
This is a repository copy of Local Fitness Landscape Exploration Based Genetic
Algorithms.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/194746/

Version: Accepted Version

Article:

Dubey, Rahul orcid.org/0000-0003-1524-7797, Hickinbotham, Simon John orcid.org/0000-
0003-0880-4460, Price, Mark et al. (1 more author) (2023) Local Fitness Landscape
Exploration Based Genetic Algorithms. IEEE Access. pp. 3324-3337. ISSN 2169-3536

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier xx.xxxx/ACCESS.xxxx.DOI

Local Fitness Landscape Exploration
Based Genetic Algorithms

RAHUL DUBEY1, SIMON HICKINBOTHAM1 MARK PRICE2, ANDY TYRRELL1(Life Member,

IEEE)
1
Department of Electronics Engineering, University of York, UK (e-mail: rahul.dubey@york.ac.uk, simon.hickinbotham@york.ac.uk, andy.tyrrell@york.ac.uk)

2
School of Mechanical and Aerospace Engineering, Queen’s University Belfast, N. Ireland, UK (e-mail: M.Price@qub.ac.uk)

Corresponding author: Rahul Dubey (e-mail: rahul.dubey@york.ac.uk).

This work is supported by EPSRC Programme Grant (EP/V007335/1).

ABSTRACT Genetic algorithms (GAs) have been used to evolve optimal/sub-optimal solutions of many

problems. When using GAs for evolving solutions, often fitness evaluation is the most computationally

expensive, and this discourages researchers from applying GAs for computationally challenging problems.

This paper presents an approach for generating offspring based on a local fitness landscape exploration to

increase the speed of the search for optimal/sub-optimal solutions and to evolve better fitness solutions.

The proposed algorithm, “Fitness Landscape Exploration based Genetic Algorithm" (FLEX-GA) can be

applied to single and multi-objective optimization problems. Experiments were conducted on several single

and multi-objective benchmark problems with and without constraints. The performance of the FLEX-

based algorithm on single-objective problems is compared with a canonical GA and other algorithms. For

multi-objective benchmark problems, the comparison is made with NSGA-II, and other multi-objective op-

timization algorithms. Lastly, Pareto solutions are evolved on eight real-world multi-objective optimization

problems, and a comparative performance is presented with NSGA-II. Experimental results show that using

FLEX on most of the single and multi-objective problems, the speed of the search improves up to 50%
and the quality of solutions also improves. These results provide sufficient evidence of the applicability of

fitness landscape approximation-based algorithms for solving real-world optimization problems.

INDEX TERMS genetic algorithms, fitness landscape approximation, multi-objective optimization,

evolutionary search

I. INTRODUCTION

Genetic algorithms (GAs) are population-based optimiza-

tion techniques that have been successfully used to tune

parameters to maximize or minimize the fitness of non-linear

problems [1]–[3]. Population-based algorithms typically be-

gin with randomly generated candidate solutions and use

selection and recombination operators to generate offspring

for the next generation. These reproduction operators do not

utilize the local fitness gradient to produce the offspring [4],

and thus do not exploit any potential advantages from the

fitness landscape (FL) that could be used to generate or select

offspring with better fitness characteristics. The complete

fitness landscape of a problem can be obtained by mapping

all possible genotypes/solutions to their respective fitnesses.

This approach is similar to “brute-force search” in that it

gives a complete picture of the mapping but is computation-

ally expensive. Often for real-world complex problems, the

process of fitness evaluation of a genotype is computationally

expensive, and this discourages researchers from applying

GAs with fitness landscape analysis capabilities to compu-

tationally challenging problems. Each solution created by a

genetic algorithm has information (a single position on the

FL), and the availability of this information for a population

of individuals could be used to model the local FL more

efficiently. This contribution is motivated by the idea that the

speed or quality of search for optimal/sub-optimal solutions

could be improved by appropriate modelling of the local

fitness landscape around each generation in an evolutionary

run.

In this paper, a generic “Fitness Landscape Exploration"

(FLEX) based genetic algorithm is presented that uses infor-

mation from the local fitness landscape of a given problem.

The aim is to generate some of the offspring of the next

generation via FLEX alongside those generated via the con-

VOLUME x, 20xx 1

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

ventional genetic algorithm methods, but without increasing

the overall time complexity of the GA. For local fitness

landscape analysis, a genome vector is created and a fitness

vector is computed corresponding to the genome vector, and

these are used to approximate the local fitness landscape.

A genome vector is an n-dimensional vector, where n
is the input dimension of the problem, obtained using two

neighboring candidate solutions. A fitness vector is a m-

dimensional vector computed by taking the difference of the

fitnesses of the two candidate solutions, where m is the num-

ber of objectives. Since the genome and fitness vectors can be

computed for any m-objective problem, this approach is ap-

plicable to single and multi-objective optimization problems.

However, this paper only considers one, and two-objective

problems. To approximate the local fitness landscape with

sufficient accuracy, the distance between two solutions in the

search/design space must be small [5]. Thus, solutions using

FLEX should be encoded in real parameters (not binary)

so that simulated binary crossover (SBX) can be used to

exchange information between two selected candidate solu-

tions. SBX allows the euclidean distance between parents

and the newly generated offspring to be controlled using the

spread factor as described in the NSGA-II algorithm [6].

Novel genetic algorithms using the FLEX concept can be

derived for single and multi-objective problems. In order

to verify the hypothesised performance improvements, the

proposed FLEX-based genetic algorithms are compared with

several other algorithms for both single and multi-objective

problems. For single-objective problems, a simple GA is the

base algorithm and is augmented using fitness landscape ex-

ploration to derive the proposed FLEX-GA. The performance

of FLEX-GA is compared with a canonical GA, Differential

Evolution(DE) [7], Particle Swarm Optimization (PSO) [8],

and Evolutionary Strategies (ES) [9].

In the case of multi-objective problems, NSGA-II [6]

is the base algorithm, and the version proposed in this

paper is FLEX-NSGA-II. Additionally, the performance

of the proposed FLEX-based approach with the baseline

NSGA-II, multi-objective evolutionary algorithm based on

decomposition (MOEA/D) [10], Strength Pareto Evolution-

ary Algorithm-II (SPEA-II) [11], and Adaptive Geometry

Estimation based MOEA (AGE-MOEA) [12] are compared

on benchmark and real-world problems. Experiments were

conducted on 10 single-objective constrained optimization

problems from the IEEE CEC-2006 competition [13], 5 two-

objective test benchmark problems [6], and on eight real-

world two-objective problems [14]. Results indicate that

FLEX-GA generally takes fewer functional evaluations to

find better solutions than other algorithms on more than half

of the problems, and is inferior only in a few. These results

demonstrate the effectiveness of augmenting the capabilities

of existing GAs with fitness landscape exploration.

The three main contributions of this paper are as follows:

1) a GA that incorporates the linear approximation of local

fitness landscape, called “FLEX-GA" is introduced, which

enhances the speed of search for solutions and evolves better

quality solutions compared to standard GAs, 2) it is shown

how the proposed algorithm generalizes and is applicable

to single and multi-objective optimization problems, and 3)

The proposed FLEX approach does not increase the time

complexity of the base algorithm.

The remainder of this paper is organized as follows. Sec-

tion II describes prior work in fitness landscape analysis-

based evolutionary algorithms. Section III describes the de-

tails of FLEX and local fitness landscape approximation.

Section IV presents the details of FLEX-GA and also com-

pares the results obtained using FLEX-GA, and other algo-

rithms on single-objective benchmark problems. Similarly,

section V presents FLEX-NSGA-II and compares the perfor-

mance of different algorithms on two-objective benchmark

problems. Finally, the last section VI provides conclusions

and discusses future work.

II. RELATED WORK

The concept of the fitness landscape were studied by

Wright [15] to emphasize the dynamics of evolutionary opti-

mization. FL analysis can provide useful insights on a given

problem [16] and is defined by a search space, objective

function, and neighborhood operators [17]. Mathematically,

an FL (S, f, d) of a problem is composed of a set of sam-

ples/points S, the fitness f assigned to each the samples,

and a distance d between samples, which together define

the spatial structure of the landscape [18]. In this paper, the

values of S, f and d are used to estimate the local fitness

landscape, but the samples S are taken from the current pop-

ulation. A number of research articles have been published

that discuss how FL information can be utilized to improve

the performance of algorithms, reviewed in [5].

