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Abstract
Let k be an algebraically closed field of characteristic p > 0 and let G be a symplectic or
general linear group over k. We consider induced modules for G under the assumption that
p is bigger than the greatest hook length in the partitions involved. We give explicit con-
structions of left resolutions of induced modules by tilting modules. Furthermore, we give
injective resolutions for induced modules in certain truncated categories. We show that the
multiplicities of the indecomposable tilting and injective modules in these resolutions are
the coefficients of certain Kazhdan-Lusztig polynomials. We also show that our truncated
categories have a Kazhdan-Lusztig theory in the sense of Cline, Parshall and Scott. This
builds further on work of Cox-De Visscher and Brundan-Stroppel.

Keywords General linear group · Symplectic group · Induced modules · Tilting modules ·
Kazhdan-Lusztig polynomials

Mathematics Subject Classification (2010) 20G05

1 Introduction

In this paper we study modules for the general linear group GLn and for the symplectic
group Spn. This is a continuation of [9] (GLn) and [7] (Spn) where we described good
filtration multiplicities in indecomposable tilting modules and decomposition numbers in
terms of certain cap or cap-curl diagrams and codiagrams. In the present paper we want to
use the same combinatorics to define certain Kazhdan-Lusztig polynomials which we then
use to give explicit constructions of left resolutions of induced modules by tilting modules
and of injective resolutions for induced modules in certain truncated categories. This is
based on work of Cox-De Visscher [4] and Brundan-Stroppel [2]. Throughout we assume
that p is bigger than the greatest hook length in the partitions involved.
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The paper is organised as follows. In Section 2.1 we describe the necessary background
from the theory of reductive groups and their representations and recall some notation and
an important result from [9] and [7] about a quasihereditary algebra for the partial order
�. In Section 2.2 we recall the notions of arrow diagrams and cap and cap-curl diagrams
from [9] and [7]. Then we discuss some combinatorial tools to characterise the partial order
� in terms of arrow diagrams, and finally we discuss cap and cap-curl diagrams associ-
ated to two weights and the codiagram versions. In Section 2.3 we recall the definition
of certain translation functors and, in the case of Spn, refined translation functors, and we
state two important results from [9] and [7]: Proposition 1 on “translation equivalence” and
Proposition 2 on “translation projection”.

In Section 3 we introduce the Kazhdan-Lusztig polynomials dλμ and pλμ which are
characteristic p analogues of the equally named polynomials in [2] and [4]. We state and
prove certain elementary properties of these polynomials. We do the same for the poly-
nomials eλμ and rλμ. The main properties are the recursive relations in Lemma 1 and
Proposition 3. Our polynomials are not compatible with the parabolic setup (Wp,W)

from Lusztig’s conjecture, but with (Wp(As1+s2−1),W(As1−1) × W(As2−1)) for GLn and
(Wp(Ds),W(As−1)) for Spn. Our combinatorics of arrow diagrams only describes a finite
set of coset representatives corresponding to our set �p .1 In Remark 3.3 we show that our
polynomials are products of two, combinatorially defined, “ordinary” parabolic Kazhdan-
Lusztig polynomials as in [1, 4] and, in the GLn-case, [2]. The parabolic type of the
latter is (W(As1+s2−1),W(As1−1) × W(As2−1)) for GLn and (W(Ds),W(As−1)) for Spn.
Note that Boe [1] has shown that the KL-polynomials of type (W(Ds),W(As−1)) coincide
with the KL-polynomials of type (W(Cs),W(As−1)). To write our polynomials as a prod-
uct of “ordinary” KL-polynomials we need to split the arrow diagram into two parts: the
associated pair of (∧,∨)-sequences, see Section 2.2. This “splitting” depends on p.

In Section 4 we show that the coefficients of the polynomials pλμ are the multiplicities of
indecomposable tilting modules in certain finite left tilting resolutions of induced modules,
see Theorem 1. Furthermore, we show that the coefficients of the polynomials rλμ are the
multiplicities of indecomposable injective modules in certain finite injective resolutions of
induced modules in certain truncated categories, see Theorem 2. These are analogues of
results in [2] and [4]. We also show that the categories C� that we consider have a Kazhdan-
Lusztig theory in the sense of Cline, Parshall and Scott [3]. This means that the dimensions
of the ExtiG(L(λ), L(μ)) can be espressed in terms of our polynomials rλμ.

In Section 5 we show that when we fix the residue of n mod p, we can derive a stability
result for arrow diagrams when p � 0. This shows in particular that our results [9, Cor to
Thm 6.1 and Prop 8.3] and [7, Cor to Thm 6.1] on the decomposition numbers of the walled
and ordinary Brauer algebra in characteristic p coincide for p � 0 with the description of
the decomposition numbers of the walled and ordinary Brauer algebra in characteristic 0
from Cox and de Visscher [4, Thm 4.10 and 5.8].

2 Preliminaries

2.1 Reductive Groups

First we recall some general notation from [7] and [9]. Throughout this paper G is a reduc-
tive group over an algebraically closed field k of characteristic p > 0, T is a maximal torus

1Note that Lusztig’s conjecture also concerns a finite set of coset representatives corresponding to the Jantzen
region.
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of G and B+ is a Borel subgroup of G containing T . We denote the group of weights rel-
ative to T , i.e. the group of characters of T , by X. For λ, μ ∈ X we write μ ≤ λ if λ − μ

is a sum of positive roots (relative to B+). The Weyl group of G relative to T is denoted
by W and the set of dominant weights relative to B+ is denoted by X+. In the category of
(rational) G-modules, i.e. k[G]-comodules, there are several special families of modules.
For λ ∈ X+ we have the irreducible L(λ) of highest weight λ, and the induced module
∇(λ) = indG

B kλ, where B is the opposite Borel subgroup to B+ and kλ is the 1-dimensional
B-module afforded by λ. The Weyl module and indecomposable tilting module associated
to λ are denoted by �(λ) and T (λ). To each G-module M we can associate its formal
character chM = ∑

λ∈X dimMλe(λ) ∈ (ZX)W , where Mλ is the weight space associated
to λ and e(λ) is the basis element corresponding to λ of the group algebra ZX of X over
Z. Composition and good or Weyl filtration multiplicities are denoted by [M : L(λ)] and
(M : ∇(λ)) or (M : �(λ)). For a weight λ, the character χ(λ) is given by Weyl’s character
formula [6, II.5.10]. If λ is dominant, then ch∇(λ) = ch�(λ) = χ(λ). The χ(λ), λ ∈ X+,
form a Z-basis of (ZX)W . For α a root and l ∈ Z, let sα,l be the affine reflection of R⊗Z X

defined by sα,l(x) = x − aα, where a = 〈x, α∨〉 − lp. Mostly we replace 〈−, −〉 by a
W -invariant inner product and then the cocharacter group of T is identified with a lattice in
R⊗ZX and α∨ = 2

〈α,α〉α. We have s−α,l = sα,−l and the affine Weyl group Wp is generated
by the sα,l . Choose ρ ∈ Q⊗Z X with 〈ρ, α∨〉 = 1 for all α simple and define the dot action
of Wp on R⊗Z X by w ·x = w(λ+ρ)−ρ. The lattice X is stable under the dot action. The
linkage principle [6, II.6.17,7.2] says that if L(λ) and L(μ) belong to the same G-block,
then λ and μ are Wp-conjugate under the dot action. We refer to [6] part II for more details.

Unless stated otherwise, G will be the general linear group GLn or the symplectic group

Spn, n = 2m, given by Spn = {A ∈ GLn | AT JA = J }, where J =
[

0 Im

−Im 0

]

and

AT is the transpose of A. The natural G-module kn is denoted by V . Partitions with parts
< 10 may be written in “exponential form”: (5, 5, 4, 3, 2) is denoted by (52432), where we
sometimes omit the brackets.

