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Abstract

We observe spatial cost dependence among medium-sized

and large U.S. banks (1998Q1–2020Q4). We contribute to

the literature by accounting for this using an accessible

dynamic spatial econometric cost model. For a movement

along a bank's output expansion path, we calculate the cost

returns that spillover to/from the bank. The noticeable

impacts of the 2020 COVID pandemic are on the spillover

cost returns and not the own returns. These spillover

returns suggest the pandemic led to the smallest (largest)

banks becoming suboptimally smaller (bigger). A number of

banks with high-ranking spillover returns have geographi-

cally concentrated branches and/or specialize in particular

activities.
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1 | INTRODUCTION

There are marked differences between the domestic geography of the branch networks of a number of large

U.S. banks. A notable difference is the wide variation in the number of states where large banks operate. Based on
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the 215 large U.S. banks in 2020 that are part of our full sample, the average state coverage of their branch networks

is 4.6 states, which is an increase from an average of 1.4 states in 1998. This coverage in 2020 ranges from banks

with no interstate branching to a bank with branches in 40 states. In particular, 59 of these large banks operate in a

single state, 129 operate in three or fewer states, 48 have branches in more than five states, and five have highly

geographically diverse branch networks covering more than 20 states. The total number of branches these banks

operate increased from 14,600 in 1998 to 51,605 in 2020, with a peak of 52,140 in 2013. Over the same period, the

largest four banks accounted for 24 � 27% of the total number of branches and the average state coverage of their

branch networks ranged from 7.3 states in 1998 to 32.5 in 2020. Such differences in branch geography progressively

materialized following a series of deregulations in the 1980s, early 1990s, and ultimately, the 1994 Riegle-Neal Inter-

state Banking and Branching Efficiency (IBBE) Act. The latter permitted interstate branching in almost all states as of

June 1997.

Cases can be made for and against the greater distances between the locations of a bank's activities that follow

from the geographical expansion of its branch network. On one hand, through the technology banks have access to,

they are equipped to manage the issues associated with these greater distances to support head office objectives in

the new markets. This is because such technology can reduce the agency cost of a multibank holding company when

there are greater distances between the parent bank and its affiliates (Berger & DeYoung, 2006). This reduced

agency cost follows from the technology enabling (i) senior managers at a bank's headquarters to more effectively

monitor and communicate with staff at distant branches/subsidiaries, which recently played a key role during the

work-from-home COVID restrictions; (ii) more efficient interactions with customers over longer distances;

(iii) greater use of quantitative methods from applied finance that aid lending to borrowers without geographical

proximity; and (iv) the use of financial engineering products that allow banks (independently of the distance to the

counterparty) to unbundle, repackage, or hedge risks at low cost. In contrast, it has been noted that the technology

that has enabled banks to improve loan decisions and monitoring over greater distances (i.e., (iii) above) has reduced

the need for banks to expand geographically to grow (e.g., DeYoung et al., 2004). This reduced need for branches to

be near their customers has been reinforced by the rise of internet banking and in more recent years is further

evidenced by this rise leading to branch closures.

Related to greater distances between a bank's locations is the extent of the resulting increase in the geographical

diversification of its business (e.g., Chu et al., 2020; Goetz et al., 2016, and Levine et al., 2021). There are also com-

pelling reasons for and against the geographical diversification of a bank's activities that follow from the geographical

expansion of its branch network. The benefits of the resulting geographical risk diversification can lead to a bank

having a better risk-expected return frontier (Berger & DeYoung, 2006), which would enable the bank to earn higher

average revenues from a higher risk-expected return investment strategy. Geographical diversification also enables

banks to benefit from scale and scope economies, reduced costs, synergy gains, and the improvement in corporate

governance stimulated by the increase in the number of potential corporate acquirers (Deng & Elyasiani, 2008). Con-

versely, geographical diversification can be detrimental to a bank because of the learning costs that are involved.

Also, although technology can reduce the agency cost associated with greater distances between a bank's activities,

geographical diversification may lead to an increase in the agency cost from other sources, such as the more complex

organizational structure and the specifics of regionally differentiated product packages.

Accordingly, there are two main approaches in the literature to account for the geography of a bank's activities.

The first uses a variable that measures the (weighted) distance between the locations of a bank's activities, while the

second involves constructing a variable that measures the geographical diversification of a bank's deposits or bra-

nches. Each variable is then used as a determinant in a model that is estimated in a standard way using non-spatial

methods that assume the observations of the outcome variable for a cross-section of banks are independent across

space. In our empirical analysis this independence assumption does not hold, and in many banking applications where

this assumption is made it may well be invalid. To motivate our use of methods from spatial data science to account

for the spatial dependence of the banks' observations of the outcome variable, in the next section we review the

details of these two main approaches to account for the geography of a bank's activities. It is very important that this
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spatial dependence is not ignored in banking modeling, otherwise (i) valuable further spatial insights may be over-

looked; (ii) the statistical inference will be invalid; and (iii) in certain spatial settings, such as our empirical case,

parameter estimates (and thus the fitted quantitative relationships between variables) may be biased. Such spatial

methods have been developed to account for the spatial dependence of the cross-sectional observations of the out-

come variable and have been widely applied to regions, states, and cities that are geographically linked, for example,

by a common border or their relative close proximity. Along the same lines, we propose that these methods are well

suited to account for the spatial dependence between banks' observations of various outcome variables.

We provide an accessible presentation of the approach to apply methods from dynamic spatial data science to

banks. This approach is presented in terms of the dynamic spatial cost function we estimate, where key explanatory

variables in our model are the contemporaneous spatial lag of the dependent variable (i.e., the spatial autoregressive,

SAR, variable) and its time lag. One motivation for the inclusion of this time lag is the parallels with time lags in time

series analysis and non-spatial dynamic panel data econometrics. That is, there may be some time persistence in the

cost spillovers between neighboring banks, and so it may take some time for some of these spillovers to occur. As

we use quarterly (rather than annual) data, we are in theory more likely to observe persistence in cost spillovers in

the form of a significant time lag of the SAR variable. This is because over a shorter time frame the past is more likely

to influence the present. In the spatial literature positive spatial dependence is far more common, so it is more likely

that we will find that the SAR variable and its time lag will have positive impacts, which would be consistent with

neighboring banks' costs being impacted by common economic phenomena, such as industry-wide regulatory poli-

cies, market growth, and headline changes in city, state, and regional economies. Although less likely, we may

observe that the SAR variable (and/or its time lag) has a negative impact, where in the spatial literature this is attrib-

uted to the effects of competition (e.g.,Boarnet & Glazer, 2002; Garrett & Marsh, 2002). The absolute magnitudes of

the coefficients on the SAR variable and its time lag will indicate whether there is more evidence of contemporane-

ous or dynamic SAR dependence in the data.

Our approach is also general and besides cost can also be applied to other banking variables where the geogra-

phy of activities is regarded as an important determinant (see Section 2 for other such variables). In the presentation

of our empirical approach, the discussion focuses on how the type of spatial model we employ yields contemporane-

ous and dynamic interbank spillovers (i.e., spill-ins and spill-outs) that measure the impacts of the geography of oper-

ations. Specifically, we draw on two appealing features of our model. First, the contemporaneous and dynamic spill-

in and spill-out elasticities measure how the impacts of the geography of activities are manifested within the impacts

of bank variables, such as in our application the impacts of bank outputs. Second, these spill-in and spill-out elastici-

ties can be used to calculate informative post-estimation measures, such as the contemporaneous and dynamic

returns to scale spill-ins and spill-outs we compute.

Rather than following either of the two main approaches to account for the geography of a bank's activities and

making the invalid assumption that the cross-sectional cost observations of the banks are independent, we build on

the growing number of technical efficiency and productivity studies that use methods from spatial data science. A

further reason why we do not follow these two approaches is because they yield own (weighted) distance and own

geographical diversification effects (see Section 2 for more details on this), while our focus is on the wider industry

impacts of banks' geographical operations. That is, using a modeling approach from spatial data science, we draw on

the geographical interconnectedness of banks due to, for example, their common loan and deposit markets, and are

thus interested in how the geography of a bank's operations impacts other banks and vice versa. In particular, we

build on the study of returns to scale in banking by Glass, Kenjegaliev, and Kenjegalieva (2020) in the following

respects. We advance the methodology on spatial returns to scale by moving from the exclusively static

(i.e., contemporaneous) spatial setting to one that considers both static and time dynamic spatial relationships. This is

because overlooking a dynamic spatial relationship (i.e., some persistence of a spatial effect over time) can impact

the estimate of a contemporaneous spatial relationship.

We also make two empirical contributions. (i) To analyze the impact of the first portion of the COVID pandemic

on spatial returns to scale for large- and medium-sized U.S. banks, instead of annual data, we use recent quarterly
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data (1998:Q1 � 2020:Q4). A theoretical feature of our spatial translog model is that it yields heterogeneous spatial

elasticities outside the sample mean for each bank-quarter. We exploit this feature to obtain spatial returns to scale

for each bank-quarter, which then enables us to compare these returns during the first portion of the pandemic with

other periods in our sample (e.g., the 2008 financial crisis). From the perspective of bank regulators and different

bank sizes, we are able to comment on whether the spatial returns to scale support different measures during the cri-

sis and the pandemic.1 (ii) We exploit the richness of the spatial time dynamics by suggesting which of the banks in

the top quintile of the size distribution are the top-ranked initiators (recipients) of the biggest returns to scale spill-

outs (spill-ins) in current and future periods. This can be related to the stress testing by U.S. bank regulators that will

continue to cover the global systemically important banks (G-SIBs) (Financial Stability Board, 2019) and the banks

included in the Comprehensive Capital Analysis and Review (CCAR) (Federal Reserve Board, 2019). The CCAR banks

are a group where a constituent bank has the capability to influence the domestic U.S. banking industry. The findings

from (ii) enable us to suggest whether regulators may consider extending the stress testing to include other large

banks that we find are prominent in bank cost interdependence. Further in this opening section we summarize

the specific findings from (i) and (ii).