The FL analysis presented by Ochoa [19] highlights the

motivation for using FL analysis with case studies. An FL

may contain valleys, peaks, ridges, plateaus, and landscapes

that could be combinations of smooth and rugged regions.

This information, if available, can be utilized to enhance the

speed of the search. Earlier, in 1998, Ratle [20] studied how

to accelerate the convergence of evolutionary algorithms by

fitness landscape approximation. The author in that paper

used a statistical model, Kriging interpolation, to approxi-

mate the fitness landscape using samples/ data points from

the first generation and used this approximated FL model for

evaluating individuals for the next few generations before up-

dating the model again. The author created a surrogate model

to approximate the fitness evaluator (which is computation-

ally expensive) to compute the fitness of individuals. Note

that it is difficult to approximate the entire FL using a small

number of samples generated during evolution [5] and thus

the approximated model does not best represent the actual

fitness evaluator. FLEX-GA shares the same motivation of

accelerating the convergence of evolutionary algorithms but

without using surrogate models.

Recent trends [21] and a survey [5] show the effective-

ness of different local/global fitness landscape approximation

techniques and their usefulness in different domain-specific

2 VOLUME x, 20xx

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

problems. For evolutionary search enhancement, Yan [22]

presented a method based on dimensionality reduction for

fitness approximation and used a Fourier transform to obtain

frequency information of the fitness landscape to drive the

search acceleration. Huang [23] presented a self-feedback

strategy for differential evolution using the FL to improve the

performance of the algorithm. Takagi [24] proposed a method

of estimating the convergence point using the solutions of

different generations and used this convergence point to ac-

celerate the search process. Yang [25] presented a genetic al-

gorithm back-propagation neural network algorithm that uses

the FL to improve solutions. They use the fitness landscape

analysis to optimize the learning rate of the back-propagation

algorithm, and the GA evolves a population of solutions.

Cheng [26] used FL approximation and local search meth-

ods for finding solutions to multi-objective multi-modal

problems. For multi-modal problems, niching approaches

have been used to preserve diverse solutions. Authors [26]

show how a multi-objective multi-modal problem can be

recast as a uni-model multi-objective problem, and using FL

approximation, all optimal solutions/peaks can be obtained

in a single run. Tan [27], [28] presented an adaptive muta-

tion strategy based on FL analysis for differential evolution.

These approaches gather information about the FL during the

evolutionary search and use them in subsequent generations.

When solving an optimization problem, FL analysis can be

used to take advantage of the underlying structure of a given

problem where the structure is defined by the search space,

objective function, and neighborhood operator. Traore [29]

presented the fitness landscape footprint, a framework (tool)

to compare search problems. Using the tool, the degree of

difficulty of a network architecture based search of the fitness

landscape is evaluated, with the aim of finding a better

architecture in fewer training cycles.

Techniques based on fitness landscape analysis have been

used not only for parameter tuning but also for traveling

salesman problems (TSP) and to understand different ma-

chine learning problems [30]. Yafrani [31] presented FL

analysis of TSP using Local Optima Networks (LONs) (orig-

inally presented in [32]). Matheus [33] analyzed the fitness

landscape to characterize the search space explored by neural

architecture search methods for graph neural networks. In

recent years, evolutionary algorithms have been used as

a tool for Neural Architecture Search (NAS) by encoding

convolutional/recurrent neural network (CNN/RNN) archi-

tectures in genomes [34], [35], in evolving strategies to win

intense war simulation games [36], physical simulation [37],

manufacturing process [38], and other expensive-to-evaluate

functions [39]. Since all of these problems are computation-

ally expensive, they require a fast search algorithm that can

find optimal or near-optimal solutions through fewer func-

tional evaluations. Both FLEX-GA and FLEX-NSGA-II have

potential applications in these domain-specific problems.

In this paper, canonical genetic algorithms are modified

without increasing the time complexity of the algorithms. FL

information is leveraged to generate new offspring to increase

Algorithm 1: FLEX based Genetic Algorithms

Input : Pop,Gen, Px, Pm, λ
1 P0 ← Initialize(Pop)
2 Evaluate(P0)
3 for t in Gen do

4 Pc = []

5 for i in λ do

6 p1, p2, c1, c2 = Reproduction(Pt)
7 Evaluate(c1, c2)
8 Pc.add(c1, c2)
9 i = i+ 2

10 cn = LFLA([p1, p2], [c1, c2])
11 for j in len(cn) do

12 if i < λ then

13 Evaluate(cnj)
14 Pc.add(cnj)
15 i = i+ 1
16 end

17 end

18 end

19 Pt+1 ← NextGenIndividuals(Pt, Pc)
20 end

the speed of the search and/or to find optimal/near-optimal

solutions to encourage researchers to apply GAs to more

computationally expensive problems.

III. METHODOLOGY

Genetic algorithms are popular stochastic, gradient-free evo-

lutionary algorithms, that use selection, crossover, and mu-

tation operators to randomly generate new offspring. GAs

have been used extensively to evolve solutions for poorly

understood non-linear problems [1]. In this paper, a µ + λ
elitist GA is used to preserve good solutions found during

evolution. Readers are advised to use [40] and [6] as refer-

ence algorithms for single and multi-objective optimization

respectively.

A. FLEX BASED GENETIC ALGORITHMS

Algorithm 1 shows the general form of fitness landscape

examination based genetic algorithms where Pop is the

population size, Gen is the maximum number of iterations

for evolution, Px, Pm are probabilities of crossover and

mutation. The algorithm generates new offspring using tour-

nament selection, SBX crossover, polynomial mutation, and

the proposed local fitness landscape approximation (LFLA)

approach until λ offspring are generated in a generation.

Here, λ is the population size.

An FL may contain plateaus, peaks, valleys, and provides

information about both local and global optima. When the

fitness of neighbouring genomes are the same, they create

a plateau region, and this does not help the GA’s crossover

and mutation operators to evolve fitter solutions. However,

for a minimization problem, peaks (low fitness solutions)

VOLUME x, 20xx 3

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

(a) (b)

FIGURE 1: An example of genome vector (GV) generated using a parent and a child genome. Here δ is one.

and valleys (high fitness solutions) can provide gradient

information that can be used to determine better fitness

solutions in the search space [19]. These peaks and valleys

generally lie on non-linear surfaces, and due to these non-

linearities, it is difficult to predict the fitness of neighbouring

solutions/genomes reliably.

The FLEX based genetic algorithms presented herein use

a local fitness landscape approximation (LFLA) as shown in

Algorithm 2. In LFLA, a pair of parent (p) and a pair of child

(c) solutions are used to compute a genome vector locally,

a fitness vector/gradient, and LFLA uses these vectors to

generate new offspring. However, before using local fitness

landscape approximations a few questions must be kept in

mind, 1) since the fitness landscape is often highly non-

linear and deceptive, following a local vector and fitness

vector/gradient may lead the search to a non-desirable region

of the search space, 2) following a local vector and fitness

gradient, solutions may get stuck into local minima, and it

would be difficult to recover or come out of sub-optimal

valley/peak, and 3) the methodology must consider how

local FL approximation can be used to generate offspring

for multi-objective problems where for a genome vector and

multiple fitness gradients exist. This paper attempts to answer

these questions.

B. LOCAL FITNESS LANDSCAPE APPROXIMATION

Algorithm 2 presents the proposed local fitness landscape

approximation based technique for generating offspring. The

algorithm takes a pair of parent (p1, p2) and a pair of child

(c1, c2) genomes and generates new offspring (Cn) if the con-

ditions of the local fitness landscape approximation satisfy.

c1, c2 =
p1 + p2

2
±

1

2
β(|p2 − p1|) (1)

Equation 1 shows the relationship between p1, p2 and c1, c2,

where p1, p2 are the two parents selected from the pop-

ulation of genomes/individuals using a binary tournament

selection, and c1, c2 are the two children generated using

SBX crossover. In this equation, β is the spread factor which

is the ratio of the spread of child points to that of the parent

points.

