the same generation so both kinds of consumers can very well be investing in capital pro-

duction. The presence of money does not induce less productive consumers to move their

savings from capital production by themselves to capital production by more productive con-

sumers. However printing money and distributing it to more productive consumers enables

them to buy consumption goods from less productive consumers. Thereby more productive

consumers produce more capital and less productive consumers hold more money. Hence

printing money mitigates the effects of the debt constraints.

Equilibria are prices, consumption plans and production plans such that consumers max-

imize utilities, firm maximize profits and markets clear. Money need not be valuable in

equilibrium. Steady states are equilibria where consumption and production are constant

across dates. In Theorem 1 we show that there are steady states where money is valuable.

To study the impact of changing monetary policy from the passive policy with no transfers

to an active policy with non-trivial transfers we consider a scenario with the passive policy

before some date and an active policy after that date. There are two steps: first in Theorem

2 we show monetary steady states with active monetary policies exist and active monetary

policies increase output compared to the passive monetary policy; and, second we show that

output increases in the transition from a steady state with the passive policy to a steady state
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with the active policy. Active policies have several effects on consumers: additional income

for consumers who receive transfers as well as higher wages and lower returns on savings

for all consumers.

Our results in Theorems 1 and 2 are obtained under reasonably general assumptions. In

Section 5 we study an example to further illustrate our findings as well as the welfare im-

plications of monetary policies. Consumers consume only when old. Thereby the negative

effect of monetary policies on the returns on savings is maximized. Consumption goods

are produced by use of Cobb-Douglas production functions. Scenarios with transfers to all

young consumers and transfers solely to more productive young consumers are considered.

If the elasticity of capital is larger than the fraction of more productive consumers, then

printing money increases welfare of all consumers in both scenarios.

Returns on money and producing capital are determined in equilibrium. Unless these re-

turns are equal for the more productive consumers, the two kinds of consumers face different

returns on savings. Therefore it is possible to improve welfare by changing consumption at

any two consecutive dates without changing production at any date or consumption at any

other date than the two consecutive dates. In general, monetary policies in form of printing

money and distributing it to young consumers cannot make returns equal. However these

policies are simple and mitigate the real effects of debt constraints. Monetary policies in-

volving money taxes eliminate the need for printing money, but enforcement of tax payment

is needed. Hence institutions enforcing payment of taxes have to be available.

Related literature Our model is a degenerate example of a model with endogenous debt

limits in which debt limits are zero because consumers live for two dates. However if con-

sumers lived longer and the penalty for not repaying loans was exclusion from both taking

and making loans, then debt constraints would become endogenous and depend on future

prices. Kehoe and Levine (1993) study pure exchange optimal growth economies where

consumers cannot commit to repay loans and defaulting consumers are excluded from fu-

ture trading in financial markets.

Kocherlakota (2009), Farhi and Tirole (2012), Liu and Wang (2014) and Miao and Wang

(2012, 2017) consider economies with endogenous debt constraints where some assets may

be used as collateral. The assets used as collateral vary from worthless land to output of and

shares in firms taking loans. The main finding is that bubbles in the assets used as collateral

can mitigate the effects of debt constraints.

Kunieda (2008) and Martin and Ventura (2012, 2016) consider OG economies with pro-

duction where consumers differ with respect to their productivity and face debt constraints.

In Kunieda (2008) there is a continuum of different productivities and dynamic efficiency of

steady-state equilibria is studied. With constant nominal money supply, too few consumers
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engage in capital production and too many consumers hold money. Monetary policies in

form of distributing money to less productive old consumers work in that they decrease the

return on holding money, so some of the less productive consumers move their savings to

capital production from money. It is shown that there is a monetary policy that achieves con-

strained dynamic efficiency. However, the policy is not a Pareto improvement compared to

constant money supply. Most of the analysis is carried out with Cobb-Douglas economies

and focuses on steady states. We study a different channel through which monetary pol-

icy can work. Indeed, we show monetary policies in form of distributing money to young

consumers work in that they enable more productive young consumers to produce more

capital. The channel is that the monetary transfers increase incomes of more productive

young consumers so they increase their savings. Since more productive young consumers

have a comparative advantage in capital production, they use their increases in savings to in-

crease their engagement in capital production. Most of the analysis is carried out for general

economies and focuses on transitional dynamics as well as steady states.

In Martin and Ventura (2012, 2016), there are two productivities and bubbles on assets

are studied. Bubbles are stochastic in that old bubbles may die and new bubbles may arise.

These bubbles can be interpreted as bubbles in financial assets like shares, but they cannot be

interpreted as money because they affect some assets and not all assets. Such bubbles affect

the value of assets used as collateral in credit transactions. Their welfare analysis focuses

primarily on steady states. In terms of policy, they look at a possible macro-prudential role of

a Lender of Last Resort, which guarantees credit when collateral is scarce and taxes credit

when it is excessive. While we consider a similar mechanism, we study equilibria where

money is a deterministic bubble that is controlled by monetary policy. Also, our setup is

more general and we analyze the existence of equilibria and the real effects of monetary

policy in the steady state and in transition. Our aim is to provide a rationale for an active

monetary policy.

One strand of the literature on the role of money emphasizes differences in liquidity of

financial assets. Kiyotaki and Moore (2012) consider optimal growth economies with firms

operated by entrepreneurs under endogenous debt constraints. Opportunities to produce

capital arrive randomly. Entrepreneurs can finance production of capital by selling their

portfolio of money and equity in other firms or by issuing equity. However they can sell

only a fraction of their equity in other firms and commit to pay their shareholders only a

fraction of future returns on capital. The fraction of future returns on capital that can be

used as collateral varies randomly. Printing money and distributing it like helicopter drops

has no real effects.

Another strand is formed by the New Monetarist literature. There, micro-founded

search-theoretical models of money are often used to evaluate monetary policies. For these
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models Gu et al. (2016) find that money and credit are perfect substitutes and that this

finding is robust to variations in policy, debt limit and use of collateral. Chiu and Molico

(2010) find that mildly expansionary redistributive monetary policy can potentially be wel-

fare improving by relaxing the liquidity constraint of some agents. Williamson (2008) finds

that market segregation, where some agents have access to money markets and other do

not, implies that printing money and distributing it through money markets have distribu-

tional effects. In our economies, the presence of money is not a perfect remedy for debt

constraints, and the presence of perfectly functioning credit markets would not necessarily

eliminate dynamic inefficiency of equilibrium allocations. Consequently money and credit

are not perfect substitutes.

Sorger (2005) considers stability and determinacy of monetary steady states in OG

economies with homogeneous consumers and without financial frictions. Monetary pol-

icy is described by inflation targeting or inflation forecast targeting. Unlike conventional

wisdom, it is shown that active inflation forecast targeting can lead to indeterminacy. Mon-

etary policy is implemented by printing money and distributing it to consumers when old.

We consider heterogeneous consumers who cannot commit to repay debt. Monetary policy

that distributes money to young consumers is shown to be welfare-improving. We show that

real outcomes can be different for the same inflation rate, and that the real effect of printing

money depends on how it is distributed.

