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Hierarchical Spiking Based Model for Efficient

Image Classification with Enhanced Feature

Extraction and Encoding
Qi Xu, Yaxin Li, Jiangrong Shen∗, Pingping Zhang, Jian K. Liu, Huajin Tang, and Gang Pan∗

Abstract—Thanks to their event-driven nature, spiking neural
networks (SNNs) are surmised to be great computation-efficient
models. The spiking neurons encode beneficial temporal facts
and possess excessive anti-noise properties. However, the high
quality encoding of spatio-temporal complexity and also its
training optimization of SNNs are restricted by means of the
contemporary problem, this paper proposes a novel hierarchical
event-driven visual device to explore how information transmits
and signifies in the retina the usage of biologically manageable
mechanisms. This cognitive model is an augmented spiking based
framework consisting of the function learning capacity of CNNs
with the cognition capability of SNNs. Furthermore, this visual
device is modeled in a biological realism way with unsupervised
learning rules and advanced spike firing rate encoding methods.
We train and test them on some image datasets (MNIST,
CIFAR10, and its noisy versions) to show that our mannequin
can process greater vital data than present cognitive models. This
paper also proposes a novel quantization approach to make the
proposed spiking based model more efficient for neuromorphic
hardware implementation. The outcomes show this joint CNN-
SNN model can reap excessive focus accuracy and get more
effective generalization ability.

Index Terms—Hierarchical Structure, Spiking Encoding,
Feature Extraction, Spatio-temporal Representations, Noise-
immunity.

I. INTRODUCTION

Pattern recognition task appears in many fields and achieves

more and more importance and necessity. Various conventional

methods have successfully conducted it, such as kernel re-

gression, Bayesian, and clustering. Primates can recognize the

patterns rapidly and precisely [1], [2], [3]. Moreover, human

brains have more outstanding performance than computers in

intelligent information processing tasks.

How sensory information is processed and transmitted re-

mains a big challenge in the human brain visual systems.

Nevertheless, it is strongly supported that the spike train
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is an optimal way for information representation and trans-

mission [4], [5]. Compared with traditional artificial neural

networks (ANNs), Spiking neural networks have shown a

more powerful ability for computation on account of their rich

neural dynamics which are embedded into spiking neurons.

Deriving from the sparse spike sequence, only a few synapses

and neurons in the SNN are in an activated status, which

enables the SNN to run inferences more efficiently with

low computation and power cost. It is competitive for SNN

to cope with the high dimensional complexity patterns, by

means of the event-driven encoding, training, and dimension

reduction mechanisms [6], [7], [8], [9], [10]. The typical

SNN is definitely more disadvantageous in feature extraction

and coding due to the limitation of the shallow structure.

Some deeper and hidden information cannot be captured and

extracted by a fully connected layer.

Meanwhile, CSNN [11] and S1C1-SNN [12] implement a

biologically plausible way to build a hierarchical cognitive

model for the pattern recognition tasks. Both of them use a

layer-based feature extractor, compared with deeper and more

complex structures, feature extraction and coding capabilities

are still limited. Furthermore, the encoding rule embedded into

those models is the temporal encoding [13], [14], it is just a

linear mapping between features and spikes. This temporal

encoding rule is vulnerable in intricate image classification

tasks, especially when the images are more complex than

handwritten digits. It is still challenging to build robust pattern

recognition, which originated from the core representation of

sensory stimuli.

The biological spiking neuron could be abstracted as a

mathematical model that describes the action potential process

of a neuron with rich neural dynamics. Common spiking

neuron models include: Hodgkin Huxley Model (HH model)

[15], Leaky Integrate-And-Fire Models (LIF model), Spiking

Response Model (SRM) [16], etc. LIF model is simplified

from HH model. PLIF model is proposed based on LIF

which can update the membrane time constant during training.

Spiking neurons transmit information by transmitting sparse

spike sequence which contains spatio-temporal characteristics.

The conventional spike coding methods of spiking neurons

include rate coding, temporal coding, and population coding.

Temporal encoding uses timing information of spike firing

to encode features such as time-to-first-spike coding, phase

coding, rank order coding, latency coding, etc. They are more

concerned with the precise timing of spikes. The rate encoding

uses the spike firing rate to represent information. It can extract
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features from the number of spikes in a time window. Inter

spike intervals (ISI) [17] coding method estimates the average

time interval of the spike sequence to encode information.