In this context, the spread of points refers to the euclidean

distance between two points. When β = 1, the spread of p1,

Algorithm 2: Local Fitness Landscape Approxima-

tion (LFLA)

Input : p, c
1 Cn = empty list
2 for i in len(p) do

3 idx = Closest Individual(c)
4 d = getDist(pi, cidx)
5 GV = (cidx − pi)
6 FV = cidx.fit− pi.fit
7 Gradients = ∆(FV)
8 if d > dth and Gradients < 0 then

9 c′i = cidx + δGV
10 Cn.append(c

′

i)
11 end

12 end

13 return Cn

p2 and c1, c2 are the same whereas for β > 1 the distance be-

tween the two child genomes is greater compared to the two

parent genomes and vice-versa for β < 1. Thus, the spread

factor can be varied to generate two children that are close

to the selected parents in the search/design space, allowing

the distance between parents and children to be controlled.

Such solutions are desirable as it allows a linear relationship

between search/design and fitness landscape (linear map-

ping). This type of linear mapping has been studied for local

decision-making in machine learning algorithms [41] [42].

To find a local fitness landscape approximation, two terms,

namely genome vector, and fitness vector are defined. In the

next two subsections, these two terms are explained.

1) Genome Vector

A genome vector (GV) is created by subtracting each gene

of two genomes as shown by Figure 1(a) where a GV (c− p)
is created using two n dimensional genomes p and c. The

genome vector is then used to create a new offspring (c′)
according to equation 2 and shown by Figure 1(b). Here,

δ = 1 guarantees that the distance d(p, c) is the same as

distance d(c, c′). Remember that the distance between p, c is

controlled by the spread factor β, and in order to make linear

approximation (locally) d(p, c) must be small. Thus, β ≈ 1

4 VOLUME x, 20xx

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

(a) Genome Vectors (black arrows) (b) New Child (green points)

FIGURE 2: Fitness landscape of V-function. Here, black points show the location of the two parents, red points represent

the location of the two children generated using crossover and mutation operator, and green points represent the two children

generated using genome vector and fitness gradient. The back arrows show the genome vectors.

is recommended.

c′ = c+ δG⃗V (2)

In the equation 2, GV is a vector, δ is a scalar, and

thus the distance between each gene of p, c and c, c′ is the

same. However, varying the δ for each gene may guide the

evolutionary search to more promising regions in the search

space. A study of the effect of varying δ for each gene is for

future work. The next subsection explains the fitness vector,

gradient, and how the fitness gradient decides whether to

generate a new offspring using a genome vector.

2) Fitness Vector and Fitness Gradient

Similar to the GV, a fitness vector (FV) is computed by

subtracting two neighbouring genomes’ fitness (fc − fp).

Equation 3 provides a fitness vector computed using p′s and

c′s 2-dimensional fitness, and Equation 4 shows the gradient

of fitness with respect to each objective.

fp = ⟨fp1, fp2⟩
fc = ⟨fc1, fc2⟩
FV = ⟨f1, f2⟩ = ⟨fc1 − fp1, fc2 − fp2⟩

(3)

∂
∂f1

FV = ⟨fc1 − fp1⟩
∂

∂f2
FV = ⟨fc2 − fp2⟩

(4)

In the equation 3, fp and fc are two-dimensional objectives,

and an FV computed using fp and fc provides a direction

of evolutionary search movement in the fitness space. For

minimization problems, FV with a negative fitness gradient

is of importance, and vice-versa for maximization problems.

A negative fitness gradient of FV with respect to an objec-

tive indicates that the quality of solution improved for that

objective as shown by equation 4.

3) Generating New Offspring

Using the GV, FV, and gradient Algorithm 2 generates new

offspring. To avoid the generation of an offspring c′ too close

to a child c, the magnitude of GV must be larger than a

threshold distance (dth) of 10−10 [6]. For each parent, Algo-

rithm 2 finds the closest child (cidx) and then compares their

fitness. If the fitness of the child is smaller than the parent,

then this provides an indication that moving along a vector

(GV) in the design space (search space) from parent to child

results in the reduction of the fitness (thus has negative fitness

gradient). By assuming a local linear mapping between the

fitness of neighboring genomes, the algorithm generates a

new child (c
′

i) from the location of cidx in the direction of

the genome vector using equation 2. To compare FLEX based

genetic algorithms with existing GAs, the number of children

generated in each generation is kept fixed to λ.

IV. SINGLE-OBJECTIVE FLEX

In this section, the FLEX based approach for single-objective

problems is illustrated. Since the mapping from genotype to

fitness is unknown, a genome vector that leads to a negative

fitness gradient may be difficult to identify. Thus the genome

vector must be carefully chosen. For single-objective prob-

lems, a simple GA is the base algorithm, and the proposed

algorithm is FLEX-GA.

A. FLEX-GA

In this section, a simple one-dimensional minimization prob-

lem is used to illustrate how local fitness landscape approx-

imation works within FLEX-GA. This takes the form of a

V-function f(x) = |x − 0.5|, as shown in Figure 2, where

variable x ∈ (0, 1) with the global minimum of f(x) = 0 at

x = 0.5. Through tournament selection, two parents p1, p2
are selected for crossover with β = 0.90. Assuming that

p1 = 0.2, p2 = 0.9, the two children will be generated

at c1 = 0.235 and c2 = 0.865 using equation 1. For

simplicity, the mutation is not considered here. The fitness of

f(p1, p2, c1, c2) are (0.3, 0.4, 0.265, 0.365) as shown in Fig-

ure 2(a) where two black dots show the locations of the two

VOLUME x, 20xx 5

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

TABLE 1: Genome vector and fitness gradient computed

using two parents and two children

Genome V ector (c− p) Fitness Gradient

c1 c2 c1 c2
p1 +0.035 +0.665 −0.035 +0.065
p2 −0.665 −0.035 −0.135 −0.035

parents, two red dots show the locations of the two children,

and two black arrows represent genome vectors. Equation 2

computes GVs, equation 4 computes fitness gradients, and

Table 1 shows these values obtained using p1, p2, c1, and

c2. For this example, a spread factor (β ≈ 1) ∈ {0, 1} is

selected as the global optimal solution lies in the middle of

the search space. For other problems, it’s recommended to

use β = 1± γ, where γ is a small value.

As shown in Table 1, negative fitness gradients are ob-

tained while moving along vectors (p1, c1), (p2, c2), and

(p2, c1). Since the mapping between genotype and fitness

is generally not known a priori, finding a vector from two

points in the design space that are close to each other provides

an indication about fitness mapping locally. For example, a

GV (c1 − p1) = ⃗0.035x reduces the fitness by 0.035, thus

assuming a linear genotype-fitness mapping, a new child can

be computed using equation 2. A new child c′1 generated

from c1 in the direction of GV is at 0.30 where δ = 1
(moving one vector length). These small incremental steps

ensure that a search does not lead, abruptly, to non-desirable

regions of the search space. Using the same concept, a child

c′2 can be generated from c2 at 0.83 following a vector

GV = (c2 − p2). However, following a vector that reduces

fitness might be deceptive and can generate a bad solution.

For instance, a vector from p2 to c1 indicates that there

will be a reduction in fitness, but a child generated using a

GV (c1 − p2) will be at point −0.43 which lies outside the

search space. Thus, Algorithm 2 generates a child using a

vector whose magnitude is smaller than the other vectors.

However, this does not guarantee that the search will not

diverge, rather the divergence will be slow and bad solutions

will be eliminated using elitist selection.

As mentioned earlier, the genome vector sometimes can be

misleading and a search could get stuck in a local minimum

if it was used instead of conventional reproduction operators.

To minimize the effect of excessive gradient-based search, as

a maximum, only half of the offspring are generated using

local genome vectors and fitness gradients, the remaining are

generated using the three genetic operators. In future work,

limiting the number of offspring generated using FLEX

to less than 50% will be studied. In the next subsection,

results on several single-objective benchmark problems are

presented and a comparison is made with other algorithms.