Plan of the paper In Section 2 our model is introduced. In Section 3 equilibria, steady states

and equilibrium dynamics are defined and studied for economies without money printing.

In Section 4 the effects of printing money and distributing it to young more productive con-

sumers are studied. In Section 5 an example is considered and the output and welfare effects

of monetary policies consisting of printing money and distributing it to young consumers,

both more productive and less productive, are worked out. Section 6 contains some final

remarks.

2 The model

We consider stationary overlapping generations economies with perfectly competitive mar-

kets. Our economies have two distinctive features: consumers are not equally efficient in

producing capital and consumers cannot commit to repay loans. In the present section we

introduce our model and examine the decision problems of the agents.
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Setup

Time is discrete and extends from −∞ to +∞. At every date there are a consumption

good, capital, labor and possibly money. The consumption good is used as numeraire. Let

(qt ,rt ,wt) ∈ R+×R
2
++ be the prices of money, capital and labor at date t. Markets are

assumed to be perfectly competitive.

At every date a continuum of identical consumers is born. They live for two subsequent

dates, consume when young and old and work when young. The mass of consumers in every

generation is normalized to one. A consumer is described by her consumption set X =R
2
++,

homothetic utility function u : X→R and her endowment of one unit of labor when young.

There is no utility or disutility associated with working so the labor supply is equal to one.

Consumers are supposed to satisfy the following assumptions:

(C.1) u ∈C2(X ,R) with Du(c) ∈ R+×R++ for all c and vT D2u(c)v < 0 for all c and v 6= 0

with v·Du(c) = 0.

(C.2) u−1(a) = {c ∈ X | u(c) = a} is closed in R
2 for all a.

The first assumption states that the utility function is twice differentiable, strongly monotone

and strictly quasi-concave. The second assumption implies indifference curves do not tend

to the axes.

Savings can be in the consumption good and in money. Consumers in generation t can

transform the consumption good xt at date t into capital kt at date t+1 by use of a linear

technology kt = βxt with β > 0 and sell the capital to firms at price rt+1. The real return

on producing capital is rt+1β . Moreover consumers can exchange the consumption good

for money mt . Money is a durable good that yields no utility. For qt > 0 the real return on

money is qt+1/qt .

There is a continuum of identical firms that transform capital and labor at date t into the

consumption good at date t. A firm is described by its production function F : R2
++→R++

with Y = F(K,L). Firms are supposed to satisfy the following assumptions:

(F.1) F(aK,aL) = aF(K,L) for all a > 0 and (K,L).

(F.2) F ∈C2(R2
++,R++) with DF(K,L)∈R

2
++ for all (K,L) and vT D2F(K,L)v < 0 for all

(K,L) and v 6= 0 with v·DF(K,L) = 0.

(F.3) lim
K→0

DKF(K,1) = lim
L→0

DLF(1,L) = ∞ and lim
K→∞

DKF(K,1) = lim
L→∞

DLF(1,L) = 0.

The first assumption states that the production function has constant returns to scale. The

second assumption states that the production function is twice differentiable, strongly mono-

tone and strictly quasi-concave. The third assumption is the standard Inada conditions. Cap-

ital depreciates completely during production.
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Our economies have two distinctive features. The first feature is that there are two

technologies for producing capital, βL and βH , with βL < βH . Some consumers, denoted L-

consumers, have access to the low-productive technology, and others, denoted H-consumers,

have access to the high-productive technology. The proportions of consumers with access

to the two technologies are δL,δH > 0.

The second feature is that consumers cannot commit to repay loans. Therefore L-

consumers are not willing to lend their savings to H-consumers although the latter have

access to a superior technology compared with the former. Consequently, consumers save

by producing capital on their own or by holding money, but not by lending. From an effi-

ciency point of view L-consumers should lend to H-consumers rather than produce capital

themselves.

An economy is a description of consumers and firms E = (u,βL,βH ,δL,δH ,F). In Sec-

tions 3 and 3 there is a fixed stock of money M > 0 and in Section 4 there is money printing.

The consumer problem

The problem of an i-consumer with i ∈ {L,H} in generation t is

max
(c

y
it ,c

o
it ,mit ,xit ,kit)

u(cy
it ,c

o
it)

s.t.































c
y
it +qtmit + xit ≤ wt

co
it ≤ qt+1mit + rt+1kit

kit ≤ βixit

mit ,xit ≥ 0.

(1)

A consumption plan for an i-consumer in generation t is a consumption bundle, input and

output in capital production and nominal savings (cit ,xit ,kit ,mit) satisfying the inequalities

in Problem (1).

Since the utility function is homothetic implying the demand function is homogeneous of

degree one in income, it is helpful to consider the following normalized consumer problem

max
(cy,co)

u(cy,co)

s.t. pcy + co ≤ p.

Assumptions (C.1) and (C.2) imply there is a differentiable function f : R++ → X such

that f (p) = ( f y(p), f o(p)) is a solution to the problem (see Tvede, 2010). The function

s : R++ →]0,1[ defined by s(p) = 1− f y(p) is related to the function f by f y(p) = 1−s(p)

and f o(p) = ps(p). The real interest rate is p−1 and if income is one when young and zero
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when old, then real savings are s(p). Real savings are assumed to be bounded away from

zero for high real interest rates:

(C.3) liminf
p→∞

s(p)> 0.

The assumption is satisfied for many utility functions, including Cobb–Douglas and CES

utility functions with positive elasticity of substitution.

For convenience, consumption is assumed to be positive both when young and when

old. Savings wt−c
y
t are positive for all real interest rates because consumers have no income

when old. However, since we use real savings rather than demand in our analysis, it is not

important whether consumers consume both when young and when old X = R
2
++ or solely

when old X = {0}×R++. In the latter case real savings are constant and equal to one,

making real savings independent of real interest rates.

Let pt+1 = qt+1/qt be the return on savings for those holding money and rt+1βi the return

on savings for those making productive investments. If rt+1βi < pt+1, then the solution to

the consumer problem (1) is






























cit = f (pt+1)wt

xit = 0

kit = 0

mit = s(pt+1)
wt

qt
.

If rt+1βi > pt+1 the solution is































cit = f (rt+1βi)wt

xit = s(rt+1βi)wt

kit = βis(rt+1βi)wt

mit = 0.

If rt+1βi = pt+1, then the return on capital production is equal to the return on money and

all convex combinations of the two solutions are solutions.

For rt+1βL > pt+1 all consumers save by producing capital. For rt+1βL < pt+1 < rt+1βH

L-consumers save by holding money and H-consumers save by producing capital. Finally,

for rt+1βH < pt+1 all consumers save by holding money.
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The firm problem

The problem of a firm at date t is

max
(Kt ,Lt ,Yt)

Yt − rtKt −wtLt

s.t. Yt ≤ F(Kt ,Lt).

A production plan for a firm at date t is inputs and output (Kt ,Lt ,Yt) satisfying the inequality

in the problem of the firm. The marginal products of capital and labor ηK,ηL : R++ →R++

are defined by

ηK(K) = DKF(K,1)

ηL(K) = DLF(K,1).

