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Trouble Comes in Threes: Core stability in

Minimum Cost Connection Networks∗
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Abstract

We consider a generalization of the Minimum Cost Spanning Tree (MCST) model,

called the Minimum Cost Connection Network (MCCN) model, where network users

have connection demands in the form of a pair of nodes they want connected directly

or indirectly. For a fixed network, which satisfies all connection demands, the prob-

lem consists of allocating the total cost of the network among its users. Thereby every

MCCN problem induces a cooperative cost game where the cost of every coalition of

users is the cost of an efficient network satisfying the demand of the users in the coali-

tion. Unlike the MCST-model, we show that the core of the induced cost game in

the MCCN-model can be empty even when all locations are demanded. We therefore

consider sufficient conditions for non-empty core. It is shown that: when the efficient

network and the demand graph (i.e. the graph consisting of the direct connections be-

tween the pairs of demanded nodes) consist of the same components, the induced cost

game has non-empty core (Theorem 1); and, when the demand graph consists of at

most two components, the induced cost game has non-empty core (Theorem 2).
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1 Introduction

The minimum cost spanning tree (MCST) model is a staple in combinatorial optimization

with numerous papers dedicated to theoretical analysis as well as practical applications (see

e.g. Korte and Vygen, 2018, Sharkey, 1995). A set of agents, with each agent being iden-

tified by a node (location), all want to be connected to the same target node (the source).

Connections are costly to build and congestion free. The first problem consists of finding

a cost minimizing network (a minimum cost spanning tree) that connects all agents to the

source, directly or indirectly. The second problem consists of how to allocate the total cost

of the efficient network between the agents (Claus and Kleitman, 1973, Bird, 1976).

Bird (1976) uses a conventional approach to fair allocation, mapping the MCST-model

to a cooperative game where the cost of every coalition of agents S is the minimum cost of

connecting all members of S to the source node. With the model represented by a coopera-

tive game we can now apply solution concepts from cooperative game theory as justifiable

means of allocating the common cost. Specifically, Bird (1976) proves that all MCST-games

are balanced (i.e. have non-empty core) so it is possible to allocate the total cost such that

no coalition of agents will be charged more than the minimum cost of satisfying their con-

nection demands. Therefore, cost allocations in the core are stable in that no coalition of

agents would like to break out and build their own network. In contrast, cost allocations not

in the core are unstable because some coalitions of agents would like to break out and build

their own networks. For the MCST-model it is well-known that the core is non-empty and

that the Shapley value does not need to be in the core.

In the present paper, we study a recent generalization of the MCST-model, introduced in

Moulin (2009, 2014) and named the Minimum Cost Connection Network (MCCN) model

in Hougaard and Tvede (2015), where every agent wants to have an arbitrary pair of target

nodes connected directly or indirectly. This seemingly minor modification of the model

has radical consequences both for finding a cost minimizing network (which now becomes

an NP-hard problem)1 as well as for the ability to sustain the efficient network by suitable

pricing of network usage. We focus on the latter issue related to balancedness of the induced

cooperative game: by the Bondareva–Shapley theorem, a cooperative game has non-empty

core if and only if it is balanced (see e.g. Peleg and Sudhölter, 2007).

Since the set of agents can no longer be identified by the set of nodes, the MCCN-model

has to specify a set of agents as well as a set of nodes (or locations). In some cases each node

will be a target node of some agent, while in other cases the model may include nodes that

are not among the target nodes of any agent. These nodes, that are not target nodes of any

agent, are called undemanded (or Steiner nodes). The so-called Minimum Cost Steiner Tree

1See e.g. Karp (1972) showing that the special case of a minimum cost Steiner tree problem is NP-hard.
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model is another generalization of the MCST-model where nodes that are neither locations

of agents nor target nodes are added to the MCST model. These additional nodes can be seen

as potential “hubs” that agents can use to obtain connection to the source node. Since the

examples in Meggido (1978) and Tamir (1991), it has been well-known that the cost game

induced by the Minimum Cost Steiner Tree model can have empty core with as few as three

Steiner nodes.2 Since the Minimum Cost Steiner Tree model is a special case of the MCCN-

model, we can immediately infer that if there are undemanded nodes in the MCCN-model,

then the MCCN-induced cost game can have empty core. In other words, the presence of

undemanded nodes can be a source of instability in efficient network design.