First assume G = GLn. We let T be the group of diagonal matrices in GLn. Then X

is naturally identified with Z
n such that the i-th diagonal coordinate function corresponds

to the i-th standard basis element εi of Zn. We let B+ be the Borel subgroup of invertible
upper triangular matrices corresponding to the set of positive roots εi − εj , 1 ≤ i < j ≤ n.
Then a weight in Zn is dominant if and only if it is weakly decreasing. Such a weight λ can
uniquely be written as

[λ1, λ2] def= (λ11, λ
1
2, . . . , 0, . . . , 0, . . . , −λ22,−λ21)

where λ1 = (λ11, λ
1
2, . . .) and λ2 = (λ21, λ

2
2, . . .) are partitions with l(λ1) + l(λ2) ≤ n. Here

l(ξ) denotes the length of a partition ξ . So X+ can be identified with pairs of partitions
(λ1, λ2) with l(λ1) + l(λ2) ≤ n. We will also identify partitions with the corresponding
Young diagrams. For s1, s2 ∈ {1, . . . , n} with s1 + s2 ≤ n we denote the subgroup of
Wp generated by the sα,l , α = εi − εj , i, j ∈ {1, . . . , s1, n − s2 + 1, . . . , n} by W

s1,s2
p .

This is the affine Weyl group of a root system of type As1+s2−1. The group W acts on
Z

n by permutations, and Wp
∼= W � pX0, where X0 = {λ ∈ Z

n | |λ| = 0} is the type
An−1 root lattice and |λ| = ∑n

i=1 λi . Note that W
s1,s2
p

∼= Ws1,s2 � pX
s1,s2
0 , where X

s1,s2
0

consists of the vectors in X0 which are 0 at the positions in {s1 + 1, . . . , n − s2}, and
Ws1,s2 = Sym({1, . . . , s1, n − s2 + 1, . . . , n}). We will work with

ρ = (n, n − 1, . . . , 1) .
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It is easy to see that if λ,μ ∈ X are Wp-conjugate and equal at the positions in {s1 +
1, . . . , n − s2}, then they are W

s1,s2
p -conjugate. The same applies for the dot action.

Now assume G = Spn. We let T be the group of diagonal matrices in Spn, i.e. the
matrices diag(d1, . . . , dn) with didi+m = 1 for all i ∈ {1, . . . , m}. Now X is naturally
identified with Z

m such that the i-th diagonal coordinate function corresponds to the i-th
standard basis element εi of Zm. We let B+ be the Borel subgroup corresponding to the set
of positive roots εi ±εj , 1 ≤ i < j ≤ m, 2εi , 1 ≤ i ≤ m. We can now identify the dominant
weights withm-tuples (λ1, . . . , λm)with λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0, or with partitions λwith
l(λ) ≤ m. We denote the subgroup of Wp generated by the sα,l , α = εi ± εj , 1 ≤ i < j ≤ s

or α = 2εi , 1 ≤ i ≤ s by Wp(Cs) and we denote the subgroup of Wp generated by the
sα,l , α = εi ± εj , 1 ≤ i < j ≤ s by Wp(Ds). The group W acts on Z

m by permutations
and sign changes, and Wp

∼= W � pXev , where Xev = {λ ∈ Z
m | |λ| even} is the type Cm

root lattice. Note that Wp(Cs) ∼= W(Cs) � pXev(Cs) and Wp(Ds) ∼= W(Ds) � pXev(Cs),
where Xev(Cs) consists of the vectors in Xev which are 0 at the positions > s, W(Cs) is
generated by the sα = sα,0, α = εi ± εj , 1 ≤ i < j ≤ s or α = 2εi , 1 ≤ i ≤ s, and W(Ds)

is generated by the sα , α = εi ± εj , 1 ≤ i < j ≤ s. The group W(Ds) acts by permutations
and an even number of sign changes. We have

ρ = (m,m − 1, . . . , 1) .

It is easy to see that if λ, μ ∈ X are Wp-conjugate and equal at the positions > s, then they
are Wp(Cs)-conjugate. The same applies for the dot action.

In Section 3 of [7] and [9] the Jantzen sum formula is studied under certain assumptions
and this leads to a reduced Jantzen sum formula. From this a partial order � on X+ is
deduced which is the reflexive, transitive closure of the order “χ(w · μ) occurs for some
w ∈ W in the RHS of the reduced Jantzen sum formula associated to λ”. We now give some
precise definitions. First assume G = GLn. Then we define

Definition 1 μ � λ if and only if there is a sequence of dominant weights λ =
χ1, . . . , χt = μ, t ≥ 1, such that for all r ∈ {1, . . . , t − 1}, χr+1 = wsα,l · χr for some

w ∈ Wl(χ1
r ),l(χ2

r ), α = εi − εj , 1 ≤ i ≤ l(χ1
r ), n − l(χ2

r ) < j ≤ n, and l ≥ 1 with
〈χr + ρ, α∨〉 − lp ≥ 1, and χ(sα,l · χr) �= 0.

We put

�p = {λ ∈ X+ | λh
1 + l(λh) ≤ p for all h ∈ {1, 2}}

We will assume s = (s1, s2) where s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n and we put

�(s) = �(s1, s2) = {λ ∈ X+ | l(λh) ≤ sh ≤ p − λh
1 for all h ∈ {1, 2}}

and H = Wp.
Next assume G = Spn, n = 2m. Then we define

Definition 2 μ � λ if and only if there is a sequence of dominant weights λ =
χ1, . . . , χt = μ, t ≥ 1, such that for all r ∈ {1, . . . , t − 1}, χr+1 = wsα,l · χr for
some w ∈ Sym({1, . . . , l(χr )}), α = εi + εj , 1 ≤ i < j ≤ l(χr ), and l ≥ 1 with
〈χr + ρ, α∨〉 − lp ≥ 1, and all entries of sα,l(χr + ρ) distinct and strictly positive.

We put

�p = {λ ∈ X+ | λ1 + l(λ) ≤ p}
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Now we will assume s ∈ {1, . . . ,min(m, p)} and we put
�(s) = {λ ∈ X+ | l(λ) ≤ s ≤ p − λ1}

and H = Wp(Ds).
We return to the general case G = GLn or G = Spn. For a subset � of X+ and a G-

module M we say that M belongs to � if all composition factors have highest weight in �

and we denote by O�(M) the largest submodule of M which belongs to �. We denote the
category ofG-modules which belong to� by C�. The category C� is the module category of
the algebra O�(k[G])∗, see [6, Ch A] for the relevant definitions and explanation. Let � ⊆
�(s) be �-saturated. It was shown in Prop 3.1(ii) in [9] and [7] that the algebra O�(k[G])∗
is quasihereditary for the partial order � such that the irreducible, standard/costandard and
tilting modules are the irreducible, Weyl/induced and tilting modules for G with the same
label.

2.2 Arrow Diagrams, and Cap(-curl) Diagrams and Codiagrams

Arrow and Cap(-curl) Diagrams We now recall the definition of the arrow and cap(-curl)
diagram from [7, Sect 5] and [9, Sect 5] which is based on [4] and [8]. Recall the definitions
of �, �(s) and H from Section 2.1. First we assume G = GLn. An arrow diagram has p

nodes on a (horizontal) linewith p labels: 0, . . . , p−1. The i-th node from the left has label
i − 1. Although 0 and p − 1 are not connected we consider them as neighbours and we will
identify a diagram with any of its cyclic shifts. So when we are going to the left through the
nodes we get p − 1 after 0 and when we are going to the right we get 0 after p − 1. Next we
choose s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n and put a wall below the line between
ρs1 and ρs1 − 1 mod p, and a wall above the line between ρs′

2
= s2 and s2 + 1 mod p. Then

we can also put in a top and bottom value for each label. A value and its corresponding label
are always equal mod p. Below the line we start with ρs1 immediately to the right of the
wall, and then increasing in steps of 1 going to the right: ρs1 , ρs1 +1, . . . , ρs1 +p−1. Above
the line we start with ρs′

2
= s2 immediately to the left of the wall, and then decreasing in

steps of 1 going to the left: s2, s2 − 1, . . . , s2 −p + 1. For example, when p = 5, n = 5 and
s1 = s2 = 1, then ρs1 = s′

1 = 5, ρs′
2

= s2 = 1 and we have labels

•
0

•
1

•
2

•
3

•
4

and values

•
0

5

•
1

6

•
−3

7

•
−2

8

•
−1

9

.

For λ = [λ1, λ2] ∈ �(s) = �(s1, s2) we now form the ((s1, s2)-)arrow diagram by putting
s1 arrows below the line (∧) that point from the values (ρ + λ)1, . . . , (ρ + λ)s1 , i.e. ρ1 +
λ11, . . . , ρs1 + λ1s1 , or from the corresponding labels, and s2 arrows above the line (∨) that
point from the values (ρ+λ)1′ , . . . , (ρ+λ)s′

2
, i.e. 1−λ21, . . . , s2−λ2s2 , or to the corresponding

labels. So in the above example the arrow diagram of λ = [4, 4] is

•
0

•
1

•
2

∨ •
3

•
4
∧ .