(F.1)–(F.3) imply η ′
L(K) > 0 > η ′

K(K) for all K, limK→0 ηK(K) = limK→∞ ηL(K) = ∞ and

limK→∞ ηK(K) = limK→0 ηL(K) = 0.

The capital share of production is assumed to be bounded away from one for low levels

of capital:

(F.4) limsup
K→0

DKF(K,1)K

F(K,1)
< 1.

The assumption is satisfied for many production functions, including both Cobb–Douglas

and CES production functions.

Profit maximization implies that the solution to the problem of the firm satisfies the

standard first-order conditions

rt = ηK(Kt)

wt = ηL(Kt) = ηL◦η−1
K (rt).

3 Equilibria

In the present section we study existence of equilibria and steady states as well as equilib-

rium dynamics.

Definition of equilibrium

Equilibria are sequences of prices, consumption plans and production plans such that con-

sumers maximize their utilities, firms maximize their profits and markets clear.

Definition 1 An equilibrium is a sequence of prices, consumption plans and production

plans
((q̄t , r̄t , w̄t)t∈Z,(c̄it , x̄it , k̄it , m̄it)i∈{L,H},t∈Z,(K̄t , L̄t ,Ȳt)t∈Z),

such that
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• Consumers maximize utility: (c̄it , x̄it , k̄it , m̄it) is a solution to the problem of an i-

consumer in generation t for both i and every t.

• Firms maximize profits: (K̄t , L̄t ,Ȳt) is a solution to the problem for a firm at date t for

every t.

• Markets clear:










































∑
i

δi(c̄
y
it+c̄o

it−1+x̄it) = Ȳt

K̄t+1 = ∑
i

δik̄it

L̄t = 1

∑
i

δim̄it = M

for every t.

Equilibria can be monetary or real depending on whether money has value at every date

or not. We focus exclusively on monetary equilibria.

Let λit , respectively (1−λit), be the share of savings of an i-consumer that goes into

production of capital, respectively into holding money. Then equilibria are associated with

solutions (qt ,rt ,λLt ,λHt)t∈Z to the following difference equation:

η−1
K (rt+1) = (λLtβLδLs(rt+1βL)+λHtβHδHs(rt+1βH))ηL◦η−1

K (rt)

qtM = ((1−λLt)δL +(1−λHt)δH)s

(

qt+1

qt

)

ηL◦η−1
K (rt)

λit ∈







































{0} for rt+1 <
qt+1

qt

1

βi

[0,1] for rt+1 =
qt+1

qt

1

βi

{1} for rt+1 >
qt+1

qt

1

βi

for both i’s.

(2)

The first equation in Equation (2) is market clearing for the capital market with the capital

demanded by firms on the left and the capital supplied by consumers on the right. The first

part on the right is share of income allocated to investment in capital production and the

second part is the real wage. The second equation is market clearing for the money market

with real money supplied by old consumers and real money demanded by young consumers.

The first part on the right is the share of income allocated to holding money and the second

part is the real wage. The third equation describes how the share of income invested in
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capital production is determined for both i’s. For fixed rt+1 and qt+1 the three equations

determine rt , qt and λit for both i’s. Money allows transfers of resources across generations

(Samuelson, 1958; Diamond, 1965; Gale, 1973; Balasko and Shell 1980; Tirole, 1985).

Steady states

Steady states are equilibria for which consumption possibilities are identical across genera-

tions.

Definition 2 A steady state is an equilibrium

((q̄t , r̄t , w̄t)t∈Z,(c̄it ,xit , k̄it , m̄it)i∈{L,H}, t∈Z,(K̄t , L̄t ,Ȳt)t∈Z)

for which there are (( p̄, r̄, w̄),(c̄i, x̄i, k̄i)i∈{L,H},(K̄, L̄,Ȳ )) such that (p̄t , r̄t , w̄t) = ( p̄, r̄, w̄) and

(c̄it , x̄it , k̄it) = (c̄i, x̄i, k̄i) for both i and (K̄t , L̄t ,Ȳt) = (K̄, L̄,Ȳ ) for every t.

Our first result is that all economies, for which savings are strictly larger than demand

for capital at the real return on capital equal to 1/βL, have monetary steady states.

Theorem 1 Consider an economy E . There are monetary steady states provided that for

r = 1/βL,

η−1
K (r) < (βLδLs(rβL)+βHδHs(rβH))ηL◦η−1

K (r).

Proof: At monetary steady states q̄t+1/q̄1 = 1 for every t because otherwise q̄tM is not

constant across dates. Therefore 1/βH ≤ r̄ ≤ 1/βL at monetary steady states, otherwise

either nobody would hold money or nobody would produce capital. The first and the third

difference equations in (2) can be used to find (r,λL,λH) with λH +λL ∈ (0,2). The second

difference equation in (2) can be used to find q > 0.

Suppose that for r = 1/βL,

1

βHδHs(rβH)
η−1

K (r) ≥ ηL◦η−1
K (r).

Then the condition in Theorem 1 implies that there is λL ∈ [0,1[ such that

1

λLβLδLs(rβL)+βHδHs(rβH)
η−1

K (r) = ηL◦η−1
K (r).

Hence there is a monetary steady state with r̄ = 1/βL where part of the L-consumers saves

by holding money and the rest saves by producing capital.
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Suppose that for r = 1/βL and r′ = 1/βH ,

1

βHδHs(rβH)
η−1

K (r) < ηL◦η−1
K (r)

1

βHδHs(r′βH)
η−1

K (r′) > ηL◦η−1
K (r′).

Then there is r′′ ∈]1/βL,1/βH [ such that

1

βHδHs(r′′βH)
η−1

K (r′′) = ηL◦η−1
K (r′′).

Hence, by continuity, there is a monetary steady state with r̄ = r′′ where all L-consumers

save by holding money and all H-consumers save by producing capital.

Suppose that for r = 1/βL and r′ = 1/βH ,

1

βHδHs(rβH)
η−1

K (r) < ηL◦η−1
K (r)

1

βHδHs(r′βH)
η−1

K (r′) ≤ ηL◦η−1
K (r′).

Then there is λH ∈]0,1] such that

1

λHβHδHs(r′βH)
η−1

K (r′) = ηL◦η−1
K (r′).

Hence the condition in Theorem 1 implies there is a monetary steady state with r̄ = r′ where

part of the H-consumers saves by producing capital and the rest saves by holding money. ✷

There are three kinds of monetary steady states: L-consumers are indifferent between

saving by holding money and saving by producing capital p̄ = βLr̄; L-consumers prefer to

save by holding money and H-consumers prefer to save by producing capital p̄ ∈]βLr̄,βH r̄[;

and, finally, H-consumers are indifferent between saving by holding money and saving by

producing capital p̄ = βH r̄.

Weakly Pareto optimal allocations, introduced in Balasko and Shell (1980), are alloca-

tion for which it is not possible to improve welfare by changing consumption at finitely

many dates. Without frictions, allocations are weakly Pareto optimal if and only if they

can be supported by prices. Consumption in the two first types of monetary steady states is

not weakly Pareto optimal because L-consumers and H-consumers in the same generation

have different marginal rates of substitution. Transfers of resources from L-consumers to

H-consumers when young and from H-consumers to L-consumers when old could improve

welfare for everybody. Consumption in the last type of monetary steady states is weakly

Pareto optimal because L-consumers and H-consumers in the same generation have identi-

cal marginal rates of substitution.
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Dynamics

Equilibria can be everything from steady states to chaotic. However, complicated dynamics

are eliminated by the assumption that savings are non-decreasing in the real interest rate.

