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Abstract: Auxetic materials exhibit a negative Poisson’s ratio, i.e., they become thicker rather than
thinner in at least one dimension when strained. Recently, a nematic liquid crystal elastomer (LCE)
was shown to be the first synthetic auxetic material at a molecular level. Understanding the mecha-
nism of the auxetic response in LCEs is clearly important, and it has been suggested through detailed
Raman scattering studies that it is related to the reduction of uniaxial order and emergence of biaxial
order on strain. In this paper, we demonstrate direct observation of the biaxial order in an auxetic LCE
under strain. We fabricated ~100 µm thick LCE strips with complementary geometries, exhibiting
either planar or homeotropic alignment, in which the auxetic response is seen in the thickness or
width of the sample, respectively. Polarized Raman scattering measurements on the planar sample
show directly the reduction in the uniaxial order parameters on strain and suggest the emergence
of biaxial order to mediate the auxetic response in the sample thickness. The homeotropic sample
is studied via conoscopy, allowing direct observation of both the auxetic response in the width of
the sample and increasing biaxiality in the LCE as it is strained. We verified that the mechanism
of the auxetic response in auxetic LCEs is due to the emergence of the biaxial order and conclude
such materials can be added to the small number of biaxial nematic systems that have been observed.
Importantly, we also show that the mechanical Frèedericksz transition seen in some LCEs is consistent
with a strain-induced transition from an optically positive to an optically negative biaxial system
under strain, rather than a director rotation in a uniaxial system.

Keywords: auxetic material; liquid crystal elastomer; biaxial nematic; biaxial order; negative Poisson
ratio; Raman scattering; conoscopy; mechanical Frèedericksz transition

1. Introduction

Auxetics are a remarkable class of materials which display anomalous expansion in at
least one dimension along the direction perpendicular to an applied extension, i.e., they
have a negative Poisson’s ratio [1]. There is a zoo of associated properties that are enhanced
compared to conventional materials, including indentation resistance, shock absorbance
and delamination resistance, making auxetic materials exciting contenders in application ar-
eas as diverse as biomedical sciences, aerospace, architecture, and sporting equipment [2–6].
The first synthetic auxetic material that responded at a molecular level was a liquid crystal
elastomer (LCE), discovered in 2018 [7], some 30 years after the effect was observed in
porous (so-called re-entrant) auxetics such as polyurethane foam [8]. In nature, auxetic
materials are also known in crystalline materials [9–12], e.g., the α-cristobalite which is
a silicon dioxide polymorph; additionally, biological materials such as cat skin [13] and
the Achilles tendon [14] have been found to display an auxetic response. The mecha-
nisms responsible for the auxetic response in re-entrant materials are well known and are
based on their geometry; many are designed with porous, honeycomb structures [5,15,16]
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that ‘unfold’ under strain. The advantages of auxetic LCEs are clear; they respond on a
molecular level and so are not limited to bulk applications, they are transparent, they are
readily synthesized, and as they are not porous, they do not have the inherent mechanical
weakness that can plague re-entrant auxetic structures. However, to take full advantage
of auxetic LCEs, it is critical to have a detailed understanding of the underlying physics
that results in their negative Poisson’s ratio. This paper shows through both direct and
indirect observation that the emergence of biaxial order is unambiguously associated with
the auxetic response in nematic LCEs.

Many ideas have been put forward for realizing molecular auxeticity [17,18], and
liquid crystalline polymers have long been recognized as promising materials [19–23].
For example, He et al. [21,22] studied a main-chain liquid crystalline polymer by X-ray
diffraction and suggested a potential auxetic response from the rotation of mesogenic units
into the direction transverse to the initial nematic director under the strain [22]. However,
only a positive Poisson’s ratio was recorded for this material. The first experimental
report of a negative Poisson’s ratio in a liquid crystal system was in the nematic elastomer
synthesized by Mistry et al. [7]. For their side-chain LCE, the auxetic response occurs above
a threshold strain along an axis perpendicular to both the initial director and the extension
direction. Detailed investigations showed that the LCE director rotated discontinuously
via a so-called mechanical Frèedericksz transition (MFT) [24], rather than the continuous
rotation associated with the semi-soft elastic (SSE) response seen in most LCEs [25,26].
Further, volume is conserved during strain, i.e., no porosity emerges during the deformation
process, suggesting quite a different mechanism behind the auxeticity than in re-entrant
auxetics. The significant changes in birefringence of the auxetic LCE seen under strain
indicated that there was a dramatic change in order associated with the auxetic response,
hinting at an order-moderated mechanism. Raistrick et al. [27] explored the order of the
LCE under strain using polarized Raman spectroscopy (PRS), a technique that allows both
uniaxial and biaxial order parameters to be inferred. Fitting the Raman depolarization
data with a biaxial model strongly suggested that the auxetic response was related to
out-of-plane rotations of the mesogenic units and the emergence of biaxial order.