B. SINGLE-OBJECTIVE RESULTS AND DISCUSSIONS

In this section, the results obtained from using FLEX-GA on

several single-objective benchmark problems with and with-

out constraints are presented. Note that since the proposed

(a) V-function (b) Schwefel

FIGURE 3: Comparing the average of the best fitness over 30

runs of each generation on two single-objective test problems

obtained using different algorithms.

advantage of FLEX is to increase the speed of search for

optimal/near-optimal solutions, the different algorithms are

compared in terms of 1) the number of evaluations used for

searching solutions (convergence), and 2) the quality of the

evolved solution (fitness).

1) Experiment Parameters and Simple Test Problems

In the previous section, a simple single-objective V-function

was used to explain local fitness landscape examina-

tion/approximation to generate new offspring. On this sim-

ple problem, solutions are evolved with a small population

size of 20 for 20 iterations/generations. Figure 3(a) shows

the average of minimum fitness, over 30 runs, obtained in

each generation using FLEX-GA, GA, DE, PSO, and ES.

The figure shows that FLEX-GA quickly converges on the

optimal solution compared to GA, DE, PSO, and comparable

to ES. The fitness landscape of this type of problem is

ideal for FLEX where it can leverage local fitness landscape

information to produce better-quality offspring. To test the

performance of the proposed algorithm on problems with

more complex fitness landscape, another test problem was

chosen, Schwefel [43]. The Schwefel function has many lo-

cal minima and thus is a good test problem to see how FLEX

based approach performs. Figure 3(b) shows the average of

the best fitness of each generation over 30 runs on Schwefel,

and it again clearly shows that FLEX-GA convergence is

faster. FLEX-GA found better quality solutions in fewer

evaluations compared to the other algorithms. These two

simple test experiments provide evidence that when lever-

aging fitness landscape information, the speed of the search

improves (against the base GA), and thus the computational

cost/budget reduces.

2) CEC Benchmark Problems

Following the positive results on the proof-of-concept fitness

landscapes, the FLEX-GA algorithm’s performance was next

tested on 10 IEEE CEC-2006 single-objective benchmark

problems (G01-G10) [13]. The CEC-06 competition provides

highly constrained single-objective optimization benchmark

functions and has been used extensively [13]. Experiments

were conducted 30 times with different random initialization

6 VOLUME x, 20xx

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

(a) G01 (b) G02 (c) G03

(d) G04 (e) G06 (f) G07

(g) G08 (h) G09 (i) G10

FIGURE 4: Comparing the average of the best fitness obtained in each generation over 30 runs on G01-G10 (except G05)

obtained using different algorithms. (On problem G05 feasible solutions are not found using any algorithm).

on each problem with a population size of 100 for 100
generations. (The population size and number of iterations

were varied, and a similar performance pattern has been ob-

served.) To compare the performance in terms of the number

of evaluations required to find solutions, the minimum fitness

of each generation plotted, averaged over 30 runs, in Figure 4.

Figure 4 shows the convergence of average fitness on all

problems (except G05). Since all 10 problems are constrained

optimization problems, the figure only shows the average of

the best feasible solution of each generation. In the early

stage of these runs, evolved solutions are usually infeasible,

so for some problems the fitness of initial generations are not

presented. In all figures, the blue line represents the fitness

curve of FLEX-GA, the red line for GA, green for DE, black

for PSO, and magenta for ES. On G01, Figure 4(a) shows

that the fitness obtained in the 50th generation with FLEX-

GA is equal to the fitness obtained on and after the 80th

generation using the GA, which leads to a saving of more

than 30% of computational cost/budget. Similarly, on G04,

the performance of FLEX-GA and GA are comparable until

30th generation, and thereafter FLEX-GA’s performance is

better than GA. Figure 4(d) shows that the average GA’s

fitness of the 100th generation is similar to the average

FLEX-GA’s fitness of the 50th generation. On this problem,

FLEX-GA’s search for optimal/near-optimal solution is twice

as fast compared to than canonical GA’s. The figure also

shows that the convergence of FLEX-GA is much faster than

PSO whereas the quality of solution is better compared to DE

and ES. A similar performance pattern is observed on G07

and G10 where FLEX-GA’s convergence is better (faster)

than others leading to saving of computational budget.

On G08, FLEX-GA’s, GA’s, and ES’s convergence are

comparable but better than DE and PSO whereas, on G09,

each algorithm converges quickly. On G02, GA’s perfor-

mance is better than others and on G06, ES performed the

best. On G03, PSO’s performance is slightly better than

others, however far from optimal. G03 is a polynomial equa-

tion with an equality constraint and none of the algorithms

achieve near-optimal solution. In depth analysis suggests

that on G03, genome vectors and fitness gradients lead the

search towards infeasible regions of the search space and

thus performance is worse than the base GA. Similarly, G05

VOLUME x, 20xx 7

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

TABLE 2: Comparing the best, worst, and median fitness

obtained using different algorithm over 30 runs

Problems FLEX-GA GA DE PSO ES

G01 (-15)
Best -14.99 -14.96 -11.25 -9.799 -9.990

Worst -12.44 -14.56 -4.482 -2.868 -5.694
Median -14.99 -14.80 -7.159 -6.113 -7.748

G02
(-0.8036)

Best -0.786 -0.791 -0.519 -0.384 -0.275
Worst -0.629 -0.706 -0.269 -0.132 -0.195

Median -0.740 -0.761 -0.345 -0.325 -0.216

G03
(-1.0)

Best -0.085 -0.184 -0.195 -0.640 NA
Worst 0.0 0.0 0.0 0.0 NA

Median -0.007 -0.014 -0.009 -0.251 NA

G04
(-30665)

Best -30665 -30663 -30633 -30665 -30378
Worst -30614 -30475 -29599 -30242 -29902

Median -30660 -30609 -30276 -30639 -30194

G06
(-6961)

Best -6955 -6935 -6961 -6932 -6961

Worst -6584 -6391 -703.6 -978.2 -6951

Median -6823 -6720 -6961 -5985 6959

G07
(24.30)

Best 24.30 25.37 32.03 27.35 NA
Worst 34.61 39.02 2151 57.37 NA

Median 27.18 27.60 66.17 32.90 NA

G08
(-0.0958)

Best -0.0958 -0.0958 -0.0958 -0.0958 -0.0958

Worst -0.0958 -0.0958 -0.0258 -0.0291 -0.0958

Median -0.0958 -0.0958 -0.0958 -0.0958 -0.0958

G09
(680)

Best 684.01 684.35 684.63 684.51 703.10
Worst 688.73 694.74 1010.2 700.49 902.65

Median 684.61 685.58 705.93 685.43 757.80

G10
(7049)

Best 7436.3 7694.2 7634.1 7533.7 NA
Worst 11438 18207 28610 14544 NA

Median 8408.9 8484.9 14302 19321 NA

TABLE 3: Ranking different algorithms in terms of the speed

of the search and quality of the evolved solutions

Algorithms Problems

G1 G2 G3 G4 G6 G7 G8 G9 G10

FLEX-GA I II IV I III I I I I

GA II I II II IV II I II II

DE IV III III IV II IV II IV IV

PSO V IV I III V III III III III

ES III V NA V I NA I V NA

has three equality constraints, and no feasible solutions were

found using any of the five algorithms and thus not shown

in Figure 4. Additionally, it has been found that FLEX-GA

is inferior to its base algorithm on problems with equality

constraints. These figures show that on most problems either

FLEX-GA found better fitness solutions compared to others,

or if the quality of solutions are the same, then FLEX-

GA took less functional evaluations (computational cost)

for searching those solutions. This shows that the FLEX

approach can yield better convergence in shorter time on

many benchmark problems.

While Figure 4 shows the average of the best fitness of

each generation to see how these algorithms are converging

over generations, to comment on the best-evolved solution

Table 2 shows the best, worst, and median fitness obtained

using the five algorithms over 30 runs. Table 3 ranks these

algorithms using the information from Figure 4 and Table 2.

Table 2 shows that on G01, G04, G07, G09, and G10 the best,

worst, and median performance of FLEX-GA is better than

others, whereas comparable to others on G08. On G02, the

FLEX-GA’s performance is the second best in terms of the

convergence (from Figure 4(b)) and evolved solution (from

Table 2), after GA. Similarly, on G06 FLEX-GA is the third

best. On problems G03, G07, and G10, ES did not find

FIGURE 5: Fitness landscape of a simple two objective prob-

lem. The two arrows show that when x ≤ π and x ≥ π/2, a

genome vector can generate better solutions.

feasible solutions and thus not shown figures and Table2.