We adapt the methods for the own contemporaneous ray-scale economies ðRSEÞ and expansion-path scale

economies ðEPSEÞ (Berger et al., 1987; Wheelock & Wilson, 2001, 2012, 2018) to obtain the corresponding contem-

poraneous and dynamic spatial measures. This involves transforming our fitted dynamic spatial model to obtain five

contemporaneous and dynamic elasticities: direct, two indirect (spill-in and spill-out), and hence two total (LeSage &

Pace, 2009). We collectively refer to these elasticities and the corresponding RSE and EPSE as contemporaneous and

dynamic spatial elasticities and returns to scale, as they are partially or entirely made up of spill-ins or spill-outs. The

contemporaneous and dynamic direct elasticities are akin to own impacts as they measure the effect of a change in a

bank's own independent variable in the current period on its costs in current and future periods. Also associated with

the change in the bank's own independent variable are contemporaneous and dynamic indirect elasticities that measure

the cost spill-in (spill-out) to (from) the bank in current and future periods. Summing the direct and indirect spill-in /

spill-out impacts yields two total elasticities. We then use these contemporaneous and dynamic spatial elasticities to

construct a series of corresponding cost models. From this series of models we calculate a series of contemporaneous

and dynamic spatial RSE and EPSE measures.

To fix ideas, the only SAR dependence that Glass, Kenjegaliev, and Kenjegalieva (2020) model is contemporane-

ous. By including a SAR variable, they were able to compute the direct, indirect, and total impacts of a change in a

bank's own independent variable in the current period on the bank's above corresponding contemporaneous costs.

The principal motivation for extending their approach to also include the time lag of the SAR variable in our model is

because it allows us to go a step further and compute the direct, indirect, and total impacts of a change in a bank's

own independent variable in the current period on the bank's above corresponding costs in future periods. Using

these dynamic impacts we address the important issue of how many future periods it takes for these impacts to

die out (see Table 3 in Section 5).

The own cost-oriented EPSE measure can be viewed as preferable to the corresponding RSE as the former

allows for the possibility that a bank lies away from a radial ray in the output space. For the same reason, we have a

preference for direct, indirect, and total EPSE over the corresponding RSE, where total returns to scale incorporate

direct and indirect spill-in / spill-out returns. Of these three cases (direct, indirect, and total), we have the strongest

preference for indirect EPSE over indirect RSE, as this is where there is the greatest difference between our

EPSE and RSE findings. We therefore conclude that adapting own RSE and EPSE to the spatial setting strengthens

the case for the EPSE method over the RSE approach. Based on this stronger preference for EPSE over RSE, we con-

centrate on the former. Relatedly, an important motivation for including the time lag of the SAR variable in our model

is that it allows us to show that the implications of EPSE for the optimal size of a bank, which, in turn, will impact its

1We thank an anonymous reviewer for suggesting that for different bank size categories we compare the spatial returns to scale results during the crisis

with those for the pandemic.
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competitiveness, can be more complex than in the static spatial and non-spatial cases. This is because the contempo-

raneous and dynamic total elasticities for a variable will likely differ and may well yield contemporaneous and

dynamic total EPSE that are odds with one another. In this situation, if a bank acts on its contemporaneous total

EPSE by (not) changing its size in the current period, this can mean suboptimal dynamic returns in future periods,

which, in turn, will impact a bank's competitiveness over time. In such a situation, we suggest that a bank optimizes

its contemporaneous and dynamic total returns over the time frame of its future plans, which would involve some

returns being suboptimal for particular periods within this time frame.

Two of the main findings from our empirical analysis are as follows. First, we find that the most noticeable

impacts of the 2020 portion of the COVID pandemic are on banks' indirect spill-in and spill-out EPSE, while there

was relatively little impact on their direct-own EPSE. This finding is in line with the pandemic affecting the industry

and not just individual banks. We also observe a clear difference between the impacts of the pandemic on the two

contemporaneous indirect EPSE for smaller and larger banks (quintiles 1 and 5 of the bank size distribution, respec-

tively). For quintile 1 the pandemic led to these two EPSE measures declining further below 1, while for quintile

5 they increased further above 1. From the perspective of the cost spill-in and spill-out interactions of a quintile

1 (quintile 5) bank with the other banks in the sample, this suggests that, on average, the pandemic led to quintile

1 (quintile 5) banks becoming suboptimally smaller (larger). This is consistent with large banks providing most of the

required funding to firms in the U.S. when they turned to the banks for the liquidity provision using preexisting lines

of credit during the pandemic (Li et al., 2020).

Second, we find that a number of the quintile 5 banks with a high-ranking contemporaneous indirect spill-in

and/or spill-out EPSE have geographically concentrated branches and/or specialize in particular activities (see the

empirical analysis for details of these banks). These high-ranking indirect EPSE may be because the geographical and

operational focus of such banks is associated with higher-quality service spillovers leading to relatively high cost

spillovers. Ongoing stress testing of U.S. banks by regulators will continue to cover G-SIBs and CCAR banks. We,

however, find that a number of banks with a high-ranking contemporaneous indirect spill-in and/or spill-out EPSE

are not G-SIBs or CCAR banks. In terms of the policy implications of these results, regulators may consider extending

the stress testing to include the other large banks that we find are prominent in bank cost interdependence.

The remainder of this paper is structured as follows. Section 2 reviews approaches to account for the effect of

the geography of a bank's activities. Section 3 has two parts. In the first part we set out the dynamic spatial translog

cost model we use. In the second, we discuss how this model is transformed to obtain sets of contemporaneous and

dynamic spatial elasticities, which we then use to construct a series of corresponding models. In Section 4, we set

out how this series of models is used to calculate a series of contemporaneous and dynamic spatial returns to scale

measures. In Section 5, we present the empirical analysis of medium-sized and large U.S. banks. Section 6 concludes

with a summary that provides some insights for banks and regulators.

2 | APPROACHES TO ACCOUNT FOR THE GEOGRAPHY OF BANKING

ACTIVITIES

We noted in the previous section that there are two main approaches to account for the geography of banks' activi-

ties. In this section we (i) review the use of these approaches in selected studies; and (ii) explain how our use of

methods from spatial data science to account for the spatial dependence between banks with overlapping branch

geography builds on these approaches.

The first of the two main approaches uses a variable that measures the (weighted) distance between the locations

of a bank's activities. This variable is used as a determinant in various empirical models to analyze a range of banking

research questions. To some extent the earlier of two studies by Berger and DeYoung (2001, 2006) resembles the

approach we use here as they estimate a cost model. These two studies analyze the effect of the distances between a

U.S. parent bank and its domestic affiliate banks on the (cost and/or alternative profit) efficiencies of the latter
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(specifically, the later study uses the affiliates' alternative profit efficiency rankings). To ascertain how distance affects

the economic relationship between the parent bank and its affiliates, the distance variable is interacted with the effi-

ciency of the parent. Among other things, both studies analyze whether a relatively efficiently managed parent bank

can impart its superior managerial skills and practices on its distant affiliates. This would reduce the agency cost associ-

ated with the distance between the parent and its affiliate and is consistent with the latter having a higher efficiency.

If the parent encounters problems monitoring junior managers at a distant affiliate bank, the agency cost will be higher,

leading to the affiliate having lower efficiency.2 The earlier study finds, first, that an affiliate's efficiency tends to be

higher if it is located in a state and region that is relatively near to its parent and, second, that an affiliate's efficiency

tends to decrease the further it is located from its parent. That said, this distance effect on an affiliate's efficiency

tends to be modest. This suggests that a relatively efficient banking organization is not associated with a particular

geographical scope. A further implication from their results is that relatively efficient parent banks can overcome the

negative impact of distance and impart their superior managerial skills and practices on their affiliates. The later study

concludes that such findings are consistent with banks employing technological advances in the industry.

Another variable that Degryse and Ongena (2005) find is affected by the geographical locations of banks' activi-

ties is the interest rates on loans. Over the period of their analysis, they use information on all the loan contracts

between small firms and a large Belgian bank to estimate the effects on loan rates of the distances between the bor-

rowing firm and both the lending bank and the reference competing bank. They report evidence of spatial price dis-

crimination in bank lending, as they find that the loan rate is negatively associated with the distance between the

lender and the borrower, and positively associated with the distance between the borrower and the reference com-

peting bank. In contrast, rather than including a pure distance determinant, Deng and Elyasiani (2008) account for

the economic impacts of the geography of the activities of U.S. bank holding companies (BHCs) on their value and

total risk (i.e., the composite of company specific risk and the systemic risk the company poses). To do so, in any one

model, they include one of two weighted average distances as a determinant. In particular, the average distance

between the headquarters of a BHC and its branches (subsidiaries) is weighted by the branch deposit share (subsidi-

ary total asset share). On average, they find that greater distance between a BHC's headquarters and its branches is

associated with a reduction in the value of the company and an increase in its total risk.

Studies such as those considered above that include the distance between the locations of a bank's activities as a

determinant report estimates of the own distance effect. We build on this approach in the following three respects by

drawing on the growing number of studies that use methods from spatial data science to analyze returns to scale (Glass,

Kenjegaliev, & Kenjegalieva, 2020); technical efficiency (e.g., Algeri et al., 2022; Glass, Kenjegalieva, & Weyman-

Jones, 2020; Horrace et al., 2019; Orea & Álvarez, 2019; Tsionas & Michaelides, 2016); and productivity (Glass et al.,

2013; Glass & Kenjegalieva, 2019; Glass, Kenjegalieva, & Douch, 2020).3 All these studies have a static spatial frame-

work and hence focus exclusively on contemporaneous spatial relationships. Our study may therefore initiate dynamic

spatial technical efficiency and productivity studies that begin to address this imbalance in the literature. First, although

we also report the own effects of a bank's explanatory variables, our main contribution is to report the spillover effects

associated with changes in these variables. These interbank spill-ins and spill-outs materialize because of the spatial

dependence in the data for banks with overlapping branch geography. Second, resembling to some extent how an inter-

action term is used in the banking literature to account for the effect of distance on an economic relationship, we

account for the effect of overlapping branch geography on economic spillovers using the degree of this overlap to

weight a neighboring bank's economic variable. Third, whereas in any one empirical model only a single economic

measure (branch deposit share or subsidiary total asset share) has been used to weight the distance determinant, we rec-

ognize that a larger number of economic relationships in a model may be impacted by the overlapping branch geography.

