
1. Introduction
1.1. Background and Rationale

Peatlands are organic-rich wetlands that provide important ecosystem services at a range of spatial scales 
(Kimmel & Mander, 2010). Local hydrological setting is of central importance in determining the character-
istics and functions of these ecosystems (Siegel & Glaser, 2006). Peatlands are characterized by waterlogged, 
anoxic conditions that suppress microbial decomposition, causing carbon to accumulate slowly but persistently 
over thousands of years in the form of partially decomposed plant detritus (Yu et al., 2010). Peatlands cover less 
than 3% of the Earth's land surface (Xu et al., 2018b) yet they are thought to store between approximately 500 
and 600 Gt (5–6 × 10 17 g) of carbon (Müller & Joos, 2020; Page et al., 2011; Yu, 2011, 2012), equivalent to 
between approximately one sixth and one third of global soil carbon (Scharlemann et al., 2014). As well as being 
long-term carbon sinks, peatlands also emit greenhouse gases, particularly carbon dioxide (CO2) and methane. 
Peatland greenhouse gas budgets are highly sensitive to surface wetness, and even modest changes in water-table 
depths can cause peatlands to switch between being net sinks and sources of greenhouse gases when measured 
in CO2-equivalent units (Evans et al., 2021; Günther et al., 2020). In some locations, water that drains from peat 
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forms an important component of human drinking water supply (Xu et al., 2018a) and can sustain low flows in 
lower reaches of catchments (Branfireun & Roulet, 1998; Devito et al., 2017; Goodbrand et al., 2019; Meriö 
et al., 2019). The close connection between peatland wetness and ecosystem services has stimulated intensive 
research into peat hydrology, including peat hydraulic properties, which remain topical subjects (e.g., Glaser 
et al., 2021; Lennartz & Liu, 2019; McCarter et al., 2020; Menberu et al., 2021; Wang et al., 2021).

One of the most important peat hydraulic properties, and one of the most commonly measured, is saturated 
hydraulic conductivity, Ksat (dimensions of L T −1). Low Ksat is thought to play a central role in maintaining shal-
low water tables in peatlands by inhibiting lateral drainage (Ingram, 1982). As in any porous medium, peat Ksat 
is also relevant to unsaturated hydrological processes because it defines the upper limit for unsaturated hydraulic 
conductivity (e.g., van Genuchten, 1980). Peatland hydrological processes are complex, and water retention is 
governed by a number of interacting feedbacks between hydrophysical, ecological, and biogeochemical processes 
across a range of timescales (Siegel & Glaser, 1987). Many of these feedbacks are mediated through changes in 
peat hydrophysical properties, including Ksat (Waddington et al., 2015).

Peat Ksat generally declines with increasing depth (at least in the upper few decimeters), dry bulk density, and 
measures of the degree of peat humification such as the von Post hand-squeeze test (Päivänen, 1973). Fresh 
plant litter is commonly highly permeable but as it decomposes to form peat, pore spaces close and collapse 
and become increasingly disconnected. Strong vertical gradients are commonly observed in peat Ksat, which can 
decline by several orders of magnitude across the uppermost few decimeters of a peat profile (e.g., Bourgault 
et  al.,  2018; Clymo, 1992; Holden & Burt,  2003; McCarter et  al.,  2020; Menberu et  al.,  2021; Ronkanen & 
Kløve, 2005). Peat hydraulic properties can be affected by both natural and anthropogenic disturbances. Direct 
human alteration of peatlands, particularly drainage for peat extraction, or conversion to agriculture or forestry, 
causes rapid aeration and decomposition and increased compression, leading in turn to reduced Ksat (Prevost 
et al., 1997; Price, 2003). On the other hand, peatlands in which water tables have been artificially raised through 
deliberate or inadvertent blockage of downflow drainage structures can exhibit high Ksat that reflects open pore 
structures in partially buoyant peat (Moore et al., 2015). Wildfire has been shown to reduce near-surface Ksat 
(Holden et al., 2014), possibly due to large pores becoming clogged by ash (Mallik et al., 1984). Burning can also 
remove highly permeable, near-surface peat through combustion (Sherwood et al., 2013), particularly in sites 
that have undergone compound disturbances, in which wildfire follows another disturbance such as drainage, and 
which can enhance depth of burn (McCarter et al., 2021; Sherwood et al., 2013). Some studies have found peat 
Ksat to vary depending on surface microform type (e.g., hummocks, lawns, and hollows) at spatial scales of a few 
meters (e.g., Baird et al., 2016; Branham & Strack, 2014; Morris et al., 2015), a phenomenon that likely reflects 
the influence of peat floristic composition upon pore structure (McCarter et al., 2021). It is unclear whether Ksat 
also differs between peat trophic types, such as the distinction between wet, nutrient-rich, biodiverse fens and 
less-wet, nutrient-poor bogs. It has been postulated that climate exerts an independent control on Ksat, possibly 
through its influence on peat floristic composition (Branham & Strack, 2014) or the enlargement of pores in 
continental sites through physical mechanisms such as desiccation cracking in hot, dry summers and deep freez-
ing in winter.

Pedotransfer functions are statistical models used to infer hydraulic properties of sediments and soils from multi-
ple independent variables, particularly grain-size distribution, organic matter content, and dry bulk density. The 
use of such functions has proliferated in recent decades, in large part because they allow representations of porous 
media in hydrological models to be parameterized using simple, cheap measurements, without the need for direct 
measurements of hydraulic properties (e.g., Wösten et al., 2001). Pedotransfer functions developed for mineral 
soils are inapplicable to peat because grain-size distribution can rarely be defined, and organic matter content is 
usually close to 100%. However, equivalent schemes are beginning to be developed for peats, often based on the 
reanalysis of large secondary databases (e.g., Lennartz & Liu, 2019; Liu & Lennartz, 2019; Wang et al., 2021). 
These models are commonly simple in structure and employ few predictor variables, such as dry bulk density 
and/or macroporosity. Menberu et al. (2021) demonstrated that a simple model exhibited high explanatory power 
(r 2 = 0.74) for specific yield. However, statistical models developed from studies of large databases are consider-
ably less skillful for the estimation of peat Ksat, with r 2 typically in the range of 0.3–0.5 for most peat types (e.g., 
Lennartz & Liu, 2019; Liu & Lennartz, 2019; Liu et al., 2020; Wang et al., 2021). Studies of Ksat from individ-
ual peatlands indicate that much greater explanatory power can be achieved by using a combination of several 
independent variables, including continuous covariates such as depth, dry bulk density, and measures of peat 
humification (e.g., Päivänen, 1973); and categorical factors such as distinctions between hummock and hollow 
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microforms (Branham & Strack, 2014; Morris et al., 2015, 2019). A wealth of published peat Ksat measurements 
exists and is accompanied by varying amounts of other data that could serve as predictor variables, presenting an 
opportunity to develop more skillful predictive equations that can be generalized beyond individual sites.