We therefore ask whether the MCCN induced cost game has non-empty core on the

restricted domain of problems where all nodes are demanded so every node is a target node

of some agent. By a simple three-agent example we demonstrate that even if all nodes are

demanded we can still end up in a situation where the MCCN-induced cost game has empty

core in contrast to the MCST model where the core is non-empty provided there are no

undemanded nodes. In particular, the example points to an additional source of instability in

efficient network design: if the demand graph, consisting of the direct connections between

all pairs of demanded nodes, has at least three components, then the core of the induced cost

game can be empty.

We aim to investigate under what conditions on the demand graph we can guarantee non-

empty core of the induced cost game on the restricted domain of MCCN-problems where

all locations are demanded. The first result (Theorem 1) shows that if the efficient network

and the demand graph consists of the same components, then the induced cost game has

non-empty core. In this sense disjoint demands are not a problem in itself provided the

structure of the efficient network is disjoint as well, stability of the efficient network can

still be ensured. Intuitively, if the demand graph is disjoint, then the efficient network is

disjoint as well provided it is costly to connect different components of agents.

Our second result (Theorem 2) shows that if the demand graph consists of at most two

components, then the core is non-empty enabling stability of efficient network design. The

result allows us to infer the core is non-empty in many economically relevant models. For

instance, it generalizes the seminal result of Bird (1976) for the MCST-model where the

demand graph is a star with the source as center, and allows us to conclude that in multi-

source spanning tree problems, core stability is ensured when every source is demanded by

at least one agent and the demand graph has at most two components, see e.g. Rosenthal

(1987), Bergantiños and Navarro-Ramos (2019). Moreover, communication games where

all pairs of nodes can be interpreted as an agent, so the demand graph coincides with the

2A full characterization of the Minimum Cost Steiner Tree models for which the core of the induced cost

game is non-empty does not exist.
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complete graph, will also be stable, see e.g. Moretti (2018), Skorin-Kapov (2018).

While finding an MCCN may be computationally complex, we emphasize that deter-

mining the number of components of the demand graph is simple and can be done using a

simple fast algorithm. Thus, the conditions in our theorems are easy to check even for large

problems.

Our results relate to several strands of literature. Issues of fair division among users

sharing a common network resource have attracted much attention over the past couple

of decades: see e.g. Moulin (2014, 2019) and Hougaard (2018) for recent surveys. The

standard approach to fair division has been to formulate an associated cooperative game

(see e.g., Peleg and Sudhölter, 2007) and use solution concepts from game theory such as

the core and the Shapley value to guide allocation of costs and revenues.

Since the seminal papers by Claus and Kleitman (1973) and Bird (1976), the minimum

cost spanning tree model and its many variations have been particularly popular topics

in cost and revenue sharing in networks (see e.g. Granot and Huberman, 1981, Tijs et

al., 2006, Bergantiños and Vidal-Puga, 2007, Bergantiños and Martinez, 2014, Bogomol-

naia and Moulin, 2010, Bogomolnaia et al., 2010, Hougaard et al. 2010, Trudeau, 2012,

2013). Implementation of minimum cost spanning trees has been studied in Bergantiños

and Lorenzo (2004, 2005), Bergantiños and Vidal-Puga (2010), and Hougaard and Tvede

(2012).