Therefore, in our model we include a full range of neighboring banks' weighted economic variables as determinants.

2Conversely, if the parent is relatively inefficiently managed, there may be a reduced agency cost (or even an agency benefit) associated with the distance

between the parent and its affiliate. This is consistent with a smaller mark down of the affiliate's efficiency (or even its efficiency being pushed up).
3Other spatial data science studies of technical efficiency are Druska and Horrace (2004); Glass, Kenjegalieva and Sickles (2014, 2016); Gude et al. (2018);

Orea et al. (2018); Jin and Lee (2020); and Kutlu et al. (2020).
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The second main approach to account for the effect of branch geography involves using a measure of the geo-

graphical diversification (concentration) of a bank's activities. A bank's geographical diversification has been

accounted for using variables that measure its number of branches and the number of states it operates in

(e.g., Aguirregabiria et al., 2016, and ; Zamore et al., 2019), or via a dummy variable that indicates whether it has

engaged in such diversification (e.g., Goetz et al., 2013). Moreover, to measure a bank's geographical concentration,

Degryse and Ongena (2005) use the banks' number of branches in a postal zone to compute each bank's Herfindahl–

Hirschman index (HHI). They then use this measure of a bank's market share in a postal zone to analyze how it

impacts the interest rate the bank charges on a loan. Their HHI measure, however, does not account for the size of

the branch, for example, the branch deposit level. This is presumably for data availability reasons as their rich data

are on individual loan contracts of a large Belgian bank and do not cover deposits. Using the available data for

U.S. banks, a widely used measure of the concentration of a bank's activities is the HHI of its branch level deposits

across its geographical markets, where these markets are defined as metropolitan statistical areas (MSAs) or non-

MSA counties. Berger and DeYoung (2001, 2006) use this measure to analyze how it impacts a bank's efficiency

(and efficiency ranking), while Hirtle (2007) estimates how a weighted measure of this HHI affects various U.S. bank

performance measures (average deposits per branch; average small business loans per branch; and bank profitability,

namely, the return on equity and the risk-adjusted market return).4 One minus the above branch deposit-based HHI

is a widely used measure of the geographical diversification of a bank's activities. This type of measure has been used

to analyze the impact of such diversification on various bank outcome variables, including total risk (Deng &

Elyasiani, 2008); market value (Deng & Elyasiani, 2008; Goetz et al., 2013); loan quality measures (Goetz et al.,

2016); the systemic risk the company poses (Chu et al., 2020); and total funding costs (Levine et al., 2021).

On average, deposit levels at branches in the same geographical market will likely be spatially dependent on one

another, and so this spatial correlation will be inherent in the data. The HHI that is used to account for the geograph-

ical diversification (concentration) of a bank's activities will therefore capture the spatial dependence of branch

deposits. However, including this HHI as a determinant in a model that is estimated in a standard way by assuming

spatial independence among a cross-section of banks will yield only the own effect of the HHI. We therefore apply

accessible spatial data science methods that take into account the spatial dependence among each cross-section of

banks in our panel data. This is in line with this paper reporting not just the own effects of determinants, but focusing

particularly on the spillovers associated with these variables. Spatial data science methods are well suited to this task

as they were specifically developed to, among other things, estimate spill-ins and spill-outs.

Moreover, although the HHI-based measure of the geographical diversification (concentration) of a bank's activi-

ties will capture the spatial dependence of branch deposits, this measure is based on a single bank variable and will

therefore reflect only one dimension of the spatial dependencies between banks. By overlooking the other dimen-

sions, there is an omitted variables issue that may lead to biased parameter estimates. To capture the spatial depen-

dencies between banks more fully, we use methods that have been specifically designed for this purpose. In

particular, this involves using a full range of neighboring banks' weighted variables as determinants to capture the

range of spatial dependencies.

3 | SPATIAL MODELING APPROACH

3.1 | Dynamic spatial cost model

The form of the spatial cost model for panel data that we estimate is set out in Equation (1), where the variables are

logged. In the spatial literature, this type of model is referred to as a dynamic spatial Durbin model (SDM).

4Specifically, Hirtle weights the standard HHI by a bank's share of the total number of branches in the market.
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cit ¼ αþTL yit,pit,tð ÞþSTL
PN

j¼1wij yjt
� �

,
PN

j¼1wij pjt
� �

� �

þSTL
PN

j¼1wij yjt�1

� �

,
PN

j¼1wij pjt�1

� �

� �

þδ
PN

j¼1wijcjtþλ
PN

j¼1wijcjt�1þηiþ εit:
ð1Þ

The data comprise observations for T periods (indexed t�1,…,T) and N banks (indexed i, j�1,…,N8 i≠ j ).5cit is

the total cost observation for the ith bank in period t; α is the intercept; yit is the 1�Kð Þ vector of observations for

the outputs (indexed k�1,…,K); pit is the 1�Lð Þ vector of observations for the input prices (indexed l�1,…,L); t is

the time counter; TL yit,pit ,tð Þ is the translog function; ηi is a fixed effect to account for unobserved heterogeneity;

and εit is noise.6TL yit ,pit,tð Þ therefore denotes that this function consists of the first-order variables in brackets as

well as particular functions of these variables, namely, their squared terms and interactions between the output and

input prices. Collectively t and t2 represent a nonlinear time trend that measures Hicks neutral technical change.7

W is the N�N spatial weights matrix and is made up of the nonnegative weights wij. W is specified a priori and

represents (i) the spatial arrangement of the banks in each cross-section, and (ii) the strength of the spatial interac-

tion among these banks. As W applies to each cross-section in the panel, the NT�NT spatial weights matrix for the

whole panel is IT
N

W, where IT is the T�T identity matrix and
N

is the Kronecker product.8 Following the vast

majority of the spatial literature, the spatial weights in Equation (1) are exogenous. Given this exogeneity, a geo-

graphical measure is frequently used to specify the spatial weights. We therefore use the same approach that

involves using a novel measure of the spatial interconnectedness of banks' branch networks.
PN

j¼1wijcjt is the ith

observation of the contemporaneous SAR variable and we also include a time lag of this variable. This time lag is

included to reflect that there may be some time persistence in the cost spillovers between neighboring banks and so

it may take some time for such spillovers to occur.

A feature of spatial modeling is that there are limits on the SAR parameter(s): δ,λf g� 1=gmin ,1=gmaxð Þ, where

gmin and gmax are the most negative and positive real characteristic roots of W, respectively. Specifically, W is a nor-

malized spatial weights matrix, where as a result of the normalization we use in our empirical analysis gmax ¼1. For

details of this normalization and the empirical specification of W, and also details of the variables and data that we

use for the empirical analysis, see Subsection 5.1.

The process to settle on the form of Equation (1) involved two steps. In the first step we chose between the var-

ious different spatial model specifications. Having chosen in the first step the SDM, in the second step we settle on

the details of our model. We chose the SDM in the first step for three reasons. First, it is well known that the

SDM nests the corresponding spatial error and SAR models, where the latter is Equation (1) with the STL function

and its time lag omitted (see below for discussion of the STL function). The SDM will therefore yield unbiased param-

eter estimates even if the true data-generating process (DGP) is either of these other two spatial models. Second, in

the spatial error model the spillovers relate to the disturbance, whereas the spillovers from a model that contains the

SAR term have a business and economic interpretation as they relate to the independent variables. Third, the ratio

of the indirect spillover and direct-own elasticities from the SAR model is the same for all independent variables,

which is unlikely to be valid in empirical applications and is not the case with the SDM.9

5As is standard in spatial modeling the panel data are balanced. This is for theoretical statistical reasons, namely, the breakdown of the asymptotic

properties of spatial panel data estimators when the panel is unbalanced and the reason for the missing data is not known (Elhorst, 2009). This breakdown

occurs because for unbalanced panel data the spatial weights matrix, which we will introduce shortly, is not of fixed dimension.
6Berger and Mester (1997) introduced the concept of banking netputs, and we explored including equity as a netput. We ultimately omitted equity, and in

doing so follow Koetter et al. (2012), as this yields own returns to scale that are more in line with those reported in the literature.
7We specify technical change as Hicks neutral by omitting interactions with t. This is for parsimony as modeling the spatial dependencies involves including

quite a large number of regressors.
8We acknowledge an anonymous reviewer for suggesting us to provide details of IT

N

W.
9A further spatial model specification involves augmenting the corresponding dynamic spatial error model with a SAR term and its time lag. We do not

pursue this model for the aforementioned second and third reasons. Note also that we use the branch geographies of the banks to specify W. We are

therefore interested in the spatial correlations at the micro level and so only consider model specifications where these correlations die out across space.