1.2. Aim and Objectives

We sought to use a meta-analysis of existing Ksat measurements from northern peats to develop skillful predictive 
equations. We addressed the following specific objectives:

1.  Compile a large database of peat Ksat measurements and accompanying measurements that can be used as 
independent variables in a statistical analysis.

2.  Develop models that can be applied at a range of spatial scales to predict unknown values of peat Ksat, from 
simpler, cheaper measurements.

3.  Evaluate the ability of the predictive models to simulate data points not used in their construction, as an esti-
mate of their reliability in predicting unknown values of Ksat.

2. Methods
2.1. Methodological Overview

We compiled a database of both published and unpublished Ksat measurements from northern peatlands (i.e., 
those north of 45°N). For each Ksat measurement, we also collected as many accompanying data as were availa-
ble, both continuous measurements and categorical observations, which might be used as independent predictors. 
We fitted four linear models to describe log10-transformed Ksat based on a selection of independent variables 
chosen objectively and judiciously in an effort to maximize model performance without overfitting. The four 
models each exclude certain combinations of candidate independent variables to mimic situations in which some 
field observations are unavailable or where they are inapplicable at the spatial scale under consideration. We 
assessed the performance of each model using a cross-validated variant of r 2 designed to test the ability of a 
model to predict unseen data points, and which is more conservative than standard r 2.

2.2. Dependent Variable: Saturated Hydraulic Conductivity

We constructed a database of Ksat measurements from 2,507 distinct peat samples. Each record in the database 
represents a single peat sample for which Ksat has been determined, and also includes data fields to represent 
additional variables (described below) that accompany that Ksat measurement. Our data set represents 47 distinct 
study sites across boreal and temperate-humid zones of Europe and North America (Figure 1). We excluded trop-
ical, subtropical, and southern-hemisphere peatlands, where measurements of hydraulic properties are compar-
atively sparse. We also omitted Russian peatlands, where data are less readily available. Our data set also omits 
permafrost peatlands of the Arctic and Subarctic, in which hydrological processes are complicated by the pres-
ence of permanent ice lenses and a seasonally variable frost table (Gamayunov et al., 1990; Nagare et al., 2012). 
Some of the 47 study locations are pristine peatlands, while others have undergone some level of disturbance. 
We omitted data from locations where the depth distributions of Ksat and other peat properties were likely to have 
been severely disrupted by direct human alterations, such as the construction of reclaimed peatlands in former 
resource-extraction sites, and areas of peatlands that had undergone historical peat extraction.

Of the 2,507 Ksat measurements, 2,390 are from our own published or unpublished data and were supplied directly 
by the authors based on original measurements. We digitized an additional 95 Ksat measurements from published 
graphs, using the WebPlotDigitizer online tool (Rohatgi, 2020) and transcribed a further 22 data points from 
published tables of raw data. We converted the units of all Ksat measurements to m s −1.

The Ksat determinations were made using a variety of measurement techniques, including in situ determina-
tions from piezometer slug tests and tension-disc infiltrometers; and a variety of laboratory methods, including 
the modified cube method (Beckwith et al., 2003) and permeameters. In situ measurements from tension-disc 
infiltrometers and piezometer slug tests give an estimate of Ksat that represents 3-dimensional flow into or out 
of the instrument in response to a head gradient; whereas laboratory methods typically provide directional meas-
urements of horizontal (Kh) or vertical (Kv) hydraulic conductivity. For some samples, only either Kh or Kv were  
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available; in these instances, we took this single, directional measurement to be representative of Ksat. For samples 
which had both Kh measured in a single horizontal axis and Kv, we took the geometric mean of Kh and Kv to be 
representative of overall Ksat. In a small number of samples, for which Kh had been measured in two horizontal 
axes in addition to a single measurement of Kv (i.e., Cunliffe et al., 2013), we took the geometric mean of the three 
values. Replicate determinations of Ksat (or Kh and/or Kv) were available for some samples; in these cases, we 
took the median of the replicates to be representative of that sample and discarded the individual replicate meas-
urements. Where replicate Kh and Kv determinations were available, we first calculated the between-replicate 
medians of Kh and Kv separately, before calculating the geometric mean between the two directions.

Figure 1. Maps of North America (upper panel) and Europe (lower panel) showing distribution of study sites represented in 
our database of peat Ksat measurements. Further details of study sites are available in Supporting Information S1.
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2.3. Continuous Covariates

Where available, we recorded three continuous covariates for each Ksat record: sample midpoint depth relative 
to the ground surface, von Post score as an estimate of degree of humification, and peat dry bulk density. For in 
situ piezometer slug-test estimates of Ksat, we took the midpoint depth to be the midpoint depth of the piezometer 
intake below the ground surface. Von Post scores occupy an ordinal scale between H1 (fresh, undecomposed 
plant litter) and H10 (black, amorphous, highly decomposed organic matter) and are therefore strictly not contin-
uous. However, following the rationale of Morris et al. (2019), we treated von Post as a continuous predictor for 
the purposes of our statistical modeling. We converted all depths into units of m and all dry bulk density meas-
urements into g cm −3. Midpoint depth was available for all 2,507 samples in our database. However, the two other 
continuous covariates are unavailable for a large proportion of records. Missing values for dry bulk density or von 
Post score prevent those records from being used to fit models that include those variables as predictors, placing 
important limits on sample sizes for models that employ one or both of these covariates (see Section 2.7, below).

2.4. Categorical Factors and Harmonization

For all records in the database, we used original field notes and/or published descriptions to assign values for five 
categorical variables that describe the immediate vicinity of the sampling location or the broader characteristics 
of the site. These factors describe the surface microform type (e.g., hummock and hollow) from which the Ksat 
determination was made; the trophic type of the wider study site (e.g., blanket peat, raised bog, and poor fen); the 
nature of any disturbance such as human alterations to water tables or recent burning; whether the sampling loca-
tion was forested or open; and the measurement method used to determine Ksat. Where insufficient information 
was available to identify a sample's status confidently with respect to one or more of these categorical factors, 
we assigned a value of “unspecified” rather than a blank. Doing so meant that, unlike for missing values of the 
continuous covariates described above, missing data for one or more categorical factors do not prevent records 
from being used to fit our models.