From the first-order condition of the normalized problem

−Dyu(1−s, ps)+ pDou(1−s, ps) = 0.

it follows that savings are non-decreasing in the real interest rate if and only if

D2
you(1−s, ps)−D2

oou(1−s, ps)−Dou(1−s, ps) ≤ 0.

The condition is mathematically, but not economically, clear.

Monetary dynamics depend on whether consumers prefer to produce capital, hold money

or both. In the case where L-consumers are indifferent between holding money and produc-

ing capital and H-consumers prefer to produce capital, so rt+1βL = pt+1. Equation (2)

without the last equation is equivalent to

1

λLtβLδLs(rt+1βL)+βHδHs(rt+1βH)
η−1

K (rt+1) = ηL◦η−1
K (rt)

(1−λLt)δLs(rt+1βL) =
1

ηL◦η−1
K (rt)

qtM.

For fixed rt and qt , the two equations determine rt+1 and λLt while qt+1 is determined by

qt+1 = qtrt+1βL. In a steady state p̄= 1 so r̄ = 1/βL. Therefore there is at most one monetary

steady state where L-consumers are indifferent between holding money and producing cap-

ital and H-consumers prefer to produce capital independent of whether s is non-decreasing

or not. Concerning the forward dynamics there is at most one rt+1, λLt and qt+1 for fixed rt

and qt provided s is non-decreasing.

In the case where L-consumers prefer to hold money and H-consumers prefer to produce

capital, rt+1βL < pt+1 < rt+1βH . Equation (2) without the last equation is equivalent to

1

βHδHs(rt+1βH)
η−1

K (rt+1) = ηL◦η−1
K (rt)

δLs

(

qt+1

qt

)

=
1

ηL◦η−1
K (rt)

qtM.

The first equation defines the evolution of rt . For a fixed evolution of rt the second equation

defines the evolution of qt . For the first equation, the first part on the left need not be

monotonic in rt+1, the second part on the left is decreasing in rt+1 and the part on the right

is decreasing in rt . Since the range of ηL◦η−1
K is ]0,∞[ and the part on the right is decreasing

13



in rt , for all rt+1 there is a unique rt such that (rt ,rt+1) is a solution to the first equation.

Consequently the backward equilibrium dynamics are well defined.

If savings are not non-decreasing in the real interest rate, then the first part on the left

of the first equation can be non-monotonic in rt+1. Consequently the forward equilibrium

dynamics need not be well defined and there can be multiple steady states and complex

dynamics. If savings are non-decreasing in the real rate of interest, then the first part on the

left is non-increasing in rt+1 implying the part on the left is decreasing in rt+1. Since the

range of η−1
K is ]0,∞[ and part on the left is decreasing in rt+1, for all rt there is a unique rt+1

such that (rt ,rt+1) is a solution to the first equation. Consequently the forward dynamics are

well defined.

In the case where L-consumers prefer to hold money and H-consumers are indifferent

between holding money and producing in capital, rt+1βH = pt+1. Equation (2) without the

last equation is equivalent to

1

λHtβHδHs(rt+1βH)
η−1

K (rt+1) = ηL◦η−1
K (rt)

δLs(rt+1βL)+(1−λHt)δHs(rt+1βH) =
1

ηL◦η−1
K (rt)

qtM.

For fixed rt and qt the two equations determine rt+1 and λHt while qt+1 is determined by

qt+1 = qtrt+1βH . In a steady state p̄ = 1 so r̄ = 1/βH . Therefore there is at most one mone-

tary steady state where L-consumers prefer to hold money and and H-consumers are indif-

ferent between holding money and investing in capital. Concerning the forward dynamics

there is at most one rt+1, λLt and qt+1 for fixed rt and qt provided s is non-decreasing.

4 Printing money

Since our setup and the setup used by Martin and Ventura (2012, 2016) are similar, printing

money and distributing it to young productive consumers could be expected to work more or

less as new bubbles created by young productive consumers in their model. However, money

is a bubble directly influenced by monetary policy and is not subject to random creation and

random bursts. Also, bubbles associated with financial assets cannot be negative while

monetary transfers can be.

To assess the implications of monetary policy for the real economy in steady states

as well as during the transition, we consider a scenario with a passive monetary policy

before some date and an active monetary policy after that date. First in Theorem 2 we show

monetary steady states with active policies exist and in monetary steady states active policies

increase output compared to the passive policy. Second we show output increases at every
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date in the transition from a steady state for the passive policy to a steady state for the active

policy.

Steady states with money printing

Let N
y
it (No

it ) be the monetary transfers to young (old) i-consumers at date t. For fixed prices

monetary transfers increase incomes of consumers receiving them and these income in-

creases lead to higher consumption both when young and when old provided consumption

when young and consumption when old are normal goods. Therefore for fixed prices mon-

etary transfers to young consumers, but not to old consumers, lead to higher savings so

monetary transfers to young H-consumers lead to more production of capital.

Three scenarios of monetary policies are considered, namely newly printed money is

distributed: 1. Exclusively to young H-consumers; 2. To both kinds of young consumers in

equal amounts; and, 3. Exclusively to young L-consumers. In the first and third scenarios

monetary transfers depend on the kind of as well as the age of the consumers and in the

second scenario monetary transfers depend solely on the age of the consumers. In the first

scenario N
y
Ht ≥ 0 and N

y
Lt = No

Ht = No
Lt = 0 for every t; in the second N

y
Ht = N

y
Lt ≥ 0 and

No
Ht = No

Lt = 0 for every t; and, in the third N
y
Lt ≥ 0 and N

y
Ht = No

Ht = No
Lt = 0 for every t.

Monetary equilibria are associated with solutions (qt ,rt ,λLt ,λHt)t∈Z to the following

difference equation:

η−1
K (rt+1)−λLtβLδLs(rt+1βL)qtN

y
Lt −λHtβHδHs(rt+1βH)qtN

y
Ht

= (λLtβLδLs(rt+1βL)+λHtβHδHs(rt+1βH))ηL◦η−1
K (rt)

qtMt − (1−λLt)δL s

(

qt+1

qt

)

qtN
y
Lt − (1−λHt)δH s

(

qt+1

qt

)

qtN
y
Ht

= ((1−λLt)δL+(1−λHt)δH)s

(

qt+1

qt

)

ηL◦η−1
K (rt)

λit ∈







































{0} for rt+1 <
qt+1

qt

1

βi

[0,1] for rt+1 =
qt+1

qt

1

βi

{1} for rt+1 >
qt+1

qt

1

βi

for both i’s

Mt+1 = Mt +δLN
y
Lt+1 +δHN

y
Ht+1.