This is in contrast to a more macro approach that considers the common spatial correlation across units (e.g., common factor models).
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The starting point to settle on the details of Equation (1) in the second step is Wheelock and Wilson's

(2012, 2018) static non-spatial studies of returns to scale in U.S. banking. They estimate theoretical functions and, as

a result, their models are parsimonious as they omit variables that shift the frontier. We therefore omit ct�1 from the

regressors because although this variable distinguishes between a non-spatial dynamic panel data model and its

static counterpart (which is not the case in our spatial setting as the inclusion of
PN

j¼1wijcjt�1 makes our model

dynamic), ct�1 is not part of the theoretical translog function. For the same reason we omit all other non-spatial vari-

ables that are not part of the theoretical translog function. However, by construction, our model includes spatial vari-

ables that shift the frontier. We confine these to spatial lags of the variables in TL that relate to the output and input

prices (denoted STL), the spatial lag of the dependent variable and its time lag and, to be consistent with the rationale

for the inclusion of this time lag (namely, that it takes some time for spillovers to occur), a time lag of the STL vari-

ables.10 All these spatial variables in Equation (1) are local spatial regressors as they only account for spatial interac-

tion between a bank and its first-order neighbors. That said, it is the presence of the spatial lag of the dependent

variable and its time lag in Equation (1) that lead to the global spatial interaction when this model is transformed into

its reduced form (see the discussion in Subsection 3.2). This global spatial interaction (contemporaneous and dynamic

in future in-sample periods) is between a bank and its first-order neighbors, second-order neighbors (i.e., a neighbor

of neighbor), etc.

We estimate Equation (1) using the quasi-maximum likelihood approach in Yu et al. (2008). Three further salient

features of the estimation procedure are as follows. (i) As is standard, we use the within transformation to eliminate

the fixed effects. (ii) Our approach corrects for the biases from the fixed effects in the model, which are akin to the

well-known biases in the non-spatial dynamic setting (see Nickell, 1981). (iii) As is standard in spatial modeling, part

of the estimation involves the transformation from the error term to the dependent variable. This transformation

accounts for the endogeneity of the contemporaneous SAR variable, and also the fact that the error term is not

observed (Anselin, 1988; Elhorst, 2009).11

3.2 | Sets of elasticities and the related translog functions

Having estimated Equation (1), the estimate of the TL function yields own elasticities for the variables at and outside

the sample mean. The estimates of the coefficients on the SAR variable and its time lag, and the elasticities at and

outside the sample mean from the estimates of STL and its time lag, are elasticities that represent local spillovers to a

bank from marginal changes in the spatially weighted contemporaneous and dynamic independent variables of its

first-order neighbors. These elasticities do not therefore represent the global spillovers to a bank from its higher

order (as well as its first-order) neighbors. We draw on an appealing feature of our model to overcome this short-

coming by computing five further elasticities from the spatial literature that are partially/entirely made up of a global

spillover, namely, direct, two indirect (spill-out and spill-in) and thus two total elasticities. This first involves indexing

the time horizons in our sample γ �0,…,Γ¼ T�1, where the five elasticities measure the contemporaneous and

dynamic cost impacts (i.e., in horizon 0 and the remaining future in-sample horizons, respectively) of a marginal

change in an ith bank's variable in period t. As we discuss further below, when an ith bank's variable changes in

period t these elasticities give rise to five different types of cost change. Specifically, we obtain the five elasticities

by taking the partial derivative of the reduced form of Equation (1) (i.e., the DGP) with respect to each variable in the

10The variables in the STL function and its time lag in Equation (1) are in brackets to indicate that, in addition to spatially lagging the variables, we spatially

lag functions of the variables (e.g., y2jt and y2jt�1 ).
11As is standard in micro panels, the number of banks is large ðN¼403Þ. In non-spatial panel data analysis T is often small, and so in a dynamic setting the

time lag of the dependent variable is a source of endogeneity. When this is the case for a dynamic spatial model, the time lag of the SAR variable will also

be endogenous. In our spatial panel data T is not small (92 quarters), and so following Yu et al. (2008) the time lag of the SAR variable is taken to be

exogenous.
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TL function. Below we provide a non-technical discussion of the direct, indirect, and total elasticities, but for techni-

cal details on the calculation of these elasticities, see Debarsy et al. (2012).12

A contemporaneous direct elasticity measures the impact of a marginal change in an ith bank's variable in period

t on the same bank's cost in horizon 0. This elasticity has two components—the standard own elasticity from

Equation (1) and feedback. This feedback is the contemporaneous effect of a change in an ith bank's variable that

reverberates back to the same bank's dependent variable through its effect on the dependent variables of the other

banks in the sample. In the spatial literature this feedback is typically small (e.g., Autant-Bernard & LeSage, 2011).

There are two contemporaneous indirect elasticities that measure the bidirectional spillover impacts of a mar-

ginal change in an ith bank's variable in period t: (i) the spill-out from the ith bank to the dependent variables of all

the other banks in the sample in horizon 0; and (ii) the spill-in to the dependent variable of the ith bank in horizon

0 from all the other banks. Having computed (i) and (ii) for each bank, and as suggested by LeSage and Pace (2009),

to facilitate interpretation we report an average of (i) or (ii) across all the banks. It follows from the formulas for the

two contemporaneous indirect elasticities that averaging (i) or (ii) across all the banks (at the sample mean or at some

other point in the sample) yields the same value, that is, symmetric bidirectional contemporaneous indirect elastici-

ties.13 Because the average indirect (i) and (ii) elasticities across all the banks are equal, we obtain the same average

value for the contemporaneous indirect spill-out and spill-in returns to scale.

There are two total impacts in horizon 0 of a marginal change in an ith bank's variable in period t. This is because

a contemporaneous total elasticity is the sum of the contemporaneous direct and indirect (i) or (ii) elasticities. The

first of the total impacts is the sum of the direct impact on the ith bank's cost and the indirect cost spill-out from this

bank to all the other banks. The second is the sum of the direct impact and the indirect cost spill-in to the ith bank

from all the other banks. We therefore obtain the same value for the average total elasticity across all the banks

when we use either the average indirect (i) or (ii) elasticity.

However, for any subset of banks the two contemporaneous indirect elasticities will be of different magnitudes.

We calculate these asymmetric elasticities for individual banks and also bank size categories. As a result, for these

banks, the contemporaneous total elasticities and contemporaneous indirect and total returns to scale are also

asymmetric.

Along the same lines, we calculate average measures across all the banks of the corresponding dynamic elastici-

ties (direct, symmetric indirect spill-out and spill-in, and the resulting two symmetric total measures). These dynamic

elasticities for individual banks measure the impacts of a marginal change in the ith bank's variable in period t on the

same costs as those in the above contemporaneous impacts but in future in-sample time horizons

ðγ �1,…,Γ¼ T�1Þ. These elasticities for individual banks are then used to calculate average dynamic direct, indirect,

and total returns to scale for bank size categories. Given the importance of the too-big-to-fail (TBTF) banks for the

stability of the banking system, to investigate their spatial interactions (and those of other large banks) we focus on

their asymmetric contemporaneous and dynamic indirect returns.

We conduct the statistical inference for the contemporaneous and dynamic direct, indirect, and total parameters

using Monte Carlo simulations. This involves drawing 500 Halton sequences of parameter values from the variance–

covariance matrix, where each value has a random component drawn from Nð0,1Þ.

Using the estimates of the direct, two indirect (spill-out and spill-in) and thus two total parameters for each vari-

able, one can specify five translog equations for the associated costs in horizon γ; namely: the ith bank's direct cost

cDiri,γ

� �

; the indirect cost spill-out from the ith bank to the other banks cIndOut,i,γ

� �

; the indirect cost spill-in to the ith

bank from the other banks cIndIn,i,γ

� �

; and thus the two total cost measures cTotOut,i,γ and c
Tot
In,i,γ

� �

. For the form of the

translog equation for cIndIn,i,γ , see Equation (2). We do not present the forms of the translog equations for

cDiri,γ , c
Ind
Out,i,γ , c

Tot
Out,i,γ and cTotIn,i,γ as they are similar to Equation (2). This is because the independent variables are the same

12We calculate the five elasticities by modifying the approach in Debarsy, Ertur, & LeSage to account for our model omitting ct�1 and including time lags of

the variables in the STL function.
13The equality of the averages of (i) and (ii) across all the banks is because the averages of the column and row sums of the off-diagonal elements of a

matrix are equal.
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as in Equation (2), with only the dependent variable changing and the subscripts and superscripts of the parameters

(β and τ) and vectors (κ0 and ξ0) and matrices (Υ,Ω, and Λ) of parameters matching those of the dependent

variable. In the discussion below we relate Equation (1) and its reduced form to the forms of the five translog

equations and, as will become clear in Section 4, we use these five equations to compute the direct, indirect, and

total returns to scale.

cIndIn,i,γ ¼ βIndIn,i,γtþ
1

2
τIndIn,i,γt

2þκInd
0

In,i,γyitþξInd
0

In,i,γpitþ
1

2
y0itΥ

Ind
In,i,γyit

þ
1

2
p0itΩ

Ind
In,i,γpitþy0itΛ

Ind
In,i,γpit:

ð2Þ

In Equation (2), we attach a subscript γ to the parameters and the dependent variable to indicate that a parame-

ter represents the impact in horizon γ of a marginal change in an ith bank's independent variable in period t. If t and γ

correspond to the same period, which will only be the case when γ¼0, then the parameters in Equation (2) are con-

temporaneous. Otherwise, the parameters in Equation (2) are dynamic, which indicates that a change in an ith bank's

independent variable in t will impact the dependent variable γ (in-sample) periods ahead. Note that a subscript i is

attached to the parameters in Equation (2) to denote that the parameters are for an individual bank. Alternatively,

and as we have previously noted, these parameters can be averages across all the banks.

There are, however, important differences between the five translog equations and Equation (1). First, whereas

the cost variable in Equation (1) is observed, this is not the case for the dependent variable in each of the five

translog equations and, as a result, these five equations are not regressions and do not have a disturbance term. We

can though use the five translog equations to compute these dependent variables, where cTotOut,i,γ ¼ cDiri,γ þcIndOut,i,γ and

cTotIn,i,γ ¼ cDiri,γ þcIndIn,i,γ . Second, Equation (1) includes the SAR variable and its time lag, and also the contemporaneous and

dynamic spatially lagged variables in the two STL functions. However, in the five translog equations the impacts of

these variables are accounted for within the calculations of the direct, indirect, and total parameters.