The more general MCCN-model is originally introduced in Moulin (2009, 2014), in-

spired by non-cooperative cost sharing network games analyzed in the computer science lit-

erature, e.g., Anshelevich et al. (2008) and Chen et al. (2010). In particular, Moulin (2009,

2014) analyze two types of cost sharing rules satisfying core stability and routing-proofness

(a user cannot lower its cost share by reporting as multiple aliases along an alternative path

connection her target nodes) where the induced MCCN-games are balanced. Juarez and

Kumar (2013) consider Nash implementation in a game where users choose paths connect-

ing their target nodes. Using a particular game form, Hougaard and Tvede (2015) show

that the options for implementing MCCNs are much more limited than in the MCST-model.

Ensuring a cost minimizing network by truthful reporting now implies compromising with

individual rationality. Hougaard and Tvede (2019) introduce users with limited willing-

ness to pay for connectivity and show that welfare maximizing networks with individually

rational cost allocation are both Nash and strong Nash implementable.

Finally, we note that the MCCN-model is relevant for many economic and engineering

applications including various cost sharing issues related to the Internet and e-commerce

(e.g. Jain and Mahdian, 2007), such as Multicasting and client-server networks, where

clients may want multiple connections to different servers (e.g. Feigenbaum et al. 2001,

Archer et al. 2004); and pricing network traffic, where users request traffic flows between
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different pairs of network destinations, e.g. data centers (e.g. Anschelevich et al. 2008,

Moulin, 2009, Shi et al. 2018).

The rest of the paper is organized as follows: In section 2, we set up the model and pro-

vide an example demonstrating a case with empty core on the domain where all locations

are demanded. In section 3, we present our main results, Theorems 1 and 2, on the connec-

tion between the structure of the demand graph and balancedness of the induced cost game.

Section 4 closes with final remarks and a couple of conjectures regarding the domain with

undemanded (Steiner) locations.

2 Model

We first recall the MCCN-model (see e.g., Moulin, 2014, or Hougaard and Tvede, 2015).

Let M = {1, . . . ,m} be a finite set of agents and N a finite set of locations (nodes). The

set of connections (edges) between pairs of locations is N 2 = N ×N . A cost structure C

describes costs of connecting locations and is defined by a map c : N 2 →R+ with: c j j = 0

for every location j; and, c jk > 0 for every pair of locations ( j,k) with j 6= k. Connections

are undirected so ck j = c jk for every pair of locations ( j,k). Connection costs are constant

so the network is congestion free.

Every agent i ∈ M has a connection demand Di = (ai,bi) ∈ N ×N with ai 6= bi, where

(ai,bi) is a pair of locations that agent i wants to have connected directly or indirectly. A

demand structure is a collection of demands D = (Di)i∈M. Note that in the classic Minimum

Cost Spanning Tree (MCST) model all agents demand connection to the same location (the

source). Agents can therefore be identified by the set of nodes with the source as an addi-

tional (non-involved) ”agent”. The MCST model is therefore a special case of the MCCN

model. Given a demand structure D, define the demand graph GD = ∪i∈MDi.

A connection problem (M,D,C) consists of a set of agents, a demand structure, and a

cost structure.

Specifically, we focus on the domain of connection problems, Γ, where all locations are

demanded, i.e., ∪i∈MDi = N . Thus, for any problem in Γ, the number of locations is at

most 2m. If there are n locations and no two agents have the same demand, we can have at

most n(n−1)/2 agents. Problems in Γ, for which the demand graph GD has k components,

involves at most m+ k nodes.

A graph g on N is a set of connections g ⊂ N 2. For a cost structure C, and a graph g,

let v(C,g)≥ 0 be the total cost of the graph g

v(C,g) = ∑
jk∈g

c jk.
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For a given connection problem (M,D,C), a Connection Network (CN) is a graph g

meeting the connection demand of every agent i ∈ M: for every agent i ∈ M there is a path

p = {n1n2,n2n3, . . . ,nℓ−1nℓ} with n1 = ai, nℓ = bi and n j 6= nk for every pair of locations

( j,k) with j 6= k, such that p ⊆ g. Denote by C N the set of CNs.