(3)

The first equation in Equation (3) is market clearing for the capital market with demand for

capital of firms minus supply of capital financed by money transfers on the left and supply
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of capital financed by wage income on the right. The second equation is market clearing

for the money market with supply of money minus demand for money financed by money

transfers on the left and demand for money financed by wage income on the right. The third

equation describes how the share of income invested in capital production is determined for

both i’s. The fourth equation describes how the stock of money evolves.

For our result on existence of and output at monetary steady states with monetary trans-

fers to young consumers we consider monetary policies of the form N
y
it = ε

y
i Nt for both i

with εi ≥ 0 for both i and δLεL +δHεH = 1.

Theorem 2 Consider an economy E . Let Nt/Mt = n for every t and assume for r = 1/βL,

η−1
K (r) < (βLδLs(rβL)+βHδHs(rβH))ηL◦η−1

K (r).

Then there is a neighborhood of the passive monetary policy n = 0 such that

• There are monetary steady states with money printing for all policies in the neighbor-

hood.

• Assume εH > 0. Minimum (maximum) output for all active policies with n > 0 in the

neighborhood is larger than minimum (maximum) output for the passive policy.

• Assume εH = 0. Then a active policy n > 0 removes monetary steady states with r >

(1−n)/βL for the passive policy and does not change steady states with r < (1−n)/βL

for the passive policy.

Proof: Let µ ∈]0,1[ be defined by λL ≥ µ implies for r = 1/βL,

η−1
K (r) < (λLβLs(rβL)+βHs(rβH))ηL◦η−1

K (r).

Let ν ∈]0,1[ be defined by n ∈ [0,ν ] implies 1 − (δLεL+δHεH)s(1−n)n > 0 and for all

r ∈ [(1−n)/βL,1/βL] and λL ≥ µ ,

η−1
K (r) < (λLβLs(rβL)+βHs(rβH))ηL◦η−1

K (r).

Let Q : R++×[0,ν ]×[0,µ]×[0,1]→ R++ be defined by

Q(r,n,λL,λH) =
((1−λL)δL+(1−λH)δH)s(1−n)

1− ((1−λL)δLεL+(1−λH)δHεH)s(1−n)n

ηL◦η−1
K (r)

M
.

Then Q(r,n,λL,λH) is the steady state price for money for real return on capital r, policy

n and fractions of consumers saving by producing capital (λL,λH). Let the correspondence
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Λ : R++×[0,ν ]→ [0,µ]×[0,1] be defined by

Λ(r,n) =















































































{(0,0)} for r <
1−n

βH

{0}×[0,1] for r =
1−n

βH

{(0,1)} for
1−n

βH
< r <

1−n

βL

[0,µ]×{1} for r =
1−n

βL

{(µ,1)} for r >
1−n

βH
.

Then Λ(r,n) is the steady state fractions of consumers saving by producing capital for

real return on capital r and policy n – except λL is restricted to [0,µ]. Moreover, Λ

is upper hemi-continuous with convex values and Λ is single valued at (r,n) for r /∈

{(1−n)/βH ,(1−n)/βL}. Let function E : R2
++×[0,ν ]×[0,µ]×[0,1]→ R be defined by

E(r,q,n,λL,λH) = η−1
K (r)− (λLβLs(rβL)εL+λHβHs(rβH)εH)qMn

−(λLβLs(rβL)+λLβLs(rβL))ηL◦η−1
K (r).

Then E(r,q,n,λL,λH) is the excess demand for capital for real return on capital r, price of

money q, policy n and fractions of consumers saving by producing capital (λL,λH). More-

over for r = (1−n)/βH and n ∈ [0,µ], E(r,Q(r,n,0,0),n,0,0)> 0 with (0,0) ∈ Λ(r,n) and

for r = (1−n)/βL and all n ∈ [0,µ], E(r,Q(r,n,µ,1),n,µ,1)< 0 with (µ,1) ∈ Λ(r,n).

Let the correspondence Θ : R++×[0,ν ]→ R be defined by

Θ(r,n) =
⋃

(λL,λH)∈Λ(r,n)

E(r,Q(r,n,λL,λH),n,λL,λH).

Then there is a monetary steady state with return on capital r and policy n if and only if

0 ∈ Θ(r,n). Moreover Θ is upper hemi-continuous and convex valued where v0 ∈ Θ(r,0)

and vn ∈ Θ(r,n) for n > 0 implies vn < v0 for all r. Since Θ(r,n) > 0 for r = (1−n)/βH

and all n ∈ [0,µ] and Θ(r,n) < 0 for r = (1−n)/βL and all n ∈ [0,µ], there is a monetary

steady state with money printing for all n ∈ [0,µ]. For εH > 0 the minimum (maximum) real

return on capital for all active policies is smaller than the minimum (maximum) real return

on capital for the passive policy, because v0 ∈ Θ(r,0) and vn ∈ Θ(r,n) for n > 0 implies

vn < v0 for all r as well as Θ(r,n) > 0 for r = (1−n)/βH and all n ∈ [0,µ] and Θ(r,n) < 0

for r = (1−n)/βL and all n ∈ [0,µ]. For εH = 0 an active policy n removes monetary steady

states for the passive policy with r > (1−n)/βL and does not change steady states for the

passive policy with r < (1−n)/βL. ✷
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Transitional dynamics

In the discussion below we assume that: savings are non-decreasing in returns on savings;

and, the return on capital production for L-consumers is lower than the return on money

and the return on money is lower than the return on capital production for H consumers.

The second assumption implies that L-consumers save by holding money and H-consumers

save by producing capital. Output as well as net-output, where net-output is output minus

input in capital production, are increased by active policies compared to the passive policy

provided young H-consumers receive transfers, because the return in output of input in

capital production is larger than one.

In order to study the dynamic effects of changing monetary policy consider a locally

stable steady state. Then there is a neighborhood of the passive policy n = 0 such that the

steady states with money printing are locally stable for all policies in that neighborhood.

Hence if money printing is started at date t, then there is a transition from the steady state

without money printing to the steady state with money printing. Indeed young consumers

adjust their demands and savings from date t and forward and prices adjust from date t+1

and forward. The transition is monotonic with output increasing from date t+1 and forward

as illustrated in Figure 1.

rt

rt+1

Passive monetary policy

Active monetary policy

r̄|n=0r̄|n>0

r̄|n=0

r̄|n>0

✲

✻

�
�
�
�
�
�
�

�
�

�
�
��
❄✛

✛
❄

Figure 1: Monetary policy and monetary dynamics

At monetary steady states with money printing, transfers to consumers have a direct

effect on the return of money. Since the real value of money has to be constant across dates,

the price of the consumption good has to increase faster with monetary transfers than without

monetary transfers. Therefore printing money decreases the return on existing money. All

in all, distributing newly printed money solely to young H-consumers or to both kinds of

young consumers increases output by reducing the inefficiencies in capital production, and,

distributing money solely to young L-consumers does not change output. Since printing

money increases output, the stock of capital increases. Hence the real wage is increased.
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Therefore for consumers there are two main effects of money printing, namely lower returns

on savings and higher real income, where the higher income comes from higher real wage

as well as transfers.