These results show that FLEX-GA has the potential to

leverage local fitness landscape information to increase the

speed of search significantly (up to 50% faster) and to find

better fit solutions. In the next section, experimental results

on multi-objective problems are presented.

V. MULTI-OBJECTIVE FLEX

The procedure of local FL approximation of multi-objective

problems is similar to that for single-objective problems with

only one difference, that is instead of having one fitness

gradient, multiple fitness gradients exist. Here, NSGA-II is

the base algorithm for multi-objective optimization, and the

proposed algorithm is referred to as FLEX-NSGA-II.

A. FLEX-NSGA-II

Just as with single-objective problems, in the case of a

multi-objective optimization problem, Algorithm 2 generates

a GV using a parent (pi) and a child (ci), and multiple

fitness gradients that are associated with the GV. Algorithm 2

generates a new child solution (c′i) only when the fitness

gradient with respect to each objective is negative, that is

⟨ ∂
∂f1

FV, .., ∂
∂fm

FV ⟩ < 0 where m is the number of objec-

tives. For two-objective problems, if ⟨ ∂
∂f1

FV, ∂
∂f2

FV ⟩ < 0,

then ci dominates pi and a new child is generated. To explain

FLEX-NSGA-II domination, assume a simple two-objective

problem where f1(x) = sin(x), f2(x) = cos(x), and

x ∈ {0, 2π}. The fitness landscapes for both objectives

are shown in Figure 5 where the x-axis represents the input

variable (x) and the y-axis shows the fitness.

Consider this as a one variable problem to explain the

concept here, but the concepts apply to problems represented

by an l-dimensional chromosome as well. In Figure 5, two

arrows represent genome vectors associated with negative

fitness gradients i.e. following these GVs, both objectives

will reduce when x ≥ a(π/2) and x ≤ b(π). Thus Algo-

rithm 2 can only generate new child using equation 2 in this

region only. The three questions raised in previous subsection

are applicable here as well. Remembering the issue that

8 VOLUME x, 20xx

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

(a) GD (b) IGD (c) IGD+ (d) HV

FIGURE 6: Comparing the average GD, IGD, IGD+, and HV of the best Pareto front of each generation obtained over 30 runs

using different algorithms on ZDT1 problem. Figures show that FLEX-NSGA-II outperformed others on all indicator measures.

FIGURE 7: Figure shows that the best Pareto front obtained

in the 20th generation using FLEX-NSGA-II is closer to the

true Pareto front compared to fronts obtained in the 40th

generation using NSGA-II and AGE-MOEA.

following a vector may lead the search to undesirable parts

of the search space. This issue is less a cause of worry for

multi-objective optimization problems compared to single-

objective problems. Since, Algorithm 2 generates a new

solution only when ci dominates pi, thus until a vector is

found that improves both objective values, a new child will

not be created. The multi-objective nature of a given problem

has inherent characteristics that discourage the divergence of

solutions generated using local fitness landscape approxima-

tion given by Algorithm 2. Hence it is safe to expect that

Algorithm 2 will generate more child solutions for single-

objective problems compared to multi-objective problems.

B. MULTI-OBJECTIVE RESULTS AND DISCUSSIONS

In this paper, only two-objective problems are considered.

For these two-objective problems FLEX-NSGA-II is com-

pared with the original NSGA-II, MOEA/D, SPEA-II, and

AGE-MOEA. For all experiments, chromosomes are real-

value encoded, simulated binary crossover is used to create

offspring with the probability of 0.90, the polynomial muta-

tion mutates an offspring with the probability of 0.05. The

population size and number of generations were varied for

different problems between 40 − 100. Finally, to preserve

good solutions found during evolution, µ + λ elitism is

used. Studies on selection schemes [44] have shown that

quality of solutions improves if convergence is slowed and

greater diversity is allowed in the populations, thus binary

tournament selection is used to select two parent solutions to

produce two offspring.

1) Performance Indicators

Comparing two Pareto fronts is not straightforward as in the

case of single-objective problems. In the literature, genera-

tional distance (GD), inverted generational distance (IGD),

inverted generational distance plus (IGD+), and hypervolume

(HV) [45], [46] have been used to compare Pareto solutions.

From these, only IGD+ and HV are Pareto-compliant indi-

cators, and thus used for a detailed comparison of FLEX-

NSGA-II’s performance with other algorithms. GD, IGD,

and IGD+ compute the distance from the true Pareto front

where a lower distance means that the evolved Pareto front

is closer to the optimal. However when using the above

three indicators, a true/target Pareto front is required, and

thus these are not applicable to problems with unknown true

Pareto fronts. The HV indicator does not require the true

front [47], and uses a reference point to compute the area

enclose by points in the best Pareto front.

2) Unconstrained multi-objective Benchmark Problems

First, five unconstrained ZDT benchmark problems are con-

sidered from [6], and results obtained for these problems

(ZDT1, ZDT2, ZDT3, ZDT4, ZDT6) are presented here. For

each of these problems, the true Pareto front is known [48].

On each problem, solutions are evolved, 30 times with differ-

ent initialization, with the population size of 50 for 50 gen-

erations and computed GD, IGD, IGD+, and HV of the best

Pareto front (rank zero) from each generation. Figure 6 shows

the comparison of average (a) GD, (b) IGD, (c) IGD+, and

(d) HV per generation obtained over 30 runs using different

algorithms on ZDT1. Figure 6 (a), (b), and (c) show that the

average GD, IGD, IGD+ of FLEX-NSGA-II converges much

faster than other algorithms. For comparison, FLEX-NSGA-

II converges around the 20th generation whereas NSGA-

II, and AGE-MOEA converge around the 40th generation.

MOEA/D’s convergence is always slower than others.

Note that, the lower the values of GD, IGD, and IGD+ the

VOLUME x, 20xx 9

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

(a) ZDT2 IGD+ (b) ZDT2 HV (c) ZDT3 IGD+ (d) ZDT3 HV

(e) ZDT4 IGD+ (f) ZDT4 HV (g) ZDT6 IGD+ (h) ZDT6 HV

FIGURE 8: Comparing the average IGD+ and HV per generation over 30 runs obtained using the five algorithms on ZDT2,

ZDT3, ZDT4, and ZDT6. Figures show that FLEX-NSGA-II’s performance is better than the others.

TABLE 4: Comparing the five algorithms using different performance indicators on ZDT1, ZDT2, and ZDT3 over 30 runs.

ZDT1 ZDT2 ZDT3

Indicators FLEX- NSGA-II MOEA/D SPEA-II AGE FLEX- NSGA-II MOEA/D SPEA-II AGE FLEX- NSGA-II MOEA/D SPEA-II AGE
NSGA-II MOEA NSGA-II MOEA NSGA-II MOEA

IGD+
Best 0.0117 0.0223 0.7391 0.1453 0.0278 0.0134 0.0404 1.5923 0.3603 0.0668 0.0067 0.0151 0.8049 0.1617 0.0163

Worst 0.0252 0.0922 1.5917 0.4033 0.1149 0.3108 0.3776 2.7932 1.3882 0.4282 0.1542 0.09 1.7319 0.3722 0.1956
Median 0.0145 0.0425 1.0774 0.2954 0.0407 0.1958 0.3208 2.1543 0.7274 0.3417 0.0083 0.0279 1.2341 0.2494 0.0474

HV
Best 1.0829 1.0616 0.1405 0.8424 1.048 0.745 0.6843 0.0 0.2361 0.6310 1.6246 1.5929 0.3509 1.2266 1.5883

Worst 1.0467 0.9385 0.0 0.477 0.9068 0.2698 0.1889 0.0 0.0 0.1282 1.325 1.3987 0.0 0.8709 1.2441
Median 1.0767 1.0186 0.0 0.6148 1.0231 0.4191 0.2578 0.0 0.0 0.2320 1.6187 1.5485 0.0352 1.0149 1.5171

TABLE 5: Comparing the five algorithms using different performance indicators on ZDT4 and ZDT6 over 30 runs.