In such a diagram we frequently omit the nodes and/or the labels. When it has already been
made clear what the labels are and where the walls are, we can simply represent the arrow
diagram by a string of single arrows (∧, ∨), opposite pairs of arrows (×) and symbols o to
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indicate the absence of an arrow. In the above example λ = [4, 4] is then represented by
oo∨o∧ and λ = [2, 4] is represented by oo×oo.

We can form the arrow diagram of λ as follows. First line up s1 arrows immediately to the
right of the wall below the line and then move them to the right to the correct positions. The
arrow furthest from the wall corresponds to λ11, and the arrow closest to the wall corresponds
to λ1s1 . Then line up s2 arrows immediately to the left of the wall above the line and then
move them to the left to the correct positions. The arrow furthest from the wall corresponds
to λ21, and the arrow closest to the wall corresponds to λ2s2 . The part of λ1 corresponding
to an arrow below the line equals the number of nodes without a ∧ from that arrow to the
wall going to the left and the part of λ2 corresponding to an arrow below the line equals the
number of nodes without a ∨ from that arrow to the wall going to the right.

When we speak of “arrow pairs”, also in the Spn-case below, it is understood that both
arrows are single, i.e. neither of the two arrows is part of an ×. The arrows need not be con-
secutive in the diagram. We now define the cap diagram cλ of the arrow diagram associated
to λ as follows. We assume that the arrow diagram is cyclically shifted such that at least one
of the walls is between the first and last node. We select one such wall and when we speak
of “the wall” it will be the other wall. All caps are anti-clockwise, starting from the right-
most node. We start on the left side of the wall. We form the caps recursively. Find an arrow
pair ∨∧ that are neighbours in the sense that the only arrows in between are already con-
nected with a cap or are part of an ×, and connect them with a cap. Repeat this until there
are no more such arrow pairs. Now the unconnected arrows that are not part of an × form
a sequence ∧ · · · ∧ ∨ · · · ∨. Note that none of these arrows occur inside a cap. The caps on
the right side of the wall are formed in the same way. For example, when p = 17, n = 20,
s1 = 8, s2 = 7 and λ = [965422, 824322], then cλ is

∧
13

∧ ∨
16

∧
0

∨ ∨ ∧ ∧∨ ∧ ∨ ∧ ∨ ∨ ∧
12

.

Note that the nodes with labels 5,9,15 have no arrow.
Now assume G = Spn. An arrow diagram has (p + 1)/2 nodes on a (horizontal) line

with p labels: 0 and ±i, i ∈ {1, . . . , (p − 1)/2}. The i-th node from the left has top label
−(i − 1) and a bottom label i − 1. So the first node is the only node whose top and bottom
label are the same. Next we choose s ∈ {1, . . . ,min(m, p)} and put a wall between ρs and
ρs − 1 mod p. So when ρs = (p + 1)/2 mod p we can put the wall above or below the
line, otherwise there is only one possibility. Then we can also put in the values, one for
each label. A value and its corresponding label are always equal mod p. We start with ρs

immediately after the wall in the anti-clockwise direction, and then increasing in steps of
1 going in the anti-clockwise direction around the line: ρs, ρs + 1, . . . , ρs + p − 1. For
example, when p = 5, m = 7 and s = 2, then ρs = 6 and we have labels

•
0

0

•
−1

1

•
−2

2

(usually we omit the top labels), and values

•
10

10

•
9

6

•
8

7

.
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For a partition λ ∈ �(s) we now form the (s-)arrow diagram by putting in s arrows (∨ or
∧) that point from the values (ρ + λ)1, . . . , (ρ + λ)s , or the corresponding labels. In case of
the label 0 we have two choices for the arrow. So in the above example the arrow diagram
of λ = (12) is

•
0

0

•
−1

1

•∨∧
−2

2

.

As in the GLn-case we can simply represent the arrow diagram by a string of single arrows
(∧, ∨), opposite pairs of arrows (×) and symbols o to indicate the absence of an arrow. In
the above example λ = (12) is then represented by oo× and λ = (32) is represented by
∨o∨ or ∧o∨.

We can form the arrow diagram of λ by first lining all s arrows up against the wall and
then moving them in the anticlockwise direction to the right positions. The arrow furthest
from the wall (in the anti-clockwise direction) corresponds to λ1, and the arrow closest to
the wall corresponds to λs . The part corresponding to an arrow equals the number of labels
without an arrow from that arrow to the wall in the clockwise direction.

We now define the cap-curl diagram cλ of the arrow diagram associated to λ as follows.
All caps and curls are anti-clockwise, starting from the arrow closest to the wall. We start
on the left side of the wall. We first form the caps recursively. Find an arrow pair ∨∧ that
are neighbours in the sense that the only arrows in between are already connected with a
cap or are part of an ×, and connect them with a cap. Repeat this until there are no more
such arrow pairs. Now the unconnected arrows that are not part of an × form a sequence
∧ · · · ∧ ∨ · · · ∨. We connect consecutive (in the mentioned sequence) ∧∧ pairs with a curl,
starting from the left. At the end the unconnected arrows that are not part of an × form a
sequence ∧ ∨ · · · ∨ or just a sequence of ∨’s. Note that none of these arrows occur inside
a cap or curl. The caps on the right side of the wall are formed in the same way. The curls
now connect consecutive ∨∨ pairs and are formed starting from the right. So at the end the
unconnected arrows that are not part of an × form a sequence ∧ · · · ∧ ∨ or just a sequence
of ∧’s. Again, none of these arrows occur inside a cap or curl. For example, when p = 23,
m = 17, s = 12 and λ = (11, 11, 11, 11, 11, 11, 10, 6, 4, 4, 1), then cλ is

∨ ∧ ∨∧ ∧ ∧ ∧ ∧ ∨ ∧ ∨ ∨ .

Note that the 10-th node which has labels ±9 and values 9 and 14, has no arrow.

(∧,∨)-sequences and Length Functions We now return to the general case G = GLn or
G = Spn. First we introduce some combinatorial tools to express the order � in terms of
arrow diagrams. This is based on the treatment in [2, Sect 5] and [4, Sect 8]. Let ξ, η be
sequences with values in {∧,∨}. We say that ξ and η are conjugate if they have the same
length and the same number of ∧’s mod 2. We say they are strongly conjugate if they have
the same length and the same number of ∧’s.

Definition 3 We write ξ � η if ξ can be obtained from η by repeatedly replacing an arrow
pair ∨∧ or an arrow pair ∧∧ by the opposite arrow pair.

Clearly, ξ � η implies that ξ and η are conjugate. If ξ and η are strongly conjugate and
ξ � η, then ξ can be obtained from η by repeatedly replacing an arrow pair ∨∧ by the
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opposite arrow pair. For η, ξ ∈ {∧,∨}r and i ∈ {1, . . . , r} we define
li (η) = |{j ∈ {i, . . . , r} | ηj = ∧}| and li (η, ξ) = li (η) − li (ξ) .

Note that li (η, ξ) equals

|{j ∈ {i, . . . , r} | ηj �= ξj and ηj = ∧}| − |{j ∈ {i, . . . , r} | ηj �= ξj and ξj = ∧}| .
Then we have

ξ � η ⇐⇒ ξ and η are conjugate and li (η, ξ) ≥ 0 for all i ∈ {2, . . . , r}.
Put l(η) = ∑r

i=2 li (η) and l(η, ξ) = l(η)−l(ξ) = ∑r
i=2 li (η, ξ). Call replacing an arrow

pair ∧∧ in the first two positions or a consecutive arrow pair ∨∧ by the opposite arrow
pair an elementary operation. If ξ � η, then l(η, ξ) is the minimal number of elementary
operations needed to obtain ξ from η.