Raistrick et al.’s study stopped short of proving that the emergence of biaxiality was
implicit in auxetic response of the LCE. Herein, we have fabricated auxetic LCE samples
using the same monomers as Mistry [7,24], but the different proportions result in a material
with subtly different mechanical properties, one of which is a much lower auxetic strain
threshold. The LCE samples are synthesized in planar and homeotropic geometries and the
stress-induced mechanical deformation of each sample is characterized to show the auxetic
behavior. PRS is employed to determine the uniaxial and biaxial order parameters in the
planar sample, while conoscopy on the homeotropic sample directly shows the emergence
of the biaxiality in the nematic LCE.

2. Materials and Methods
2.1. Sample Fabrication

The LCE samples were made by photopolymerizing the nematic precursor mixture
in a mold based on a conventional liquid crystal device, shown schematically in Figure 1.
The empty devices were assembled using one glass and one polymer substrate, the latter
allowing ease of extraction of the LCE film after polymerization. The planar samples were
constructed as described previously [7,24,27], with 100 µm thick Melinex401 film (DuPont
Teijin Films) used as spacers. Excellent monodomain alignment is achieved by spin-coating
the inner surface of the substrates with a 0.5 wt.% polyvinyl alcohol (PVA) solution which
is uniaxially rubbed when dry. The process was modified slightly for fabrication of the
homeotropic sample where the application of an electric field was required to supplement
the homeotropic surface alignment to achieve a uniform, 100 µm thick, monodomain
sample. For those samples, the glass substrate was coated with indium–tin oxide (ITO)
(Xinyan Technology Ltd., China) and the polymer substrate was ITO-coated PET film (ITO-
PET) (Sigma-Aldrich, Unite States) spin-coated with 0.5 wt.% cetyl trimethyl ammonium
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bromide (CTAB) (MP Biomedicals, France) solution and left unrubbed. The molds were
capillary-filled with the monomer mixture described in the following section.
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Figure 1. A schematic showing the assembled LCE mold used to fabricate LCEs with (a) homeotropic
alignment and (b) planar alignment.

2.2. LCE Synthesis

The LCE was created using the method described by Mistry et al. [7]. The chem-
ical compounds shown in Figure 2 were mixed in the proportions indicated to form
the nematic LCE precursor. The 4′-hexyloxybiphenyl (6OCB) is a nonreactive meso-
gen included to broaden the nematic phase range of the precursor. The 6-(4-cyano-
biphenyl-40-yloxy)hexyl acrylate (A6OCB) is a monofunctional reactive material that
forms the LCE mesogenic side groups, while the bifunctional 1,4-bis-[4-(6-acryloyloxyhex-
yloxy)benzoyloxy]-2-methylbenzene (RM82) is a mesogenic crosslinker. 2-Ethylhexyl acry-
late (EHA) was introduced to increase the flexibility of the polymer backbone, helping to
reduce the glass transition temperature to below room temperature and methyl benzoylfor-
mate (MBF) was used as the UV-photoinitiator. A6OCB, 6OCB, and RM82 were obtained
from Synthon Chemical GmbH (Bitterfeld-Wolfen, Germany), while EHA and MBF were
from Sigma Aldrich (Gillingham, UK).

The mesogenic compounds were mixed by heating to 120 ◦C while stirring at 200 rpm on
a magnetic hot plate for 5 min. The temperature was then decreased to 35 ◦C and the EHA and
MBF added, stirring for a further 2 min. The LCE monomer mixture was filled into the molds
via capillary action in its isotropic phase (at 35 ◦C) and left for around 20 min to cool to room
temperature. The mesogens align with the alignment layers as the temperature decreases into
the nematic phase. For the homeotropic sample, conductive tapes attached onto the edges
of the mold allowed an alignment voltage of 40 Vrms at 1 kHz to be applied, enhancing the
surface alignment mechanism. Once aligned, the molds were placed under a low intensity
UV florescence light source (2.5 mW/cm2) for 2 h to cure, with the field maintained in the
case of the homeotropic sample.