A Minimal Cost Connection Network (MCCN) is a CN that minimizes cost: that is, g is

MCCN if

g ∈ {arg min
g∈C N

v(C,g)}.

The set of MCCNs is non-empty and finite because the set of CNs is non-empty and finite.

Clearly, every MCCN is either a tree of a forest (a graph where every component is a tree).

A connection problem (M,D,C) induces a cooperative (cost) game (M,c) where, for ev-

ery coalition of agents S ⊆ M, c(S) = v(C|S,g
S): with gS being an MCCN of the S-projected

connection problem (S,D|S,C|S), i.e., the problem where only connections (and their cost)

between locations demanded by agents in S are considered.

By construction, the game (M,c) is subadditive (i.e. for every S,T ⊆M such that S∩T =

/0, c(S)+ c(T )≥ c(S∪T )).

The core of the game (M,c) is given by the set of allocations,

core(M,c) = {x ∈ R
M| ∑

i∈M

xi = c(M),∑
i∈S

xi ≤ c(S), for all S ⊂ M}. (1)

Given the set of agents M, a collection B = {S1, . . . ,Sk} of non-empty subsets of M is

called balanced if there exists positive numbers δ1, . . . ,δk such that ∑ j:i∈S j
δ j = 1, for all

i ∈ M. By the Bondareva–Shapley theorem, core(M,c) 6= /0 if and only if for each balanced

collection and each system of weights δ , that

∑
S⊆B

δSc(S)≥ c(M). (2)

Games satisfying (2) are called balanced.

A game (M,c) is said to be concave if, for every S,T ⊆ M,

c(S∪T )+ c(S∩T )≤ c(S)+ c(T ). (3)

A game is concave if and only if, for each i ∈ M, i’s marginal cost mi(S) = c(S∪{i})−c(S)

is non-increasing in S. Concave games are balanced.

By examples in Meggido (1978) and Tamir (1991) it is known that the core may be empty

for MCCM problems with undemanded locations (Steiner nodes in these examples). The

following example shows that the core may even be empty for games induced by connection

problems where all locations are demanded (i.e. for problems in our domain Γ).
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Example 1: Consider six locations N = {a,b,c,d,e, f} and three agents M = {A,B,C}

with connection demands (a,b),(c,d), and (e, f ), respectively: so all locations are de-

manded with the demand graph GD consisting of three components. Connection costs are

given as follows: ca f = cb f = cae = cde = cd f = cce = cbc = cac = cbd = 1, and ci j = 10

otherwise. In the graph below only the (relevant) edges with cost equal to 1 are illustrated.
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The induced cost game (M,c) has empty core since c(AB) = c(AC) = c(BC) = 3 and

c(ABC) = 5 (so all agents must pay at least 2, but the total cost is only 5). As Theorem 2 will

show, this example is minimal (on Γ) in the sense that we need at least three components of

the demand graph (and thereby at least three agents) in order to produce an example of an

induced cost game with empty core. ✷

3 Core Stability

In this section we identify classes of connection problems for which the induced cost games

are balanced (always have non-empty core). As indicated by Example 1, the shape of the

demand graph GD plays a key role.

Indeed, in the special case of the MCST-model, Bird (1976) demonstrated that the in-

duced cost games are balanced. For MCST-problems the demand graph is star-shaped with
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all nodes demanding connection to the same source node. Our first result, Theorem 1 be-

low, generalizes Bird’s result to hold for arbitrarily connected demand graphs, and not just

star-shaped demand graphs. In fact, Theorem 1 goes much further than that, and states that

whenever there exists an MCCN g with the same number of components as the demand

graph, the induced cost game is balanced. So even though disjoint demand graphs may re-

sult in empty cores (as shown by Example 1 above), then as long as the efficient network

is disjoint too (separated into the same number of components), then no matter how many

components, core stability is still ensured.