For λ ∈ �(s) we define the associated pair of (∧,∨)-sequences (η1, η2) as follows. If
G = GLn, then η1 is the sequence of single arrows to the left of the wall in the (cyclically
shifted) arrow diagram of λ, and η2 is the sequence of single arrows to the right of the wall.
This pair is well-defined up to order. If G = Spn, then η1 is the sequence of single arrows to
the left of the wall in the arrow diagram of λ, and η2 is the sequence of single arrows to the
right of the wall, rotated 180 degrees. For example, when G = GLn and the arrow diagram
of λ is

∧ ∧ ∨ ∧ ∨ ∨ ∧ ∧∨ ∧ ∨ ∧ ∨ ∨ ∧ ,

then (η1, η2) = (∧ ∧ ∨ ∧ ∨ ∨ ∧ ∧ ∨,∧ ∨ ∨∧), and when G = Spn and the arrow diagram
of λ is

∨ ∧ ∨∧ ∧ ∧ ∧ ∧ ∨ ∧ ∨ ∨ ,

then (η1, η2) = (∨ ∧ ∧ ∧ ∧,∧ ∧ ∨ ∧ ∨). For λ, μ ∈ �(s) with associated pairs of (∧,∨)-
sequences (η1, η2) and (ξ1, ξ2) we put

n(λ) = l(η1) + l(η2) and n(λ, μ) = l(η1, ξ1) + l(η2, ξ2) = n(λ) − n(μ) .

Note that n(λ, μ) is independent of s.
If below λ, μ ∈ �(s), then we let (η1, η2) and (ξ1, ξ2) be the pairs of (∧,∨)-sequences

associated to λ and μ. If furthermore G = Spn and the arrow diagram of λ has an arrow
at 0, then we assume that the parity of the number of ∧’s in the arrow diagram of μ is the
same as that for λ. This only requires a possible change of an arrow at 0 to its opposite in
the arrow diagram of λ. For λ, μ ∈ �(s) we have by [9, Rem 5.1.1] and [7, Rem 5.1.1] that

λ and μ are H -conjugate under the dot action if and only if the arrow diagram of
μ has its single arrows and its × ’s at the same nodes as the arrow diagram of λ and{

ξ i and ηi are strongly conjugate for all i ∈ {1, 2} if G = GLn,

ξ i and ηi are conjugate for all i ∈ {1, 2} if G = Spn.

Furthermore, for λ ∈ �(s) and μ ∈ X+ we have
μ � λ ⇔ μ ∈ �(s) ∩ H · λ and ξ1 � η1 and ξ2 � η2.

More Cap(-Curl) Diagrams, and Codiagrams We now recall from [7, Sect 6,7] and [9,
Sect 6,7] the definitions of cap(-curl) diagrams associated to two weights, and codiagrams.
Let λ, μ ∈ �(s) with μ � λ. Then the arrow diagram of μ has its single arrows and its
×’s at the same nodes as the arrow diagram of λ. If G = Spn and the arrow diagram of λ

has an arrow at 0, then we assume that the parity of the number of ∧’s in the arrow diagram
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of μ is the same as that for λ. This only requires a possible change of an arrow at 0 to its
opposite in the arrow diagram of λ (or μ). If there is no arrow at 0, then these parities will
automatically be the same, since μ is Wp(Dl(λ))-conjugate to λ under the dot action. The
cap-curl diagram cλμ associated to λ and μ by replacing each arrow in cλ by the arrow from
the arrow diagram of μ at the same node. Put differently, we put the caps and curls from cλ

on top of the arrow diagram of μ. We say that cλμ is oriented if all caps and curls in cλμ are
oriented (clockwise or anti-clockwise). It is not hard to show that when cλμ is oriented, the
arrow diagrams of λ and μ are the same at the nodes which are not endpoints of a cap or a
curl in cλ.

For example, when G = GLn, p = 5, n = 7, s1 = 2, s2 = 3 and λ = [32, 212]. Then
ρs1 = s′

1 = 6, and cλ (cyclically shifted) is

∨
1

∨
2

∧
3

∨
4

∧
0

.

The μ ∈ X+ with μ ≺ λ are [22, 13], [31, 21], [21, 12], [3, 2], [2, 1], with (cyclically
shifted) arrow diagrams

∨ ∨ ∧ ∧ ∨, ∨ ∧ ∨ ∨ ∧, ∨ ∧ ∨ ∧ ∨, ∧ ∨ ∨ ∨ ∧, ∧ ∨ ∨ ∧ ∨ .

Only for the first three cλμ is oriented.
When G = Spn, p = 11, m = 7, s = 5 and λ = (6332). Then ρs = 3 and cλ is

∨ ∧ ∧ ∨ ∧ .

The μ ∈ X+ with μ ≺ λ are (6321), (65232), (65221), (52432), (52421), (4332), (4321),
with arrow diagrams

∨ ∧ ∧ o ∧ ∨, ∧ ∨ ∧ o ∨ ∧, ∧ ∨ ∧ o ∧ ∨, ∧ ∧ ∨ o ∨ ∧,

∧ ∧ ∨ o ∧ ∨, ∨ ∨ ∨ o ∨ ∧, ∨ ∨ ∨ o ∧ ∨ .

Only for the first three cλμ is oriented.
Finally, we define cap or cap-curl codiagram coμ of the arrow diagram associated to

μ ∈ �(s) by reversing the roles of ∧ and ∨ in the definition of cλ. So all caps and curls in
coμ are clockwise. In the case G = Spn the caps now have their curve below the line when
they are to the left of the wall and above the line when they are to the right of the wall. If
μ, λ ∈ �(s) with μ � λ, then we define cap or cap-curl codiagram coμλ associated to μ

and λ by replacing each arrow in coμ by the arrow from the arrow diagram of λ at the same
node.2 We say that coμλ is oriented if all caps and curls in coμλ are oriented (clockwise or
anti-clockwise). We refer to [9, Sect 7] and [7, Sect 7] for more details and just give two
examples from these papers.

When G = Spn, p = 11, m = 7, s = 5 and μ = (4321). Then ρs = 3 and coμ is

∨ ∨ ∨ ∧ ∨ .

Consider two dominant weights λ with μ � λ: (6332) and (52432) with arrow diagrams
∨ ∧ ∧o ∨ ∧ and ∧ ∧ ∨o ∨ ∧. Only for the last coμλ is oriented.

2Again we assume that if G = Spn and the arrow diagram of λ has an arrow at 0, then the parity of the
number of ∧’s in the arrow diagram of λ is the same as that for μ.
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When G = GLn, p = 5, n = 7, s1 = 2, s2 = 3 and μ = [2, 1]. Then ρs1 = s′
1 = 6, and

coμ (cyclically shifted) is

∧
1

∨
2

∨
3

∧
4

∨
0

.

Consider two dominant weights λ with μ � λ: [31, 21] and [32, 212] with (cyclically
shifted) arrow diagrams ∨ ∧ ∨ ∨ ∧ and ∨ ∨ ∧ ∨ ∧. Only for the first coμλ is oriented.

2.3 The Translation Functors

We recall from [7, Sect 4] and [9, Sect 4] the definition and basic properties of certain
translation functors and in the case of G = Spn we will also introduce certain refined
translation functors. For simplicity we do not quite state things in the same generality as
in [7] and [9]: we work below with the set �(s) rather than the set �s from [7] or the set
�p as in [9]. For λ ∈ X+ the projection functor prλ : {G-modules} → {G-modules} is
defined by prλM = OWp ·λ∩X+(M). Then M = ⊕

λ prλM where the sum is over a set of
representatives of the Wp-linkage classes in X+, see [6, II.7.3]. Recall the definitions of �,
�(s) and H from Section 2.1.

First assume G = GLn. For λ = [λ1, λ2] ∈ X+, let Supp1(λ) be the set of all μ =
[μ1, μ2] ∈ X+ which can be obtained by adding a box to λ1 or removing a box from λ2,
but not both, and let Supp2(λ) be the set of all μ = [μ1, μ2] ∈ X+ which can be obtained
by removing a box from λ1 or adding a box to λ2, but not both. Now let λ, λ′ ∈ X+
with λ′ ∈ Supph(λ), h ∈ {1, 2}. Then we have for the translation functor, see [6, II.7.6],
T λ′

λ : {G-modules} → {G-modules} that T λ′
λ M = prλ′((prλM) ⊗ V ) when h = 1 and

T λ′
λ M = prλ′((prλM)⊗V ∗)when h = 2. Furthermore, T λ′

λ is exact and left and right adjoint
to T λ

λ′ . An application of Brauer’s formula shows that, for λ′ ∈ Supph(λ), h ∈ {1, 2}, and
μ ∈ X+∩Wp ·λ, T λ′

λ ∇(μ) has a good filtration with sections ∇(ν), ν ∈ Supph(μ)∩Wp ·λ′,
and the analogue for Weyl modules and Weyl filtrations also holds. We refer to [9, Sect 4]
for further explanation. To unify notation with the case G = Spn, which we will discuss
next, we put T̃ λ′

λ = T λ′
λ .