After curing, the polymer substrate was carefully peeled away. Placing the exposed
sample on the glass substrate into methanol caused the sample to swell slightly and delam-
inate at the edges. Flat-tipped tweezers were used to peel off the sample completely. Once
separated, the unreacted 6OCB in LCE was washed away by leaving it in dichloromethane
(DCM) solution (30% in methanol) overnight. After washing, the LCE film was hung in
a beaker at 60 °C for 2 h to dry. Table 1 shows the proportions of the components for the
monomer mixture and those in the final LCE sample.

2.3. Mechanical Deformation Measurements

Mechanical measurements were undertaken using bespoke equipment that was built
in-house, comprising two actuators and a load cell enclosed in a temperature-controlled
environment. The apparatus is equipped with optics that allows polarizing microscopy of
the LCE under strain. The full specification of the equipment and analysis methodologies,
which allow simultaneous optical and mechanical studies of LCEs, are described in previous
reports [7,27]. For this work, the original gap between the two actuators was 10 mm and
the LCE samples were loaded at room temperature. The samples were stretched using
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strain steps of 0.5 mm and a waiting time 10 min for each step. The geometries of the LCE
films and direction of the strain are shown in Figure 2b.
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Figure 2. (a) The molecular structures of the LCE monomers with proportion in the precursor
mixture indicated. The composition is similar to [7]. (b) Diagram describing the undeformed sample
geometry with the liquid crystal director parallel to the z-axis for the planar LCE and to the y-axis for
the homeotropic LCE. In this work, deformations (ε) are applied along the x-axis.

Table 1. Chemical composition of the LCE.

Component
% by mol. of Each Component in the LCE

Precursor Mixture Final LCE

6OCB 54.6
A6OCB 24.4 55.6
RM82 3.5 8.0
EHA 16.0 36.4
MBF 1.5

2.4. Order Parameter Measurements

Polarized Raman spectroscopy (PRS) can be used to determine a number of the order
parameters of liquid crystalline and polymeric systems by analyzing the intensity of light
scattered via the Raman mode [27]. The Raman scattering process is the inelastic scattering
of light, related to rotational and vibrational molecular motions. The Raman scattered
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light has a frequency shift in comparison to the incident light and the extent of the shift
is related to a specific molecular vibration or rotation mode. The intensity of a specific
Raman mode is proportional to the square of the differential polarizability tensor [28]; the
tensorial nature allows the anisotropic properties and order parameters of a liquid crystal
to be captured. PRS is a particularly useful technique in this regard as it allows the 2nd
and 4th rank-order parameters to be determined. The procedure to determine uniaxial
and biaxial order parameters in LCEs has been described previously [26]; however, the key
equations and experimental technique are both briefly described herein.

Order parameters are determined using a monodomain planar sample with a uniform
director placed in the x–z plane. The intensity of a specific vibrational Raman mode is
recorded both parallel I‖ and perpendicular I⊥ to the incident laser polarization. For a
uniaxial system with no tilt angle relative to the molecular long axis and no bend angle
present within the mesogen, I‖ and I⊥ depends primarily on the 2nd and 4th rank uniaxial
order parameters as shown in equations (1) and (2) [28]:

I‖ =
2

15

(
5
(
1 + 2r + 3r2)+ (r− 1)2

)
− 1

42 〈P200〉(r− 1)(5 + 9r + 6(3 + 4r)− (r− 1))(1 + 3 cos 2θ)

+ 1
70 〈P400〉(r− 1)2(9 + 20 cos 2θ + 35 cos 4θ)

(1)

I⊥ =
4
15

(r− 1)2 +
4

21
〈P200〉(r− 1)2 − 1

70
〈P400〉(r− 1)2(−3 + 35 cos 4θ) (2)

where r is the differential polarizability ratio relating to the differential polarizability tensor,
θ is the laboratory angle of the sample, 〈P200〉 and 〈P400〉 are, respectively, the 2nd and 4th
rank uniaxial order parameters which are given by [27]:

〈P200〉 =
1
2
〈
(

3cos2(β)− 1
)
〉 (3)

〈P400〉 =
1
8
〈
(

3− 30cos2(β) + 35cos2(β)
)
〉 (4)