The rate coding does not consider the specific time of spike

firing, so it is more anti-interference. Population coding such

as gaussian receptive field coding and burst coding uses the

neuronal population composed of several neurons to jointly

represent information which is more efficient.

In some aforementioned studies, only spatial information is

acquired, spatial-temporal information cannot be learned and

represented from spike neurons. In these works, the spatial-

temporal feature coding mechanism and effective training

methods have not been fully explored, which is not only im-

portant to achieve fast visual recognition tasks [18], [19], [20],

[21] in the neural system, but also robust image classification

in harsh conditions [22], [23], [24].

Facing these issues, this work proposes a brain-like event-

driven model, combining partial convolutional and pooling

components (except the fully-connected layers) and an SNN,

the advanced fixed time interval (FTI) and non-fixed time

interval spike firing rate encoding methods were embedded

into the proposed model. This framework could exploit CNNs’

powerful feature extraction and feature-spike encoding capac-

ity of spiking neurons which were integrated into one model.

In this work, we employ the hierarchical model as the

basic framework. Additionally, spiking neurons are used as

the classifier to make the final classification. We implement

unsupervised learning rules to update the model parameters.

Since a dynamic arithmetic operation unit can be equivalent

to a single neuron [25], [26], we try to define the algebraic

transformation of the relationship between features and spikes,

these rules are then embedded in the proposed network to

convert the features (real value) to corresponding spatial-

temporal spike patterns. It is hopeful to enhance the intrinsic

representation and the information processing in the brain-like

system via these structural and functional units, which are

expected to be adaptive for heterogeneous biological neural

networks.

Besides, to utilize the energy conservation potential of the

spiking based model. This paper also proposed a parameter

quantization method to reduce memory and accelerate the

computation between spiking neurons. Compared to the real

value numerical operation-based spiking models, the quantized

model could further exploit the potential when the input

and output are spiked. This quantized model is friendly to

neuromorphic hardware implementation by reducing the mem-

ory and accelerating the information communication between

neurons.

II. OVERVIEW OF JOINT CNN-SNN MODEL

The visual system is a functional part of the brain. It is

found that the external stimuli received by the retina would

be encoded as spike patterns via the visual network. Therefore,

it can be considered that the information of the visual stimuli

transferred from the retina to the brain, which comes from

each particular receptive region.

Derived from the structures of vision formation and spike

transiting in biological neuroscience, this paper proposed a

hierarchical spiking model as shown in Figure 1 to explore

further feature extraction and encoding in the human visual

system. This model comprises two main parts: a feature

extractor and a classifier for decision making. Part of the

CNN is used as the feature extractor, which performs as the

V1-V4 of visual cortex, and the decision-making part implies

the role of the IT (Inferior Temporal) part in the formation

of human brain vision. The joint CNN-SNN framework is a

unified system model, which is embedded with capacities of

feature extraction and encoding information.

A. CNN based Feature Extractor

We employ a partial CNN as the feature extractor to extract

features to imitate the mechanism of information process in

the visual sensory system, which is used to capture and filter

the image information in the joint CNN-SNN model. The

convolutional components in this model were designed for

playing the role of the ganglion cells (GCs) parts in the

human brain. The GCs, the first layer of the visual cortex,

are utilized to acquire information about external stimuli, and

then (complex cells) CCs sustain the characteristic dimensions

of local areas in the entire image generated by GCs.

The role played by the pooling layer in the joint CNN-SNN

model and the CCs layer is similar. A max feature handle for

nonlinear operation is applied in pooling layer to fulfill im-

mutability. The Max pooling calculation of different directions,

scales, and local positions respectively provide corresponding

contrast with scale, reverse and position invariance. This work

in [27] accomplished the MAX operation in a biophysically

plausible way.

B. Spiking Firing Rate Encoding Mechanisms

After completing the neuron modeling, the information

transmitted by the neuron needs to be encoded. A mainstream

method is to transmit the information through the spike firing

frequency. In the cerebral cortex, the timing of continuous

action potentials is very irregular. One view is that this

irregular internal spike interval reflects a random process, so

the count of spikes during a specific time window can be

estimated by solving the mean value of the response of a

large number of neurons. Another view is that this irregular

phenomenon may be formed by the precise coincidence of the

activity of presynaptic neurons, reflecting a high-bandwidth

information transmission pathway. This paper is mainly based

on the first point of view, using a random process method to

generate a spike sequence.