Now assume G = Spn. For λ ∈ X+, let Supp(λ) be the set of all partitions of length ≤ m

which can be obtained by adding a box to λ or removing a box from λ. Then we have for the
translation functor T λ′

λ : {G-modules} → {G-modules} that T λ′
λ M = prλ′((prλM) ⊗ V ).

Furthermore, T λ′
λ is exact and left and right adjoint to T λ

λ′ . Note that, for μ ∈ X+ ∩ Wp · λ,

T λ′
λ ∇(μ) has a good filtration with sections ∇(ν), ν ∈ Supp(μ) ∩ Wp · λ′, and the analogue

for Weyl modules and Weyl filtrations also holds.
We now define certain refined translation functors. If � ⊆ �(s) is a �-saturated set,

then, by [7, Prop 3.1(ii)], the type Ds linkage principle holds in C�. So if λ,μ ∈ � belong
to the same C�-block, then they are conjugate under the dot action ofWp(Ds). For λ ∈ �(s)

we define the projection functor p̃rλ : C�(s) → C�(s) by p̃rλM = OWp(Ds)·λ∩X+(M). Then
M = ⊕

λ p̃rλM where the sum is over a set of representatives of the type Ds linkage classes
in �(s). Note that p̃rλM is a direct summand of prλM . Now let λ, λ′ ∈ �(s) with λ′ ∈
Supp(λ) and let C, C ′ be Serre subcategories of C�(s) such that prλ′((p̃rλM) ⊗ V ) ∈ C�(s)

for all M ∈ C and prλ((p̃rλ′M)⊗V ) ∈ C�(s) for all M ∈ C ′. Then we define the translation
functors T̃ λ′

λ : C → C�(s) and T̃ λ
λ′ : C ′ → C�(s) by T̃ λ′

λ M = p̃rλ′((p̃rλM) ⊗ V ) and

T̃ λ
λ′M = p̃rλ((p̃rλ′M)⊗V ). Note that if μ ∈ X+ ∩Wp(Ds) ·λ and ∇(μ) ∈ C, then T̃ λ′

λ ∇(μ)

has a good filtration with sections ∇(ν), ν ∈ Supp(μ) ∩ Wp(Ds) · λ′. The analogue for
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Weyl modules and Weyl filtrations also holds. If T̃ λ′
λ and T̃ λ

λ′ have image in C and C ′, then
they restrict to functors C → C ′ and C ′ → C which are exact and each others left and right
adjoint. To unify notation with the case G = GLn we put Supph = Supp for h ∈ {1, 2}.

We now return to the general case G = GLn or G = Spn. Proposition 1 below is a
combination of Propositions 4.1 in [7] and [9] and Proposition 2 below is a combination of
Propositions 4.2 in [7] and [9]. In the case G = Spn we can ignore the subscripts h and h,
and in the G = GLn-case we can read T̃ as T .

Proposition 1 (Translation equivalence) Let h, h ∈ {1, 2} be distinct, let λ, λ′ ∈ �(s) with
λ′ ∈ Supph(λ) and let � ⊆ H · λ ∩ �(s),�′ ⊆ H · λ′ ∩ �(s) be �-saturated sets. Assume

(1) Supph(ν) ∩ Wp · λ′ ⊆ �(s) for all ν ∈ �, and Supph(ν
′) ∩ Wp · λ ⊆ �(s) for all

ν′ ∈ �′.
(2) |Supph(ν) ∩ H · λ′| = 1 = |Supph(ν

′) ∩ H · λ| for all ν ∈ � and ν′ ∈ �′.
(3) The map ν �→ ν′ : � → �(s) given by Supph(ν) ∩ H · λ′ = {ν′} has image �′, and

together with its inverse �′ → � it preserves the order �.

Then T̃ λ′
λ restricts to an equivalence of categories C� → C�′ with inverse T̃ λ

λ′ : C�′ →
C�. Furthermore, with ν and ν′ as in (3), we have T̃ λ′

λ ∇(ν) = ∇(ν′), T̃ λ′
λ �(ν) = �(ν′),

T̃ λ′
λ L(ν) = L(ν′), T̃ λ′

λ T (ν) = T (ν′) and T̃ λ′
λ I�(ν) = I�′(ν′).

Proposition 2 (Translation projection) Let h, h ∈ {1, 2} be distinct, let λ, λ′ ∈ �(s) with
λ′ ∈ Supph(λ) and let � ⊆ H · λ ∩ �(s),�′ ⊆ H · λ′ ∩ �(s) be �-saturated sets. Put
�̃ = {ν ∈ � | Supph(ν) ∩ H · λ′ �= ∅}. Assume
(1) Supph(ν) ∩ Wp · λ′ ⊆ �(s) for all ν ∈ �, and Supph(ν

′) ∩ Wp · λ ⊆ �(s) for all
ν′ ∈ �′.

(2) |Supph(ν) ∩ H · λ′| = 1 for all ν ∈ �̃, and |Supph(ν
′) ∩ H · λ| = 2 for all ν′ ∈ �′.

(3) The map ν �→ ν′ : �̃ → �(s) given by Supph(ν) ∩ H · λ′ = {ν′} is a 2-to-1 map
which has image �′ and preserves the order �. For ν′ ∈ �′ we can write Supph(ν

′) ∩
H · λ = {ν+, ν−} with ν− ≺ ν+ and then we have HomG(∇(ν+),∇(ν−)) �= 0 and
η′ � ν′ ⇒ η+ � ν+ and η− � ν−.

Then T̃ λ′
λ restricts to a functor C� → C�′ and T̃ λ

λ′ restricts to a functor C�′ → C�. Now

let ν ∈ �. If ν /∈ �̃, then T̃ λ′
λ ∇(ν) = T̃ λ′

λ �(ν) = T̃ λ′
λ L(ν) = 0. For ν′ ∈ �′ with ν± as in

(3), we have T̃ λ′
λ ∇(ν±) = ∇(ν′), T̃ λ′

λ �(ν±) = �(ν′), T̃ λ′
λ L(ν−) = L(ν′), T̃ λ′

λ L(ν+) = 0,
T̃ λ

λ′T (ν′) = T (ν+) and T̃ λ
λ′I�′(ν′) = I�(ν−).

Remarks 1 1. It is easy to see that in the situation of Proposition 2 we have a nonsplit
extension

0 → ∇(ν−) → T̃ λ
λ′∇(ν′) → ∇(ν+) → 0 :

if it were split, then dimHomG(∇(ν+), T̃ λ
λ′∇(ν′)) > 1, but using the adjoint functor prop-

erty it is clear that this dimension is 1. If we now consider the long exact cohomology
sequence associated to the above short exact sequence and the functor HomG(∇(ν+),−),
and we also use the adjoint functor property (which holds for all ExtiG), then we obtain
dimHomG(∇(ν+),∇(ν−)) = dimExt1G(∇(ν+),∇(ν−)) = 1 and ExtiG(∇(ν+),∇(ν−)) =
0 for i > 1. See also [6, II.2.14 and 4.13].

2. From the proofs of Theorems 6.1 in [7] and [9] we deduce that the assumptions of
Proposition 1 are satisfied in the following situations where we will always take� = �(s)∩
H · λ and �′ = �(s) ∩ H · λ′ once we have chosen λ, λ′ ∈ �(s). We will derive the



R. Tange

“moves” from coλ rather than from cλ as in [7, Thm 6.1] and [9, Thm 6.1]. If coλ is of the

form · · · ∧ · · · • ∨
a

· · · when G = GLn or G = Spn and the cap is to the right of the

wall, then we choose co′
λ = · · · ∧ · · · ∨ •

a
· · · . If G = Spn and the cap is to the left of

the wall, we let the curves go below the horizontal line. The bijection ν �→ ν′ : � → �′

is then given by
··· o ∧ ··· �→ ··· ∧ o ······ o ∨ ··· �→ ··· ∨ o ···

a a
. In case the (a − 1)-node in the arrow diagram of

λ carries an × we get an × at the a-node of λ′ and the bijection ν �→ ν′ : � → �′ is then

given by
··· × ∧ ··· �→ ··· ∧ × ······ × ∨ ··· �→ ··· ∨ × ···

a a
. One can also move the right end node of the cap one step

to the right past an empty node or past an × (that is just the inverse bijection) or move the
left end node one step past an empty node or past an ×. In case G = Spn one can also move
one of the end nodes of a curl one step past an empty node or past an ×. The diagrammatic
descriptions of the bijections are the same. Furthermore, one can turn a curl with left end
node at 0 into a cap by replacing the arrow at the 0-node by its opposite. In terms of the
weights this bijection is just the identity. Finally, one can turn a curl with right end node the
last node into a cap by replacing the arrow at the last node by its opposite. The bijection