In Equations (3) and (4), β is the Euler angle of the molecular long axis with respect to
a chosen frame of reference. The behavior of the biaxial order parameters can be inferred
by assuming that the uniaxial order parameters follow Maier–Saupe theory as described in
Ref. [26]. For a biaxial system, the intensity of the vibrational Raman mode is dependent
on the biaxial order parameters, 〈P220〉, 〈P420〉, 〈P440〉, in addition to the uniaxial order
parameters [26]:

I‖ =
2
3

(
1 + 2r + 3r2 + (r− 1)2

)
− 4

21 〈P200〉(r− 1)(3 + 4r)(1 + 3 cos 2θ)

+ 1
70 〈P400〉(r− 1)2(9 + 20 cos 2θ + 35 cos 4θ)− 16

7 〈P220〉(r− 1)(3 + 4r)sin2θ

+ 24
7 〈P420〉(r− 1)2(5 + 7 cos 2θ)sin2θ + 8〈P440〉(r− 1)2sin4θ

(5)

I⊥ = 4
15 (r− 1)2 + 4

21 〈P200〉(r− 1)2 − 1
70 〈P400〉(r− 1)2(−3 + 35 cos 4θ) + 8

7 〈P220〉(r− 1)2

+ 6
7 〈P420〉(r− 1)2(1 + 7 cos 4θ) + 2〈P440〉(r− 1)2 sin2 2θ

(6)

where the biaxial order parameters are functions of the Euler angles, α and β [26]:

〈P220〉 =
1
24
〈
(

7 cos2(β)− 1
)(

1− cos2(β)
)

cos (2α)〉 (7)

〈P420〉 =
1

16
〈
(

1− cos2(β)
)2

cos (4α)〉 (8)

〈P440〉 =
1
4
〈
(

1− cos2(β)
)2

cos (2α)〉 (9)

PRS was performed using a Renishaw inVia Raman microscope in backscattering
geometry with a 532 nm solid state laser at a relative power of 5%, an exposure time of
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1 s and 5 accumulations. The settings were chosen in order to minimize fluorescence and
avoid damage to the sample while maintaining easily identifiable characteristic peaks. The
depolarization ratio, R = I‖/I⊥ was measured at increasing sample strains between the
unstrained length, εx = 0 and εx = 1.23 ± 0.05 using Raman measurements made for each
strain step at 10◦ intervals between θ = 0◦ and θ = 180◦.

Herein, order parameters were determined using the 1606 cm−1 vibrational mode
associated with the C-C stretch of the biphenyl rings of the mesogenic units [28,29]. This
vibrational mode was selected over the 2250 cm−1 vibrational mode, which is associated
with the C≡N stretch, as it more closely fits the assumptions required to determine order
parameters via Raman spectroscopy [30], namely, that the selected vibrational mode is (i)
cylindrically symmetric and (ii) parallel to the long axis of the mesogenic unit [30].

2.5. Conoscopy Measurement

Conoscopy was performed using a Leica DM 2700P polarizing microscope in transmission
mode under cross-polarized conditions. The microscope was equipped with a 0.9 numerical
aperture (NA) condensing lens and a 0.95 NA 80× Leitz microscope objective. To study the
conoscopic patterns, a Bertrand lens was inserted between the microscope objective and the
eyepiece. The conoscopic patterns were captured with a Nikon D3500 camera. The homeotropic
sample is held under strain with Kapton tape and allowed to stress relax for 2 minutes before
the image of the conoscopic pattern is recorded. The strain is applied parallel to the analyzer
of the cross-polarized microscope and measured with digital calipers. The optical sign of the
conoscopic figures was determined by inserting a λ wave-plate and observing the coloration
of the grey regions near the melatopes of the acute bisetrix conoscopic figure obtained when
the system is rotated to the 45◦ position. The change in color of the first order ‘grey’ regions
of the conoscopic figure indicates whether the system is optically positive or negative [31,32].
A positive uniaxial system produces blue coloration along the direction of the λ wave plate and
yellow coloration perpendicular to it [31]. The opposite is true for a negative uniaxial system.