The categorical data were originally recorded by a variety of operators from different research groups and 
projects, according to different protocols and with different levels of detail. We harmonized the levels of each 
category according to a common set of descriptors to allow direct comparison between records. In many cases 
this harmonization involved removing detail from the original data and grouping records into simpler classifi-
cations. For example, where the original records indicated that samples had been taken from a “low hummock” 
microform type, we grouped these into a single microform category along with “hummocks.” Similarly, “low 
lawns” and “wet lawns” were combined into a single category along with “lawns.” A large number of records had 
no microform specified. In most cases this reflects an absence of clear hummock-hollow topography in the field. 
In total, the harmonized microform factor has four levels: hummock, lawn, hollow, and unspecified. It is unclear 
whether surface microforms persist for extended periods or whether they change during the course of peatland 
development (cf. Koutaniemi, 1999; Swanson & Grigal, 1988). Surface microform type may or may not, there-
fore, be a good descriptor of the floristic composition of subsurface peat. Ideally, we would have used a descriptor 
of peat type that relates directly to each Ksat measurement, rather than surface microform, but information about 
peat type was unavailable for many samples. However, the large majority of our samples are from shallow peat 
layers where surface microform type and hydraulic properties seem likely to be most closely linked to subsurface 
peat type (cf. Baird et al., 2016): 87% of our data are from within 1 m of the surface, while 60% are no deeper than 
50 cm. We proceeded with the surface microform factor and allowed our statistical modeling (described below) 
to indicate whether or not it improves estimates of Ksat.

We harmonized descriptions of peatland trophic type into six levels: blanket peat, raised bog, poor fen, moderate 
fen, rich fen, and unspecified. We used the scheme described by Rydin and Jeglum (2013) to distinguish between 
poor, moderate, and rich fens. The only records for which trophic type is unspecified are the ones we digitized 
from the literature and where the original site descriptions do not specify trophic type, vegetation community, nor 
sufficient precision in spatial coordinates for us to establish the trophic type of the sampling location ourselves.

The original site descriptions that we collated included a wide variety of (sometimes subtly) different descriptions 
of human and natural disturbance. We harmonized these descriptions into seven categories, each of which might 
reasonably be expected to exert a distinct effect upon peat Ksat; and an eighth, unspecified category. Where no 
obvious human or natural disturbances seemed likely to have affected Ksat, we described the record as representing 
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pristine peat. We considered sites to be burnt where obvious surface burn scars could be identified or where 
historical records indicate substantial fires in recent decades. A large number of samples come from undrained, 
largely intact locations in sites which had experienced drainage or other human-induced drying at the margin 
of the peat or at other distant locations, which may have affected the characteristics of the peat at the sampling 
location through long-range water table drawdown and wasting; we refer to these samples as having experienced 
marginal drainage. Where water tables had been lowered in the immediate vicinity of the sampling location, we 
refer to these samples as representing peat that has been dried; similarly, a small number of samples come from 
locations where water tables had been artificially raised, and we refer to these samples as wetted. Some Finnish 
peatlands represented in our database have received treated municipal wastewater or runoff from land-use prac-
tices such as forestry and agriculture, as part of efforts to retain nutrients and suspended solids; we refer to these 
sites as having been subject to water treatment. Finally, some samples represent peat that has experienced more 
than one of these disturbances, which we refer to as compound disturbance.

In all cases we recorded the measurement method used to estimate Ksat. We grouped measurement methods into 
six harmonized categories: piezometer; modified cube method; tension-disc infiltrometer; multistep outflow; 
permeameter, including a variety of designs and laboratory setups; and the KSAT instrument (METER Group, 
Inc., Pullman, Washington, USA). We did not distinguish between rising and falling head tests in piezometers or 
permeameters because in some cases this information was unavailable.

Finally, we recorded whether the peatland in the immediate vicinity of the sampling point was forested or open. 
In a small number of cases where the presence or absence of tree cover could not be determined unambiguously 
from reports of secondary data sets, we recorded a value of unspecified.

2.5. Climate Data: The Kerner Oceanity Index

For each of the 47 study locations represented in the database, we extracted gridded mean monthly temperature 
data from the CRU TS 4.04 database (Harris et al., 2020), averaged for the period 1961–1990. These gridded 
climate data have a spatial resolution of 0.5° latitude × 0.5° longitude. From the monthly temperature data, we 
derived a bioclimate index that can be used to represent continentality at each site, the Kerner Oceanity Index 
(KOI):

KOI = 100
𝑇𝑇oct − 𝑇𝑇apr

𝑇𝑇max − 𝑇𝑇min

, (1)

where Toct and Tapr are monthly average temperatures (°C) during October and April, respectively; and Tmax 
and Tmin are the average temperatures (°C) of the hottest and coldest months, respectively. Originally proposed 
by Kerner (1905), the index is predicated upon the greater thermal inertia of oceanic locations leading to cool 
springs and warm autumns; and the opposite in dry, continental locations where thermal inertia is lower. In mid 
to high latitudes of the northern hemisphere, high values of KOI indicate oceanic climates, while low values 
indicate continental climates. Although KOI varies on a continuous scale between −100 and 100, all Ksat meas-
urements from a single site will possess identical values of KOI, while almost every site possesses a unique value 
of KOI. This means that KOI is quasi-continuous in our analysis and is aliased with the identity of each study 
location. To avoid problems relating to unequal variance, we grouped KOI values into ordinal bands, thereby 
converting this variable into a categorical predictor. Following Stonevicius et al.  (2018), we categorized KOI 
into three ordinal levels: continental and subcontinental (KOI < 10), oceanic (10 ≤ KOI < 20), and hyperoceanic 
(KOI ≥ 20). Our climatic characterization of each study site represents modern conditions, yet the deepest peat 
will have formed several millennia ago, during which time climate will inevitably have changed. However, Holo-
cene climate change in northern latitudes is thought to have been modest (e.g., Marcott et al., 2013) compared 
to the much more dramatic changes during the preceding deglaciation of the northern hemisphere (e.g., Shakun 
et al., 2012). As such, we assume that our modern climate data are sufficient in most cases to provide an approx-
imation of sites that have experienced continental, oceanic, and hyperoceanic climates.

2.6. Variable Transformations

Preliminary analysis of the database indicated that the Ksat data vary across several orders of magnitude, are 
highly positively skewed, and exhibit highly nonlinear, heteroscedastic relationships to the three continuous 
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predictors. We log10-transformed Ksat as well as midpoint depth and dry bulk density, which remedied these 
problems (Figures 2a and 2b). We did not transform von Post scores, which already exhibit a linear relationship to 
log10(Ksat) (Figure 2c). A debate exists as to whether it is preferable to fit nonlinear models to untransformed data 
in such situations (cf. Xiao et al., 2011; Tian et al., 2013). However, preliminary experimentation with nonlinear 
models indicated that they were numerically intractable for most combinations of our predictor variables, mainly 
because parameter estimates failed to converge. We discarded the possibility of using nonlinear models and 
proceeded to use linear models fitted to log10-transformed data.

