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Nonperturbative approach to interfacial spin-orbit torques induced by the Rashba effect
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Current-induced spin-orbit torque (SOT) in normal metal/ferromagnet (NM/FM) bilayers bears great promise
for the development of low-power spin-based devices, but the microscopic origin of purely interfacial SOTs in
ultrathin systems is not yet fully understood. Here, we show that a linear response theory with a nonperturbative
treatment of spin-dependent interactions and impurity scattering potential predicts dampinglike (DL) SOTs that
are strictly absent in perturbative approaches. The technique is applied to a two-dimensional Rashba-coupled
FM (the paradigmatic model of a NM/FM interface), where higher-order scattering processes encoding skew
scattering from nonmagnetic impurities allow for current-induced spin polarization with nonzero components
along all spatial directions. This is in stark contrast to previous results of perturbative methods (neglecting skew
scattering), which predict a coplanar spin-polarization locked perpendicular to the charge current as a result of
the conventional Rashba-Edelstein effect. Furthermore, the angular dependence of ensuing SOTs and their de-
pendence upon the scattering potential strength is analyzed numerically. Simple analytic expressions for the spin-
density–charge-current response function and related SOT efficiencies are obtained in the weak scattering limit.
We find that the extrinsic DL torques driven by impurity scattering reaches efficiencies of up to 7% of the fieldlike
(Rashba-Edelstein) torque. Our microscopic theory shows that bulk phenomena, such as the spin Hall effect, are
not a necessity in the generation of the DL SOTs of the type observed in experiments on ultrathin systems.

DOI: 10.1103/PhysRevB.106.235419

I. INTRODUCTION

Spin-orbit torque (SOT) [1] is a phenomenon in which
an unpolarized charge current injected into a normal
metal/ferromagnetic metal (NM/FM) bilayer with inver-
sion symmetry-breaking spin-orbit coupling (SOC) induces a
nonequilibrium spin density S in the NM and hence a torque
T ∝ S × M. This torque then drives the dynamics of the mag-
netization of the FM layer M, which can be switched by an
electric current from one static configuration to another or
enter into steady-state precession [2]. Such spin-torque-driven
magnetization dynamics offers up a plethora of spintronic
applications [3–6]. In comparison with spin-transfer torque
devices [2], SOT allows for faster and more energy-efficient
devices [4,7–9].

Interfacial SOTs (i.e., those associated with purely interfa-
cial effects) can arise from the lack of inversion symmetry
in the stacking direction of NM/FM bilayers [1], which
yields charge-to-spin conversion (CSC) processes, resulting
in the appearance of a spin accumulation in the NM at the
interface—a transport phenomenon commonly referred to as
the Rashba-Edelstein effect (REE) [10–12]. In this scenario,
a charge current passing through the NM layer generates a
spin accumulation S at the surface of the material at the
interface of the bilayer [13], which then exerts a torque on the
magnetization of the FM partner due to the proximity coupling
between itinerant electron spins and localized spins. Broadly
speaking, two types of SOT can be generated: the first is

*Corresponding author: aires.ferreira@york.ac.uk

called dampinglike (DL) SOT, which tends to align M with the
effective magnetic field Heff, acting upon the local magnetic
moments of the FM (this comprises the demagnetization field,
anisotropy field, and any applied external magnetic fields [1]).
The second type of torque is called fieldlike (FL) SOT, which
causes M to precess about Heff. It is common practice in the
literature to identify these torques by their odd/even nature
in the magnetization, that is, TDL ≡ Te and TFL ≡ To with
Te(M) = Te(−M) and To(M) = −To(−M). While we have
introduced this convention here, we would like to note that
this is only strictly true for specific torque terms that appear to
leading order in the magnetization, namely, the conventional
FL SOT (TFL ∝ M × ŷ) and DL SOT (TDL ∝ M × M × ŷ,
for a charge current applied along x̂). However, a rigorous
determination of the DL and FL torques can be achieved via
a vector spherical harmonics expansion [14]. For simplicity
though, we shall use the common naming convention of the
SOT types.

In practice, there are two main mechanisms driving SOTs
at NM/FM bilayers: the spin Hall effect (SHE) appearing
in the bulk of the NM and the REE appearing at the inter-
face. A phenomenological study, along with a perturbative
semiclassical Boltzmann analysis, of the SOTs generated by
the SHE and REE was presented in Ref. [15]. In that work,
they observed that both the DL and FL torques stemming
from the SHE became vanishingly small as the system thick-
ness was decreased (the SHE is effectively suppressed when
the spin diffusion length exceeds the NM thickness [16,17]).
In contrast, only the DL torque of the interfacial REE be-
came negligible in the ultrathin limit, while the FL torque of
the REE remained approximately constant. However, several