Images can be encoded as dense spike patterns with the rate

based encoding method [28], the firing rate could be expressed

as the amount spikes counted during a fixed time window.

Dense spikes (Poisson spike trains [29]) are always used by

the rate based encoding to stand for the firing rate of neurons.

Given a neural response that consists of a series of spiking

kernel functions as described in Eq. (1), ti is the spike firing

time.

p(t) =

i=1
∑

n

k(t− ti), (1)
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Fig. 1: Visual processing in joint CNN-SNN model. The CNN part imitates the processing of feature extraction from

low-level to high-level and a spiking system is used to make the final decision.

r(t) =
dn(t)

dt
= E(p(t)) (2)

We can get the whole spikes between time t1 and time t2 as

n =
∫ t2

t1
p(t)dt, and the instantaneous spiking firing frequency

can be defined as the expectation of the neuron’s response

function, as shown in the Eq. (2). The average value of the

neuron response function in a certain time interval is used as

the estimated value of the spike firing frequency as Eq. 3.

(There are M spikes fired in the time window t)

rM (t) =
1

M

j=1
∑

M

pj(t) (3)

Assuming that the spike firing is independent of each other,

and each neuron fired certain spikes during a time window. If

we suggest there are k spikes fired in a fixed time window,

then the n spikes (n < k) fired during time t1 to time t2 could

be expressed as Eq. (4), in which p = t2−t1
T

and q = 1− p.

P (n, t1, t2) =
k!

(k − n)!n!
pnqk−n (4)

If k → +∞, we can get a Poisson distribution based spike

train as Eq. (5) showed.

p(n, t1, t2) = e−r∆t r∆tn

n!
(5)

In this work, we employed two different spike firing rate

based encoding methods to encode the outside stimuli to spike

trains, one is a fixed time interval (FTI) spike firing rate based

method and the other is a non-fixed time interval (NFTI) spike

firing rate based method.

In FTI, during the fixed time interval ∆t, the probability of

generating a spike signal is p(n = 1) ≈ r∆t. So FTI generates

a random number x[i] which conforms to uniform distribution

during a fixed ∆t. For every fixed time interval, if x[i] < r∆t,

this neuron fires a spike, otherwise keeps silent as described

in eq. 6.

s(x[i]) =

{

0, x[i] > r∆t,

1, x[i] < r∆t,
(6)

The other method is NFTI, the probability that the number

of spikes emitted during time window [t1, t1 + τ ] is 0 can be

got as:

p(n = 0) = e−rτ (7)

Hence, the probability that the number of spikes emitted

during the time window is p(τ) = 1− e−rτ , then we can get

the probability density distribution of the waiting time between

two adjacent spikes as:

p(τ) =
d(1− e−rτ )

dt
= re−rτ (8)

Based on Eq. (8), we can get the spike generation way in

NFTI method. After a pulse is delivered, a random number

is selected to conform to the exponential distribution as the

waiting time for the next spike to be delivered.

We show the temporal encoding rule used by S1C1-SNN

and CSNN in Eq. (9), Tspike denotes the firing time, T is

the time window and A represents features of row pixel. This

temporal encoding method is too simple to represent the rich

spatio-temporal neural dynamics in spiking neurons.

And Eq. (10) demonstrates during a time window T how a

pixel is converted into a spike sequence, which is a simplified

version of spiking firing rate based encoding method adopted

by some works[28], [30]. In a simplified Poisson Distribution,

each pixel’s value is generally considered as the firing rate r.

However, this method ignored the important spike time interval

as this paper proposed FTI and NFTI did.

Although a large actual cost would impose a greater com-

putational cost, it has excessive fault tolerance. For instance,

when we encode an image with Gaussian noise, different

encoding regulations (i.e., temporal encoding and sparse en-

coding) might also switch disparate effects in contrast with rate

based encoding, due to the fact this principle maps an actual

cost to a spike instruct and mild noises would no longer have

an impact on spike patterns drastically.