4 | MEASURING SPATIAL SCALE ECONOMIES

From the relevant translog cost function for horizon γ (e.g., Equation (2) for the indirect cost spill-in to the ith bank

from all the other J banks in the sample), we calculate the five (direct, indirect spill-in and spill-out, and thus two

total) spatial measures of both RSE and EPSE. Note that these measures are contemporaneous for time horizon γ¼0

and dynamic for γ¼1,…,Γ. For brevity we present the methods for the five spatial RSE and EPSE in the context of

one of the five cases, namely, indirect spill-in RSE and EPSE for horizon γ using the corresponding translog cost func-

tion. We can do this because this method can easily be adapted to calculate each of the other spatial RSE and EPSE

by replacing the notation for indirect spill-in ðIndIn,i,γÞ with that for direct ðDiri,γ Þ, indirect spill-out ð
Ind
Out,i,γÞ, or each of the

two total cases (TotIn,i,γ and
Tot
Out,i,γ ).

To set out the interpretations of the five spatial RSE and EPSE, consider a change in ðyit1 ,yit2Þ—a two-

dimensional bundle of outputs for the ith bank in period t. (i)RSEDiri,γ and EPSEDiri,γ measure the impact of a change in

ðyit1,yit2Þ on the ith bank's direct cost in horizon γ from the corresponding translog function (i.e., the bank's own cost

plus any feedback to this cost). (ii) RSEIndOut,i,γ and EPSEIndOut,i,γ measure the impact in γ of a change in ðyit1,yit2Þ on the

costs of all the other J banks, or, in other words, the impact on the indirect cost spill-out from the ith bank.

(iii) RSEIndIn,i,γ and EPSEIndIn,i,γ measure the impact in γ of a change in ðyit1,yit2Þ on the cost of the ith bank, where this

impact is due to an indirect cost spill-in to the ith bank from all the other banks. (iv) RSETotOut,i,γ and EPSETotOut,i,γ measure

the impact in γ of a change in ðyit1 ,yit2Þ on the first of the two measures of the ith bank's total cost. The two drivers

of this cost impact are the direct impact from (i) and the indirect spill-out impact from (ii). (v) RSETotIn,i,γ and EPSETotIn,i,γ

measure the impact in γ of a change in ðyit1,yit2Þ on the second measure of the ith bank's total cost. The two drivers

of this impact are the direct impact and the indirect spill-in impact from (iii).
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There are two important differences to highlight between the RSE and EPSE in (i)–(v). First, these RSE measures

assume that the full range of output levels of the ith bank lies on a radial ray, whereas the EPSE measures relax this

assumption by considering changes in the ith bank's output levels along its output expansion-path. Second, these

RSE measures relate to an equiproportional change in yit1 and yit2, while the EPSE measures are concerned with

incremental changes in these outputs.

Turning now to the formal presentation of RSEIndIn,i,γ and EPSEIndIn,i,γ .

Spatial RSE

We compute RSEIndIn,i,γ as follows:

RSEIndIn,i,γ ¼
XK

k¼1

∂cIndIn,i,γ t,pit,yitð Þ

∂ykit
: ð3Þ

The elasticity ∂cIndIn,i,γ t,pit ,yitð Þ=∂ykit is the first-order derivative of the translog function for cIndIn,i,γ (Equation (2)) with

respect to the kth output of the ith bank at t.

We know from production theory that own cost RSE is positive and < , ¼ or > 1, corresponding to increasing,

constant, or decreasing returns to scale, respectively. However, there is no such theory that posits whether any of

the spatial RSE should be positive or even negative. If an estimate of any of these five RSE is positive, then the above

returns to scale classification for the own case applies. Alternatively, if any of these estimates is negative, namely,

< , ¼ or > �1, this corresponds to increasing, constant, or decreasing returns to scale. The classification of the five

spatial RSE need not be the same.

The five spatial RSE we consider are partially/entirely made up of a RSE spill-in/spill-out. Of these measures,

RSEIndIn,i,γ and RSEIndOut,i,γ are made up entirely of a RSE spill-in and spill-out. As a result, for these two measures, the

returns to scale classification is based only on the sign and magnitude of the RSE spill-in/spill-out. RSEDiri,γ is made up

of own RSE and feedback RSE. If the feedback RSE is negative, the issue is whether they more than offset the posi-

tive own RSE, leading to negative RSEDiri,γ . As the feedback parameter estimates in the empirical spatial literature are

typically small, we would expect the feedback RSE to be small. Consequently, if the feedback RSE is negative, we

would expect it to be more than offset by the positive and non-negligible own RSE, leading to positive and non-

negligible RSEDiri,γ .

As a result of the above method to calculate the five spatial RSE, and the two total elasticities for a

variable being the sum of its direct and indirect spill-in/spill-out elasticities, RSETotIn,i,γ ¼RSEDiri,γ þRSEIndIn,i,γ and

RSETotOut,i,γ ¼RSEDiri,γ þRSEIndOut,i,γ . We expect RSEDiri,γ to be positive and non-negligible, and if RSEIndIn,i,γ and RSEIndOut,i,γ are nega-

tive, the issue is whether they more than offset RSEDiri,γ , leading to negative RSETotIn,i,γ and RSETotOut,i,γ .

There is a clear relationship between the SAR parameters and RSEIndIn,i,γ (and RSEIndOut,i,γ ). As a result, the reason for

the sign of a SAR parameter is also the business/economic explanation for the sign of RSEIndIn,i,γ ðRSE
Ind
Out,i,γÞ. The sign of

a SAR parameter is determined by whether a bank's observations for the dependent variable are positively/

negatively associated with its neighboring banks' (spatially weighted) observations of the same variable. In the empir-

ical spatial literature more generally, said negative association is attributed to the effects of competition (Boarnet &

Glazer, 2002; Garrett & Marsh, 2002). In the context of our empirical analysis, such negative SAR dependence would

point to spatial cost competition between banks, whereby a change in the cost competitiveness between banks

would result in a decrease (increase) in a bank's cost relative to the spatially weighted costs of its neighboring banks.

Conversely, said positive association in the spatial literature is attributed to common business/economic phenomena

across neighboring firms, such as market growth and headline changes in economies (city, state, regional, and

national). In the context of our empirical analysis, a bank's cost can be positively associated with the (spatially

weighted) costs of its neighboring banks due to, for example, the common cost implications for banks of regulatory

and monetary policies.
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To conduct the statistical inference, the Halton parameter sequences (see Subsection 3.2) are used to compute

500 estimates for horizon γ of the five spatial RSE.

Spatial EPSE

Own and spatial RSE are convenient measures of returns to scale, and own RSE is the most reported measure.

However, RSE measures may not be the most appropriate because a bank may not lie on a radial ray.

To accommodate this situation, Berger et al. (1987) and Wheelock and Wilson (2001, 2012, 2018) estimate

own EPSE, which relate to an incremental move along a (radial or non-radial) portion of a bank's output expansion-

path.14

We consider five (contemporaneous and dynamic) spatial EPSE, which we calculate by applying the method for

the non-spatial EPSE to each of the corresponding translog cost functions (e.g., Equation (2) is used to calculate

EPSEIndIn,i,γ ). Our presentation of the method for the five spatial EPSE is in the context of EPSEIndIn,i,γ . This first involves

considering in the space t,pit,yitð Þ a further point tn,pitn,yitnð Þ, where to highlight the difference between the five

spatial RSE and EPSE we use the subscript n to indicate that the point lies on a non-radial portion of a bank's

output expansion-path. EPSEIndIn,i,γ measures the expected change in cIndIn,i,γ , when in period t, a bank moves incremen-

tally along a non-radial portion of its output expansion-path between the points tn,pitn, 1�ψð Þyitnð Þ and

tn,pitn, 1þψð Þyitnð Þ.

Using Equation (2) we compute EPSEIndIn,i,γ as follows:

EPSEIndIn,i,γ ¼
cIndIn,i,γ tn,pitn, 1�ψð Þyitnð Þ

ζcIndIn,i,γ tn,pitn, 1�ψð Þyitnð Þ
¼

cIndIn,i,γ tn,pitn, 1þψð Þyitnð Þ

1þψ

1�ψ

� �

cInd
In,i,γ tn,pitn, 1�ψð Þyitnð Þ

: ð4Þ

As the relative proportions of the ith bank's K outputs remain constant, then ζ 1�ψð Þyitn ¼ 1þψð Þyitn. Therefore,

ζ¼ 1þψð Þ= 1�ψð Þ and the latter part of Equation (4) follows.

Following Wheelock and Wilson's (2012) analysis of the own returns to scale of U.S. banks, we use ψ ¼0:05 to

calculate the five spatial EPSE for horizon γ. Specifically, we calculate these spatial EPSE measures for a movement

between �ψ (or, in other words, 95% and 105%) of the mean output vector of the full sample or the relevant

subsample.

There is no production theory that posits whether any of the spatial EPSE measures should be positive or

even negative. The returns to scale classification of the five spatial EPSE for horizon γ is therefore the same as the

above classification of the corresponding spatial RSE. Therefore, a positive spatial EPSE estimate < , ¼ or >

1 corresponds to increasing, constant, or decreasing returns to scale. Conversely, a negative spatial EPSE estimate

< , ¼ or >�1 points to increasing, constant, or decreasing returns to scale. The classification of estimates of the

five spatial EPSE need not be the same. A further similarity between the spatial RSE and EPSE is that the two

business/economic explanations we provided above for a positive or negative spatial RSE are also the

explanations for the sign of a spatial EPSE measure. There is, however, an important difference between the spatial

RSE and EPSE. In contrast to the relationship between the spatial RSE,EPSETotIn,i,γ and EPSETotOut,i,γ are not the sum

of the direct and indirect spill-in/spill-out EPSE. This is because the spatial EPSE are ratios with different

denominators.

Statistical inference for the spatial EPSE for horizon γ involves following the above approach for the spatial RSE

by computing 500 estimates.