2469-9950/2022/106(23)/235419(9) 235419-1 ©2022 American Physical Society



VENERI, PERKINS, AND FERREIRA PHYSICAL REVIEW B 106, 235419 (2022)

experiments on thin bilayers have observed torques that can-
not be captured purely by the SHE, thus indicating the
presence of significant interfacial DL torques [18,19]. In fact,
authors of a study of an ultrathin metallic bilayer (with a
thickness <1 nm), where SHE contributions are vanishingly
small, still observed nonnegligible DL torques responsible for
the magnetic switching of the FM, whose origin must be the
interface [19]. Meanwhile, microscopic theories of interfacial
SOTs have been put forward [20–23], though they have still
failed to capture DL torques large enough to explain experi-
mental observation in ultrathin NM/FM bilayers [19] as well
as the anisotropy of the DL torque [18]. Although these micro-
scopic models handled the important role played by disorder
in the NM, they did so within the Gaussian (white-noise)
approximation where the scattering potential is treated pertur-
batively, while also treating the magnetic exchange interaction
between conduction electrons and the FM localized spins in
a similar manner. The key finding of these early studies is
the complete absence of DL torques in the two-dimensional
Rashba-coupled FM model, once vertex corrections due to
impurity scattering are accounted for in a consistent way [21].

The use of perturbative methods has been questioned in a
recent study [24], where strong impurity scattering and the
rich evolution of equilibrium spin textures with the Fermi
level were seen to play a crucial role in the buildup of
nonequilibrium spin polarization and associated SOTs in van
der Waals heterostructures. Motivated by these developments,
in this paper, we shed light on the microscopic origin of
interfacial SOTs in diffusive metallic bilayers and demon-
strate that DL torques with nontrivial angular dependence

can be generated purely at the interface due to the interplay
of Rashba SOC, the magnetic proximity effect, and impu-
rity scattering. To this end, we formulate a linear response
theory that is nonperturbative in both the impurity scattering
strength and spin interactions (magnetic exchange and Rashba
SOC) to calculate the current-induced spin polarization in
the NM, S. We achieve this by modeling the NM as a two-
dimensional electron gas (2DEG) and employ a generalized
self-consistent diagrammatic technique that handles disorder
at the complete T -matrix level [25–29] to calculate the spin-
density–charge-current response functions, while allowing for
the magnetization of the FM to lie at an arbitrary angle.
The anisotropic spin texture of the Fermi rings of the 2DEG
can be seen to enrich the possible current-induced spin po-
larizations (with hitherto unseen nonzero components along
all principal axes emerging as a result of skew scattering of
conduction electrons), and hence, we predict alternative types
of interfacial SOT with extrinsic origin. We present analytical
results in the weak scattering limit (WSL; incorporating skew
scattering) and use a numerical procedure to extract the full
angular dependence of the SOTs.

The remainder of this paper is structured as follows: In
Sec. II, we formally introduce current-induced SOTs exerted
by the NM and the Hamiltonian for disordered 2DEGs with
symmetry-breaking SOC. We then present a self-consistent
diagrammatic theory to evaluate the disorder-averaged linear
response by making use of the T -matrix approach. After-
wards, in Sec. III, we provide an intuitive semiclassical picture
for the SOT in NM/FM bilayers before then applying the
diagrammatic method to 2DEGs in the weak scattering limit.

Additionally, we provide a numerical study of the SOT in
the strong scattering limit as well as the dependence of the
SOT coefficients upon the orientation of the magnetization. In
Sec. IV, we present our conclusions. Technical details of the
calculations are relegated to the Appendix.

II. MODELS AND METHODS

A. SOT components and notation

The dynamical effects of SOT can be modeled by including
the additive term [1]:

T =
γ

d Ms

HSOT × m, (1)

into the Landau-Lifshitz-Gilbert equation [5], where d is
thickness of the FM, m = M

Ms
is the unit magnetization vector

(with Ms = |M| the saturation magnetization of the FM layer),
γ is the gyromagnetic ratio, and HSOT is the effective magnetic
field [Eq. (2)] generated by the nonequilibrium spin polar-
ization of conduction electrons. Within the theory of linear
response, we may write the effective field as

HSOT = �xcK̂ E, (2)

where �xc is the interfacial exchange coupling, and K̂ is the
spin susceptibility tensor, and E is the external electric field.