Tspike = T − T ∗A, (9)

r =
nspikes

T
=

1

T

∫ T

0

s(t)dt, (10)

The joint CNN-SNN model combines the ability of feature

extraction from the inputting stimuli and encoding it to a

discrete spike based pattern within the proposed spiking firing

rate based method FTI and NFTI. The rich neural dynamics

which represented by FTI and NFTI spatio-temporal represen-

tation can transfer image to sparse spiking patterns, which is

consistent with the biological operations in the retina to some

extent.
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C. Spiking based Classifier

Considering the spiking module of the proposed joint CNN-

SNN, we adopted the classical spiking neuronal model [31]

as fundamental units to construct the final readout layer. Due

to its strong biological support and effective calculation, we

implement the (Leaky Integrate-and-Fire) LIF neuron model

to model an SNN. In a LIF neuron model, the membrane

potential V could be demonstrated in Eq. (11) and Eq. (12)

Cm

dV

dt
= gl(El − V ) + I, (11)

V = Vrest, if V ≥ Vth, (12)

Cm stands for the membrane capacitance, gl, El, and I

means conductance, equilibrium leakage potential, and total

input current, respectively. All inputting pictures can be en-

coded through weighted synapses and presented by a LIF

neuron’s membrane potential V (t).
This paper adopted an unsupervised learning rule to train

the spiking classifier. Based on a more formal and detailed

description, there is an increase in synapses from the repetitive

and continuous operation between the pre-and post-synaptic

neuron. Spiking Timing Dependent Plasticity (STDP) is one

of the widely used learning rules for modeling spiking models:

considering a pair of related units (A and B), if the pre-neuron

A fires before the post-neuron B fires, we can say that the firing

of B is associated with the firing of A, which leads to a result

that the synapse enhances among two neurons increases, this

is defined as the long-term potentiation (LTP); Instead, it is

named long-term depression (LTD).

∆Wij =

{

M+exp(
tj−ti
τ+ ), if tj < ti (LTP ),

M−exp(
ti−tj
τ−

), if tj > ti (LTD),
(13)

Eq. (13) described the STDP rule in detail, where the range

of pre-post synaptic intervals belonging to wakening (LTD) or

synaptic strengthening (LTP) can be determined by τ+ and τ−.

M+ and M− represent the learning rates, which can decide

the maximum numbers of synaptic alterations of LTP and LTD

respectively.

III. EXPERIMENTAL RESULTS

In this part, we employ three benchmark datasets (ba-

sic MNIST [32], background MNIST [33] and background-

random MNIST [33]) to evaluate the efficiency of joint CNN-

SNN model, they are shown in Figure 2. Each dataset com-

prises ranging from 0 to 9 and size as 28×28 gray-scale images

of digits. Each dataset is spilt into the training set (50,000

samples) and the test set (10,000 samples).

Besides, most current studies focused on the MNIST image

classification tasks, compared to MNIST dataset, classify-

ing the accurate images on some more pixel-level complex

datasets such as CIFAR10 is more challenging to current

SNN structures [34]. CNN-based feature extracting method

could get richer information from such natural visual scenes

compared with typical SNN models. CIFAR10 dataset consists

of 32×32 colorful RGB-based images in 10 categories, which

is significantly different from grayscale images in MNIST.

basic

bg

bg-rand

Fig. 2: MNIST and its noisy versions.

We split the original CIFAR10 dataset into two subsets:

training and test sets (50,000 versus 10,000 samples). This

paper added controllable noise in CIFAR10 to generate three

variations as shown in Figure 3, we used σ to adjust the noise

intensity. σ = 0 means clear CIFAR10 images, and the noise

intensity is increasing when σ becoming larger. In this paper,

we adopted standard stochastic gradient descent (SGD) with

momentum (0.95) for the training CNN part, and set different

training hyperparameters such as training epochs (300, 400),

learning rate (0.1, 0.08) and different batchsize from 10 to

128 respectively for MNIST and CIFAR10 CNN backbone

training.

To demonstrate the networks’ generation capacity to the

noisy images (i.e., variations of MNIST and CIFAR10), we

slice different amounts of the training and test sets to certify

that the joint CNN-SNN model can achieve better performance

than that of other cognitive models on the small-scale training

set.

The training approach of this joint model is divided into

two stages: First, we use the Stochastic Gradient Descent

(SGD) algorithm as the optimizer to optimize the parameters

of a whole CNN. Then, the SNN part of the joint CNN-SNN

model, as the final classifier, is trained with the unsupervised

STDP rule.