Figure 2. Graphical summary of the Ksat database. Panels (a and b) are hexagonally binned point-density plots; count indicates the number of data points in each 
hexagonal bin. In panels (c–i), box widths are proportional to the square root of sample size. In panel (i), TDI is tension-disc infiltrometer; Piezo. is piezometer; Mod. 
cube is modified cube; and MSO is the multistep outflow technique. See Section 2 and Table 1 for further information on variables.
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2.7. Variable Selection and Model Calibration

We fitted four different linear models to predict log10(Ksat). We began by specifying a candidate pool of independ-
ent variables for each model that were to be considered for inclusion as fixed effects. For each model we omitted 
some independent variables from the candidate pool to reflect that model's intended application. Seeking an 
appropriate balance between predictive skill and model parsimony, we then used an iterative process, described 
below, to identify which variables from the candidate pool to include in the final model specification and which 
could be omitted.

Model 1 is intended to provide the most skillful predictions possible, for use in situations when all three contin-
uous covariates—log10(depth), log10(dry bulk density), and von Post score—are available. All three are included 
in the candidate pool, but doing so comes at the cost of replication. All 2,507 records in our database possess 
values of midpoint depth but only 453 of those also possess both dry bulk density and von Post score, meaning 
that Model 1 utilizes just 18% of the records in the database (see Table 1 for further details). We made all cate-
gorical factors available to the candidate pool for Model 1, apart from the measurement method used to determine 
Ksat, which we included only as a random effect. We intended for our models to predict unknown values of Ksat, a 
situation in which the measurement method cannot be defined. At the same time, we sought to remove from our 
models any artifacts associated with measurement method, so that the fixed effects parameters in our models are 
free of methodological bias. Setting measurement method as a random-effect intercept means that a portion of 
the variance in log10(Ksat) is attributed to measurement method before the fixed effects of interest are estimated. 
Because measurement method is included only as a random effect, and therefore has no parameter estimates, we 
do not consider it further.

Model 2 is intended to allow rapid estimation of Ksat from the simplest predictor variables that can be measured 
entirely in the field, without the need for laboratory work. Model 2 therefore omits log10(dry bulk density) from 
the candidate pool because it requires laboratory drying; but includes both log10(depth) and von Post score, and all 
categorical factors apart from measurement method, which is again included as a random effect. The requirement 
for von Post score means that Model 2 utilizes 762 records (see Table 1 for further details).

Model 3 takes a contrasting approach to that of Model 1, seeking to maximize replication by omitting log10(dry 
bulk density) and von Post score, leaving log10(depth) as the only continuous covariate. Doing so allows Model 
3 to utilize all 2,507 records. As above, the candidate variable pool for Model 3 includes all categorical factors, 
apart from measurement method, which is again included as a random intercept. In Models 1, 2, and 3 we experi-
mented with the two-way fixed-effect interactions depth × disturbance and depth × microform. These interactions 
are intended to capture any differences in the depth profile of Ksat that occur in disturbed sites or beneath different 
microform types.

Model 4 is intended for prediction of Ksat at larger spatial scales, such as in land surface scheme model tiles, 
where small-scale variables such as surface microform type or peatland trophic type cannot be defined. Despite 
their coarse horizontal resolution, land surface schemes commonly represent detailed depth-distributions of soil 
hydrophysical properties, so we included log10(depth) and log10(dry bulk density) in the candidate variable pool; 
we omitted von Post score, which is an operational variable not readily simulated by process-based land surface 
models. The requirement for dry bulk density means that Model 4 utilizes 883 records (see Table 1 for further 
details). We limited the categorical variables in the candidate pool to the two that apply at larger scales: KOI 
and the distinction between treed and open peatlands. We experimented with other categorical variables (meas-
urement method, disturbance, trophic type, and microform) as potential random effects, again to remove any 
confounding influence from estimates of parameter values for fixed effects. All four models include a fixed-effect 
intercept term.

Having established the initial pool of candidate variables for each model, we used an iterative procedure to 
identify those variables which could be omitted from the final model without causing a significant decrease in 
predictive skill. For each candidate variable in turn, we calculated the change in the corrected Akaike Information 
Criterion (AICc) (Hurvich & Tsai, 1989) between a linear mixed-effects model that includes the variable under 
consideration and an equivalent model that omits it. We also removed variables that caused other problems such 
as multicollinearity. We used the lmer function from the R (R Core Team, 2014) package lme4 (Bates et al., 2015) 
to fit all models. We treated the change in AICc as a Chi-squared statistic, with degrees of freedom equal to the 
change in the number of model parameters. If the removal of a variable caused a nonsignificant increase in AICc 
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(significance threshold α = 0.05) or a decrease, then we omitted it from the final model specification (lower 
AICc indicates better model performance). At each iteration we also calculated the generalized variance-inflation 
factor (GVIF) for each variable, using the vif function from the R package car (Fox & Weisberg, 2019), corrected 
for the number of degrees of freedom (df) in the case of categorical variables: 𝐴𝐴 GVIF

1

2𝑑𝑑𝑑𝑑 (Fox & Monette, 1992). 

We considered values of 𝐴𝐴 GVIF
1

2𝑑𝑑𝑑𝑑 greater than √5 to indicate that a variable causes an unacceptable level of 
multicollinearity, which can lead to unreliable parameter estimates, and omitted it from the final model. Finally, 

Variable Units Level

Number of observations

All data Model 1 Model 2 Model 3 Model 4

log10(depth) m – 2,507 453 762 2,507 883

log10(dry bulk density) g cm −3 – 883 453 – – 883

von Post score – – 762 453 762 – –

Microform – Unspecified 1,071 80 259 1,071 –

Hollow 266 71 94 266 –

Lawn 507 186 234 507 –

Hummock 663 116 175 663 –

Trophic type – Unspecified 34 26 26 34 –

Blanket peat 239 3 43 239 –

Raised bog 1,038 355 525 1,038 –

Poor fen 710 33 57 710 –

Moderate fen 306 11 23 306 –

Rich fen 180 25 88 180 –

Disturbance – Unspecified 8 – – – –

Compound disturbance 131 – – – –

Dried 520 – – – –

Marginal drainage 236 – – – –

Wetted 34 – – – –

Pristine 1,249 – – – –

Burnt 74 – – – –

Water treatment 255 – – – –

Treed – Unspecified 46 – – – –

Open 1,643 – – – –

Forested 818 – – – –

Measurement method – Tension-disc infiltrometer 120 – – 120 –

Piezometer 1,354 108 340 1,354 144

Modified cube 560 262 284 560 408

Multistep outflow 115 – – 115 115

Permeameter 153 10 52 153 107

Ksat instrument 205 73 86 205 109

Kerner oceanity index – Continental and subcontinental 1,248 367 490 1,248 608

Oceanic 766 8 58 766 136

Hyperoceanic 493 78 214 493 139

Table 1 
Summary of Independent Variables, Including Units of Continuous Covariates Before Transformation, and Levels Within 
Categorical Factors
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we  compared parameter estimates between each iteration of model fitting, and between the four models, to check 
for any other indications of potential problems, such as instability of parameter values and/or directions.