To separate the torque term in Eq. (1) into DL (even in m)
and FL (odd in m) parts Te and To, respectively, we perform a
symmetry analysis based on the following decomposition for
a magnetization taken to be in the xz-plane

Te =
�xcγ

d Ms

{t e
1 m × [m × (ez × E)] + t e

2 m × ez(m · E)},

(3a)

To =
�xcγ

d Ms

[to
1 m × (ez × E) + to

2 m × (m × ez )(m · E)],

(3b)

which assumes the low-energy (long-wavelength) Hamilto-
nian of the NM system to possess continuous rotational
symmetry about the z axis in the absence of magnetic ex-
change proximity effects. This is a valid assumption in
devices fabricated from polycrystalline and disordered sam-
ples [18,30–33] but is also expected to hold certainly in
atomically sharp interfaces with high symmetry (e.g., as re-
alized in van der Waals heterostructures [24]). The torque
coefficients t

j

i ≡ t
j

i (m) are the controlling parameters of SOT
and hence are the primary focus of this paper. The torque
efficiencies may be written in terms of the magnetization and
spin susceptibility tensor components as

t e
1 =

Kyy

mz

, (4a)

t e
2 =

Kxx − Kyy

m2
xmz

−
Kxx

mz

−
Kzx

mx

, (4b)

to
1 = Kxy −

mx

mz

Kzy, (4c)

to
2 =

1

mx

(
Kxy + Kyx

mx

−
Kzy

mz

)
. (4d)
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From these expressions, we clearly see that Kxx, Kyy, and Kzx

contribute solely to the DL torque, while Kxy, Kyx, and Kzy

generate the FL torque.

B. The Hamiltonian

The general Hamiltonian for the FM partner material may
be written as

H = H0 + HPE + Hdis, (5)

where H0 is the Hamiltonian for the clean isolated NM, HPE

accounts for proximity effects, and Hdis describes the impurity
landscape. In this paper, we model the NM as a 2DEG, while
focusing on the effects of Rashba SOC and the exchange
interaction between classical magnetic moments in the FM
and the spin of conduction electrons in the NM. We may
therefore write HPE = HBR + Hxc, where the first and second
terms correspond to Rashba SOC and the exchange interac-
tion, respectively. To describe the spin-dependent interactions
in a compact form, we introduce the non-Abelian SU(2) gauge
field [34]:

Aμ = A
μ
i si (i = 0, x, y, z), (6)

where si (i = x, y, z) are Pauli matrices acting in spin space,
and s0 is the identity matrix. This field is then inserted into
H0 as a generalized vector potential in an analogy to minimal
coupling. For a standard Rashba-coupled FM, we have only
the nonzero components being

Ay
x = −Ax

y = αm∗, A0 = −�xcm · s ≡ −� · s, (7)

where m∗ is the effective electron mass, α is the SOC strength,
and �xc is the exchange coupling (here, we assumed a conven-
tional isotropic Zeeman interaction [35]).

In the absence of disorder, the NM Hamiltonian takes the
second-quantized form:

H0 + HPE =

∫
dx ψ†(x)

[
(p + A)2 − A

2

2m∗
− ε − A0

]
ψ (x).

(8)

Here, ε is the Fermi energy, and p is the 2D momentum
operator. The disorder term in the Hamiltonian Hdis reads as

Hdis =

∫
dx ψ†(x)V (x) ψ (x), (9a)

V (x) =
∑

i

W (x − xi ), (9b)

where V (x) is the total impurity potential, and W (x − xi )
is the potential of a single impurity located at position xi

within the NM/FM interface (the areal density of impuri-
ties is denoted as n). We note that, in general, V (x) has a
matrix structure and can include effects such as local SOC
and magnetic impurities [36], but these are not a necessity in
the generation of FL and DL SOTs, as we shall show below.
To recover macroscopic results, we average over all possible
impurity configurations within the T -matrix formalism [25],
which accounts for all possible scattering scenarios involv-
ing a single impurity. In this paper, we work in the dilute
limit (n ≪ 1) with a focus on short-range scalar impurities:
W (r) = uR2δ(r), where u is the scattering potential, R is

the characteristic length scale of the range of the impurity
potential, and δ(r) is the delta (Dirac) function.

Having set up the Hamiltonian describing the NM, our
focus now turns to calculating the generalized spin-density–
charge-current response tensor. The next section details our
theory for obtaining response functions without the need for
a perturbative treatment of the exchange coupling, Rashba
SOC, or impurity scattering potential. The only perturbative
parameter governing the validity of our diagrammatic theory
is (ετ )−1 ≪ 1, where τ is the momentum relaxation time.

C. Diagrammatic theory and the T-matrix

To understand the response of a system to spin-charge
conversion away from equilibrium, we employ the theory of
linear response. We assume that M and E vary slowly in
both position and time (i.e., on scales larger than the mean
free path and τ ) and hence neglect their spatial and temporal
dependence. The response of the spin density to the electric
field is then simply (assuming Einstein summation)

Sα = KαβEβ , (10)

where Kαβ (α = x, y, z and β = x, y) is the spin-susceptibility
response tensor with a 3 × 2 matrix structure in our case
[c.f. Eq. (2)]. Therefore, the effect of SOT upon the FM
is contained entirely within the object Kαβ , which we shall
treat using the Kubo-Streda formula [37]. This spin-current
response function can be separated into two contributions:

Kαβ = R0
αβ + Rε

αβ, (11)

where R0
αβ is the Fermi sea (type II) response of the system,

and Rε
αβ is the Fermi surface (type I) contribution to the total

response. Written explicitly, the Fermi surface response takes
the form:

Rǫ
αβ = −

1

4π
〈Tr[(sαG+ jβ − jβG−sα )(G+ − G−)]〉dis, (12)

where jβ = e ∂H/∂ pβ is the electric current operator [38]
(e < 0), 〈...〉dis denotes disorder averaging, G± = (ǫ − H ±

iδ)−1 is the clean retarded (+)/advanced (−) Green’s function
at the Fermi surface, and δ is a positive infinitesimal. By work-
ing in the dilute limit (i.e., low impurity concentration), we
may neglect the Fermi sea contribution and ignore terms con-
taining products of the same Green’s function in Eq. (12) [25]:

Kαβ ≃
1

2π
Tr[〈sαG+ jβG−〉dis]. (13)

Applying the disorder average yields

Kαβ =
1

2π

∑

p

tr[s̃αG
+
p jβG

−
p ], (14)

where we have written the response function in momentum
space explicitly, and the trace is now over the internal ma-
trix indices. We perform our calculations using the standard
rules of diagrammatics and assume the noncrossing approx-
imation [39]. The retarded and advanced disorder-averaged
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+

= +

=

+

(a)

(b)

FIG. 1. Diagrammatic expansion of the zero-temperature
spin-density–charge-current response function: (a) the
disorder-renormalized spin density vertex function and (b) the
T -matrix skeleton expansion. Solid lines with arrows denote
disorder averaged Green’s functions, while green dashed lines
represent single impurity potential insertions. Red/blue indicates
advanced/retarded sectors.

Green’s functions appearing in Eq. (14) are given by

G±
p =

1

(G±
0,p)−1 − ±

, (15)

where G±
0,p is the clean Green’s function, and ± is the

retarded/advanced disorder self-energy. To leading order in
the impurity density n, we may relate ± to the T -matrix via
± = nT ±. The advanced/retarded T -matrix is represented
diagrammatically in Fig. 1, which can be shown to yield

T ± = W̃
1

1 − W̃ g±
0

, (16a)

g±
0 =

∫
d2 p

(2π )2
G±

0,p, (16b)

where g±
0 is the momentum-integrated clean Green’s func-

tion, and W̃ is the Fourier transform of W (r). Finally, the
renormalized vertex s̃α (Fig. 1) is given by the Bethe-Salpeter
equation [40]:

s̃α = sα + n
∑

p

T −G−
p s̃αG

+
p T +. (17)

Within the first Born approximation (FBA), Eq. (16a) is
expanded to second order in W . This leads to the renormal-
ized vertex being given by a simple ladder series of impurity
scatterings and hence fails to capture the physics of skew
scattering. This is represented by the first term in Fig. 1(b).
We must therefore perform a T -matrix expansion that is non-
perturbative in the scattering potential [41,42].

A common approximation accompanying the FBA is the
Gaussian approximation, in which off-diagonal elements in
the FBA (recall we are working with 2 × 2 spin matrices)
are also neglected. However, we note that, even with scalar
impurities, Eq. (16a) allows for the T -matrix to possess
nonzero off-diagonal elements. Therefore, to create a fully
self-consistent theory, we must include these elements, and
so the Gaussian approximation is not appropriate for under-
standing the nonequilibrium spin density induced in the NM.

To account for all terms and the matrix structure of T ±,
we employ a method like that of Refs. [28,43] to simplify

the renormalized vertex by projecting Eq. (17) onto the Pauli
algebra (here, α, β, ν ∈ {0, x, y, z}):

s̃α = Dαβsβ, Dαβ = 1
2 tr[s̃αsβ]. (18)

The coefficients are then given by

Dαβ = δαβ + DανMνβ ,

Mνβ =
n

2

∑

p

tr[T −G−
p sνG

+
p T +sβ]. (19)

To evaluate the M-matrix, we decompose it into two separate
matrices:

ϒαβ =
1

2
tr[sαT +sβT −], Nαβ =

n

2

∑

p

tr[sαG
+
p sβG

−
p ],

(20)

such that M = Nϒ . The ϒ-matrix describes the insertion of
impurities connecting the two sides of the response bubble,
while the N -matrix encodes information about the disorder-
averaged Green’s functions forming a response bubble in the
absence of interference.

The projection coefficients are in fact the elements of the
generalized Diffuson operator:

D = (1 − M)−1. (21)

Consequently, Eq. (14) becomes

Kαβ =
1

2π

∑

p

tr[DανsνG
+
p jβG

−
p ]. (22)

Under the Gaussian approximation, ϒ becomes the sum over
all forms of scalar disorder, reducing the generalized Diffu-
sion to the standard form in the literature [44].