A. Experimental Settings

We employ two-processor NVidia GeForce GTX 1080Ti

GPUs and Intel(R) Xeon(R) Core CPU to conduct all exper-

iments. The soft operating system is Ubuntu 16.04. Tensor-

flow [35] and Brian [36] are applied to optimize and validate

the proposed joint CNN-SNN model.

In terms of MNIST and CIFAR10, we trained two different

CNNs and implemented its convolutional and pooling layers as

to extract features. Their architectures are 6C6@28×28-12C5-

24C5-P for MNIST and 32C5@32×32P232C5@16×16P2-

64C5@8×8P2 for CIFAR10 respectively. The SNN architec-

ture is analogous with this framework [37], and we adjust

the SNN size for suiting these two different CNN structures.

Excitatory and inhibitory neurons are connected with each

to each pattern and every inhibitory neuron is related to

all excitatory neurons. This kind of structure could present

and mimic lateral inhibition and result in opposition amongst

excitatory neurons.

B. Comparison of Spike Firing Rate Methods Between FTI

and NFTI

In order to further show the difference between fixed time

interval (FTI) and Non-fixed time interval (NFTI) spike firing
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Fig. 3: CIFAR10 and its variations with different noise

intensities.

rated encoding, FTI and NFTI are embedded into the proposed

model. And the experiments were evaluated on MNIST and its

variations. Further, we adopt clean MNIST images as training

datasets, and the amount of training images is from 500 to

10000.

Figure 4 shows the comparison between FTI and NFTI.

From this table, we can see that there is not much difference

between the FTI and NFTI in general. With the increase in the

number of training images, the classification performance of

the NFTI model is slightly higher than that of FTI, especially

when we use 10000 basic pictures for training and 2000

basic pictures for testing, the accuracy is the best, reaching

90.2%. Whether with FTI and NFTI, they both did not behave

well on noisy test datasets, although the overall trend is

upward. The classification results from noisy test datasets

including background (bg) noise and background-random (bg-

rand) noise indicate that although CNN could extract rich

information from images, it does not work when it is dealing

with too intensive noise such as bg and bg-rand.

To further explore the neural dynamics from spiking based

models on more complex images, we compare our joint CNN-

SNN model with NFTI encoding method with the other two

spiking based networks CSNN [11] and S1C1-SNN [12]. All

these spiking based models are evaluated both on MNIST

CIFAR10 and its variations.

S1C1-SNN is a basic SNN model that used fixed manual

feature extraction. CSNN is an advanced SNN model that was

trained through supervised learning rules and utilized linear

temporal encoding as its feature-spike mapping rule. Since

they both used SNN as a classifier, the experimental setting is

the same with mixed training-test images which could show

the generalization ability of spiking based models. For MNSIT,

we trained the systems on clean MNIST images (basic) and

tested on its noisy versions basic, bg and bg-rand MNIST. For

CIFAR10, we train the models on different noise intensity

levels in CIFAR10 images and test on their corresponding

test datasets. These conditions are designed for evaluating the

generalization ability handling to different intensity noise.

We conclude in Table I all of the test accuracies of MNIST

and CIFAR10. From the left are the classification accuracy

of S1C1-SNN, CSNN, and the model we propose. As shown

in this table, when we adopt the clean (basic) as the training

set, the joint CNN-SNN could achieve significantly better test

accuracies than that of the other two models. For instance,

when the training and test sets are the basic MNIST and its

corresponding test set, the joint CNN-SNN achieves approxi-

mately 86.5%, which is not affected by the size of the dataset,

while CSNN and S1C1-SNN can only reach roughly 85% and

77%, which is obviously influence with the changes of the

number of training samples.

Two different instances were trained on the clean datasets

and tested on noisy datasets to record the comparable per-

formance, through a way of and massive the joint CNN-SNN

behaves worse (less than 30%) than the two different networks.

Since the other two models were trained on the supervised

learning rule the Tempotron, compared with the unsupervised

method adopted by this model, supervised learning can obtain

image labels in advance, thereby improving the efficiency of

the training process.