The following Lemma constitutes the first step towards a proof.

Lemma 1 For (M,C,D)∈ Γ suppose GD consists of one component and (M,c) is balanced.

For every (M′,C,D′) ∈ Γ, where M ⊂ M′ and Di = D′
i for every i ∈ M, (M′,c) is balanced.

Proof: Since GD consists of one component, if g is a MCCN for (M,C,D), then g is a tree

and g is a MCCN for all (M′,C,D′) where M ⊂ M′ and Di = D′
i for every i ∈ M. Moreover,

for every S′ ⊂ M′, c(S′) ≥ c(S′ ∩ M). Hence, balancedness of (M′,C,D′) follows from

balancedness of (M,C,D). ✷

With Lemma 1 we are ready to present and prove our first main result.

Theorem 1 Let (M,C,D) ∈ Γ. Suppose there is a MCCN g for which the number of com-

ponents is equal to the number of components in GD then (M,c) is balanced.

Proof: Consider first (M,D,C) ∈ Γ with MCCN g having as many components as GD and

where every component of g is a spanning tree. The components of GD and g must be

the same since no MCCN g can “cut” a component of GD. Indeed, otherwise there would

be some agent i for which ai belongs to one component of g and bi belongs to another

component of g, so the demand of agent i would not be satisfied. Denote by {K1, . . . ,Kl} the

partition of M given by the components of g and denote by g j the cost minimizing spanning

tree of the j’th component. Thus, |M| = m = ∑
l
j=1 |K j|. We first consider the case where,

for every component j, there are |K j| links in g j, involving |K j|+1 nodes.

For every component and arbitrary coalition T ⊆ K j, let κT be the minimum cost of

satisfying the demands of agents K j \ T using links from the efficient graph g j added to

the demand subgraph of T , GD
T = ∪i∈T Di (this is well defined since g j is a spanning tree).

In other words, κT equals c(K j) minus the sum of the |T | most expensive links in g j that

can be replaced by GD
T subject to the new graph remaining a spanning tree. In particular,

κ /0 = c(K j) and κK j = 0.
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For arbitrary coalitions S ⊆ M consider the game defined by

c̄(S) = c(M)−∑
K j

κ
S∩K j . (4)

Clearly, c(M) = c̄(M). We claim that c(S)≥ c̄(S) for every S ⊂ M. Indeed, suppose c(S)<

c̄(S). Thus c(S)< c(M)−∑K j
κS∩K j ⇔ c(S)+∑K j

κS∩K j < c(M), which by definition of

κ contradicts that g is MCCN.

We claim that the game (M, c̄) is concave. Indeed, the marginal cost is given by m̄i(S) =

c̄(S∪{i})− c̄(S) = ∑K j
κS∩K j −∑K j

κ(S∪{i})∩K j .

Suppose i ∈ K j and K j ∩S = /0. Then

m̄i(S) = c(K j)−κ
i = max{clz | lz ∈ g j and g j − lz+aibi is a spanning tree}

by definition of κ . First, for every T with S ⊂ T and T ∩K j = /0, m̄i(T ) = m̄i(S). Second for

every T with S ⊂ T and T ∩K j 6= /0,

m̄i(S) = max{clz | lz ∈ g j and g j − lz+aibi is a spanning tree}

≥ max{clz | lz ∈ gK j∩T and gK j∩T − lz+aibi is a spanning tree} = m̄i(T ).

Suppose i ∈ K j and K j ∩ S 6= /0. Then m̄i(S) = κS∩K j −κ(S∪{i})∩K j which by definition

of κ is weakly decreasing in the size of S. Indeed, let gK j∩S denote a spanning tree obtained

from g j by replacing |S∩K j| links in g j with the demand graph of S∩K j such that the total

cost of the links removed is maximized. Then

m̄i(S) = max{clz | lz ∈ gK j∩S and gK j∩S − lz+aibi is a spanning tree},

which is weakly decreasing in the size of S.