Finally, to find K̂J , we need to perform an analogous treat-
ment of the current-current response function to obtain the
charge conductivity tensor. In this case, the response function
is given by Eq. (13) with sα → jα . Upon disorder averaging,
we now choose to renormalize the jβ vertex to yield

σαβ =
1

2π

∑

p

tr[ jαG
+
p j̃βG

−
p ]. (23)

The renormalized current vertex is found by letting j̃β =

jβ + δ jβ and then solving a Bethe-Salpeter equation for the
corrections to the bare current vertex:

δ jβ = δ j̄β + n
∑

p

T −G−
p δ jβG

+
p T +, (24a)

δ j̄β = n
∑

p

T −G−
p jβG

+
p T +. (24b)

Since we are working with the current vertex explicitly, we
use the projection:

δ jβ = D̃βνδ j̄ν, D̃βν = 1
2 tr[δ jβδ j̄ν], (25)

and find an operator analogous to the Diffuson,

D̃ = (1 − N TϒT)−1. (26)
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The electrical conductivity tensor is thus given by

σαβ =
1

2π

∑

p

tr[ jαG
+
p

(
jν + D̃βνδ j̄ν

)
G−

p ]. (27)

Given the expressions for the spin susceptibility and elec-
trical conductivity in Eqs. (22) and (27), respectively, we may
compute the spin-density response to the application of a
charge current and hence calculate the effective magnetic field
induced by the nonequilibrium spin density. This therefore
provides us with a framework to determine the explicit form of
the SOT [Eq. (2)] driving the magnetization dynamics of the
FM. The efficiency of this charge-to-spin conversion (CSC)
process can be defined as θαβ = −2evKαβ/σxx, where v is
the Fermi velocity and σxx is the longitudinal DC conductiv-
ity [45].

III. RESULTS AND DISCUSSION

Starting from the disorder-free electron picture of a 2DEG,
Rashba SOC causes spin splitting of the parabolic dispersion
into two bands with the spin of the electrons being locked
in-plane and perpendicular to their momentum. The spins of
the upper and lower bands (ν is the band index) wind in
a clockwise and anticlockwise manner, respectively, around
their corresponding Fermi rings. Next, the out-of-plane ex-
change interaction due to mz opens a gap between the two
bands and leads to an out-of-plane tilting in the spin texture of
each band: the upper band spins rotate toward mzez, and the
lower band spins rotate toward −mzez. Finally, the in-plane
magnetization deforms the shape of the bands, while also
shifting them in opposite directions along the axis perpen-
dicular to the in-plane component. This generates a highly
anisotropic dispersion relation, see Fig. 2, and so requires
expansion in mx and my to allow for analytic evaluation. For
ease of analysis, as stated in Sec. II A, we work in a reference
frame such that my = 0

m = sin θ ex + cos θ ez. (28)

Applying an electric field E to this system shifts the Fermi
rings in the direction of −E, leading to a nonzero center-of-
mass momentum and hence an electrical current. This shifting
of the Fermi rings leads to an out-of-equilibrium spin ac-
cumulation due to the momentum dependence of the Fermi
ring spin texture skν . This result emerges naturally from the
average of skν away from equilibrium when considered in
a semiclassical manner. To demonstrate this, let us consider
the effect of small external perturbations upon the electron
distribution function. The distribution function may then be
written as fkν + δ fkν , where fkν is the Fermi function for the
band ν,

δ fkν ∝ |E|
∑

l

[
τ

l,ν
‖ cos(lφ) + τ

l,ν
⊥ sin(lφ)

]
(29)

is the linear correction to fpν due to the external electric field,
and φ is the azimuthal angle of the momentum. Note that the
coefficients τ

l,ν
‖ and τ

l,ν
⊥ are functions of α, m2

z , and |k|. The

FIG. 2. Band structure of a two-dimensional electron gas
(2DEG) with Rashba spin-orbit coupling (SOC) and an exchange
interaction, where we have assumed my = 0 without loss of gen-
erality, which shifts the Fermi rings along the y axis by the mx

component. Parameters: α = 1.7 × 10−11 eVm, �xc = 5.5 meV, v =

105 ms−1 (Fermi velocity), and θ = π/4, and py = 0. The green
line represents the Fermi energy ε = 0.01 eV. Inset: Normal metal
(NM)/ferromagnet (FM) bilayer schematic, with electric current J

aligned with the x axis and FM magnetization at angle θ to the z

axis.

spin polarization is then given by

S =
∑

k,ν

skν δ fkν . (30)

For a small in-plane magnetization, the spin texture of the
2DEG may be written as

skν = ν
(
s0

kν + mx δskν

)
, (31a)

s0
kν = ρ‖k̂ × ez + ρ⊥ez, (31b)

δskν = [ω‖ + ξ‖ cos(2φ)]ex

+ ξ‖ sin(2φ) ey − ω⊥mz sin φez, (31c)

where ω‖⊥, ρ‖⊥, and ξ‖ are functions of m2
z , |K|, and are

linear in α. The s0
kν term is responsible for the spin-helical

part of skν and therefore produces an imbalance in oppositely
aligned spins that is transverse to the applied electric field.
Clearly, this term is the origin of the familiar REE, depending
entirely on Rashba SOC, and generates nonzero contributions
to Kxy and Kyx. These components survive the restrictions
enforced by the FBA, where they appear independent of the
magnetization.