As for training on CIFAR10 and its variations with different

intensity Gaussian noise, the joint CNN-SNN demonstrates

larger performance advantages compared to the other two

models. Table I shows that when the amount of training im-

ages is restricted, the proposed joint CNN-SNN shows better

performance than S1C1-SNN and CSNN. For instance, when

500 clean CIFAR10 training samples are used and tested on

basic MNIST, the accuracy of the joint CNN-SNN is 58.0%.

By contrast, the accuracies from the other two models are only

52% and 54% on clean CIFAR10 images. In addition, as the

number of training samples increases. the gap is shrinking.

When we use the bg MNIST as the the training set, three

models achieve almost the same performance.

When the proposed model was trained on different densely

noisy images (represented by different σ), the proposed model

still performs more robustly and better than the other two

models. On the one hand, the encoding mechanisms adopted

by S1C1-SNN and CSNN models are only simple linear

feature-spike transfer rules and may not be able to give full

play to the advantages of neural dynamics, especially when

compared with rated based encoding rules of joint CNN-

SNN model, two models behave poorly in noisy environments.

On the other hand, the proposed joint CNN-SNN achieves

better performance owe to the more deeper and reasonable

structure than S1C1-SNN and CSNN. These evidences also

prove importance of appropriate deep structure. When the

training images increasing, the corresponding classification

accuracies become better but not significant. The proposed

model shows a sharp decrease from 73.5% to 50.3% with the

noise intensity reaching to peak at σ = 0.1. S1C1-SNN and

CSNN also behave worse at this situation which could prove

that classification tasks on CIFAR10 is much more difficult

than MNIST because of its rich color, texture and shape.

Experimental results show that although other cognitive

models (e.g., S1C1-SNN and CSNN) are hierarchical struc-

tures, the performance is still limited to the shallow frame-

works and the encoding rule. The proposed joint CNN-SNN

network can perform better, the main reasons may lie in

its the deep structure and NFTI encoding rules which is

more suitable than temporal encoding in deep structures.

Compared with FTI, NFTI method utilized non fixed time

interval which is more naturally in biological neuroscience,

because we cannot fixed the time interval between 2 firing

spikes in advance. Employing with the reasonable artitecture

and NFTI encoding rules, the joint CNN-SNN is better to
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Fig. 4: Classification accuracy (%) of joint CNN-SNN model on noisy MNIST within FTI and NFTI spike firing rate

encoding methods.

TABLE I: Evaluation on noisy MNIST and CIFAR10 from S1C1-SNN/CSNN/CNN-SNN.

Dataset MNIST CIFAR10

Training basic basic basic σ = 0 σ = 0.01 σ = 0.05 σ = 0.1

Test basic bg bg-rand σ = 0 σ = 0.01 σ = 0.05 σ = 0.1

500 76.0/81.0/82.5 30.0/27.0/12.0 19.0/38.0/9.0 52.0/54.0/58.0 50.0/51.0/51.4 45.0/45.0/48.0 32.0/33.0/33.5

1000 78.5/87.0/86.5 29.0/26.0/12.5 14.5/23.5/11.5 56.0/55.0/60.4 50.4/52.5/53.0 46.8/48.5/49.0 33.4/33.6/37.6

5000 77.3/84.7/86.6 32.4/23.5/15.5 15.6/25.9/12.0 62.5/62.2/63.7 51.2/54.0/58.3 48.0/50.6/52.8 34.9/35.8/39.5

10000 77.4/86.1/90.2 31.3/22.3/16.0 12.3/24.0/12.5 68.2/68.6/70.3 60.8/60.5/62.2 48.8/49.8/51.9 34.4/33.3/45.8

40000 76.0/83.8/91.4 29.2/34.7/24.0 14.3/24.4/20.2 69.8/71.2/73.5 60.6/61.2/63.5 49.0/50.6/52.8 35.5/35.2/50.3

extract important features than S1C1-SNN and CSNN systems.

C. Evaluation of Parameter Quantization

One of core problems in implementing efficient spiking

based models is that the parameters of SNNs are in floating

point real value format. Dot product between real values

leads to a huge power consumption which also brings the

inconvenience to fixed-pointed communication based hardware

implementation. To further save the energy of the proposed

CNN-SNN system, we design a novel parameter quantization

method which is very suitable to neuromorphic hardware

platforms.