ZDT4 ZDT6

Indicators FLEX- NSGA-II MOEA/D SPEA-II AGE FLEX- NSGA-II MOEA/D SPEA-II AGE
NSGA-II MOEA NSGA-II MOEA

IGD+
Best 1.7815 2.3398 5.585 3.7854 3.3586 0.0105 0.5419 0.0211 1.0718 0.4358

Worst 6.3919 10.4432 22.4721 11.0587 14.0639 0.1392 1.1069 4.6694 2.1465 1.0343
Median 3.4395 7.1427 13.3954 6.1816 6.8213 0.031 0.773 2.2037 1.6014 0.6096

HV
Best 0.0 0.0 0.0 0.0 0.0 0.6924 0.0922 0.6707 0.0 0.1524

Worst 0.0 0.0 0.0 0.0 0.0 0.472 0.0 0.0 0.0 0.0
Median 0.0 0.0 0.0 0.0 0.0 0.6572 0.0076 0.0 0.0 0.0573

closer they are (evolved Pareto front) to the actual/true Pareto

front. Since figure 6 shows that FLEX-NSGA-II converges

much faster than others, the evolved Pareto front from the

20th generation of FLEX-NSGA-II and from the 40th gener-

ation of NSGA-II, and AGE-MOEA are plotted in Figure 7.

The other two algorithms performed worst compared to these

three, and thus their Pareto fronts are not compared. The

figure shows that the blue Pareto front (FLEX-NSGA-II) is

closer to the true Pareto front (black front) compared to the

red front (NSGA-II’s), and magenta front (AGE-MOEA’s)

while taking 50% fewer function evaluations.

Unlike the distance-based indicators, a larger value of HV

refers to better Pareto solution [47]. To compute the HV for

each of the ZDT problems, a reference point at (1.2, 1.2) is

chosen because the optimal solution’s fitness lies between 0

to 1 for both objectives. Figure 6(d) shows that the HV of

FLEX-NSGA-II Pareto front solutions is significantly better

(larger) than the other four algorithms, again indicating that

FLEX-NSGA-II evolved Pareto front solutions faster, and

contains better solutions. These results provide evidence that

by using fitness landscape information locally, the speed of

search for optimal/near-optimal solution increases signifi-

cantly. The figure clearly shows that FLEX-NSGA-II takes

at least 50% less computational cost to find solutions.

Similar experiments were conducted on the remaining

ZDT problems and for comparison, only IGD+ and HV per-

formance indicators are shown as only these two are Pareto-

compliant indicators. Similar to ZDT1, Figure 8 shows that

except on ZDT4, FLEX-NSGA-II takes at least 50% less

computational evaluations to find solutions (in terms of IGD+

and HV) that are better (or comparable) than the other

four algorithms. With a population size of 50, and running

for 50 generations, the fitnesses of evolved solutions on

ZDT4 are larger than the reference point of (1.2, 1.2), so

10 VOLUME x, 20xx

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

(a) ZDT1 HV (b) ZDT2 HV (c) ZDT3 HV (d) ZDT6 HV

(e) ZDT1 IGD+ (f) ZDT2 IGD+ (g) ZDT3 IGD+ (h) ZDT6 IGD+

FIGURE 9: Comparing the distribution of HV and IGD+ of the last generation Pareto fronts obtained over 30 runs. Note that

higher HV and lower IGD+ refer to better quality Pareto solutions.

(a) CS1 (b) CT1

FIGURE 10: Rank zero Pareto fronts from the last generation of each run on CS1 and CT1. Green, blue, and red points represent

the best know Pareto front so far [14], solutions evolved using FLEX-NSGA-II, and using NSGA-II in 10 runs respectively.

the hypervolume is zero. For ZDT4 more evaluations are

required to compute better solutions. Tables 4 and 5 compare

the best, worst, and median values of the IGD+ and HV

of the best Pareto front from the last generation obtained

using the five algorithms. On ZDT1, ZDT2, and ZDT6 in

all combinations of indicators, FLEX-NSGA-II performed

better than others. The hypervolume of the last generation

Pareto front obtained using MOEA/D is zero because the

fitness values of Pareto solutions are larger than the reference

point. When comparing the best and median of IGD+ and HV

over 30 runs on ZDT3, FLEX-NSGA-II is better and NSGA-

II performance is better on the remaining performance com-

parison matrix. Results on ZDT problems show that using

the FLEX approach, the speed of the search and quality

of solutions improve significantly compared to NSGA-II,

MOEA/D, SPEA-II, and AGE-MOEA.

Figure 9 shows the distribution of HV (top) and IGD+ (bot-

tom) values of the best Pareto front from the last generation

obtained using the five algorithms over 30 runs. Remember

that the higher the values of HV, the better the quality of

Pareto solutions. HV distribution shows that the median

performance of FLEX-NSGA-II is better than the others. The

p-values of HV for all ZDT problems, except ZDT4, are less

than 0.05 indicating strong statistical significance of results.

In contrast to the HV measure, smaller IGD+ values suggest

that the evolved Pareto fronts are close to the true Pareto front

solutions. The distribution in Figure 9(bottom row) shows

that FLEX-NSGA-II’s IGD+ values are smaller than the rest

of the four algorithms and p-values are smaller than 0.05.

The effect sizes (A) for HV and IGD+ for all ZDT problems

VOLUME x, 20xx 11

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

(a) CS1 IGD+ (b) CS1 HV (c) CT1 IGD+ (d) CT1 HV

FIGURE 11: Comparing the average IGD+ and HV values of the best Pareto front from the last generation on CS1 and CT1

obtained using FLEX-NSGA-II and NSGA-II over 10 runs.

TABLE 6: Comparing the best, worst, and median values of IGD+ and HV on CS problems over 10 runs

Indicators FLEX-NSGA-II NSGA-II FLEX-NSGA-II NSGA-II FLEX-NSGA-II NSGA-II FLEX-NSGA-II NSGA-II

CS1 CS2 CS3 CS4

IGD+

Best 0.4914 1.03 1.4981 1.5257 30.4956 24.4225 29.5131 32.6533
Worst 7.1144 7.6886 4.4153 5.5952 48.4414 47.3848 101.227 98.4323

Median 2.3922 4.6027 2.5046 2.9762 37.6297 39.7891 64.2075 63.714

HV

Best 122.5058 123.6587 119.3586 116.4083 28.3348 35.9575 37.3196 45.1831

Worst 94.2387 90.9137 58.4571 60.4826 10.22 9.6398 6.67 8.2226

Median 105.655 98.4762 96.7949 96.502 18.206 19.6642 24.8328 23.6266

TABLE 7: Comparing the best, worst, and median values of IGD+ and HV on CT problems over 10 runs

Indicators FLEX-NSGA-II NSGA-II FLEX-NSGA-II NSGA-II FLEX-NSGA-II NSGA-II FLEX-NSGA-II NSGA-II

CT1 CT2 CT3 CT4

IGD+

Best 0.0556 0.0578 0.0673 0.0674 0.0814 0.1297 0.3163 0.3666
Worst 0.0939 0.2507 0.1558 0.1434 0.712 0.5942 1.0178 0.8757

Median 0.0735 0.0868 0.0803 0.0988 0.2347 0.2211 0.483 0.5193

HV

Best 2.4778 2.4567 2.3984 2.4301 1.6696 1.3969 1.4362 1.3372
Worst 2.3439 1.8509 2.1512 2.1952 0.4157 0.586 0.2894 0.4429

Median 2.4162 2.3681 2.364 2.3128 1.1241 1.1621 1.0834 0.9794

are greater than 0.5 again indicates that FLEX-NSGA-II

performance is significantly better than the others. These

results indicate that FLEX-NSGA-II ranks top compared

to other four algorithms. In the next subsection, real-world

multi-objective optimization problems are considered.