14Non-spatial and spatial EPSE can also be thought of in terms of an incremental move along a portion of a bank's input expansion-path, for example, from

a (non-spatial or appropriate spatial) revenue function.
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5 | EMPIRICAL ANALYSIS OF MEDIUM-SIZED AND LARGE U.S. BANKS

5.1 | Data and the spatial weights matrix

We estimate Equation (1) using quarterly balanced panel data for 403 medium-sized and large U.S. banks over the

period 1998:Q1 � 2020:Q4.15 We focus on medium-sized and large banks because their branch networks are suffi-

ciently large and so there is a sufficient overlap between their networks; that is, there is no lack of interconnected-

ness between the banks in the spatial weights matrix (see further in this subsection for details of our a priori

construction of this matrix). Banks are included in our sample based on the total assets thresholds of the U.S. bank

size categories in Berger and Roman (2017). They convert their monetary variables into 2012:Q4 U.S. dollars using

the GDP deflator, and we do the same for banks' total assets. We include banks based on their real total assets in

the final period of our sample. In this period, we classify a bank with real total assets between $1 billion and $3 bil-

lion as medium-sized and greater than $3 billion as large. Based on these classifications both size categories are well

represented in our sample (188 medium-sized banks and 215 large). In terms of the charter types of the banks, the

sample comprises 97 commercial federal charter Fed member banks, 162 commercial state charter Fed nonmember

banks, 86 state charter commercial or savings Fed member banks, 41 savings state charter banks, and 17 savings

associations. The vast majority of these banks (338) specialize in commercial lending. Moreover, our study period is

interesting because it includes very different bank operating environments, for example, the financial crisis, suffi-

ciently long pre- and post-crisis periods, and the COVID-induced economic downturn in 2020.

The data for the variables are from the Call Reports and were obtained from the Federal Deposit Insurance Cor-

poration (FDIC). This data are at the bank level, and the classification of variables as output and input prices is based

on the intermediation approach (e.g., Koetter et al., 2012).16 In Table 1, we provide a description of the variables and

summary statistics. Summarizing, there are three outputs and three input prices. The outputs measure the levels of

net loans and leases y1ð Þ, securities y2ð Þ, and non-interest income y3ð Þ. Non-interest income captures nontraditional

banking operations, such as the financial product innovations, derivatives, and securitization that occur off the bal-

ance sheet. According to Stiroh (2004) and Laeven and Levine (2007), these off-balance sheet activities have a sub-

stantial influence on banking performance, while in a bank cost function Clark and Siems (2002) highlight both the

statistical and economic importance of the inclusion of both non-interest income as an output and traditional balance

sheet outputs.17

The input prices are the prices of fixed assets and premises p1ð Þ, labor p2ð Þ, and deposits p3ð Þ. c denotes total

operating cost, which we measure as the sum of the expenditures on the three inputs. Following Wheelock and Wil-

son (2018), we first difference to obtain the data for the expenditure and other flow variables for quarters 2�4. We

then convert c and y1�y3 into 2012:Q4 U.S. dollars using the GDP deflator, but not p1�p3 because, as we can see

from Table 1, they are ratios. We then transform the variables by, in turn, taking logs, mean adjusting and using p1 as

the normalizing factor for c and the other input prices. By mean adjusting the data, we can interpret the contempora-

neous and dynamic direct, two indirect, and two total parameters on a first-order variable as elasticities at the sample

mean. The heterogeneity of the banks and thus dispersion in the data is evident from Table 1 as the standard devia-

tion of all but two variables (p2 and p3) is relatively large compared to the mean. Recall therefore that bank fixed

effects are used to account for unobserved heterogeneity.

To recap, we do not follow either of the two main approaches reviewed in Section 2 to account for the geogra-

phy of banks' operations. Therefore, we do not include a measure of the (weighted) distance between a bank's

15The Riegle-Neal IBBE Act of 1994 provided greater opportunities for banks to have overlapping branch networks, leading to greater potential spatial

dependence between banks. Our study period starts 6 months after the last 12 states implemented the IBBE Act on 6/1/97 (Dick, 2006). This 6-month lag

was to allow a short period of time for out-of-state banks to begin expanding their branch networks in the 12 laggard states. Doing so allows some time for

greater spatial dependence between the banks to materialize, that is, significant coefficients on the contemporaneous and dynamic SAR variables.
16The intermediation approach is well established and is due to the seminal work by Sealey and Lindley (1977).
17We thank an anonymous reviewer for suggesting us to discuss further the inclusion of non-interest income as an output.
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physical operations or the HHI of a bank's branch deposits across its geographical markets as an explanatory variable

in a standard non-spatial model. This is because these approaches would only yield own distance and own

HHI effects, while our focus is on the wider industry impacts of banks' geographical operations. That is, we draw on

the geographical interconnectedness of banks due to, for example, their common loan and deposit markets, and are

thus interested in how the geography of a bank's operations impacts other banks and vice versa. Given this focus we

use a model from spatial data science that involves the a priori specification of the links between each pair of banks

(i.e., the wij 's that make up W).

Two factors influence our specification of W. First, following the vast majority of the spatial literature the wij 's in

Equation (1) are exogenous and in line with this, we specify W using a measure that reflects the geographical links

between banks' operations. Second, we acknowledge that Corrado and Fingleton (2012) recommend that W has

some economic foundation. We first rule out a specification of W based on the distances between banks' headquar-

ters as the locations of two banks' headquarters may not be a good indicator of the geographical linkages between

their branch networks. We also adopt a cautious approach and do not use the ratios of the ij-th banks' deposits

across their geographical markets as spatial weights. This is because these ratios would be measures of the economic

distances between neighboring banks and may well therefore be endogenous. Put another way, there are parallels

between using such deposit ratios and endogenous spatial weights based on trade flows in a country or regional spa-

tial production function.

We follow, among others, Glass, Kenjegaliev, and Kenjegalieva (2020) and use a specification of W that reflects

the degree of the geographical overlap between banks' branch networks, where we use a broad definition of

TABLE 1 Variable descriptions and summary statistics

Variable description

Model

notation Mean Std. dev. Minimum Maximum

Total operating cost (000s of 2012:Q4

U.S. dollars):

c 108,413 611,068 96 12,079,107

Sum of salaries, interest expenses on

deposits and

expenditure on fixed assets and

premises

Input prices

Cost of fixed assets and premises:

Expenditure on

p1 0.184 3.396 0.001 253.789

fixed assets and premises divided by

their value

Cost of labor: Salaries divided by the

number of

p2 18.698 7.388 0.732 231.877

full-time equivalent employees

Cost of deposits: Interest expenses on

deposits

p3 0.004 0.003 9:00�10�6 0.036

divided by deposits

Outputs

Net loans and leases (000s of 2012:Q4

U.S. dollars)

y1 10,334,205 59,849,241 2,524 922,974,016

Securities (000s of 2012:Q4 U.S. dollars) y2 3,926,742 24,872,499 233 580,260,352

Non-interest income (000s of 2012:Q4

U.S. dollars)

y3 92,488 612,964 3 13,280,522
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overlapping networks (see the below details on how we construct W). That is, we adopt a conservative approach

and regard banks to have overlapping branch networks if they have branches in the same state. This is because if we

adopt the same approach at the county level, we could potentially overlook some linkages between banks. Our spec-

ification of W avoids assuming that each bank's neighborhood set includes the same arbitrary number of nearest

banks; avoids choosing an arbitrary radius within which banks are regarded as neighbors; is geographical in nature

which is consistent with W being exogenous; and the branch geography on which W is based underpins economic

linkages between banks in the form of their branch deposits in the same markets.

W is a normalized mean quarterly matrix. In this mean matrix before normalization, which we denote ~W, each

element on the main diagonal is set to zero. This is because a bank cannot belong to its set of neighboring banks. To

calculate each off-diagonal element of ~W, we index the number of states and Washington DC v�1,…,51 and use

Equation (5).

~wij ¼

PT
t¼1

P51
v¼1

Number of jth bank branches in state v in period t
Number of ith bank branches in statev in period t

T
8i≠ j: ð5Þ

Relative to the ith bank's mean branch network, ~wij represents the mean branch network intensity of the jth bank. To

calculate ~wij we use the state locations of banks' branches in the Summary of Deposits from the FDIC. The data for

the variables are quarterly, rather than the annual data that are also available, so that, among other things, we can

have a more high frequency first look at the own and spatial returns to scale over the COVID affected 2020. How-

ever, the locations of the banks' branches is annual mid-year information. As this information is at mid-year intervals,

and not as with year-end data for the final quarter, we reconcile the quarterly data for the variables with the branch

location information by assuming that the latter applies to each quarter in the year. In line with the estimation of the

model at the sample mean ~wij is an average across the T periods. Finally, to obtain the specification of W we normal-

ize ~W by dividing throughout by its largest element (i.e., its largest eigenvalue). This normalization is appealing

because it does not change the proportional relationship between the spatial weights. Therefore, in the context of

our empirical analysis, this normalization retains the information on the relative intensities of the branch networks.18

5.2 | Estimated spatial cost model

In Table 2, we present our estimated dynamic spatial cost model (Equation 1). Further in this subsection we analyze

the cumulative indirect parameters from the reduced form of this estimated model, which, as noted in Subsection 3.2,

measure the global spillovers pertaining to a bank's first-order and higher-order neighbors. The estimates of the coef-

ficients on Wct and Wct�1 in Table 2, however, are local elasticities that measure the contemporaneous and dynamic

SAR spillovers to a bank from only its first-order neighbors. These two parameter estimates are non-negligible and

significant at the 1% level, which supports accounting for contemporaneous and dynamic SAR dependencies in our

model. As is common in the spatial literature and thus as we would expect, these two parameter estimates are posi-

tive, which is consistent with neighboring banks' costs being impacted by common economic phenomena, such as

regulatory and monetary policies, market growth, and headline changes in economies (city, state, regional, and

national). We find that there is a non-negligible difference between the coefficient on Wct�1 and its smaller counter-

part on Wct, which indicates that the largest cost spillovers take some time to occur. This also indicates that there is

a relatively high degree of SAR persistence in the cost data. As the coefficients on the SAR variable and its time lag

are both positive, from an economic perspective this is consistent with rigidities in bank cost interdependence. As

18In the spatial literature the weights matrix is often normalized by its row sums. This is appropriate for binary spatial weights that represent, for example,

contiguous geographical areas. As our weights are non-binary, we do not use this normalization. This is because row-normalizing our weights would

remove the information on the relative bank branch intensities.
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we noted in the opening section, we are in theory more likely to find evidence of such phenomena as we use quar-

terly (rather than annual) data and over a shorter time frame the past is more likely to influence the present.