To conclude, (M, c̄) is concave and thus satisfies (2). Consequently, since c(M) =

c̄(M) ≤ ∑S⊆B δSc̄(S) ≤ ∑S⊆B δSc(S), (M,c) is balanced. By Lemma 1, this extends to

problems where components of GD span less than |Ki|+1 nodes. ✷

In our model agents accept any MCCN, but in some practical cases there may be lim-

itations on the shape of the efficient network, for instance, due to various types of privacy

concerns. In the extreme case where no agent has confidence in other nodes than the two tar-

get nodes they demand, the demand graph coincides with the only eligible MCCN inducing

an additive cost game and additive games are balanced (see e.g. Peleg and Sudhölter, 2007).

Theorem 1, can be viewed along these lines: if, for instance, privacy concerns result in a

clustering of eligible nodes demanded by subsets of agents, this can actually help creating

core stability by making sure that eligible MCCNs are partitioned in the same components

as the agents with mutually admissible target nodes.
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Example 2: Recall the situation in Example 1 above. Here GD = {ab}∪{cd}∪{e f} con-

sists of three components while MCCNs g are spanning trees (e.g. g = {a f ,b f ,bc,ce,de}

consisting of one component). Now, to illustrate the content of Theorem 1 we can modify

connection costs such that the MCCN coincides with the demand graph. For instance, this

will be the case if cab = ccd = ce f = 1.5 (notice that the sum of any two connections ab, cd,

and e f cannot exceed 3, which is the minimum cost of connecting any two-agent coalition).

With the new costs for direct connections ab, cd, and e f , it is easy to see that g = GD is

MCCN and the corresponding cost game (M,c) is additive and thereby balanced. ✷

Our second result shows that if the agents’ demands are relatively clustered, in the sense

that the demand graph has at most two components, then core stability is also ensured. This

generalizes earlier findings on balancedness of induced games for specific instances of the

MCCN-model where the demand graph consists of one component: for instance, MCST-

games (Bird, 1976) as mentioned above, connection games (e.g., Moretti, 2018, Skorin-

Kapov, 2018) when the demand graph is connected as when it coincides with the complete

graph, multi-source spanning tree games (e.g. Rosenthal, 1987) when all sources are de-

manded by some agent, etc.

Theorem 2 Let (M,C,D) ∈ Γ. If GD has at most two components, then (M,c) is balanced.

Proof: By Theorem 1 we know that if GD has one component, then (M,c) is balanced.

Suppose GD has two components and m+2 nodes so GD is a forest and every agent demand

contains a node that is not demanded by any other agent. According to Theorem 1, if a

MCCN g has two components, then (M,c) is balanced. Therefore, we can restrict attention

to the case where g has one component, so g is a spanning tree connecting all m+2 nodes.

Consider an arbitrary MCCN g spanning all m+ 2 nodes. For every coalition S ⊆ M

suppose gS is a minimum cost graph among the graphs satisfying all demands and consisting

of GD
S and a selection of links from g−GD

S . Let κS be the cost of the selected links in g−GD
S ,

κS = ∑lz∈{gS−GD
S }

clz, then κ /0 = c(M) and κM = 0. In other words, κS equals c(M) minus

the sum of the |S| most expensive links in g that can be replaced by GD
S while ensuring that

the resulting graph remains a connection network.

Define the game (M, c̄) by

c̄(S) = c(M)−κ
S

for every S ⊆ M. To see that c(S) ≥ c̄(S) for every S ⊆ M with c(M) = c̄(M) suppose

c(S)< c̄(S) = c(M)−κS for some S ⊆ M. Then c(S)+κS < c(M) contradicting that g is a

MCCN.
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To see that the game (M, c̄) is concave let m̄i(S) = c̄(S∪{i})− c̄(S) = κS−κS∪{i}. Since

there are two components in the demand graph and the MCCN g is a spanning tree,

m̄i( /0) = max{clz | lz ∈ g and g− lz+aibi is a spanning tree}

so by construction of κ , the the link aibi can replace exactly one link, lz ∈ g while making

sure all demands remain satisfied; mi( /0) is equal to the most costly link with this property.