3. Results and Discussion
3.1. Physical Properties and Mechanical Measurements

The quality of the alignment of the mesogens in the LCE films was monitored using
polarizing optical microscopy (POM). The POM images of LCE films with planar (P-LCE)
and homeotropic alignment (H-LCE) are shown in Figure 3a. The figure shows that for the
P-LCE, when the director orientation is parallel to the crossed polarizers there is an excellent
dark state, while at 45◦ there is a uniform bright state. The uniform high contrast between
the two images of the P-LCE illustrates the high quality of the monodomain alignment and
the anisotropy of the P-LCE sample. For the H-LCE, there is no light transmitted for either
orientation, indicating excellent homeotropic alignment.

For the mechanical measurements, the strains εx and εz were determined by analysis of
photographs of the samples, while εy was inferred using the conserved volume conditions
known for these samples [7,26]. Figure 3c,e show the behavior of εy and εz for a strain in
the x-direction (εx), measured for the P-LCE sample. The deformations of the P-LCE sample
in the x–y and x–z planes are highly anisotropic. For the deformations in the x–z plane, εz
decreases with increasing εx, with a softening of the sample as was seen for the related LCE
in previous work [26]. The deformation of the P-LCE in the x–y plane is highly anomalous;
εy approaches a minimum when εx is ~0.58 ± 0.05 and then increases to almost the original
sample thickness. The auxetic behavior of the P-LCE is clear; the sample gets thicker in the
y-direction, perpendicular to εx, above strains of ~0.58 ± 0.05. The Poisson’s ratio, ν, can be
calculated for each deformation direction as follows. All the strains shown in Figure 3 are
engineering strains. By converting them into true strains through εtrue = ln (εengineering + 1)
and fitting a polynomial, the Poisson’s ratio, ν =− (dεtrans/dεexpan), i.e., the ratio of the relative
deformation in the transverse direction of expansion to the relative expansion [1], can be
calculated. Here, the deformations in y- and z-directions are the transverse deformations and
the strain in the x-direction is the relative expansion. The Poisson’s ratio of the P-LCE is shown
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in Figure 3g; it is always positive for deformations in the x–z plane, while in the x–y plane
there is a threshold strain, εx ~0.58 ± 0.05 beyond which the Poisson’s ratio becomes negative
and the system is therefore auxetic.
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Figure 3d,f show the corresponding behavior of the εy and εz strains for the H-LCE
sample. Now, the auxetic response occurs in x–z plane, εz reaching a minimum when εx
is ~0.56 ± 0.05 and then increasing. The threshold strain for the auxetic behavior of the
H-LCE is ~0.56 ± 0.05 (seen from Figure 3h as the point where the Poisson’s ratio becomes
negative), in excellent agreement with that of the P-LCE. In each case, the direction of the
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auxetic response is perpendicular to the direction of both the strain and the initial director
alignment direction.

One key advantage of the homeotropic geometry is that it allows direct and straight-
forward observation of the auxetic response of the LCE. Figure 4 shows photomicrographs
of the H-LCE sample at various strain steps (see Supplementary Materials for a video of
the full bright-field experiment). The sequence shows the width change of the sample in
z-direction as the sample extends in the x-direction. When the strain reaches ~0.55, the
width of the sample is a minimum and beyond this it increases: a direct demonstration of
the auxetic behavior of the H-LCE sample.
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Figure 4. Photomicrographs of the H-LCE during mechanical deformation in the x–z plane. The red
dashed lines clarify the positions of the sample edges. When εx is ~0.55, the width of the LCE is a
minimum, beyond which it clearly increases with further strain, i.e., it shows an auxetic response.
The H-LCE sample has almost regained its original width at a strain of ~1.4.