ν �→ ν′ : � → �′ is given by ··· ∨ �→ ··· ∧··· ∧ �→ ··· ∨ . In most applications we start with a cap or

curl with no caps or curls inside it and then repeatedly apply moves as above until we have
a cap with consecutive end nodes. Then we can apply the next remark.
3. From the aforementioned proofs we can also deduce that the assumptions of Proposition 2
are satisfied in the following situations where we will always take � = �(s) ∩ H · λ

and �′ = �(s) ∩ H · λ′ once we have chosen λ, λ′ ∈ �(s). We will derive the “moves”
from coλ rather than cλ as in [7, Thm 6.1] and [9, Thm 6.1], so we will have λ = λ−,
rather than λ = λ+. The set �̃ will always consist of the ν ∈ � for which the cap or curl

of coλ under consideration is oriented in coλν . If coλ is of the form · · · ∧ ∨
a

· · · when

G = GLn or G = Spn and the cap is to the right of the wall, or coλ = · · · ∧ ∨
a

· · · when

G = Spn and the cap is to the left of the wall, then we choose λ′ = · · · • ∨∧
a

· · · . and

the projection ν �→ ν′ : �̃ → �′ is given by ··· ∧ ∨ ······ ∨ ∧ ··· �→ ··· o × ··· . In case G = GLn

or G = Spn and a > 1 we can also choose λ′ = · · · ∨∧ •
a

· · · and then the projection

ν �→ ν′ : �̃ → �′ is given by ··· ∧ ∨ ······ ∨ ∧ ··· �→ ··· × o ··· . Finally, if coλ has a curl at the

first two nodes, then we can choose λ′ = • ∨∧
a

· · · . and the projection ν �→ ν′ : �̃ → �′

is given by ∧ ∧ ···∨ ∨ ··· �→ o × ··· . However, this is just the combination of the trivial move

mentioned near the end of the previous remark and the above “cap-contraction”.
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3 The Polynomials

Recall the definitions of �, �(s) and H from Section 2.1. Throughout this section we
assume that �, �′ ⊆ �(s) are the intersection of �(s) with an H -orbit under the dot action.

Definition 4 For λ,μ ∈ � we define the polynomials dλμ ∈ Z[q] by

dλμ =
{

qnumber of clockwise caps and curls in cλμ , if μ � λ and cλμ is oriented,

0 otherwise.

Clearly the matrix (dλμ)λ,μ is lower uni-triangular for the ordering �: dλλ = 1 and dλμ �= 0
implies μ � λ. Next we define the polynomials pλμ by requiring that the matrix (pλμ)λ,μ is
the inverse of (dλμ(−q))λ,μ. This inverse is then also lower uni-triangular for the ordering
�.

Definition 5 For λ,μ ∈ � we define the polynomials eλμ ∈ Z[q] by

eλμ =
{

qnumber of anti-clockwise caps and curls in coμλ , if μ � λ and coμλ is oriented,

0 otherwise.

Clearly the matrix (eλμ)λ,μ is lower uni-triangular for the ordering �. Next we define the
polynomials rλμ by requiring that the matrix (rλμ)λ,μ is the inverse of (eλμ(−q))λ,μ. This
inverse is then also lower uni-triangular for the ordering �.

Remarks 2 Let λ,μ ∈ �p . In [7, Thm 6.1] and [9, Thm 6.1] it was shown that (T (λ) :
∇(μ)) = dλμ(1) if μ � λ, and 0 otherwise, and in [7, Thm 7.1] and [9, Thm 7.1] it was
shown that [∇(λ) : L(μ)] = eλμ(1) if μ � λ, and 0 otherwise.

The proof of the following lemma is easy, we leave it to the reader.

Lemma 1

(i) Assume we are in the situation of Remark 1.2. Then dλμ = dλ′μ′ and eλμ = eλ′μ′ for
λ,μ ∈ �.

(ii) Assume we are in the situation of Remark 1.3. For λ = λ+ ∈ � we have

dλ+μ+ = dλ′μ′ , for μ+ ∈ �,

dλ+μ− = qdλ′μ′ , for μ− ∈ �,

dλ+μ = 0 for μ ∈ � not of the form μ±.

For μ = μ− ∈ � we have

eλ−μ− = eλ′μ′ , for λ− ∈ �,

eλ+μ− = qeλ′μ′ , for λ+ ∈ �

eλμ− = 0 for λ ∈ � not of the form λ±.

As in [4, Sect. 7] one can show that

dλ+μ+ = q−1dλ−μ+ + dλ−μ− and

dλ+μ− = qdλ−μ− + dλ−μ+ .
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Proposition 3

(i) Assume we are in the situation of Remark 1.2. Then pλμ = pλ′μ′ and rλμ = rλ′μ′ for
λ,μ ∈ �.

(ii) Assume we are in the situation of Remark 1.3. For λ = λ+ ∈ � we have

pλ+μ+ = pλ′μ′ + qpλ−μ+ , (1)

for all μ+ ∈ � and

pλ+μ = qpλ−μ (2)

for all μ ∈ � not of the form μ+.
For μ = μ− ∈ � we have

rλ−μ− = rλ′μ′ + qrλ−μ+ , (3)

for all λ− ∈ � and

rλμ− = qrλμ+ (4)

for all λ ∈ � not of the form λ−.

Proof (i). By Lemma 1(i) the matrices (dλμ)λ,μ and (dλ′μ′)λ,μ are the same, so their
inverses (pλμ)λ,μ and (pλ′μ′)λ,μ are also the same. The second identity is proved in the
same way.

(ii). We will prove Eqs. 1 and 2 by �-induction on μ with μ = λ as (trivial) basis case.
Put p̃λμ = pλμ(−q). By the definition of the pλμ and the induction hypothesis we have

p̃λμ = δλμ −
∑

μ≺ν�λ

p̃λνdνμ

= δλμ −
∑

μ≺ν�λ

ν=ν+

(p̃λ′ν′ − qp̃λ−ν)dνμ + q
∑

μ≺ν�λ

ν �=ν+

p̃λ−νdνμ

=
(

δλμ −
∑

μ≺ν�λ

ν=ν+

p̃λ′ν′dνμ

)

+
(

q
∑

μ≺ν�λ−
p̃λ−νdνμ

)

.

The second bracketed expression equals qδλ−μ−qp̃λ−μ by the definition of the pλμ. Denote
the first bracketed expression by E. Then we have

E =

⎧
⎪⎨

⎪⎩

δλ′μ′ − ∑
μ′≺ν′�λ′ p̃λ′ν′dν′μ′ = p̃λ′μ′ if μ = μ+,

−q
∑

μ′�ν′�λ′ p̃λ′ν′dν′μ′ = −qδλ′μ′ = −qδλ−μ if μ = μ−,

0 if μ �= μ±,

where we used Lemma 1(ii) and that, when μ = μ−, we can have ν = μ+ in the sum in E.
It follows that

p̃λμ =
{

p̃λ′μ′ − qp̃λ−μ if μ = μ+,

−qp̃λ−μ if μ �= μ+,

as required.
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Equations 3 and 4 are proved by �-induction on λ with λ = μ as (trivial) basis case. Put
r̃λμ = rλμ(−q). By the definition of the rλμ and the induction hypothesis we have

r̃λμ = δλμ −
∑

μ�ν≺λ

eλν r̃νμ

= δλμ −
∑

μ�ν≺λ

ν=ν−

eλν(r̃ν′μ′ − qr̃νμ+) + q
∑

μ�ν≺λ

ν �=ν−

eλν r̃νμ+

=
(

δλμ −
∑

μ�ν≺λ

ν=ν−

eλν r̃ν′μ′
)

+
(

q
∑

μ+�ν≺λ

eλν r̃νμ+
)

.

We leave the rest of the proof to the reader.

Remarks 3 1. Obviously λ �= μ ⇒ dλμ, eλμ ∈ qZ[q], so we also have λ �= μ ⇒
pλμ, rλμ ∈ qZ[q].