Since floating-point arithmetic takes too much hardware to

implement, this paper implemented fixed-point arithmetic in

SNN part of the proposed CNN-SNN model.

We determine the scaling factors β and γ as the upper limits

of the cores parameters such as membrane potential Vmax and

weight Wmax. Firstly, we find the largest weight magnitude,

then run the floating-point model with typical input, and

find the largest magnitude of membrane potential. Then we

compute the raw scaling factors by dividing the largest value

of the fixed-point representation by the largest magnitudes.

Finally, we round the raw scaling factors to the nearest power

of 2.

The detailed processing of scaling factor searching from

floating-point model is as following:

1) Find Wmax = MAX(|W |)

2) Run the floating-point model with typical input, and find

Vmax = MAX(|Vm|)

3) Determine the intermediate scale factor β1 = 2Vbit−1
Vmax

and γ = 2Wbit−1
wmax

you can define the Vbit and Wbit which

depend on the hardware limitations.

4) Make a log transform to determine the final scale factor

β = 2⌊log2 β1⌋ and γ = 2⌊log2γ1⌋.

Based on the two scale factors β and γ, we can implement

the quantization process as the algorithm 1 described. If the

spiking neuron was not in refractory period, we can scale the

membrane potential V and synapse weight W respectively,

until the scaled corresponding membrane potential exceed the

threshold Vth, and the neuron fired a spike. Then let the

neuron’s membrane potential reset to 0, the neuron entered

the refractory period. When the refractory period expired,

the neuron moved to the next step of simulation. During the

information communication in algorithm 1, all of the formats

weights of the synapses, membrane potential of neurons and

the spike signals are fixed-pointed which could reduce the

memory and accelerate the calculation process compared to

floating-point value, especially when the proposed model was

implemented on neuromorphic hardware chips.

We adopt different bit-width quantization methods to show

the efficiency of the proposed model. Compared to amount of

synapses (W), the amount of neuron membrane potential (V) is

fewer. Assuming a 400 × 400 fully-connected spiking neural

network model which has 800 neuron membrane potential and

160,000 synapses, so the amount of synapses take up most of
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Algorithm 1 Quantization method for joint CNN-SNN

Require: Trained CNN-SNN model

Ensure: Quantized CNN-SNN model

1: After getting features from CNN output from CNN-SNN;

2: if The SNN part was not in refractory period then

3: Let (βVm(t)) = ((βVm(t− 1)) · Vdec)
4: Then (βVm(t)) = (βVm(t)) + (β

γ
) ·

∑

j(γWj) (if the

jth synapse generate a spike);

5: if βVm(t) > βVth then

6: Output a spike;

7: Let βVm(t) = 0;

8: Enter the refractory period;

9: end if

10: else

11: Exit refractory period when the refractory period ex-

pires;

12: end if
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Fig. 5: Accuracy and memory comparison of different

bit-width quantization.

memory. Thus, if we fixed more floating-point synapses as

fixed-point, we can reduce lots of memory and accelerate the

inference process in theory.

We adopted the basic MNIST as the experimental data, and

the joint CNN-SNN model was trained on 2000 pictures and

tested on 1000 pictures. To further exploit the computation effi-

ciency of spiking based models, we set five different bit-width

(fixed-point V and W ) to reduce the memory overhead in SNN

part of the proposed model. Because the training samples are

less than 10000, we set the both number of excitatory and

inhibitory neurons to 100, thus, the quantized parameters are

10100 (10000 synapses and 100 neurons membrane potential).

The evaluation results was shown in figure 5, we can observe

that if we choose the 32 bit fixed-point as the quantized

parameter format, the classification rate is 88% which is the

same as the original floating-point 32 bit parameters, and it

took up full memory as 32 bit floating-point value. When the

parameters were quantized with decreasing as the power of

two such as 16 bit, 8 bit until 1 bit, the classification accuracy

of the proposed model is decreasing, but the memory usage

dropped dramatically. When the bit-width of parameters was

limited as 1, the performance only get 69.2% which means

the spiking neural model needs enough model complexity to

perform rich neural dynamics.

Obviously, it is a trade-off between memory usage and

accuracy in the proposed model, and the fixed-point value is

more friendly to neuromorphic chips compared with floating-

point value.