3.2. Order Parameter Measurements

Raman measurements of the uniaxial order parameters, 〈P200〉 and 〈P400〉, taken for the
planar sample are shown in Figure 5. The initial (unstrained) values are 〈P200〉 = 0.60± 0.05 and
〈P400〉 = 0.31± 0.05, very similar to those determined for a related LCE [26]. 〈P200〉 reduces
rapidly from its initial value to effectively zero at a strain of εx = 1.0 and 〈P400〉 reduces more
slowly to a minimum of 〈P400〉 = 0.07± 0.05 at a strain of εx = 1.14 ± 0.05. Note that in the
region where 〈P200〉 is effectively zero, indicated by the vertical dashed lines in Figure 5, the
value of 〈P400〉 deduced using the uniaxial model is greater than that of 〈P200〉.
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Figure 5. The uniaxial order parameters 〈P200〉 (black squares) and 〈P400〉 (red circles) as a function
of the strain of the sample. The strain domain denoted by the vertical dashed lines shows the region
in which 〈P200〉 appears to be lower than 〈P400〉.
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The PRS method also allows for measurement of the director angle in the plane of the
sample, initially set to be at 88 ± 1◦ to the long axis of deformation by the rubbing direction
of the planar alignment. Figure 6 shows that the director remains constant with strain
until εx ~1.0, the regime where 〈P200〉 ∼ 0. At this strain the director rapidly reorients to
align with the axis of deformation, a phenomenon known as a mechanical Fréedericksz
transition (MFT) [23,26]. For this LCE, the MFT occurs at a threshold strain of εx ∼ 1.0,
much later in the strain regime than the auxetic threshold, in contrast to the related LCE
reported previously [7,26] where the MFT was approximately coincident with it. This point
is returned to later.
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Figure 6. The director angle with respect to the axis of deformation (long axis of the sample) as a
function of the strain of the P-LCE sample. The dotted region is the same as Figure 5; in this region
the director rapidly reorients to align with the axis of deformation.

The apparent reduction of 〈P200〉 to values below 〈P400〉 is an interesting result as it
appears to violate Maier–Saupe theory, a mean-field treatment of the long-range intermolec-
ular potential which has had enormous success in describing liquid crystal systems [33].
The deviation from Maier–Saupe theory can be seen in Figure 7. Such a deviation can
be assumed to be attributed to the emergence of biaxial order and values for the biaxial
order parameters can be generated as follows [26]. The value of 〈P200〉 is used to generate
idealized values of 〈P400〉 in accordance with Maier–Saupe theory, then the biaxial order
parameters are allowed in the fit to the PRS data. Figure 8 shows the deduced behavior of
〈P220〉, 〈P420〉, and 〈P440〉, over the whole extension regime. The fourth-order terms, 〈P420〉
and 〈P440〉 change little; the former showing no particular trend and the latter remaining
close to zero up to a strain of εx = 0.85 ± 0.05, where a positive value is observed with a
maximum value at εx = 0.95 ± 0.05. 〈P220〉 shows the biggest variation, with significant
changes for strains of beginning at ε = 0.6, where the value of 〈P220〉 rapidly becomes
maximally negative, 〈P220〉 = 0.02 ± 0.005 at a strain of εx = 1.05 ± 0.05. The increasingly
negative value seen in 〈P220〉 is indicative of an increasing population of molecules aligned
with the strain axis [26]. In contrast, the fourth-order biaxial order parameters are expected
to drive a distribution of molecules aligned out of plane in the direction that the auxetic
response is observed [26].

It is clear that the emergence of biaxial order is inferred by the PRS analysis both for
this system and for that previously studied [26], where calculation of the orientational
distribution function showed a significant population of out of plane mesogens, suggesting
a mechanism for the auxetic response. However, the values determined for the biaxial
order parameters using this approach are relative [26] rather than specific. This means that
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it is possible that the magnitudes of the values generated may be unrealistic; additional
proof is required that the size of the biaxial response is sufficiently large to explain the
strong auxetic response seen in these materials. This point is considered in the next section
of the paper.
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Figure 7. The values of 〈P400〉 plotted as a function of 〈P200〉 compared to the theoretical prediction
of Maier–Saupe theory (red line). A clear deviation can be seen at higher strain (lower 〈P200〉 and
〈P400〉 values).
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Figure 8. The biaxial order parameters 〈P220〉 (grey squares), 〈P420〉 (red circles) and 〈P440〉 (blue
triangles) as a function of strain. The dotted line denotes where the maximum value of 〈P440〉 is seen,
a point that coincides with the MFT of this material.

3.3. Conoscopy

The PRS data for the P-LCE clearly suggests that biaxiality is induced in the system
through the application of a strain perpendicular to the initial nematic director. Conoscopy
can be used to provide a direct insight into the quality of the uniaxial alignment of the
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(initially) homeotropic LCE as well as allowing a direct observation of biaxiality [30] if it is
induced in the system via the application of strain. Conoscopy was performed as described
in Section 2.5 on the H-LCE sample, Figure 9.
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Figure 9. Conoscopic patterns for the homeotropically aligned LCE. The initial nematic director
is aligned along the y-axis and strains are applied along the x-axis with a polarizer and analyzer
aligned along the x- and z-axis respectively. The development of two melatopes with applied strain
(increasing strain from the left to the right of the figure) is indicative of biaxiality within the system.
The bottom row shows grey-scaled images of the top row.