3) Constrained multi-objective Real World Problems

Picard [14] in 2021 presented 20 real-world industrial con-

strained multi/many-objective benchmark problems to design

electro-mechanical actuators. Eight of those 20 are two-

objective problems that aim to minimize cost (C), maximize

the minimum torque excess (T), and maximize the safety

factor (S) of actuators. These eight problems are combina-

tions of CS (CS1, CS2, CS3, CS4) and CT (CT1, CT2,

CT3, CT4) with different constraints. Each problem is of

20 dimensions and has between 6 and 11 constraints. For

more details regarding the problem statement and constraints

see Picard [14]. Note that since the local fitness landscape

information is only used to create new offspring without

looking at the constraints, constraint handling in FLEX-

NSGA-II is identical to NSGA-II.

These real-world problems are computationally expensive

to evaluate, and thus Pareto optimal solutions are evolved 10
times using FLEX-NSGA-II, NSGA-II on each problem with

the population size of 100 and for 100 generations. Figure 10

shows the best evolved Pareto front of each run using FLEX-

NSGA-II and NSGA-II on two problems (CS1, CT1) where

blue points represent Pareto solution of FLEX-NSGA-II, red

points refer to Pareto solutions of NSGA-II, and green points

show the actual/true Pareto solutions. Both Figures 10(a)

and (b) show that FLEX-NSGA-II evolved Pareto solutions

are closer to the true Pareto compared to NSGA-II evolved

Pareto solutions.

Figure 11 shows the comparison of average IGD+ and

HV of the best front from the last generation on CS1 and

CT1 over 10 runs. Recall that lower IGD+ and higher HV

refer to better solution/front and the figure shows that FLEX-

NSGA-II performance is better than NSGA-II on these two

problems. Both CS1 and CT1 are constrained two-objective

problems and results show that in the initial few generations

no feasible solutions are found, thus the average IGD+ and

HV values are plotted only when feasible solutions are found.

Figure 11(a) and (b) show the IGD+ and HV values from

the 8th generation for CS1. Similarly Figure 11 (c), and

(d) show the IGD+ and HV from the 5th generation for

CT1. These figures show that FLEX-NSGA-II’s convergence

(IGD+ and HV values over generations) is faster than NSGA-

II, and thus takes fewer evaluations to evolve similar quality

solutions. Table 6 and 7 list the best, worst, and median

IGD+ and HV values obtained from the best Pareto front

of the last generation evolved using FLEX-NSGA-II and

NSGA-II on the eight problems. Table 6 shows that the

12 VOLUME x, 20xx

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

performance of FLEX-NSGA-II on CS1, and CS2 is better

than NSGA-II, comparable and/or inferior on CS3 and CS4

to NSGA-II. Similar observations can be drawn from Table 7

where FLEX-NSGA-II is performing better on CT1 and CT4,

comparable to NSGA-II on CT2, but inferior to NSGA-II on

CT3.

Results on these eight real-world multi-objective problems

show that FLEX-NSGA-II improved the speed of the search

and quality of evolved solutions on four of the eight problems

and inferior only in two against NSGA-II. This provides

further evidence that using the local FLEX approach, the

speed of the search and/or quality of solutions improves.

VI. CONCLUSION

This paper presents fitness landscape exploration-based ge-

netic algorithms. The main aim of FLEX-GA is to leverage

the FL information to increase the speed of the search and

to find better quality solutions. Assuming a local linear

relationship between neighbouring/local genomes’ fitness,

a genome vector is created and the fitness vector/gradient

corresponding to the GV is computed. The GV and fitness

gradient are used to generate a new child in the search/design

space. Experiments were conducted on several single and

two-objective optimization test benchmark problems, and

eight real-world two-objective problems. Results show that

on single-objective problems, FLEX-GA evolved better or

comparable solutions while only requiring as much as 50%
fewer evaluations compared to existing simple GAs and other

algorithms. On most of the problems, the best solutions of

the last generation were also better than the other four algo-

rithms. In the case of two-objective problems, again FLEX-

NSGA-II took as much as 50% fewer functional evaluations

to generate better or comparable Pareto solutions/fronts than

standard NSGA-II and other multi-objective optimization al-

gorithms. Lastly, solutions evolved on eight real-world multi-

objective problems show that FLEX-NSGA-II evolved better

Pareto solutions than NSGA-II.

These results provide evidence that FL information can

be utilized effectively to enhance the search capacity of

genetic algorithms and thus encourages researchers to use

GAs for computationally expensive problems. Results also

show that on a few problems FLEX approach did not work

well as compared to GA. These can happen because the

fitness landscape might be too rugged and local fitness ap-

proximation is not able to produce better results. To deal

with such problems global FL approximation might be well

suited. Future work will extend this work in the following

ways: 1) what will be the impact of generating a genome

vector using the entire population information, not just with

the two selected parents, 2) how to vary delta for each gene

of a genome vector, and 3) how to scale the FLEX approach

for three or more objective problems.

REFERENCES

[1] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review

on genetic algorithm: past, present, and future. Multimedia Tools and

Applications, 80(5):8091–8126, 2021.

[2] Carmen Kar Hang Lee. A review of applications of genetic algorithms

in operations management. Engineering Applications of Artificial Intelli-

gence, 76:1–12, 2018.

[3] Darrell Whitley and Andrew M Sutton. Genetic algorithms-a survey of

models and methods. In Handbook of natural computing, pages 637–671.

Springer Berlin Heidelberg, 2012.

[4] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang,

Cho-Jui Hsieh, and Mani B Srivastava. Genattack: Practical black-box

attacks with gradient-free optimization. In Proceedings of the Genetic and

Evolutionary Computation Conference, pages 1111–1119, 2019.

[5] Katherine Mary Malan. A survey of advances in landscape analysis for

optimisation. Algorithms, 14(2):40, 2021.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-

objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary

Computation, 6(2):182–197, 2002.

[7] Kenneth V Price. Differential evolution. In Handbook of optimization,

pages 187–214. Springer, 2013.

[8] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm

optimization. Swarm intelligence, 1(1):33–57, 2007.

[9] Torsten Asselmeyer, Werner Ebeling, and Helge Rosé. Evolutionary

strategies of optimization. Physical Review E, 56(1):1171, 1997.

[10] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary al-

gorithm based on decomposition. IEEE Transactions on evolutionary

computation, 11(6):712–731, 2007.

[11] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2: Improving the

strength pareto evolutionary algorithm. TIK-report, 103, 2001.

[12] Annibale Panichella. An adaptive evolutionary algorithm based on non-

euclidean geometry for many-objective optimization. In Proceedings of

the Genetic and Evolutionary Computation Conference, pages 595–603,

2019.

[13] Jing J Liang, Thomas Philip Runarsson, Efren Mezura-Montes, Mau-

rice Clerc, Ponnuthurai Nagaratnam Suganthan, CA Coello Coello, and

Kalyanmoy Deb. Problem definitions and evaluation criteria for the cec

2006 special session on constrained real-parameter optimization. Journal

of Applied Mechanics, 41(8):8–31, 2006.

[14] Cyril Picard and Jürg Schiffmann. Realistic constrained multiobjective

optimization benchmark problems from design. IEEE Transactions on

Evolutionary Computation, 25(2):234–246, 2020.

[15] Sewall Wright et al. The roles of mutation, inbreeding, crossbreeding, and

selection in evolution. 1932.

[16] Erik Pitzer and Michael Affenzeller. A comprehensive survey on fitness

landscape analysis. Recent advances in intelligent engineering systems,

pages 161–191, 2012.

[17] Jean-Paul Watson. An introduction to fitness landscape analysis and cost

models for local search. In Handbook of metaheuristics, pages 599–623.

Springer, 2010.

[18] Peter Merz and Bernd Freisleben. Fitness landscape analysis and memetic

algorithms for the quadratic assignment problem. IEEE transactions on

evolutionary computation, 4(4):337–352, 2000.

[19] Gabriela Ochoa and Katherine Malan. Recent advances in fitness land-

scape analysis. In Proceedings of the Genetic and Evolutionary Computa-

tion Conference Companion, pages 1077–1094, 2019.

[20] Alain Ratle. Accelerating the convergence of evolutionary algorithms by

fitness landscape approximation. In International Conference on Parallel

Problem Solving from Nature, pages 87–96. Springer, 1998.

[21] Yan Pei. Trends on fitness landscape analysis in evolutionary computation

and meta-heuristics. In Frontier Applications of Nature Inspired Compu-

tation, pages 78–99. Springer, 2020.