It is straightforward and quite tedious to calculate the changes in indirect utilities caused

by money printing. However the expressions are not easy to evaluate. As explained above,

there are two effects pointing in opposite directions. In the next section, we consider an

example where the negative effect from lower returns on savings is maximized by assuming

that consumers solely consume when old and derive a condition on the output elasticity

of capital for Cobb-Douglas production functions that ensure welfare is increased for both

kinds of consumers.

5 An example

To discuss boundaries for monetary policy as well as optimal policies and inflation rates, we

reconsider the model economy as put forward in Martin and Ventura (2012) in this section.

We also show by means of numerical examples that the business cycle fluctuations which

Martin and Ventura (2012) attribute to stochastic assets bubbles can also arise in perfect

foresight equilibria with deterministic monetary policy rules.

Setup

Consumers care only about consumption when old, i.e. X = {0}×R++. Therefore all in-

come received when young will be saved, i.e. s(p) = 1 for all p. This means that the welfare

results of our example are conservative in that the negative effects of money printing are

maximized. Second, production of goods takes place according to a Cobb-Douglas function

F (Kt ,Lt) = Kσ
t L1−σ

t

with σ ∈ (0,1) being the output elasticity of capital.

For convenience, transfers to young consumers are written as multiples γ ∈ R of total

wages when young, i.e. N
y
it = γ

y
itwt/qt . If γ > 0, a consumer receives money and if γ < 0 she

pays money. As before, transfers to old consumers are not considered as they would have

redistributive effects only.
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The consumer problem at date t for a young consumer is

max
(co

it ,mit ,xit ,kit)
co

it

s.t.































xit +qtmit ≤ wt +qtN
y
it

co
it ≤ qt+1mit + rt+1kit

kit ≤ βixit

mit ,xit ≥ 0.

(4)

Since s(p) = 1 so f y(p) = 0 and f o(p) = p, the solution to the consumer problem for

rt+1βi < pt+1 is






























co
it = pt+1(1+γ

y
it)wt

xit = 0

kit = 0

mit = (1+γ
y
it)wt/qt .

For rt+1βi > pt+1 the solution is































co
it = rt+1βi(1+γ

y
it)wt

xit = (1+γ
y
it)wt

kit = βi(1+γ
y
it)wt

mit = 0.

For rt+1βi = pt+1, the return on capital production is equal to the return on money and all

convex combinations of the two solutions are solutions.

The solution to the firm problem at date t satisfies

rt = ηK(Kt) = σKσ−1
t ,

wt = ηL(Kt) = (1−σ)Kσ
t .

Finally, the path for the aggregate money stock, {Mt}t∈Z is described by

Mt+1 = Mt +∑
i

δiN
y
it+1.

Monetary equilibria

In this example, we restrict our attention to equilibria in which L-consumers prefer to save

by holding money and H-consumers by producing capital, i.e., rt+1βL < pt+1 < rt+1βH for
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every t. As will be shown, this is the only equilibria where active monetary policy could be

expansionary in our setting.

The equilibrium conditions can be summarized as

K̄t+1/K̄t = (1+γ
y
Ht)δHβH(1−σ)K̄σ−1

t ,

pt+1 =

(

1−
δH

δL
γ

y
Ht+1

)

(

1+ γ
y
Lt

)−1

(

K̄t+1

K̄t

)σ

,

(5)

implying that the saddle path for the return on money is given by

pt+1 =

(

1−
δH

δL
γ

y
Ht+1

)

(

1+ γ
y
Lt

)−1 (
(1+γ

y
Ht)δHβH(1−σ)K̄σ−1

t

)σ
.

Since σ(σ − 1) ∈]− 1,0[, monetary steady states, provided they exist, are thus unique and

characterized by

p̄M =

(

1−
δH

δL
γ

y
H

)

(1+ γ
y
L)

−1

K̄M =
(

(1+ γ
y
H)δHβH(1−σ)

)1/(1−σ)

r̄M =
σ

1−σ

(

δHβH(1+ γ
y
H)

)−1

with γ
y
Ht = γ

y
H and γ

y
Lt = γ

y
L for all t. Accordingly, a monetary expansion increases capital

and output at steady-state provided if new money is transferred to young H-consumers.

However the return on money and consequently inflation depend on all drivers of the stock

of money.

The equilibrium allocations associated with monetary steady states are dynamically ef-

ficient provided the return on capital is greater than one, βH r̄M > 1 or equivalently

σ

1−σ

1

δH(1+γ
y
H)

> 1. (6)

It can be shown that equilibrium allocations associated with real steady states are dy-

namically inefficient and equilibrium allocations associated with monetary steady states are

dynamically efficient provided

δH(1+ γ
y
H) ≤

σ

1−σ
<

β̄

βL
.

Money restores efficiency because L-consumers switch their savings from investing in cap-

ital production to holding money.
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Implications for monetary policy

We now look at the conditions for which monetary steady states exist. We restrict attention

to monetary policies for which the associated allocation is dynamically efficient. Otherwise,

the incremental output due to monetary policy would necessarily be welfare-reducing.

Let the function F : R++ → R and the real number ξ ∈ R\{0} be defined by

F(γ) =

(

δL

δH
−γ

)

(1+γ),

ξ =

(

δHβH
1−σ

σ

)−1 δL

δH
(1+γ

y
L).

There are monetary steady states provided βLrM < pM < βHrM or, equivalently, if

0 < F(γy
H)ξ

−1 −βL < βH −βL.

Let G : R→ R be defined by G(γ) = F(γ)ξ−1−β , and (γ1(β ),γ2(β )) the two solutions to

G(γ) = 0. There are two cases, namely ξ > 0 and ξ < 0. Suppose ξ > 0. If (2δH)
−2ξ−1 <

βL, then there is no γ
y
H for which a monetary steady state exists. Let ν ≡ (δLβL)/(δHβH). If

γ2(βL)> ν , then there are monetary steady states and output is higher than at the real steady

state with output being maximal for γ
y
H = γ2(βL). In all other cases where ξ > 0 there are

monetary steady states, but output is lower than at real steady states. Suppose ξ < 0. Then

γ2(βH)> ν if and only if there are monetary steady states with γ
y
H = γ2(βH) at which output

is higher than at real steady states. Otherwise there are monetary steady states, but output is

lower than at real steady state.

Whether monetary policies which increase output exist depends on γ
y
L because it deter-

mines ξ and consequently the solution to G(γ) = 0. Output converges to its supremum for

ξ converging to zero. Policies that result in ξ tending to zero tax away income of young

L-consumers (γ
y
L close to minus one). For γ

y
H converging to δL/δH , the steady-state interest

rate and the return on money converge to

r̄M =
σ

1−σ

1

βH

p̄M =
σ

1−σ

βL

βH
.

Therefore the supremum output is dynamically efficient provided σ/(1−σ)≥ 1 so the rate

of return on capital production βH r̄M is at least 1.

Finally, assume that transfers to the two types of consumers have to be identical, per-

haps because productivity in capital production is private information or because of political
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reluctance to discriminate between consumers. Hence γ
y
i = γy for some γy. Output is maxi-

mized for

γy =
1

δH

(

δL−
σ

1−σ
ν

)

.