Figure 9 shows clearly that the unstrained, homeotropically aligned LCE has uniaxial
symmetry with zero pre-tilt as evidence by a dark symmetric “Maltese cross” pattern in the
center of the conoscopic image [33]. On the application of a strain of εx = 0.22 ± 0.06 along
the x-axis, the LCE sample has clearly become biaxial as evidenced by the two melatopes in
the image [34] which suggest that the sample is being investigated perpendicular to the
acute bisectrix [35]. On increasing strain, the melatopes separate further apart, and higher
order isochromes become visible, both of which are indicative of an increasing difference
in the retardation of polarized light traveling through the sample. From Figure 9, it can
be seen that, in the geometry required for conoscopic investigation of the homeotropic
LCE, the distance the light travels through the sample always decreases with applied
strain (i.e., light is travelling along y which shows non-auxetic behavior). Therefore, the
greater separation of the melatopes and the increase in the order of isochromes visible in
the conoscopic figures are both indicative of an increase in biaxiality within this system
upon increasing applied strain.

To confirm the optical sign of the biaxial ordering in the LCE, conoscopic observations
were performed on a H-LCE sample strained at 45◦ to the crossed-polarizers. The sample
is strained in the x-direction and the optical sign is determined through the insertion of a λ
wave-plate parallel to the melatopes (NW-SE position), see Figure 10. Figure 10 reveals that
the unstrained H-LCE is a positive uniaxial system due to the existence of blue coloration
along the direction of the λ wave plate (NW-SE) and yellow coloration perpendicular to it.
Even at the very low strain value of ε = 0.05 ± 0.03, there is some separation of the isogyres
indicating that biaxiality is induced with a very low or no threshold strain. The insertion
of a λ wave-plate results in no yellow coloration between the isogyres (possibly due to
the small separation between them); however, blue coloration is observed on the outside
of the isogyres thus confirming a (small) positive biaxial orientation of the H-LCE. For
strains greater than ε = 0.23 ± 0.03, the yellow coloration between the two isogyres of the
conoscopic figures and blue coloration on the outside edge of the isogyres confirms that
the system is biaxial with a positive optical sign.
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Figure 10. Conoscopic figures for the homeotropically aligned LCE strained at 45◦ to the crossed-
polarizers. The top and bottom rows show the conoscopic images without and with a λ-wave-plate
inserted, respectively.

The information obtained from conoscopy can be considered together with the mechan-
ical behavior of the LCE and the order parameters determined via Raman spectroscopy to
give a new insight into the MFT. Up to strains of εx = 0.71 ± 0.06, melatopes are visible in
the conoscopic figures; however, at εx = 1.37 ± 0.05 the melatopes are no longer visible. It is
interesting to note that εx = 1.37 ± 0.05 is beyond the MFT, i.e., the point where the nematic
director apparently rotates. The lack of melatopes in the conoscopic figure would be consistent
with a rotation of the nematic director and subsequent collapse of biaxial order. However,
the PRS data show that the biaxial order does not collapse discontinuously, so a more likely
explanation is that the melatopes are beyond the maximum aperture of the conoscopic experi-
ment and the system remains biaxial. This view is supported by the conoscopic images in
Figure 10, which describe a system with growing refractive index, nx, in the direction of strain,
indicative of increasing biaxiality within the system. Consequently, the current model of the
MFT as a sudden director rotation to a planar uniaxial conformation [26,36,37] can be seen
to be inaccurate and the features of the MFT can instead be explained by the continuously
increasing biaxiality along the strain direction. Assuming that the refractive index in the strain
direction continues to increase with increasing strain up to the point at which nx > ny > nz,
there would be a change from an optically positive to an optically negative biaxial system. The
‘director reorientation’ associated with the MFT should therefore be thought of as an apparent
rotation; it is better described as the point at which the biaxial indicatrix of the refractive index
switches from optically positive to optically negative, i.e., where the minor and major axis of
the biaxial nematic directors switch.