Given the size of our data set and its geographic extent, it might have been possible to develop separate, regional 
models of Ksat for different locations. However, we sought to establish generalizable models of peat Ksat that are 
independent of geographic location and which can be applied across the study domain (Europe and North Amer-
ica). For this reason, we not do present a regional analysis.

2.8. Model Validation and Performance Metrics

For each model we calculated the standard coefficient of determination, r 2, by regressing predicted values of 
log10(Ksat) on the observed values. In order to assess the likely skill of our models in predicting unknown Ksat 
values, we also calculated a cross-validated coefficient of determination, 𝐴𝐴 𝐴𝐴2cv , to assess performance when predict-
ing data points not used in model specification. We split the records in the database randomly into five subsets of 
approximately equal size. We combined four of the subsets into a training set which we used to fit a model. We 
then used that model to predict log10(Ksat) for the fifth (unseen) subset only, which acts as a validation set, and 
calculated standard r 2 by regressing predicted on observed values. We repeated this five times, each time omitting 
in turn one of the five subsets from the training set and using it instead as a validation set. We took the arithmetic 
mean of the five r 2 values to give 𝐴𝐴 𝐴𝐴2cv . A large discrepancy between r 2 and 𝐴𝐴 𝐴𝐴2cv can indicate that parameter estimates 
are sensitive to a small number of data points, meaning that predictions made using the model may be unreliable 
(Shmueli, 2010). Final parameter estimates and p-values for all models are calculated from linear models fitted 
to the full data sets, not subsets.

Coefficients of determination as described above do not give a full picture of model performance. High r 2 indi-
cates only that a high proportion of variance in the predicted values is explained by observed values; it gives 
no indication of whether predicted values agree with observed values. Models in which the linear relationship 
between predicted and observed values differs from the 1:1 line of perfect agreement are said to exhibit bias. 
Using the CCC function from the R package DescTools (Signorell et al., 2021), we calculated Lin's concordance 
correlation coefficient (ρc) to assess agreement between the linear relationship between predicted and observed 
values, and the 1:1 line, as a measure of model bias. Although ρc can also be used as a measure of model fit, we 
use it primarily to indicate bias. Values of ρc range between −1 and 1; values close to 1 indicate perfect concord-
ance (no bias); values close to 0 indicate no concordance; and values close to −1 indicate perfect discordance. 
See Lin (1989) for further details.

3. Results
3.1. Database Characteristics

Our measurements of Ksat vary across nine orders of magnitude, with the highest value of 1.309 × 10 −1 m s −1 
from a poor fen in the rock barrens of the Boreal Shield, in Ontario, Canada, and the lowest, 1.310 × 10 −10 m s −1, 
from the Moor House blanket peat complex in the North Pennines, UK. A large majority of samples are from the 
uppermost meter of peat, with conspicuous clusters of measurements at depths of approximately 0.3, 0.5, and 
1.0 m (Figure 2a). Only 20 measurements are from 3 m or more below the peat surface; the three deepest samples 
in the database, 6 m below the surface, are all piezometer slug tests from raised bogs in the United Kingdom. All 
10 categories of the von Post scale are represented in the database, most of them approximately evenly so. The 
exceptions to this are the least humified category, H1, which only appears in 16 records; and the most humified, 
H10, which appears only five times (Figure 2c). Dry bulk density ranges between 0.01 and 0.30 g cm −3, with 
a median of 0.09 g cm −3 (Figure 2b). More than 40% of the database, or 1,071 records, have an unspecified 
value for the categorical microform factor. The large majority of these represent peatlands that lack clear surface 
microtopography, meaning that hummocks, lawns, and hollows cannot be identified, rather than an absence of 
field observations. The unspecified categories make up relatively small proportions of the categorical factors that 
represent tree cover, trophic type, and disturbance.

With multiple independent variables, bivariate plots cannot convey independence of any apparent effect from 
other predictors. Nonetheless, the scatterplots and boxplots in Figure  2 suggest some potentially important 
trends in the database, which we are able to test within our formal modeling framework and which we report in 
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subsequent sections. In particular, Ksat appears to be negatively related to log10(depth), log10(dry bulk density), von 
Post score, and increasing oceanity. Figure 2 also suggests the possibility of important differences in log10(Ksat)  
according to peatland trophic type, KOI, and levels of disturbance.

3.2. Variable Selection

The effects of the continuous and categorical predictors are qualitatively similar in all four models, with log10(Ksat)  
decreasing strongly and significantly with increasing log10(depth) and—in models that include them—von Post 
and log10(dry bulk density) (p < 0.001) (Tables S1–S4 in Supporting Information S1). Depth, dry bulk density, 
and von Post score are highly influential upon model performance; their omission causes large, significant 
increases in AICc (p < 0.001 in all cases) and large reductions in 𝐴𝐴 𝐴𝐴2cv .

Models 1, 2, and 3, which include categorical factors to represent local-scale site characteristics, all predict that 
log10(Ksat) increases almost monotonically along the trophic gradient from ombrotrophic to minerotrophic peat. 
Fitted parameters indicate that blanket peat consistently exhibits the lowest log10(Ksat), followed by raised bog 
peat and then poor fen peat. Depending on the model, either moderate fens or rich fens have the highest log10(Ksat).  
Sample sizes in some models are small for some of these categories. In particular, blanket peat (n = 3) and  
moderate fens (n = 11) are underrepresented in Model 1 and those parameter estimates should be regarded with 
caution. However, Model 3, in which all trophic types are well represented by large samples, predicts a monotonic 
increase in log10(Ksat) along the trophic gradient, with the largest parameter estimate belonging to rich fens. In 
Model 3, the difference in parameter estimates between blanket peat and rich fens is 2.042, equivalent to more 
than two orders of magnitude difference in Ksat on its original, untransformed scale.

All three models that include local-scale variables (Models 1, 2, and 3) also show a common effect of microform, 
with log10(Ksat) consistently and significantly lower in lawn peat than in hummocks or hollows (Tables S1–S4 in 
Supporting Information S1). Parameter estimates for lawns, which occupy an intermediate position with respect 
to water-table depth, are typically close to zero; only in Model 2 is the parameter for lawns significantly differ-
ent from the reference category (unspecified microform). In contrast, the parameter estimates for peat beneath 
both hummocks and hollows are consistently and significantly greater than lawns (Tables S1–S4 in Supporting 
Information S1). The size of this difference in Ksat on its original, untransformed scale is approximately an order 
of magnitude in Model 1 and about half that in Models 2 and 3. All levels of the microform factor are well 
represented in all models; even the smallest sample, hollows, is represented by 71 records in Model 1, giving us 
confidence in this finding of low Ksat in lawn peat.