2. Using elementary properties of n(λ, μ) and the li (η, ξ), see e.g. [4, p175,176], one can
easily show by induction that pλμ �= 0 ⇔ μ � λ and that pλμ �= 0 ⇒ deg(pλμ) = n(λ, μ)

and the degrees of the terms of pλμ have the same parity. Similarly, we obtain rλμ �= 0 ⇔
μ � λ and rλμ �= 0 ⇒ deg(rλμ) = n(λ, μ) and the degrees of the terms of rλμ have the
same parity.

3. IfG = Spn and the arrow diagram of any λ ∈ � has an arrow at 0, then assume that the
parity of the number of ∧’s in the arrow diagrams of the weights in � is fixed. Let λ, μ ∈ �

and let (η1, η2) and (ξ1, ξ2) be the associated pairs of (∧,∨)-sequences. Then it is easy to
see that the polynomials dλμ, pλμ, eλμ and rλμ only depend on (η1, η2) and (ξ1, ξ2). In fact
one can define the cap and cap-curl diagrams for (∧,∨)-sequences: Just do this as on the
left side of the wall in the Spn-case and as on any side of the wall in the GLn-case. This is
essentially the same as in [4, Sect 4.5]: In the diagram from [4, Sect 8] in the Spn-Brauer-
case we have to put in the wall using their ρδ rather than our ρ and omit the infinite tail
∧ · · · ∧ ∨ ∨ · · · starting at the wall. The associated (∧,∨)-sequence is then formed by the
remaining single arrows to the left of the wall. In the GLn-walled Brauer-case we have to
put in the walls using their ρδ rather than our ρ ((ρδ)i = δ − i + 1 for i ≥ 1) and omit the
infinite tail of ∨’s to the right of the wall above the line and the infinite tail of ∧’s to the left
of the wall below the line. The associated (∧,∨)-sequence is then formed by the remaining
single arrows between the walls. We omit the infinite rays in the cap(-curl) diagram from
[4, Sect 8]. Then we can also define the d and p polynomials for (∧,∨)-sequences3 and we
then have

dλμ = dη1ξ1dη2ξ2 .

So the matrix (dλμ)λ,μ is the Kronecker product of the matrices (dη1ξ1)η1,ξ1 and
(dη2ξ2)η2,ξ2 , where the ηi and the ξ i vary over a strong conjugacy class when G = GLn and
over a conjugacy class when G = Spn. But then the same must hold for their inverses, so
we obtain:

pλμ = pη1ξ1pη2ξ2 .

The analogues of Remark 1.3, Lemma 1(ii) and Proposition 3(ii) for d and p-polynomials
associated to (∧,∨)-sequences also hold. Next we could define codiagrams and e and r-

3Of course, the meaning of cξη , dξη and pξη depends on the case: G = GLn or G = Spn.
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polynomials for (∧,∨)-sequences, but instead we use the order reversing involution † which
replaces every arrow by its opposite, and then we have

eλμ = d(ξ1)†(η1)†d(ξ2)†(η2)† and rλμ = p(ξ1)†(η1)†p(ξ2)†(η2)† .

One can also define † on �(s) and then obtain the identities

eλμ = dμ†λ† and rλμ = pμ†λ† ,

but in the case of G = GLn it is only clear that this works when s1 = s2, since otherwise
the values of s1 and s2 swap and the walls would move. See also [9, Cor to Thm 7.1] and
[7, Cor to Thm 7.1].

Finally, we point out that we have an explicit combinatorial formula for the pηξ as in
[4, Sect 8] (in the GLn-case see also [2, Sect 5]).

In both cases we work with a single external/unbounded chamber (and omit all the infi-
nite rays). Of course in [4, Sect 8] (and [2, Sect 5]) this expression is actually the definition
of their p-polynomials, but one can prove as in [4, Sect 8] that this alternative definition
leads to the same recursive relations as Eqs. 1 and 2 for (∧,∨)-sequences.

4 Tilting and Injective Resolutions

We retain the notation and assumptions from the previous section. For λ,μ ∈ � define the
integers pi

λμ, ri
λμ ∈ Z by

pλμ(q) =
∑

i≥0

pi
λμqi and

rλμ(q) =
∑

i≥0

ri
λμqi .

The theorem below is the analogue of [2, Thm 5.3] and [4, Thm 9.1] in our setting.

Theorem 1 The induced module ∇(λ), λ ∈ �, has a finite left tilting resolution:

· · · → T 1(λ) → T 0(λ) → ∇(λ) → 0

where
T i(λ) =

⊕

μ∈�

pi
λμT (μ) .

Proof The proof is very similar to that of [4, Thm 9.1]. One merely has to replace �(a)(μ),
P(a)(μ), P i

(a)(μ) and resλ(a+1) in that proof by ∇(μ), T (μ), T i(μ) and T̃ λ
λ′ , and for the

extension to a chain map use the fact that HomG(T i(μ),−) maps short exact sequences of
modules with a good filtration to exact sequences. We leave the details to the reader and
give the proof of the next theorem in more detail.

Theorem 2 The induced module ∇(μ), μ ∈ �, has a finite injective resolution in C�:

0 → ∇(μ) → I 0(μ) → I 1(μ) → · · ·
where

I i(μ) =
⊕

λ∈�

ri
λμI�(λ) .
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Proof The proof follows [4, Thm 9.1] and [7, Thms 6.1,7.1] (and [9, Thms 6.1,7.1]). We
assume that the assertion holds for weights ν ∈ � with ν � μ and weights whose cap-curl
codiagram has fewer caps and curls in case G = Spn and whose cap codiagram has fewer
caps in case G = GLn. If coμ has no caps or curls, then μ is maximal in � and ∇(μ) =
I�(μ). Now assume coμ has a cap or curl. After finitely many translation equivalences, see
Remark 1.2, we may assume that there is a cap in coμ connecting consecutive vertices. Fix
such a cap. Then we are in the situation of Remark 1.3 and we can write μ = μ−. By the
inductive assumption we have injective resolutions

0 → ∇(μ′) → I 0(μ′) → I 1(μ′) → · · · (5)

in C�′ and

0 → ∇(μ+) → I 0(μ+) → I 1(μ+) → · · · (6)

in C�. Recall from Remark 1.1 in Section 2.3 that we have an exact sequence

0 → ∇(μ−) → T̃
μ

μ′∇(μ′) f→ ∇(μ+) → 0 (7)

Applying T̃
μ

μ′ to Eq. 5 and extending f to a chain map using Eq. 6 we obtain a
commutative diagram with exact rows

0 �� T̃
μ

μ′∇(μ′) ��

f
��

T̃
μ

μ′I 0(μ′) ��

��

T̃
μ

μ′I 1(μ′) ��

��

· · ·
.

0 �� ∇(μ+) �� I 0(μ+) �� I 1(μ+) �� · · ·
We multiply all arrows in one of the rows by −1 to make the squares anti-commutative and
then we extend the diagram to a double complex by adding zeros in all remaining rows.
Taking the total complex of this double complex gives a bounded exact complex

0 → T̃
μ

μ′∇(μ′) → ∇(μ+) ⊕ T̃
μ

μ′I 0(μ′) → · · · → I i(μ+) ⊕ T̃
μ

μ′I i+1(μ′) → · · · ,

see e.g. [10, Ex 1.2.5]. Using Eq. 7 we get a surjective chain map from the above complex to

0 → ∇(μ+) → ∇(μ+) → 0 → · · · → 0 → · · · .
Taking the kernel we obtain an exact complex (see e.g. [10, Ex 1.3.1])

0 → ∇(μ) → T̃
μ

μ′I 0(μ′) → · · · → I i(μ+) ⊕ T̃
μ

μ′I i+1(μ′) → · · · . (8)

By Proposition 2 we have T̃
μ

μ′I 0(μ′) = T̃
μ

μ′I�′(μ′) = I�(μ) = I 0(μ). For i ≥ 0 we have
by Propositions 2 and 3(ii) that

I i(μ+) ⊕ T̃
μ

μ′I i+1(μ′) =
⊕

λ∈�

ri
λμ+I�(λ) ⊕

⊕

λ′∈�′
ri+1
λ′μ′ T̃

μ

μ′I�′(λ′)

=
⊕

λ∈�

ri
λμ+I�(λ) ⊕

⊕

λ′∈�′
ri+1
λ′μ′I�(λ−)

=
⊕

λ−∈�

(ri
λ−μ+ + ri+1

λ′μ′)I�(λ−) ⊕
⊕

λ∈�,λ �=λ−
ri
λμ+I�(λ)

=
⊕

λ−∈�

ri+1
λ−μ−I�(λ−) ⊕

⊕

λ∈�,λ �=λ−
ri+1
λμ−I�(λ)

=
⊕

λ∈�

ri+1
λμ−I�(λ) = I i+1(μ−) = I i+1(μ) .
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If we substitute this in Eq. 8, then we obtain the required injective resolution of ∇(μ) in
C�.