We can easily see from Eq. (31) that the presence of an
in-plane magnetization allows for an angle-dependent out-of-
plane spin accumulation. Hence, this correction contributes to
the Kzx and Kzy elements. However, under the FBA, we find
that no such response is seen in the out-of-plane polarization
Sz when ε > �xc (i.e., when both of the spin-split bands are
occupied), suggesting that the physics governing out-of-plane
polarization is more sensitive to the scattering strength than
REE. It turns out that the nonzero spin polarizations of the
individual bands cancel out perfectly within the FBA, which
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−0.4

−0.2
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(a) (b)

4 6 8 10
−0.014

−0.012

−0.01

−8×10−3

6 8 10

FIG. 3. Current-induced torque efficiencies as functions of the
Fermi energy in the strong scattering limit, with magnetization
(a) θ = 0 and (b) θ = π/4. In the former case, the range of Fermi
energies covered spans both inside and outside the spin gap, whose
upper limit is 4.8 meV, while in the latter, only the regime outside the
spin gap is resolved. The blue lines portray the dampinglike torque
efficiency, while the red and green curves represent the fieldlike
torque efficiencies. Parameters: m∗ = 0.8me, α = 1.7 × 10−11 eVm,
�xcmz = 4.8 meV, and n = 5 × 1014 m−2.

explains the vanishing of Kzy reported in Ref. [21]. Overall,
there are four vanishing responses within the FBA, namely,
Kzx = Kzy = Kxx = Kyy = 0.

To overcome the limitations of the FBA, we work with the
scattering strength nonperturbatively by using the T -matrix
approach detailed in Sec. II C; this allows for skew scattering
when the partner FM has a finite out-of-plane magnetization
component, i.e., mz = 0. As a result, we find that the (kx, ky)
and (kx,−ky) points lying on the Fermi rings become inequiv-
alent with different occupation numbers and hence generate
a nonzero value for Sz. The same mechanism generates the
diagonal contributions Kxx(yy), which depend on mz but to
leading order are independent of mx.

Next, we calculate the full spin-susceptibility tensor and
the CSC efficiency. The disorder self-energy has the form:

± =

3∑

α=0

n[gα (ε, α, m) ± iŴα (ε, α, m)]sα, (32)

where we note that the self-energy has now acquired a matrix
structure (unlike in the Gaussian approximation), gα and Ŵα

are real functions, and g2 = Ŵ2 = 0. With this, we acquire the
disorder-averaged Green’s function by inserting Eq. (32) into
Eq. (15), which in turn allows us to find K̂J and hence the CSC
efficiency. Further details of the calculations are provided in
the Appendix. Going forward, we shall work in the limit of
strong SOC, i.e., when the spin gap becomes well resolved
within the quasiparticle broadening nŴ0 ≪ αpF , thus allow-
ing for the efficient generation of nonequilibrium spin density.
We may now start to analyze the DL and FL torques. We begin
by considering how the CSC efficiency of the DL torque θxx(yy)

depends on the Fermi energy for mx = 0 within the strong
scattering limit, which is shown in Fig. 3(a). Here, we see a
discontinuity in θxx(yy), which can be attributed to breaching
the upper limit of the spin gap, whereafter the magnitude
of the CSC efficiency decreases monotonically and smoothly
with increasing ε. This efficiency reduction can be explained
by noting that the difference in occupation numbers of the two

Fermi rings becomes less significant by increasing the Fermi
energy. In the large Fermi energy limit, there is a total overlap
of the two Fermi rings that provide opposing contributions to
Sx(y); the result is a zero diagonal response.

For comparison, we present the FL CSC efficiency θxy(yx)

also in Fig. 3(a). Here, we again see a monotonic decrease of
the efficiency above of the spin gap, though the efficiencies
are two orders of magnitude larger than their DL counterparts
outside of the spin gap. Consequently, the SOT is dominated
by the FL REE mechanism in this energy region. However,
inside the spin gap, we find a giant DL response with θxx(yy)

approaching 7% of the FL efficiency θxy(yx). Such a significant
DL torque CSC efficiency cannot be achieved using pertur-
bative methods, like the FBA and Gaussian approximations,
which neglect skew scattering and therefore predict Kxx =

Kyy = Kzx = 0 (and hence τ e
1,2 = 0). Moving away from small

in-plane magnetization, we find that Kzy renormalizes the FL
SOT. We present the CSC efficiency of this term for θ = π/4
in Fig. 3(b). We find that the Kzy term can reach up to 2% of
the value of the REE FL terms in this case.