D. Performance Comparison

The proposed spiking based model achieves good classi-

fication on the MNIST, CIFAR10, and their noisy versions

with the combination of CNN and the SNN. In Table II, we

further illustrate the performance comparison with some of

the most advanced SNN based brain-inspired frameworks on

benchmark basic MNIST for seeing an overall picture.

Since we do not fix the size of SNN, the scale of each model

can be varied. Based on the network capacity, the number of

training and test samples would be adapted. From Table II,

we can observe the related information and test accuracies

of different spiking systems on the clean MNIST. It can be

found that when we limit the number of training samples (i.e.,

with 500 training samples), the joint CNN-SNN achieves an

accuracy rate of 82.5%, which is 4.5% higher than that S1C1-

SNN with the same experimental settings.

With regard to the CSNN and Multi-Net, they are both

embedded in supervised learning rules and Temporal encoding

methods. The network capacity (only 300 neurons) limits

the performance of CSNN, the accuracy is 87.0% on 10000

training samples. The best performance is achieved by the

Multi-Net with 91.6% classification rate on only 2000 training-

sample datasets. Spiking RBM, Dendritic Neurons, and Un-

stdp could get 89.0%, 90.3%, and 90.6% classification accu-

racies with different numbers of training samples. Promising

performance is obtained with a large collection of training

samples or supervised learning rules.

Despite the joint CNN-SNN cannot achieve the best per-

formance (90.2%), it can attain comparable accuracy on

small-size training sets. Especially when the bit-width of the

proposed model was scaled to 16, the proposed model still

has 87.2% classification performance, and the memory usage

dropped 50% compared to 32 bit floating-point value.

Compared with the Multi-Net (91.6%), our model is lighter.

The Multi-Net has more parameters (71,026 biological neu-

rons) than joint CNN-SNN possesses (800 biological neurons),

more numbers and bit-width of parameters means higher

computational consumption.

IV. CONCLUSION

In this work, a hierarchical feature extraction enhanced

spiking model called joint CNN-SNN is presented. Combin-

ing the enhanced feature extraction with FTI/NFTI encoding

mechanisms, this visual simulation framework is tailed to

encode the external stimuli (images) into spatio-temporal

patterns with rich neural dynamics. We demonstrate the pro-

posed framework implemented to MNIST, CIFAR10, and

the corresponding variations can obtain comparable perfor-

mance with other spiking based systems: S1C1-SNN, CSNN,

spiking RBM, Dendritic Neurons, Un-stdp and Multi-Net.
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TABLE II: Accuracy comparison of spiking based models on clean MNIST dataset.

Networks Encoding Methods Training Rules Training/test samples Perfromance (%)

S1C1-SNN [12] Temporal Tempotron (supervised) 500/100 78.0

CSNN [11] Temporal Tempotron (supervised) 10000/2000 87.0

Spiking RBM [38] Rate-based Contrastive divergence (supervised) 60000/10000 89.0

Dendritic Neurons [39] Rate-based Morphology learning (supervised) 10000/5000 90.3

Un-stdp [37] Rate-based STDP (unsupervised) 40000/8000 90.6

Multi-Net [40] Temporal STDP with calcium (supervised) 2000/1000 91.6

Joint CNN-SNN (this paper) NFTI Rate-based STDP (unsupervised) 500/100 82.5

Joint CNN-SNN (this paper with 16 bit fixed-point parameters) NFTI Rate-based STDP (unsupervised) 2000/1000 87.2

Joint CNN-SNN (this paper) NFTI Rate-based STDP (unsupervised) 2000/1000 88.0

Joint CNN-SNN (this paper) NFTI Rate-based STDP (unsupervised) 10000/2000 90.2

Experimental results indicate that the reasonable structure and

encoding methods employed by joint CNN-SNN can benefit

to extract more significant feature presentations, transferring

them to spatiotemporal spike trains and obtaining a more

neuromorphic oriented spiking model through a parameter

quantized method.

Because the proposed model used a CNN as feature ex-

traction, it would be more helpful to extract features from

static images compared to time-series data such as output from

dynamic vision sensors (DVS) [41]. Advancements in event

based sensors align with the development of neuromorphic

chips and devices, where the data format is events or spikes.

In our next step, we would like to build a pure spike in-

spike out model to handle event-based computing, besides the

event based sensors, and implement the proposed model in our

proposed neuromorphic hardware platform [42].
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