The steady-state interest rate is

r̄M =
σ

1−σ

δH

δHβH+(σ/(1−σ))δLβL

and the supremum output is thus dynamically efficient provided

σ

1−σ
(1−ν) ≥ 1.

Welfare comparison of steady states

The following welfare comparison of steady states shows that there is a wide range of pa-

rameters for which monetary policies with relatively small money transfers improve welfare

for both consumer types in the long-run. The reference scenario is a passive monetary policy

without money transfers, i.e. where γ
y
L = γ

y
H = γ I = 0. We consider two active monetary poli-

cies: one policy with money transfers solely to young H-consumers, i.e. γ
y
H = γA > 0,γy

L = 0;

and another policy with equal money transfers to both types of young consumers, i.e. where

γ
y
H = γ

y
L = γA > 0.

Welfare of H-consumers is higher for active monetary policies compared to the reference

scenario, since the ratio of the respective steady-state consumption levels for both scenarios

is
c̄o

H(γ
A)

c̄o
H(γ

I)
= (1+γA)σ/(1−σ)

which is larger one. As for L-consumers, the welfare effects are more delicate. Active

monetary policies make them better off provided

c̄o
L(γ

A)

c̄o
L(γ

I)
=

(

1−
δH

δL
γA

)

(1+γA)σ/(1−σ) > 1,

which holds if and only if

δH

δL
<

(1+γ
y
H)

σ/(1−σ)−1

(1+γ
y
H)

σ/(1−σ)γ
y
H

.

The expression on the right hand side is decreasing in γ
y
H and, according to L’Hôpital’s rule,

converges to σ/(1−σ) as γ
y
H converges to zero. Therefore, provided σ > δH , there is an

active monetary policy already in the neighborhood of the passive monetary policy such
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Figure 2: Monetary policies for which c̄L(γ
A)/c̄L(γ

I) = 1

that both types of consumers are better off at steady states. Moreover, for σ > δH the ratio

c̄o
H(γ

A)/c̄o
H(γ

I) is also increasing in γA and c̄o
L(γ

A)/c̄o
L(γ

I) is maximized for

γA =
σ −δH

δH
.

Hence, monetary policies with γA = (σ − δH)/δH are optimal in that no other monetary

policy is preferred by both consumer types.

Figure 2 shows the supremum value of γA as a function of (δH/δL,σ) such that welfare

of both consumer types is higher with an active monetary policy for all positive γA smaller

than the supremum of γA.

Welfare during transition

To assess the welfare implications of a change in monetary policy during the transition,

consider an economy that is initially at a monetary steady state with a passive monetary

policy, γ
y
L = γ

y
H = γ I = 0. At some date t = T , the policy maker unexpectedly implements an

active policy described in the previous section for all t ≥ T , which can be either a transfer

only to H-consumers or an equal transfer to both types of consumers. Equation (5) implies
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that the equilibrium trajectory of the economy along the saddle path, with an initial capital

stock of K̄T = (δHβH(1−σ))1/(1−σ)
, reads

pt =























1− (δH/δL)γ
y
H for t = T

1− (δH/δL)γ
y
H

1+ γ
y
L

(1+ γ
y
H)

σ t−T
for t ≥ T +1

K̄t = (1+ γ
y
H)

1−σt−T

1−σ (δHβH(1−σ))1/(1−σ)
for t ≥ T +1.

All H-consumers born at dates t ≥ T enjoy a higher welfare for both types of active

policies since

c̄Ht(γ
A)

c̄H(γ I)
= (1+ γ

y
H)

σ(1−σt+1)
1−σ > 1.

As for L-consumers, we have

c̄Lt(γ
A)

c̄L(γ I)
=

(

1−
δH

δL
γ

y
H

)

(1+ γ
y
H)

σ(1−σt+1)
1−σ .

Hence, a necessary and sufficient condition that L-consumers are better off throughout the

entire transition period as well as at the new steady state is

δH

δL
<

(1+ γ
y
H)

σ −1

(1+ γ
y
H)

σ γ
y
H

.

According to L’Hôpital’s rule, there is thus an active monetary policy in the neighborhood

of the passive monetary policy that is always welfare improving provided σ > δH/δL. This

condition does not depend on whether young L-consumers obtain transfers or not.

Consumers born at dates t < T −1 are not affected by the policy change because they do

not live to see the policy change. H-consumers born at date T−1 are also unaffected because

the capital stock and thus the return on capital do not change before date T + 1. However,

L-consumers born at date T−1 are strictly worse off due to the change in monetary policy

because printing money and giving it to H-consumers at date T induces an immediate fall

in the return on holding money. This loss cannot be compensated by monetary transfers.

To see this suppose monetary transfers γo
Lt to old L-consumers were possible at date T . The

return on holding money according to Equation (5) at date T would read

pT = 1−
δH

δL
γ

y
HT − γo

LT .

Hence, monetary transfers γo
LT > 0 lead to a one-for-one drop in the return on money, leaving

the purchasing power in the hands of old L-consumers at date T , and thus their consumption

co
LT−1 = (pT + γo

LT )wT , unchanged. Only real transfers, for example a one-off lump sum

transferred from the initial young consumers, can achieve Pareto-improvements.
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Numerical simulation exercises

To better understand the impact of the money printing policy, we perform a series of numeri-

cal simulation exercises using the perfect foresight version of economy in our example. The

parameters are calibrated to match certain characteristics of the US economy. The param-

eter σ is set 1/3 to match the observed long-run capital share of output. We set δH = 0.13

to mirror the fraction of entrepreneurs in the US population. Alternatively, it is possible

for us to exploit the well-known positive sorting between ability and education attainment.

Incidentally, we obtain a very similar calibration of 12.8% if we use the percentage of the

population with masters, doctorates and/or professional degrees.

One ‘generation’ is set to 15 years. We assume that the economy is initially at its steady

state with γ
y
H0 = γ

y
L0 = γ0. The value of γ0 is calibrated to reproduce the US average annual

inflation of 1.9% over the recent 15 year period, ending in 2018. We discipline βH by

the average annualized real interest rate of 1.4% during the same period. For simplicity,

γo
H = γo

L = 0 for all our exercises. βL is set to ensure βLrt < pt < βHrt for all t so that

the economy stays in monetary equilibrium. L is chosen so that the GDP is one in initial

steady state. It happens that βHr > 1 under our choice of parameters, so that the economy

is dynamically efficient. Table 1 summarizes the baseline calibration.