In Table 2, the estimated coefficients on the first-order outputs ðy1t�y3tÞ and input prices (p2t and p3t) are stan-

dard own elasticities at the sample mean and are positive, non-negligible, and significant at the 1% level. As these

elasticities are positive, at the sample mean our fitted model satisfies the monotonicity property of a cost function in

production theory.

It is also evident from Table 2 that a number of the contemporaneous and dynamic STL variables are significant

at the 10% level or lower. These findings are supportive of our dynamic SDM specification, as opposed to a dynamic

SAR model that would omit the STL function and its time lag. A subset of the results for the STL function (and its

time lag) are for the spatial lags of the first-order output and input prices (and their time lags). We can interpret the

coefficients on these variables as local spillover elasticities at the sample mean. Each of these elasticities therefore

represents the cost spillover to the hypothetical sample average bank when there is a spatially weighted change in a

contemporaneous (dynamic) first-order independent variable of its hypothetical first-order neighbors. Of these vari-

ables, the coefficients on Wy2t and Wp3t are positive, non-negligible, and significant, while the coefficients on

Wy3t,Wp2t,Wy1t�1 andWp3t�1 are negative, non-negligible, and significant. Interestingly, these findings indicate that

a decrease in the sample average bank's cost is the spatial competitive effect of a contemporaneous increase in the

spatially weighted securities ðWy2tÞ and cost of deposits ðWp3tÞ of its first-order neighbors. These findings also

TABLE 2 Estimated dynamic spatial cost model

Model coeff Model coeff Model coeff

Wct 0.219*** t �0.002*** Wy1t�1 �0.316***

Wct�1 0.30*** t2 0.000 Wy2t�1 �0.078

y1t 0.56*** Wy1t �0.149 Wy3t�1 �0.035

y2t 0.166*** Wy2t 0.295*** Wp2t�1 0.042

y3t 0.153*** Wy3t �0.156*** Wp3t�1 �0.255***

p2t 0.613*** Wp2t �0.171*** Wy21t�1
�0.014

p3t 0.294*** Wp3t 0.125*** Wy22t�1
0.001

y21t 0.044*** Wy21t 0.040 Wy23t�1
�0.007

y22t 0.016*** Wy22t 0.017 Wy1t�1y2t�1 0.013

y23t 0.035*** Wy23t 0.024 Wy1t�1y3t�1 0.024

y1ty2t �0.031*** Wy1ty2t �0.062 Wy2t�1y3t�1 �0.001

y1ty3t �0.063*** Wy1ty3t 0.000 Wp22t�1
0.021

y2ty3t 0.003*** Wy2ty3t �0.035 Wp23t�1
0.035***

p22t 0.040*** Wp22t 0.007 Wp2t�1p3t�1 �0.044***

p23t 0.040*** Wp23t �0.033*** Wy1t�1p2t�1 0.044

p2tp3t �0.085*** Wp2tp3t 0.007 Wy1t�1p3t�1 �0.109***

y1tp2t �0.023*** Wy1tp2t 0.036 Wy2t�1p2t�1 �0.222***

y1tp3t 0.033*** Wy1tp3t �0.025 Wy2t�1p3t�1 0.159***

y2tp2t �0.008*** Wy2tp2t �0.118*** Wy3t�1p2t�1 0.111***

y2tp3t 0.016*** Wy2tp3t �0.052* Wy3t�1p3t�1 0.001

y3tp2t 0.031*** Wy3tp2t 0.087***

y3tp3t �0.044*** Wy3tp3t 0.029** LL 33234.7

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

GLASS AND KENJEGALIEVA 17

 1
4

3
5

5
9

5
7

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://rsaico
n

n
ect.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
1

1
1

/p
irs.1

2
7
1
3
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [3

0
/0

1
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



indicate that the sample average bank's cost will increase when there is an increase in the spatially weighted non-

interest income ðWy3tÞ and cost of labor ðWp2tÞ of its first-order neighbors. As a final point on these findings, we

note that the sample average bank's cost will increase in the current period when, in the previous period, there is an

increase in the spatially weighted net loans and leases ðWy1t�1Þ and cost of deposits ðWp3t�1Þ of its first-order

neighbors.

The own and local spillover elasticities from the model in Table 2 represent one of the six sets of elasticities that

our model yields. The other five sets account for global spillovers and are sets of direct, two indirect (spill-out and

spill-in), and hence two total elasticities from the reduced form of the model. As we noted above, at the sample mean

and on average across all the banks outside the sample mean (e.g., for individual quarters), the two indirect and thus

two total elasticities for a variable will be equal. For a subset of the banks outside the sample mean, these indirect

(total) elasticities will differ in magnitude. In Table 3, for the first-order output and input prices, we present the

cumulative direct, indirect, and total elasticities for the current time horizon and first 12 future in-sample horizons

ðγ¼0,…,12Þ. These parameters are elasticities that measure the cumulative impact on the sample average bank's

direct, indirect (see Equation (2)) and total cost, with respect to a permanent marginal change in an output (input

price) of this bank in the current horizon.

The cumulative direct output and input price elasticities at the sample mean for the contemporaneous time hori-

zon and at least the first 12 future in-sample horizons are significant at the 1% level. The direct parameters in

Table 3 are also essentially equal to the corresponding own parameter from Table 2 which leads to two conclusions.

First, in line with results in the empirical spatial literature (e.g.,Autant-Bernard & LeSage, 2011), the direct elasticities

contain negligible feedback effects and so in the next subsection the direct returns to scale can be interpreted as

own returns. Second, the contemporaneous direct effects essentially persist at the same level over at least the first

12 future in-sample horizons.

In Table 3, for the sample average bank for horizons 0 � 12, all but one of the cumulative indirect elasticities for

y1 (net loans and leases), y2 (securities), y3 (non-interest income) and p2 (cost of labor) are significant at the 5% level

or lower.19 Thus, for the sample average bank, a change in p2 and y1�y3 in horizon 0 is associated with symmetric

(cumulative) cost spill-ins and spill-outs to and from the bank in future in-sample horizons. It takes three to six future

in-sample quarters for these (cumulative) indirect cost impacts to stabilize (or, in other words, for the incremental

indirect impacts to die out). To sum up our discussion of Table 3 thus far, if there is in the current period a permanent

marginal change for the sample average bank in any of its three outputs or p2 (but not p3), there is a notable differ-

ence between the persistence of the significant impacts on the bank's direct-own cost and the persistence of the sig-

nificant impacts on the indirect cost spillovers to and from the bank. That is, it takes notably longer for these impacts

on the indirect cost spillovers to die out than it does for the impacts on the direct-own cost. The implication is that,

on average, the impacts that relate to a bank's geographical linkages with other banks in the industry exhibit less sta-

bility than the impacts that affect individual banks in isolation. This adds to the extant literature as it represents a

new type of evidence to support bank regulators' efforts to maintain stability in the banking system.

From Table 3 for horizons 0 � 12, we also observe that the significant cumulative indirect impacts for p2 and

y1�y3 are exclusively positive/negative and, to different degrees, non-negligible. Consider, for instance, the nega-

tive cumulative indirect impacts for y1 (y3). These findings indicate that in Table 2, the negative effects of Wy1t and

Wy1t�1 (Wy3t and Wy3t�1) dominate the positive effects of Wct and Wct�1. The economic interpretation of this

involves recognizing that if there is an increase in the y1 ðy3Þ variables of the sample average bank's neighbors in hori-

zon 0, there are two effects in the contemporaneous and future in-sample horizons: (i) the spatial competitive effect

of the increase will reduce the sample average bank's cost; and (ii) neighboring banks' costs will increase, which

(because neighboring banks' costs are positively spatially dependent on one another) will increase the cost of the

sample average bank. Because at the sample mean we observe negative cumulative indirect impacts for y1 and y3,

for both variables (i) more than offsets (ii).