All four models include the climate index KOI, which provides a highly significant improvement in model perfor-
mance according to changes in both AICc (p < 0.001) and 𝐴𝐴 𝐴𝐴2cv . Parameter estimates for KOI indicate that log10(Ksat)  
is significantly lower in hyperoceanic sites than in continental and subcontinental sites (see Tables S1–S4 in 
Supporting Information S1). The value of the parameter for hyperoceanic sites is large and negative in Models 
1 (−1.451) and 4 (−1.498) (p < 0.001 in both cases); the absolute values are smaller in Models 2 (−0.666) and 
3 (−0.342), albeit still highly significant (p < 0.005). Parameter estimates for oceanic sites are not significantly 
different from the reference category, continental, and subcontinental sites, in any of the four models.

All four models include a random intercept for measurement method, which led to significant improvements in 
AICc. As well as measurement method, Model 3 also includes a random intercept for disturbance, which led to 
a significant improvement in AICc. Model 4 includes random intercepts for measurement method and the two 
categorical variables that could not be included as fixed effects because of their small spatial scale: microform 
and trophic type.

During the iterative model-specification process, it became apparent that the categorical factors representing 
disturbance and tree cover exhibited confounding effects upon other variables, so we omitted them as fixed effects 
from all models. For some models, inclusion of one or both of these factors led to a significant improvement in 
model performance according to change in AICc. However, in all models, most levels of the disturbance factor 
had no significant independent effect upon log10(Ksat) compared to pristine sites. The significance of each level 
of disturbance—or the lack thereof—and even the direction of their effects, were highly inconsistent between 
models. The effect of tree cover upon log10(Ksat) was also inconsistent between models, with some models indi-
cating that tree cover increases log10(Ksat) and others indicating a decrease. We took these conflicting, inconsist-
ent results to indicate that disturbance and tree cover are likely to represent over-fitted variables in our models. 
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Because our primary aim is to develop models that can be used to predict unknown values of Ksat, we deemed 
it prudent to omit these variables in the interests of protecting model generality. The omission of disturbance 
and tree cover typically caused only small decreases in 𝐴𝐴 𝐴𝐴2cv . The fixed-effect interactions depth × disturbance 
and depth × microform both exhibited high GVIF values in Models 1, 2, and 3, indicating problematic levels of 
correlation with other predictors, so none of the final models includes either of these interactions. After omitting 
these problematic variables, the remaining fixed effects are all highly consistent between models and their values 
and directions are stable.

3.3. Fitted Models

Model 1, which utilizes all covariates, is the most skillful of the three models, with r 2 = 0.764 and 𝐴𝐴 𝐴𝐴2cv  = 0.747. 
Model 1 has low bias, as indicated by a high value of Lin's concordance correlation coefficient, ρc = 0.865 (see 
also Table 2). The final specification of Model 1 includes fixed effects for depth, dry bulk density, von Post score, 
trophic type, KOI, and microform and a random intercept for measurement method. The final form of Model 1 
is as follows:

log10 (�sat ) = −7.522 − 1.124
(

log10(depth)
)

− 1.964
(

log10(dbd)
)

− 0.139(von Post) − 1.365(blanket) + 0.675(raised bog)

+ 0.866(poor fen) + 2.134(moderate fen) + 1.877(rich fen)

+ 0.068(oceanic) − 1.451(hyperoceanic) + 1.150(hollow)

+ 0.188(lawn) + 1.013(hummock), (2)

where depth is midpoint depth below the peatland surface (m); dbd is peat dry bulk density (g cm −3); von Post is 
von Post score expressed as an integer between 1 and 10 (dimensionless); blanket, raised bog, poor fen, moderate 
fen, and rich fen are dummy variables that can take binary values of either 0 or 1 to represent a site's trophic type 
(the reference category is unspecified trophic type); oceanic and hyperoceanic are dummy variables, used to 
represent local climatic conditions according to the KOI (see Section 2.5 for thresholds; the reference category 
is subcontinental climate); and hollow, lawn, and hummock are dummy variables used to represent local surface 
microform type (the reference category is unspecified microform type).

Model
Variables omitted from fixed-
effects candidate variable pool

Fixed effects included in final model 
specifications

Random intercepts included in 
final model specification n k

Model performance metrics

Continuous 
covariates Categorical factors AICc r 2𝐴𝐴 𝒓𝒓

2

𝐜𝐜𝐜𝐜
 ρc

1 Measurement method log10(depth)
log10(dbd)
von Post

Trophic type
Microform

Kerner oceanity index

Measurement method 453 14 1,050.57 0.764 0.747 0.865

2 Measurement method
log10(dbd)

log10(depth)
von Post

Trophic type
Microform

Kerner oceanity index

Measurement method 762 13 2,012.63 0.656 0.640 0.804

3 Measurement method
von Post

log10(dbd)

log10(depth) Trophic type
Microform

Kerner oceanity index

Measurement method
Disturbance

2,507 12 7,203.17 0.529 0.522 0.667

4 Measurement method
von Post

Microform
Trophic type
Disturbance

log10(depth)
log10(dbd)

Kerner oceanity index Measurement method
Trophic type
Microform

883 5 2,172.96 0.478 0.482 0.665

Note. Random effects are accounted for when estimating fixed-effect parameters but do not have parameter estimates themselves; dbd is peat dry bulk density; n is the 
number of records used in model fitting; k is the number of fitted model parameters, including the fixed-effect intercept term; AICc is the corrected Akaike information 
criterion; r 2 is the coefficient of determination when regressing predicted on observed values using ordinary least squares regression; 𝐴𝐴 𝐴𝐴2cv is a cross-validated coefficient 
of determination, used to assess a model's ability to predict unknown data points; and ρc is Lin's concordance correlation coefficient, used to assess model bias. See 
Section 2 for full details.

Table 2 
Summary of the Four Linear Models Developed From Our Database
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Model 2, which omits dry bulk density in order to allow rapid field estimation of Ksat, is less skillful than Model 
1, with r 2 = 0.656 and 𝐴𝐴 𝐴𝐴2cv  = 0.640. Like Model 1, Model 2 also has low bias, with ρc = 0.804 (see also Table 2). 
The final form of Model 2 is as follows:

log10 (�sat ) = −4.957 − 0.784
(

log10(depth)
)

− 0.277(von Post)

− 0.222(blanket) + 0.700(raised bog) + 0.808(poor fen)

+ 2.316(moderate fen) + 1.813(rich fen) + 0.409(oceanic)

− 0.666(hyperoceanic) + 1.493(hollow) + 0.787(lawn)

+ 1.271(hummock), 

(3)

where variables are as specified for Equation 2.