Parameter Value Remark

σ 1/3 Long-run capital share of output

δH 0.13 The fraction of entrepreneurs in the US (Global Entrepreneur Monitor,

2016), or the fraction of US population holding masters, doctorates,

or professional degrees (Educational Attainment in the United States:

2017, US Census Bureau)

γ0 0.272 US average annual inflation of 1.9% between 2004-2018 based on GDP

deflator (FRED, St Louis Fed)

γ1 0.352 To generate steady state inflation of 2.4% (i.e. 50 basis point higher

than 1.9%) under Policy A

βH 2.454 US average annual real interest rate of 1.4% between 2004-2018 (Trea-

sury inflation indexed long-term average yield. FRED, St Louis Fed)

βL 0.491 βL = βH/5, to ensure βLrt < pt < βHrt

Table 1: Baseline calibration

First we examine the effect of unanticipated expansionary money printing policies. Pol-

icy A is an egalitarian policy such that γ
y
H = γ

y
L for all t. The policy maker increases the

money supply multiplier γ permanently to γ1 from γ0, which results in a 50 basis point in-

crease in the steady state inflation from the baseline. Policy B maintains the same monetary
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Figure 3: Effect of active money printing policy

supply as Policy A in that γ
y
H + γ

y
L = 2γ1. But extra monetary injection is given exclusively

to H consumers. Figure 3 plots the dynamics of key variables under such policies. The

dotted blue lines represents the economy in steady state under the baseline calibration. The

economies under Policies A and B are shown in the solid red line and the dashed orange

line. The figure shows that there exists is a Phillips curve type trade-off between inflation,

1/p−1, and GDP. Note that, unlike the conventional models which requires price frictions

for the Phillips curve, our model generates this relationship through financial frictions with

perfectly flexible prices. The egalitarian Policy A increases the long-run GDP by about

3% while it increases annual inflation by 0.5%. The selective Policy B is able to achieve

about the twice of GDP increments with about a half of inflation rises. The policy effects are

heavily concentrated in the first several periods. The real interest rate is nothing but marginal

product of capital net of depreciation. Even though there is no active loan markets in our

economy due to financial frictions, this captures the (shadow) rate of return on savings.

Next, we consider the effect of one-off expansionary policy. In particular, the policy

maker sets γ
y
H = γ

y
L = γ1 for t = 1, then reverts back to γ

y
H = γ

y
L = γ0 for t > 1, which we

denote Policy A’. In Figure 3, this one-off policy is depicted in violet dotted lines with

square markers. Again, the dynamics of real variables such as GDP and real interest rates
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closely mirror the monetary dynamics summarized in inflation. Notably this one-off money

policy has persistent effects even though capital fully depreciates. This is because money

is injected in constant multiples of wages and they are the function of capital formed in the

previous period.

An alternative monetary policy strategy is to target some rate of inflation and to control

the nominal interest rate as a policy instrument. In this strategy, the quantity of money or its

expansion path is unimportant, both as a target and as an instrument. In economies plagued

with financial frictions, money plays an explicit role above and beyond controlling interest

rates. While monetary policy can achieve its inflation target, it can do more. For any inflation

rate, monetary policy can further manipulate consumption plans, and thus output and even

welfare, by varying the quantities of money that different types of consumers obtain over

their lifetime in a way as described in the analysis above. To illustrate this, we also compare

a constant money printing policy vis-à-vis two inflation targeting policies. In the inflation

targeting regime, the policy maker sets money injection using the feedback rule as follows:

γ
y
Ht = γ

y
Lt = γi

(

1/pt−1

1/p∗

)φ

for t ≥ 1 (7)

where 1/p∗ is the target inflation rate. This is a generalization of the inflation targeting feed-

back rule commonly used in the central banking literature. The typical inflation targeting

rule requires the central bank to relax (tighten) the economy when the inflation is below

(above) the target, which translates into φ < 0. This is our Inflation Targeting 1. However,

one can argue that the conventional inflation targeting rule, in fact, requires φ > 0. The logic

is that the traditional inflation targeting rules are implemented by setting the higher (lower)

nominal interest rates when the economy is above (below) the target. Since the real interest

rate is predetermined in our model, the policy maker can increase the (shadow) nominal

interest rate by causing inflation, through the Fisher equation. Under this reasoning, the

coefficient φ must be positive because inflation and money growth are positively related.

Hence we also examine the model economy under φ > 0. This is Inflation Targeting 2. As

before, the economy is at the initial steady state inflation of 1.9% implied by γ0. And the

policy maker wishes to maneuver the economy to a new inflation target of 2.4%. This means

γi = γ1 for Equation (7). We set φ = −2 for Inflation Targeting 1 and φ = 2 for Inflation

Targeting 2. This is broadly within the range of the Taylor rule policy coefficient on inflation

(Carlstrom and Jacobson, 2015).

Figure 4 illustrates the dynamics of economy under these alternative policy rules in

comparison with the constant money printing rule (Policy A as in Figure 3). Unlike the

conventional wisdom, both types of inflation targeting rules do not perform well in our

case. The rule 1 introduces unnecessary fluctuations by repeating over/undershooting the
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Figure 4: Constant money growth policy vs. inflation targeting

inflation target. A smaller (absolute) value of φ does reduce the policy induced oscillation

but does not remove it completely. On the other hand, the rule 2 helps smooth the transition

dynamics. But this comes at the expense of much slower adjustments in the real economy.

The inflation targeting has further complications in our economy. As discussed earlier, there

can be many different real outcomes for each ‘inflation targeting’. For instance, given the

same values of γi and φ , the policy maker can assign different weights to γ
y
H and γ

y
L. In this

sense, it appears that constant money growth policy analogous to the Friedman rule is much

more straightforward and thus favored in this setting.

Discussion

A brief, concluding discussion of the similarities with and differences to Martin and Ventura

(2012) is due. First, new money injections to young consumers N
y
it in our model correspond

to new bubbles in Martin and Ventura (2012) while the aggregate money stock Mt+1 matches

their total size of bubbles. Following the long tradition in economics since Samuelson, we

thus treat money as bubble and exploit the mechanism in Martin and Ventura (2012) by

which new bubbles first available to young consumers can be expansionary in the presence

of financial frictions. There are, however, three key differences. First, unlike in Martin and

Ventura (2012), our money is a non-random policy tool. Thus, in principle, new money in-
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jection can be either positive (transfer) or negative (tax). This cannot be the case in financial

bubbles where consumers have only limited liabilities. Second, consumer preferences in our

example are rather extreme, just like in Martin and Ventura (2012). Theorem 2 has shown

that active monetary policies are expansionary under more general preferences, but such

extreme preferences penalize us most when it comes to the welfare evaluation of monetary

policies. Finally, in Martin and Ventura (2012) it is the stochastic nature of the bubble which

drives investment and business cycles, whereas we have provided simple examples in which

deterministic monetary policy rules can generate such cycles in perfect foresight equilibria.

6 Final remarks

Money matters in economies where efficient allocation of savings across investment oppor-

tunities is prevented by frictions in credit markets. The presence of money in itself does not

help mitigate the effects of frictions. However, we have shown that simple monetary poli-

cies in form of printing money and distributing it appropriately do help. Monetary policies

in form of money taxes and money transfers can eliminate the effects of frictions, but these

policies are institutionally much more demanding.

We have demonstrated that different real outcomes can be obtained under the same in-

flation target. Indeed the real effect of printing money depends on how it is distributed.

Therefore the discussion of inflation targeting versus monetary targeting needs to be quali-

fied: central bankers need to go beyond solely monitoring inflation.

We have considered a rather rudimentary asset market with two assets, namely invest-

ment in capital production and money. An additional financial asset would be needed to

study quantitative easing, an unconventional policy recently adopted by some central banks

consisting of exchanging money for financial assets. A natural candidate would be private

credit, but the introduction of private credit would demand easing the frictions in the credit

markets so part of investments could be used as collateral for loans.
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