[22] Yan Pei and Hideyuki Takagi. Fourier analysis of the fitness landscape for

evolutionary search acceleration. In 2012 IEEE Congress on Evolutionary

Computation, pages 1–7. IEEE, 2012.

[23] Ying Huang, Wei Li, Chengtian Ouyang, and Yan Chen. A self-feedback

strategy differential evolution with fitness landscape analysis. Soft Com-

puting, 22(23):7773–7785, 2018.

[24] Jun Yu, Yuhao Li, Yan Pei, and Hideyuki Takagi. Accelerating evolution-

ary computation using a convergence point estimated by weighted moving

vectors. Complex & Intelligent Systems, 6(1):55–65, 2020.

[25] Jing Yang, Yingpeng Hu, Kaixi Zhang, and Yanghui Wu. An improved

evolution algorithm using population competition genetic algorithm and

self-correction bp neural network based on fitness landscape. Soft Com-

puting, 25(3):1751–1776, 2021.

[26] Ran Cheng, Miqing Li, Ke Li, and Xin Yao. Evolutionary multiob-

jective optimization-based multimodal optimization: Fitness landscape

VOLUME x, 20xx 13

R. Dubey et al.: Local Fitness Landscape Exploration Based Genetic Algorithms

approximation and peak detection. IEEE Transactions on Evolutionary

Computation, 22(5):692–706, 2017.

[27] Zhiping Tan, Kangshun Li, and Yi Wang. Differential evolution with adap-

tive mutation strategy based on fitness landscape analysis. Information

Sciences, 549:142–163, 2021.

[28] Zhiping Tan and Kangshun Li. Differential evolution with mixed mutation

strategy based on deep reinforcement learning. Applied Soft Computing,

111:107678, 2021.

[29] Kalifou René Traoré, Andrés Camero, and Xiao Xiang Zhu. Fitness

landscape footprint: A framework to compare neural architecture search

problems. arXiv preprint arXiv:2111.01584, 2021.

[30] Cristiano G Pimenta, Alex GC de Sá, Gabriela Ochoa, and Gisele L Pappa.

Fitness landscape analysis of automated machine learning search spaces.

In European Conference on Evolutionary Computation in Combinatorial

Optimization (Part of EvoStar), pages 114–130. Springer, 2020.

[31] Mohamed El Yafrani, Marcella SR Martins, Mehdi El Krari, Markus

Wagner, Myriam RBS Delgado, Belaïd Ahiod, and Ricardo Lüders. A

fitness landscape analysis of the travelling thief problem. In Proceedings

of the Genetic and Evolutionary Computation Conference, pages 277–284,

2018.

[32] Gabriela Ochoa, Marco Tomassini, Sebástien Vérel, and Christian Dara-

bos. A study of nk landscapes’ basins and local optima networks. In

Proceedings of the 10th annual conference on Genetic and evolutionary

computation, pages 555–562, 2008.

[33] Matheus Nunes, Paulo M Fraga, and Gisele L Pappa. Fitness landscape

analysis of graph neural network architecture search spaces. In Proceed-

ings of the Genetic and Evolutionary Computation Conference, pages 876–

884, 2021.

[34] Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings of the IEEE

international conference on computer vision, pages 1379–1388, 2017.

[35] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy

Deb, Erik Goodman, and Wolfgang Banzhaf. Nsga-net: neural architecture

search using multi-objective genetic algorithm. In Proceedings of the

genetic and evolutionary computation conference, pages 419–427, 2019.

[36] Rahul Dubey, Joseph Ghantous, Sushil Louis, and Siming Liu. Evolution-

ary multi-objective optimization of real-time strategy micro. In 2018 IEEE

Conference on Computational Intelligence and Games (CIG), pages 1–8,

2018.

[37] Yujiang Xiang, Jasbir S Arora, and Karim Abdel-Malek. Physics-based

modeling and simulation of human walking: a review of optimization-

based and other approaches. Structural and Multidisciplinary Optimiza-

tion, 42(1):1–23, 2010.

[38] Muhammad Imran, Changwook Kang, Young Hae Lee, Mirza Jahanzaib,

and Haris Aziz. Cell formation in a cellular manufacturing system using

simulation integrated hybrid genetic algorithm. Computers & Industrial

Engineering, 105:123–135, 2017.

[39] Nicolai Peremezhney, E Hines, A Lapkin, and C Connaughton. Combin-

ing gaussian processes, mutual information and a genetic algorithm for

multi-target optimization of expensive-to-evaluate functions. Engineering

Optimization, 46(11):1593–1607, 2014.

[40] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73,

1992.

[41] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i

trust you?" explaining the predictions of any classifier. In Proceedings of

the 22nd ACM SIGKDD international conference on knowledge discovery

and data mining, pages 1135–1144, 2016.

[42] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv

preprint arXiv:1212.5701, 2012.

[43] Momin Jamil and Xin-She Yang. A literature survey of benchmark

functions for global optimisation problems. International Journal of Math-

ematical Modelling and Numerical Optimisation, 4(2):150–194, 2013.

[44] David E Goldberg and Kalyanmoy Deb. A comparative analysis of

selection schemes used in genetic algorithms. In Foundations of genetic

algorithms, volume 1, pages 69–93. Elsevier, 1991.

[45] Jesús Guillermo Falcón-Cardona and Carlos A Coello Coello. Indicator-

based multi-objective evolutionary algorithms: A comprehensive survey.

ACM Computing Surveys (CSUR), 53(2):1–35, 2020.

[46] Miqing Li, Shengxiang Yang, and Xiaohui Liu. A performance com-

parison indicator for pareto front approximations in many-objective op-

timization. In Proceedings of the 2015 Annual Conference on Genetic and

Evolutionary Computation, pages 703–710, 2015.

[47] Carlos M Fonseca, Luís Paquete, and Manuel López-Ibánez. An improved

dimension-sweep algorithm for the hypervolume indicator. In 2006 IEEE

international conference on evolutionary computation, pages 1157–1163.

IEEE, 2006.

[48] J. Blank and K. Deb. pymoo: Multi-objective optimization in python.

IEEE Access, 8:89497–89509, 2020.

RAHUL DUBEY is a postdoctoral research asso-

ciate in the department of Electronics Engineer-

ing at the University of York UK. He received a

PhD in computer science and engineering from

the University of Nevada Reno USA in 2021. His

research interests are in the areas of evolutionary

computing, machine learning, explainable AI, and

multi agent systems.

SIMON HICKINBOTHAM is a research fellow in

the department of Electronics Engineering at the

University of York, UK. He received a DPhil in

2000 (University of York) in Computer Vision. He

joined the Electronic Engineering Department at

the University of York in 2019. His main research

intersts are in self-organisation of evolutionary

systems, artificial life, and pattern recognition in

big data. He has published over 50 papers in these

areas.

MARK PRICE is a professor in the department of

Mechanical Engineering at the Queen’s University

Belfast. He received a 1st class honours in Aero-

nautical Engineering from Queen’s University in

1987 and a PhD in Mechanical Engineering also

from Queen’s in 1993. After a period in industry,

he returned to academia focusing his research on

integrating engineering methods with manufac-

turing processes and systems. He is developing

novel bio-inspired engineering design methods for

multi-disciplinary problems collaborating closely with academic and indus-

trial partners. He is a Fellow of the IMechE and the RAeS and a Member of

the British Computer Society.

ANDY TYRRELL received a 1st class honours

degree in 1982 and a PhD in 1985 (Aston Uni-

versity), both in Electrical and Electronic En-

gineering. He joined the Electronic Engineering

Department at the University of York in April

1990, he was promoted to the Chair of Digital

Electronics in 1998. His main research interests

are in the design of biologically-inspired architec-

tures, evolutionary robotics, evolvable hardware

and novel engineering design methods. This work

has included the creation of embryonic processing array, intrinsic evolvable

hardware systems and the autonomous robot evolutionary system. He is

Head of the Department of Electronic Engineering at York. He has published

over 350 papers in these areas. He is a Senior member of the IEEE and a

Fellow of the IET.

14 VOLUME x, 20xx