Note that if aibi ∈ g then mi( /0) = caibi
as the link aibi “replaces” itself. Moreover,

m̄i(S) = max{clz | lz ∈ gS and gS − lz+aibi is a spanning tree}.

Therefore, the marginal cost of agent i is non-increasing for T such that S ⊂ T . To conclude,

(M, c̄) is concave so (M,c) is balanced. By Lemma 1, this extends to problems where

components of GD span less than |Ki|+1 nodes. ✷

The proof technique used in Theorem 2 is basically similar to that used in the proof of

Theorem 1. Yet, there is one important difference: the proof of Theorem 1 uses explicitly the

context where the MCCN g has as many components as the demand graph GD. In Theorem

2, the demand graph has only two components while the MCCN g spans the entire set of

locations. This is an important difference since if there are three or more components in GD,

the marginal cost m̄i is no longer non-increasing: adding the demanded link aibi of agent

i may enable deletion of more than one link whilst keeping the resulting graph a spanning

tree. Therefore, the game may not be concave as illustrated by Example 1.

Example 3: In order to illustrate the content of Theorem 2, we can modify the situation

from Example 1 as follows. Consider only five locations N ′ = {a,b,c,d,e} with demands

dA = (a,b), dB = (c,d) and dC = (d,e) (so all locations are demanded). Thus, the demand

graph consists of two components GD = {a,b}∪{cd,de} and not three components as in

Example 1. As in the original problem, let demanded direct connections cost 10 (cab = ccd =

cde = 10) and all other connections cost 1. One MCCN is g = {ae,ad,bd,bc} with a total

cost of 4. The induced cost game is therefore given by stand-alone costs c({i}) = 10 for all

i, and total cost c(ABC) = 4. For two-agent coalitions c(AB) = c(AC) = 3 and c(BC) = 11,

so clearly the core is non-empty (containing e.g. the equal split). Now, to reduce the core

we can lower direct costs. However, making sure that g = {ae,ad,bd,bc} remains MCCN

we must have c(AB)≥ 3, c(AC)≥ 3 and c(BC)≥ 2. Thus, even in the “worst” case the core

will be non-empty since c(AB)+ c(AC)+ c(BC) ≥ 2c(ABC) (the other conditions (2) are

satisfied by c being sub-additive by construction). ✷

11



4 Final Remarks

So far we have focused on the domain Γ of MCCN-problems for which all locations are

demanded. We close with a few remarks on the presence of undemanded nodes (i.e. Steiner

nodes) in the MCCN-model.

As mentioned in the introduction, examples in Megiddo (1978) and Tamir (1991) imply

that games with empty core can occur in minimum cost Steiner tree problems (where the

demand graph is star-shaped) with at least three agents by including three (or more) Steiner

nodes. We can therefore directly infer that this holds by including at least three undemanded

nodes in the MCCN-model as well. In Tamir’s example, it is straightforward to observe

that omitting one Steiner node is enough to retain balancedness of the resulting cost game.

Tamir’s example is minimal in that sense. More generally, we here conjecture that for any

connected demand graph, the induced MCCN game is balanced if at most two undemanded

nodes are introduced to the problem.

In particular, if we consider connected demand graphs with the shape of a connected

chain (i.e., agents’ demands form a path with bi = ai+1 for i = 1, . . . ,m− 1) we conjecture

that the induced MCCN game is balanced even when allowing for the presence of any num-

ber of undemanded nodes. Loosely speaking, the chain structure limits how much individ-

ual coalitions can save by using undemanded locations compared to the savings of the grand

coalition, which thereby seems to ensure compliance with the balancedness conditions.
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