As in [2, Cor 5.5] and [4, Cor 9.3] we obtain

Corollary 1 We have ri
λμ = dimExtiG(L(λ),∇(μ)) for all i ≥ 0. Furthermore,

ExtiG(L(λ), ∇(μ)) = 0 unless i ≡ n(λ, μ) (mod 2).

Proof By Remark 3.2 all nonzero terms in rλμ have degree of the same parity as n(λ, μ).
So after applying HomG(L(λ), −) to the injective resolution in Theorem 2 the nonzero
modules in the resulting complex all have degree of the same parity as n(λ, μ). Therefore,
all differentials in the complex are 0, i.e. the complex equals its own cohomology.

Corollary 2 Put t iλμ = dimExtiG(L(λ), L(μ)) for all i ≥ 0, and tλμ(q) = ∑
i≥0 t iλμqi ∈

Z[q]. Then tλμ = ∑
ν�λ,μ rλνrμν . In particular, ExtiG(L(λ), L(μ)) = 0 unless i ≡

n(λ, μ) (mod 2).

Proof By the previous corollary the category C� with length function λ �→ n(λ) (see
Section 2.2) has a Kazhdan-Lusztig theory in the sense of [3, 3.3]. So the result follows
from [3, Cor 3.6(a)]. See also 2.12(2), 2.13(2), 4.13(3) and C.10 in [6, Part II].

Corollary 3 We have chL(λ) = ∑
μ�λ rλμ(−1)χ(μ).

Proof This follows from[6, II.6.21(6)] and the first corollary.

Remarks 4 We compare �p , which is the union of the various �(s), with the Jantzen
region of Lusztig’s conjecture [6, II.8.22]. For the Jantzen region to be nonempty we clearly
need p ≥ h − 1, where h is the Coxeter number. Furthermore, the Jantzen region con-
tains all restricted dominant weights when p ≥ 2h − 3. Our set �p is always nonempty,
but for G = Spn it contains only a small portion of the restricted dominant weights and
for G = GLn only a small portion of the restricted dominant SLn-weights lift to a weight
in �p .

5 Limiting Results for a Fixed Residue of nmod p

Throughout this section δ is any integer. We want to derive a certain stability result for
arrow diagrams when p � 0. For GLn we cyclically shift the diagram such that the 0-node
is in the middle and then the idea is that we don’t want arrows to move from one end of
the diagram to the other end. Then the “relevant (∧,∨)-sequence” will be between the two
walls. For Spn and δ even the position of the wall relative to the first node is fixed and we
don’t want arrows to move around the right end node, so the “relevant (∧,∨)-sequence” is
to the left of the wall. For Spn and δ odd the position of the wall relative to the last node is
fixed and we don’t want arrows to move around the left end node, so the “relevant (∧,∨)-
sequence” is the second (∧,∨)-sequence which comes from the arrows to the right of
the wall.
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The GLn-case Let r1, r2, s1, s2 be integers ≥ 0, and let � consist of pairs of partitions
(λ1, λ2) with λi

1 ≤ ri and l(λi) ≤ si for all i ∈ {1, 2}. Choose a prime p > 2 such that

δ − s1 + 1, 1 − r2 ≥ −(p − 1)/2 and

s2, δ + r1 ≤ (p − 1)/2 .

Choose t ≥ 0 such that n := δ + tp ≥ s1 + s2. We now identify � with the set
{[λ1, λ2] | (λ1, λ2) ∈ �}. Then ρ is defined as in Section 2.1. Now we change the labels in
the arrow diagram by replacing each label by the integer in {−(p − 1)/2, · · · , (p − 1)/2}
that is equal to it mod p, and we cyclically shift the diagram such that the first node has
label −(p − 1)/2. Then the labels of the arrows corresponding to [λ1, λ2] stay the same
when we increase p, keeping t (but not n!) fixed. They are δ +λ11, · · · , δ − s1 + 1+λ1s1 (∧,
below the line), and 1−λ21, · · · , s2−λ2s2 (∨, above the line). So this gives a limiting diagram
with infinitely many nodes which is essentially the same as the diagram in [4] for (λ1, λ2)

and a walled Brauer algebra Bu,v(δ) with (λ1, λ2) in its label set.4 See Remark 3.3 how to
adapt the diagram in [4] to our conventions. Because of the characterisation of � in terms
of arrow diagrams in Section 2.2 it is now clear that the order � on � is independent of p.

If we assume that n ≥ u + v and that � consists of the pairs of partitions (λ1, λ2) with
|λ1| ≤ u, |λ2| ≤ v and u − |λ1| = v − |λ2|, then we can use the rational Schur functor

frat : mod(S(n;u, v)) → mod(Bu,v(δ)) ,

where S(n; u, v) is the rational Schur algebra and Bu,v(δ) is the walled Brauer algebra in
characteristic p, and deduce using arrow diagrams that for big p the decomposition num-
bers of Br,s are independent of p and equal to the decomposition numbers of Br,s(δ) in
characteristic 0. See [9, Cor to Thm 6.1 and Prop 8.3] and [4, Thm 4.10].

The Spn-case Let r, s be integers ≥ 0, and let � consist of partitions λ1 with λ1 ≤ r and
l(λ) ≤ s. Choose a prime p > 2 such that

−δ/2 − s + 1 > −p/2

−δ/2 + λ1 < p/2

Assume first δ is even. Then

−δ/2 − s + 1 ≥ −(p − 1)/2 and

−δ/2 + λ1 ≤ (p − 1)/2 .

Choose t > 0 such that m := −δ/2 + tp ≥ s. Then ρ is defined as in Section 2.1. Then we
can increase p and all arrows stay in the same position relative to the first node: Their labels
are −δ/2+λ1,−δ/2−1+λ2, · · · ,−δ/2−s +1+λs . So this gives a limiting diagram with
infinitely many nodes which is essentially the same as the diagram in [4] for λ and a Brauer
algebra Bu(δ) in characteristic 0 with λ in its label set.5 See Remark 3.3 how to adapt the
diagram in [4] to our conventions.

Now assume δ is odd. Put δ = δ − p. Then

−δ/2 − s + 1 > 0 and

−δ/2 + r < p .

4Our label (λ1, λ2) corresponds to the label (λ2, λ1) in the notation of [4], and Bu,v(δ) corresponds to
Bv,u(δ). In characteristic 0 we still stick with our notation.
5The corresponding standard or irreducible module of Bu(δ) has the transpose λT of λ as label.
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Choose t ≥ 0 such that m := −δ/2 + tp ≥ s. Then ρ is defined as in Section 2.1. Now
change the labels by adding p to the labels above the line, giving the first node top label p

and bottom label 0. Then the labels of the arrows corresponding to λ are −δ/2+λ1,−δ/2−
1 + λ2, · · · , −δ/2 − s + 1 + λs . Then we can increase p and all arrows stay in the same
position relative to the last node. We now subtract p/2 from all labels. Then the labels of
the arrows will stay the same when we increase p: −δ/2+λ1, −δ/2− 1+λ2, · · · ,−δ/2−
s + 1 + λs . If we now rotate the diagram 180 degrees we obtain the limiting diagram with
infinitely many nodes which is essentially the same as the diagram in [4] for λ and a Brauer
algebra Bu(δ) in characteristic 0 with λ in its label set. See Remark 3.3 how to adapt the
diagram in [4] to our conventions.

Now assume again that δ is arbitrary and G = Spn. Because of the characterisation of �
in terms of arrow diagrams in Section 2.2 it is now clear that the order� on� is independent
of p. If we assume that m ≥ u and that � consists of the partitions λ with |λ| ≤ u, and
u − |λ| even, then we can use the symplectic Schur functor

f0 : mod(S0(n, u)) → mod(Bu(δ)) ,

where S0(n, u) is the symplectic Schur algebra and Bu(δ) is the Brauer algebra in charac-
teristic p, and deduce using arrow diagrams that for big p the decomposition numbers of
Bu are independent of p and equal to the decomposition numbers of Bu(δ) in characteristic
0. See [5, Prop 2.1], [7, Cor to Thm 6.1] and [4, Thm 5.8].
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