Model 3, which utilizes all records in the database, is substantially less skillful than Models 1 and 2, with 
r 2 = 0.529 and 𝐴𝐴 𝐴𝐴2cv  = 0.522 and exhibits greater bias, with ρc = 0.667 (see also Table 2). The final form of Model 
3 omits dry bulk density and von Post score but is otherwise similar to Model 1:

log10 (�sat ) = −6.261 − 1.911
(

log10(depth)
)

− 1.039(blanket)

+ 0.359(raised bog) + 0.566(poor fen) + 0.968(moderate fen)

+ 1.003(rich fen) − 0.172(oceanic) − 0.342(hyperoceanic)

+ 0.517(hollow) − 0.034(lawn) + 0.538(hummock), 

(4)

where variables are as specified for Equation 2.

Figure 3. Graphical summary of model performance. Hexagonally binned point-density plots show fitted values of 
log10(Ksat) from each of the four models against measured values; count indicates the number of data points in each hexagonal 
bin. Broken black lines indicate the loci of perfect concordance between measured and modeled values; solid black lines 
represent linear best-fit relationships between measured and modeled values; 𝐴𝐴 𝐴𝐴2cv is a coefficient of determination, calculated 
by regressing modeled values on measured values, using a five-fold cross-validation to indicate predictive ability for unseen 
data points; and ρc is Lin's concordance correlation coefficient, used to assess model bias. See Section 2 for full details.
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Model 4 is marginally less skillful than Model 3, with r 2  =  0.478 and 
𝐴𝐴 𝐴𝐴2cv  = 0.482 and exhibits a similar level of bias, with ρc = 0.665 (see also 

Table 2). The final form of Model 4 is considerably simpler than the other 
three models, due to it including many fewer categorical levels, but its 
remaining parameter values are nonetheless similar:

log10(�sat ) = −7.210 − 1.087
(

log10(depth)
)

− 2.252
(

log10(dbd)
)

− 0.275(oceanic) − 1.498(hyperoceanic), 
(5)

where variables are as specified for Equation 2.

Tables S1–S4 in Supporting Information S1 contain further details of all four 
models.

All four models exhibit some degree of directional bias, which causes them to underestimate the highest values of 
log10(Ksat) and overestimate the lowest values. This can be seen in Figure 3 as a difference in slope between the line of 
perfect concordance and the best-fit line between modeled and measured values of log10(Ksat). The magnitude of this 
bias is low in Models 1 and 2, as indicated by the high ρc values, but is more pronounced in Models 3 and 4. Bias in all 
models passes through zero for intermediate values of Ksat, between approximately 10 −5 and 10 −4 m s −1.

4. Discussion
Some of our findings, particularly those relating to the roles of the three continuous covariates, are largely unsur-
prising, showing that peat Ksat declines strongly and nonlinearly with increasing depth, degree of decomposition, 
and dry bulk density. These findings are in broad agreement with numerous previous observational studies from 
individual sites, the data from many of which are included in our database (e.g., Branham & Strack, 2014; Morris 
et al., 2019; Päivänen, 1973). Increasing dry bulk density is related to the constriction and closure of pores due 
to mechanical compaction and collapse (Clymo, 1992; Schlotzhauer & Price, 1999); while increasing levels of 
decomposition are associated with increasingly disconnected pores due to the biological breakdown of the peat 
matrix, particularly if also accompanied by compression (McCarter et al., 2020). Both dry bulk density and degree 
of decomposition typically increase with depth below the surface (McCarter et al., 2020; Morris et al., 2019), 
meaning that these three covariates are all positively correlated with one another (Figure 2, Table 3). Nonetheless, 
consistently low GVIF values for all three covariates indicate that each exerts an important independent control 
upon log10(Ksat), and that any multicollinearity is not so great as to reduce confidence in parameter estimates. 
During the specification of all models, removal of log10(depth) led to a strong and significant decrease in model 
performance as measured by change in AICc, and led to important reductions in 𝐴𝐴 𝐴𝐴2cv . For the pragmatic purposes 
of predicting Ksat, it seems that the inclusion of log10(depth) leads to an increase in accuracy, even in Model 1 
which also includes both log10(dry bulk density) and von Post score.

The effect of KOI, which is manifest as an increase in Ksat in more continental sites, may be attributable to a number 
of possible mechanisms. One plausible explanation is the development of macropores in continental peat due to 
greater depths of freezing during winter, although the pore-scale controls on peat hydraulic properties in cold envi-
ronments are poorly understood (Hayashi, 2013; McCarter et al., 2020). Branham and Strack (2014) suggested that 
characteristic differences in peat floristic composition between continental and maritime sites may affect pore struc-
tures and hydraulic properties. Liu and Lennartz (2019) showed that woody peat has a higher Ksat than Sphagnum 
peat of comparable dry bulk density, while Crockett et al. (2016) found that woody fen peat was more permeable 
than sedge fen peat. Although we excluded tree cover from our models due to numerical problems, KOI may contain 
some of this effect because continental sites are more commonly treed than maritime sites.

The strong and consistent changes in log10(Ksat) between microform types and along the ordinal gradient of peatland 
trophic types—increasing from blanket peat, through raised-bog and poor-fen peat, to moderate- and rich-fen peat—
are also noteworthy. Pore-scale studies of peat hydraulics paint a complex picture of the relationship between peat 
floristic composition and hydrophysical properties, mediated primarily through the susceptibility of different peat 
types to pore closure through compression and decomposition (McCarter et al., 2020). The remains of sedges and 
reeds that characterize fen peat are thought to decompose more readily than the Sphagnum peat found in bogs (Hájek 
et al., 2011; Zeh et al., 2020; although see Williams & Yavitt, 2003), potentially leading to more humified peat and 

log10(depth)
log10(dry bulk 

density)
von post 

score

log10(depth) – rs = 0.385 rs = 0.656

log10(dry bulk density) n = 883 – rs = 0.572

von Post score n = 762 n = 453 –

Note. In all cases, p < 0.001. See also Figures 2a and 2b.