This interpretation of the MFT changes our understanding and is entirely consistent
with previous findings [24] where a ‘black state’ was observed at the MFT strain in a
planar aligned LCE; the transition from an optically positive to negative biaxial system
is necessarily through zero (the black state). Further, evidence for this new explanation
of the MFT is that if it was in the case that biaxial order collapsed at the MFT, one would
expect a return to non-auxetic behavior. This is because biaxiality is implicit in the auxetic
response, with a population of molecules in the direction of the auxetic response [27]. Thus,
we suggest that the MFT is not at all analogous to a field-induced Frèedericksz transition
but is instead an optical effect that results from the growth of biaxiality along the strain
direction with the apparent director reorientation occurring when the optical sign of the
biaxial indicatrix changes from positive to negative. Such a suggestion is consistent with
all previous findings via cross-polarized microscopy, Raman spectroscopy, and the current
model for the auxetic response, namely, out-of-plane rotation of the mesogenic units [27].

It is worth making one further observation regarding the ‘MFT’ and the auxetic
response of LCEs. In our previous study [26] on a chemically similar LCE, the MFT
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occurred at ε ∼ 1.16 and the auxetic threshold was at ε ∼ 1.00, i.e., the two thresholds were
approximately coincident. In the LCE described in this paper, the MFT is found to occur at
ε ∼ 1.0, while the auxetic threshold is at ε ∼ 0.55−0.60. Therefore, it appears that while the
optical signature of the MFT is the result of a biaxial response and it is therefore implicit to
auxetic behavior as we previously suggested [27], the strain at which the MFT occurs need
not be directly related to the auxetic threshold.

4. Conclusions

Our motivation for this paper was threefold. Firstly, we aimed to successfully fabricate
a high-quality homeotropically aligned auxetic LCE sample with the help of an external
electric field and to demonstrate that the auxetic response would occur in the width rather
than thickness of the sample for this geometry. Secondly, we aimed to show analogous
behavior of this auxetic LCE to that described in previous reports [26], specifically the
emergence of biaxial order as an inherent feature of the auxetic response. Last but not least,
we wanted to experimentally prove the emergence of significant biaxiality for the auxetic
LCE during deformation via conoscopic observation of the homeotropic sample.

The POM figures of the sample, with their high contrast, show excellent, monodomain
planar and homeotropic alignment in the unstrained LCE samples. Both types of LCE
sample show an auxetic response with threshold strains in excellent agreement, with
0.56 ± 0.05 for the H-LCE and 0.58 ± 0.05 for the P-LCE. The two LCE samples have
very different aspect ratios (in the reference frame of the nematic director); however, the
onset and extent of the auxetic behavior in the H-LCE and P-LCE is essentially the same.
Therefore, we can conclude that (i) the auxetic response is not related to the sample aspect
ratio and (ii) that the auxetic response is related to the geometry of the applied strain with
respect to initial nematic director. The auxetic response of the H-LCE can be clearly and
directly visualized as a change in the width of the sample.

By measuring the order parameters for the P-LCE via PRS during deformation, the
deviation from Maier–Saupe theory was observed for 〈P200〉 and 〈P400〉 and the biaxial order
parameters 〈P220〉, 〈P420〉, and 〈P440〉, were deduced, suggesting the emergence of biaxiality
in the initially uniaxial system. The conoscopic images of the H-LCE directly confirm
the emergence and increase of biaxiality along the strain axis during the deformation,
consistent with the increase in magnitude of 〈P220〉 seen from PRS. We have therefore
confirmed unequivocally that the emergence of biaxiality is an intrinsic feature of the
auxetic response in nematic LCEs. The conoscopic figures reveal that biaxiality is induced
even at very small strain values (ε = 0.05± 0.03) and that for the LCE studied in this paper,
it is optically positive up to a strain of ε = 0.63± 0.03. Considering all of the data together
allow us to suggest that the MFT is mis-named and can be understood as a continuous
growth of biaxial order along the strain direction rather than a discontinuous rotation of a
nematic director. The ‘black state’, a state of zero-retardance seen in auxetic planar LCEs
deforming via the MFT can now be understood as the strain at which the refractive index
of the biaxial component matches the refractive index of initial alignment (i.e., nx = ny
in the reference frame selected herein). This interpretation of the MFT is both intuitive
(as a sudden collapse of biaxial order is unphysical) and consistent with the requirement
of biaxiality for an auxetic response due to out-of-plane rotations of mesogenic units [27].
Finally, we can conclude that auxetic LCEs under strain are one of very few examples of
biaxial nematic liquid crystals.
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