Let us now consider the WSL, where we may expand the
response functions in powers of u. To write analytic expres-
sions, we will need to assume a small in-plane magnetization,
so we shall initially consider the regime �x ≪ �z ≪ α ≪ ε

and denote it by using a tilde. In this case, we expand the spin
susceptibility to first order in mx to yield

K̃ = −
e

2πn

⎡
⎢⎢⎣

−
(m∗ )2�zα

2πε
α
u2

− α
u2 −

(m∗ )2�zα

2πε

m∗�x�
2
z

4παε2 −
�x�z

2πuαε

⎤
⎥⎥⎦, (33)

where all elements are nonzero, as expected. We next note
that σxx(yy) = e2ε/(πnm∗u2) in the WSL for a large Fermi
energy. Using Eqs. (4) and (33), we find the following torque
efficiencies, τ

e/o
i = t

e/o
i /σxx:

τ̃ o
1 = −

m∗

2eε

(
α +

�2
xu

2παε

)
, τ̃ o

2 = −
m∗�2

xcu

4πeαε
,

(34)

τ̃ e
1 =

(m∗)3�xcαu2

4πeε2
, τ̃ e

2 = −
(m∗)2�xcu2

4πeε2

(
m∗α −

�2
z

2αε

)
.

Equation (33) shows that the REE terms (K̃xy, K̃yx) are
proportional to u−2 and are thus captured by the typical
Gaussian white-noise distribution applied in the FBA. To
capture the other entries, we consider the next order at u−1,
which requires the prescription of a non-Gaussian average of
the form 〈V (x)V (x′)V (x′′)〉 = nR6u3δ(x − x′)δ(x′ − x′′) [25].
The physics of this triple scattering within the response func-
tion is captured by truncating the T -matrix series at the third
order in Fig. 1(b) [25]. Finally, the DL elements O(u0) can be
found by calculating fourth-order scattering diagrams.

An alternative regime to that above is one in which the
SOC is weaker than the out-of-plane magnetization �x ≪

α ≪ �z ≪ ε, which we denote by an overline. In this case,
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FIG. 4. Torque efficiencies as a function of magnetization angle,
with periodicity π . The fieldlike torque efficiency τ o

1 is denoted by
the red line, while the dampinglike efficiencies are equal in module,
|τ e

1 | = |τ e
2 |, and represented by the blue line. In (a), the Fermi energy

is inside the spin gap for θ = 0, i.e., ε = 4.5 meV. The discontinuous
behavior reflects the transition in the electronic band structure from
inside to outside the spin gap. In (b), the Fermi energy is above
the spin gap, ε = 5.5 meV, and the torque coefficients are smooth
functions of θ . Parameters: m∗ = 0.8 me (tantalum), α = 1.7 × 10−11

eVm, v = 5 × 104 ms−1, �xc = 5 meV, and n = 5 × 1014 m−2.

we find

K̄ = −
e

2πn

⎡
⎢⎢⎣

−
(m∗ )3α3

2π�z

α
u2

− α
u2 −

(m∗ )3α3

2π�z

(m∗ )2α�x

4πǫ
−m∗α�x

2πu�z
,

⎤
⎥⎥⎦ (35)

which yields

τ̄ o
1 = −

m∗α

2eε

(
1 +

m∗�2
xu

2π�2
z

)
, τ̄ o

2 = −
(m∗)2α�2

xcu

4πe�2
z ε

,

(36)

τ̄ e
1 =

(m∗)4α3�xcu2

4πe�2
z ε

, τ̄ e
2 =−

α(m∗)3u2�xc

4πeε

(
m∗α2

�2
z

−
1

2ε

)
.

Next, we present the dominant FL and DL SOTs in Fig. 4 as
functions of the magnetization angle θ in the strong scattering
limit. We omit the τ o

2 contribution from these plots, as it is
negligible compared with the τ o

1 contribution. The left panel
[Fig. 4(a)] considers a Fermi energy inside the spin gap for an
initial out-of-plane configuration of the magnetization. This is
the strong damping regime, where the ratio between the DL
and FL torques is maximized (see Fig. 3). As the magnetiza-
tion of the FM is shifted from purely out-of-plane to purely
in-plane (i.e., θ = 0 → π/2), the spin gap between the bands
begins to shrink and vanishes when θ = π/2. Consequently,
the fixed Fermi energy will only intersect a single band for
smaller angles, before then intersecting both bands at some
critical angle θc(ε) (∼π/4 in this case), where the spin gap
has shrunk sufficiently to allow this, and hence, a disconti-
nuity is observed at this θc(ε). This corresponds to moving
from the strong damping regime to the weak damping regime.
The angular dependence of the SOT coefficients is clearly
symmetric about θ = π/2. On the other hand, if the Fermi

energy is instead situated above the spin gap at θ = 0, it will
remain outside the spin gap for all magnetization angles, and
hence, the system will always be in the weak damping regime.
Therefore, the torque coefficients will be smooth continuous
functions of θ , see Fig. 4(b). This complete angular descrip-
tion of τ o

1,2 and τ e
1,2 for strong disorder is enabled by treating

the impurity potential and the magnetic exchange coupling on
equal footing (i.e., a full T -matrix numerical treatment with a
generic �xc).