Table 3 
Correlation Matrix Showing Interdependency of the Three Continuous 
Covariates Used in Our Models; rs Is Spearman's Rank Correlation 
Coefficient and n Is Sample Size
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a larger proportion of small pores near the surface of a sedge-peat profile. Model 3 does not include von Post as a 
fixed effect, and the post hoc parameter estimates for microform and trophic type in Models 1 and 2 are strictly not 
independent of the parameter for the continuous variable von Post. As such, it may be tempting to attribute the strong 
effects of microform and trophic type to differences in peat compaction and/or humification according to floristic 
composition. However, the effect of minerotrophic peat types in Models 1, 2, and 3 is to increase log10(Ksat), rather 
than reduce it. Furthermore, low GVIF scores for log10(dry bulk density), von Post, microform, and trophic type 
in Models 1, 2, and 3 indicate that these variables are likely to represent separate sources of variance. It therefore 
appears that the effects of microform and trophic type upon Ksat represent something other than different levels of 
peat humification and/or compaction. When poorly decomposed, the Sphagnum remains that characterize ombro-
trophic peat have an abundance of large pores, reflecting the stem and branch structures of live Sphagnum (McCarter 
et al., 2020; Weber et al., 2017). However, hyaline cells in Sphagnum also lead to a large fraction of immobile pore 
space, the hydraulic effects of which may be retained even at high levels of decomposition (McCarter et al., 2020) 
and which may be partly responsible for the lower permeability of our blanket peat and raised bog samples. Addi-
tionally, although sedge peat may decompose more readily than Sphagnum peat, sedge peat has been shown to 
be less susceptible to the exponential loss of large pores during decomposition (McCarter et  al., 2020; Rycroft 
et al., 1975). The orientation of sedge and reed remains also gives rise to the possibility of horizontal layering that 
may provide preferential flow paths (Baird & Gaffney, 2000; McCarter et al., 2020). Finally, at the hillslope scale, 
blanket peats form on slopes that may be as steep as 10°, meaning that peat may require a low permeability to retain 
enough water to prevent wasting. The development of low-Ksat peat in blanket bogs may therefore be a result of 
autogenic feedbacks between peat accumulation, hydraulic properties, and water budget (cf. Holden, 2005, 2009; 
Lewis et al., 2012; Waddington et al., 2015).

It has been shown that in some peatlands, preferential flow through pipes and macropores can be important 
components of the water budget (Holden & Burt, 2002; Rezanezhad et al., 2016). The small sample volumes of 
the individual Ksat measurements in our data set mean that they cannot capture the site-scale influence of pipes, 
which are at least 1 cm in diameter. As such, we suggest that while our models are well suited to estimating Ksat in 
a peat matrix, they may underestimate bulk, landscape-scale hydraulic conductivity in sites with well-developed 
preferential flow paths (cf. Glaser et al., 2021). Additionally, it seems possible that our models still contain some 
artifact of the measurement method used to determine Ksat, despite its inclusion as a random effect, due to char-
acteristic depth distributions of the various methods. For example, Ksat values determined using piezometers are 
generally smaller than those collected using other methods (see Figure 2i), but they also come from the deepest 
peat where Ksat is naturally low (see Figure S1 in Supporting Information S1), because slug tests can only be 
performed when the piezometer intake is fully below the water table and because piezometers can be readily 
installed to depths of several meters if desired. Laboratory methods, on the other hand, are mainly limited to 
more permeable, near-surface peats because recovery of intact samples from several meters' depth is usually 
impractical. Similarly, most of the determinations made using tension-disc infiltrometers are from blanket peats, 
in which Ksat is low compared to other peatland trophic types. As such, it is difficult to judge whether some of the 
apparent artifacts of measurement method are, in fact, attributable in part or in whole to depth. Nonetheless, most 
measurement methods are represented at intermediate depths of ∼1 m (Figure S1 in Supporting Information S1).

The omission of local-scale fixed-effect predictors from Model 4 allows it to be used for predictions at large 
scales, such as in land-surface schemes within Earth system models. Large-scale representations of peatlands 
within Earth system models have, until recently, relied on frameworks developed for mineral soils, with static 
soil properties, leading to a limited ability to simulate important feedbacks in peat development (Frolking 
et al., 2009). Efforts are ongoing to incorporate dynamic peat hydrophysical properties, including Ksat, into land 
surface schemes (e.g., Chadburn et al., 2022), which our Model 4 may help to inform. Model 4 requires only 
depth, peat dry bulk density, and the climate index KOI to make predictions of peat Ksat, with a level of predictive 
accuracy that may still be considered attractive (𝐴𝐴 𝐴𝐴2cv  = 0.482).

The high predictive skill of our models, particularly Model 1, allows Ksat to be estimated from simpler, cheaper 
variables with a degree of confidence that was previously not possible. Our models are more skillful than 
those previously developed from meta-analyses of peat Ksat measurements across multiple sites (e.g., Liu & 
Lennartz, 2019; Wang et al., 2021), largely because they utilize several continuous and categorical predictors 
that previous studies did not consider. Consequently, our models contain a large number of parameters and may 
at first appear to be data-hungry and impractical. Although the categorical predictors each have several possible 
parameters, all but one are redundant in any given application. For instance, Model 1 has 14 fitted parameters 
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yet requires only six pieces of information to estimate Ksat (depth, dry bulk density, von Post score, microform, 
trophic type, and KOI), while Model 4 requires only three (depth, dry bulk density, and KOI). Moreover, the 
categorical predictors used in our models (microform and trophic type) are simple and inexpensive to record 
in the field. Most researchers already collect this basic descriptive information during field sampling, and we 
suggest that doing so should be considered part of common good practice. The KOI can be estimated from freely 
available climate data, such as those used here. Dry bulk density and von Post score are more labor-intensive to 
collect, particularly the former, which requires more careful sample extraction and laboratory drying. The availa-
bility of both dry bulk density and von Post score make a large difference to our models' predictive abilities, and 
we encourage the collection of these data in situations where Ksat may need to be estimated rather than measured 
directly. A full set of coefficients for each model is included in the Tables S1–S4 in Supporting Information S1, 
allowing readers to apply our models to their own data.

5. Conclusions
Our meta-analysis of a large catalog of published and unpublished peat Ksat data yielded highly skillful predictive 
equations; our best predictive model explains three quarters of the variance in unseen values of log10(Ksat). Our 
models may provide valuable tools for researchers seeking to estimate peat Ksat from simpler, cheaper measure-
ments, in a manner similar to the application of pedotransfer functions in mineral soils. Our equations may also 
find utility in improving the representation of peatlands in land surface modeling. Dry bulk density and von 
Post scores are particularly valuable to the estimation of peat Ksat and ideally should be measured if Ksat is to be 
modeled. Even without these variables, acceptable estimates of peat Ksat can still be made. Even our least skillful 
model, which is designed for use in large-scale land-surface schemes and necessarily omits some important vari-
ables, explains nearly half of all variance in log10(Ksat). Simple, commonly recorded categorical measurements 
such as surface microform and peatland trophic type also contribute to our models' high predictive performance 
compared to those from previous meta-analyses. It might be possible to extend our approach to peat hydrophys-
ical properties other than Ksat, such as those that describe unsaturated moisture-retention characteristics and, as 
datasets grow, to important locations not represented in our database, such as Russia and the tropics.

Data Availability Statement
All data reported in this article can be found in Data Set S1 and Data Set S2.
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