We can also see that, in both cases of Fig. 4, the standard
FL contribution has a relatively weak angular dependence.
Hence, τ o

1 may be treated as approximately constant to the first
approximation, in line with previous literature [21]. In con-
trast, the DL torque coefficients, which are controlled entirely
by the nonperturbative Kxx(yy) components, exhibit a strong
dependence upon the magnetization angle, a dependence that
would otherwise be missed in perturbative methods. Clearly,
the approximation of the DL torque coefficients as constants
therefore breaks down.

IV. CONCLUSIONS

We have demonstrated that a complete understanding of
DL torques in diffusive NM/FM bilayers hinges on scattering
processes beyond the Gaussian approximation. Specifically,
we showed that skew scattering is essential for a correct
description of interfacial SOT already in diffusive systems
characterized by impurities with weak scattering potentials.
By treating both the disorder potential and spin-dependent
interactions in the NM band structure nonperturbatively, we
have gained access to SOTs in the strong scattering limit.
Here, we found that ultrathin NM/FM bilayers host an effi-
cient skew-scattering-activated DL SOT generated purely at
the interface. This indicates that the bulk contribution to SOT
(the SHE) is not a necessity for inducing magnetic switching
of the FM, which may help shed light on recent experiments
on ultrathin NM/FM bilayers, which observed SOT-driven
switching of the magnetization of the FM [19].

As another application of the nonperturbative approach
introduced here, we showed that the DL torque exhibited a
nontrivial angular dependence upon the magnetization, thus
illustrating the limitation of assuming the proximity-induced
Zeeman coupling in the NM Hamiltonian to be completely
out-of-plane (a common approximation in the literature).
When the Fermi energy was located above the spin gap, we
saw a dramatic increase in the DL torque as the out-of-plane
magnetization approached zero. Similarly, for a Fermi energy
inside the spin gap, we also observed a rapid increase in the
DL torque, while the FL torque remained approximately con-
stant. However, at some magnetization angle, a discontinuity
in both the DL and FL torques was encountered due to the
shrinking of the spin gap.

Given the scientific and technological importance of inter-
facial SOTs, the investigation of other exotic materials (e.g.,
topological insulators and Weyl semimetals) is of significant
interest. What makes these materials so interesting is their
unusual electronic structure and naturally strong SOC, which
may give rise to a plethora of spin-charge interconversion
processes. The formulation of a nonperturbative SOT theory
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for those systems could unlock yet further manifestations of
higher-order scattering processes.
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APPENDIX

Here, we provide an outline of how to use functional
programming within the Wolfram language to determine
the electrical conductivity and spin susceptibility using the
method introduced in Sec. II C:

(1) Determine the clean Green’s function via simple ma-
trix inversion G±

0,p = (ε − H ± δ)−1, where δ is a positive
infinitesimal and H = H0 + HPE.

(2) Obtain the momentum integrated Green’s function,
Eq. (16b): first perform direct angular integration of G±

0,p and
perform a partial fraction decomposition upon the result. This
results in a sum of terms possessing the form c(ak2 + b)−n,
where a, b, and c are all generic constants that depend upon
ε, α, �xc, and δ, while n is a positive integer. The remaining
integral of these terms

∫
dk k c(ak2 + b)−n is trivial, and so

the radial momentum integral can be performed by using
simple substitution rules with a UV cutoff kc = �/v. Expand

g±
0 to leading order in order δ to obtain the appropriate form

in the limit δ → 0+.
(3) Construct the T -matrix and disorder-averaged Green’s

function using Eqs. (16a) and (15), respectively.
(4) Calculate all matrix elements of the ϒ-matrix using

the T -matrix obtained above.
(5) Calculate all matrix elements of the N -matrix given

the disorder-averaged calculations obtained in step (3).
The momentum 2D integral here is handled in entirely
the same fashion as in step (2), i.e., exact angular integration
and the use of substitution rules to perform the radial integral.
These results are then expanded to zeroth order in n due to the
impurity density being a perturbative parameter (we work in
the dilute impurity density limit).

(6) Construct the generalized Diffuson D and its analo-
gous partner D̃ from the ϒ-matrix and expanded N -matrix.

(7) Finally, perform the momentum integrals in Eqs. (22)
and (27) in the same manner as before to obtain the electrical
conductivity and spin susceptibility, respectively.

As a final note regarding the nonperturbative numerical
calculations performed to acquire Fig. 4, we follow a proce-
dure analogous to that described above using the full T -matrix
renormalization of the vertices. However, the key difference
here is that we do not perform any expansion in terms of
the impurity density when calculating the matrices D and D̃,
and all integrals are performed numerically using standard
methods.
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