19The exception that is not significant is the indirect elasticity for p2 in horizon 0.
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TABLE 3 Cumulative direct, indirect, and total elasticities for the sample average bank

y1 (Net loans & leases) y2 (Securities) y3 (Non-interest income) p2 (Cost of labor) p3 (Cost of deposits)

Horizon, γ Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total

0 0:5605c �0:1928c 0:3676c 0:1666c 0:1344c 0:3011c 0:1533c �0:0745c 0:0788c 0:6127c 0.0048 0:6175c 0:2939c �0:0345c 0:2595c

1 0:5602c �0:1684c 0:3918c 0:1669c 0:2076c 0:3745c 0:1532c
�0:0753b 0:0778c 0:6128c

0:1056b 0:7184c 0:2939c 0.0013 0:2952c

2 0:5603c �0:1593c 0:4010c 0:1671c 0:2327c 0:3997c 0:1532c
�0:0754b 0:0777b 0:6130c 0:1406c 0:7536c 0:2940c 0.0138 0:3078c

3 0:5603c �0:1562c 0:4041c 0:1671c 0:2413c 0:4084c 0:1532c
-0:0755b 0:0777b 0:6131c 0:1526c 0:7657c 0:2940c 0.0181 0:3121c

4 0:5603c -0:1551c 0:4052c 0:1671c 0:2443c 0:4114c 0:1532c
�0:0755b 0:0776b 0:6131c 0:1568c 0:7699c 0:2940c 0:0196 0:3136c

5 0:5603c �0:1547c 0:4056c 0:1671c 0:2454c 0:4125c 0:1532c
�0:0755b 0:0776b 0:6131c 0:1583c 0:7714c 0:2940c 0.0202 0:3142c

6 0:5603c �0:1546c 0:4057c 0:1671c 0:2457c 0:4128c 0:1532c
�0:0755b 0:0776b 0:6131c 0:1588c 0:7719c 0:2940c 0.0203 0:3144c

7 0:5603c �0:1545c 0:4057c 0:1671c 0:2459c 0:4130c 0:1532c
�0:0755b 0:0776b 0:6131c 0:1590c 0:7721c 0:2940c 0.0204 0:3144c

8 0:5603c �0:1545c 0:4058c 0:1671c 0:2459c 0:4130c 0:1532c
�0:0755b 0:0776b 0:6131c 0:1591c 0:7722c 0:2940c 0.0204 0:3145c

9 0:5603c �0:1545c 0:4058c 0:1671c 0:2459c 0:4130c 0:1532c
�0:0755b 0:0776b 0:6131c 0:1591c 0:7722c 0:2940c 0.0204 0:3145c

10 0:5603c �0:1545c 0:4058c 0:1671c 0:2459c 0:4131c 0:1532c
�0:0755b 0:0776b 0:6131c 0:1591c 0:7722c 0:2940c 0.0204 0:3145c

11 0:5603c �0:1545c 0:4058c 0:1671c 0:2459c 0:4131c 0:1532c
�0:0755b 0:0776b 0:6131c 0:1591c 0:7722c 0:2940c 0.0205 0:3145c

12 0:5603c �0:1545c 0:4058c 0:1671c 0:2459c 0:4131c 0:1532c
�0:0755b 0:0776b 0:6131c 0:1591c 0:7722c 0:2940c 0.0205 0:3145c

Notes: a, b and c denote statistical significance at the 10%, 5% and 1% levels, respectively.

The levels of the cumulative elasticities (to 3 dp) that persist over at least the remainder of the first 12 future in-sample quarters are in bold.
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We obtain the cumulative total output and input price elasticities for the sample average bank in Table 3 by

summing the corresponding direct and indirect elasticities. Therefore, for the sample average bank, the cumulative

total elasticities associated with a change in an output or input price of the bank in horizon 0 measure the sum of:

(i) the cumulative direct cost impact on the bank and (ii) the symmetric cumulative indirect cost spill-ins and spill-outs

to and from the bank. When we compare the total elasticities in Table 3 for the sample average bank, we can see

that it takes a different number of quarters for the cumulative total impacts to stabilize, for example, 1 future in-

sample quarter for y3 and 8 for p3.

5.3 | Spatial returns to scale estimates

In Table 4, for quintiles of the real total asset distribution in 2020:Q4, we present the mean cumulative spatial

RSEacross the study period for time horizons γ¼0,…,4, that is, the direct, two indirect (spill-in and spill-out), and

thus two total RSE.20 In Table 5 we present the corresponding EPSE estimates, where in the following discussion we

focus on the EPSE results because, unlike RSE, EPSE allow for the possibility that a bank does not lie on a radial ray in

the output space. Before we discuss the estimates of the spatial scale economies, we note three things. First, as we

report spatial scale economies for subsets of the sample, the asymmetric indirect spill-in and spill-out parameters

lead to asymmetric indirect RSEðEPSEÞ. Second, as for time horizon γ, the two total parameters for a variable are the

sum of the direct and indirect spill-in/spill-out parameters, it follows that the two total RSE are the sum of the direct

and indirect spill-in/spill-out RSE. In contrast, for horizon γ, the two total EPSEare not the sum of the direct and indi-

rect spill-in/spill-out EPSE, as these five spatial EPSE measures are ratios with different denominators. Although it is

not therefore possible to decompose the two total EPSE into direct and indirect EPSE, direct and indirect returns to

scale are inherent within these total EPSE measures. Third, we noted above all the direct parameters for the first-

order output and input prices in Table 3 are approximately equal to the corresponding own parameter in Table 2.

This indicates that there is very little feedback within the direct parameters and means that the direct returns to

scale can be interpreted as own measures.

All the estimates of the direct EPSE in Table 5 are less than 1, that is, increasing own returns to scale. There is

very little (if any) change in the magnitudes of these direct returns from one horizon to the next, which indicates that

the contemporaneous returns persist over future periods. Overlooking for the moment the geographical linkages

between banks and considering banks in isolation, this suggests that banks in each quintile are, on average, sub-

optimally small in the current period and continue to be in future periods. For each quintile the contemporaneous

and dynamic direct EPSE in Table 5 are therefore consistent with one another and suggest that, on average, it would

be optimal for banks to upsize in the current period and to remain at their new sizes in future periods. This situation

is the simpler case where the implications of the contemporaneous and dynamic EPSE for the optimal size of a bank

are consistent with another. As we will see further in this discussion when we consider the combined effect of banks

in isolation and their geographical linkages, we report cases where the contemporaneous and dynamic total EPSE for

a quintile are at odds with one another, which is when the implications for the optimal bank size become more

complex. We first though discuss the results for the indirect spill-in and spill-out returns to scale, which involves

overlooking banks in isolation and considering only the impact of their geographical linkages.

To aid the discussion of the indirect returns to scale in Tables 4 and 5, we first focus on their interpretation. If a

bank's cumulative indirect spill-out returns are negative (positive) in horizon γ, this indicates that an increase in the

bank's outputs in the current period is associated with, on average, a negative (positive) cost spill-out to the other

banks in the sample (cumulated over the γ horizons, where γ can be the contemporaneous quarter or a future one).

Negative indirect spill-out returns to scale are consistent with an increase in the intensity of spatial competition

20A number of banks move between size quintiles over the study period. To make valid comparisons, we must ensure that these banks do not feature in

the results for different quintiles. Accordingly, the returns to scale results are for size quintiles in a particular period. This period is the final quarter as this

reflects the full evolution of movements between size quintiles over the sample.

20 GLASS AND KENJEGALIEVA
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between banks. We say this because when a bank's outputs increase in the current period, the average negative cost

spill-out across the other banks in horizon γ is consistent with, on average, downward spatial competitive pressure

on the other banks' costs. Positive indirect spill-out returns to scale indicate that there is positive spatial dependence

among the banks, which is consistent with banks being impacted by common economic phenomena, that is, headline

changes in economies (national, regional, etc.) and common monetary and regulatory policies.

Interpreting a bank's cumulative indirect spill-in returns to scale in horizon γ requires careful consideration. This

is because if these returns are negative (positive), then an increase in the bank's outputs in the current period is asso-

ciated with a negative (positive) cumulative cost spill-in to the bank (from the other banks) in horizon γ. Negative

TABLE 4 Cumulative spatial ray-scale economies for bank size quintiles

Horizon, γ Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

0 RSEDiri,γ
0:871�

a 0:873�
a 0:877�

a 0:882�
a 0:899�

a

RSEIndIn,i,γ
�0:095�

a �0:090�
a �0:089�

a �0:134�
a �0:226�

a

RSEIndOut,i,γ
�0:018�

a �0:020�
a �0:034�

a �0:062�
a �0:451�

a

RSETotIn,i,γ
0:775�

a 0:783�
a 0:788�

a 0:748�
a 0:674�

a

RSETotOut,i,γ
0:852�

a 0:853�
a 0:843�

a 0:819�
a 0:448�

a

1 RSEDiri,γ
0:871�

a 0:873�
a 0:877�

a 0:882�
a 0:899�

a

RSEIndIn,i,γ
�0:028�

a �0:020�
a �0:022�

a �0:035�
a �0:029�

a

RSEIndOut,i,γ
�0:007�

a �0:007�
a �0:008�

a �0:013�
a �0:018�

a

RSETotIn,i,γ
0:842�

a 0:853�
a 0:855�

a 0:847�
a 0:871�

a

RSETotOut,i,γ
0:863�

a 0:867�
a 0:869�

a 0:868�
a 0:881�

a

2 RSEDiri,γ
0:871�

a 0:873�
a 0:877�

a 0:882�
a 0:900�

a

RSEIndIn,i,γ
�0:005�

a 0:004�
a 0:002�

a 0:002a 0:039�
a

RSEIndOut,i,γ
�0:002�

a �0:001�
a 0:002�

a 0:006�
a 0:130�

a

RSETotIn,i,γ
0:865�

a 0:877�
a 0:879�

a 0:883�
a 0:939�

a

RSETotOut,i,γ
0:868�

a 0:872�
a 0:879�

a 0:887�
a 1:030�

b

3 RSEDiri,γ
0:871�

a 0:873�
a 0:877�

a 0:882�
a 0:901�

a

RSEIndIn,i,γ
0:003�

a 0:012�
a 0:010�

a 0:014�
a 0:062�

a

RSEIndOut,i,γ
�0:001�

a 0:001�
a 0:006�

a 0:012�
a 0:180�

a

RSETotIn,i,γ
0:873�

a 0:885�
a 0:887�

a 0:896�
a 0:963�

a

RSETotOut,i,γ
0:870�

a 0:874�
a 0:883�

a 0:894�
a 1:081�

b

4 RSEDiri,γ
0:871�

a 0:873�
a 0:877�

a 0:882�
a 0:901�

a

RSEIndIn,i,γ
0:005�

a 0:015�
a 0:013�

a 0:018�
a 0:071�

a

RSEIndOut,i,γ
0:000a 0:002�

a 0:007�
a 0:014�

a 0:198�
a

RSETotIn,i,γ
0:876�

a 0:888�
a 0:890�

a 0:900�
a 0:971�

a

RSETotOut,i,γ
0:870�

a 0:875�
a 0:884�

a 0:896�
a 1:099�

b

Notes: * denotes significantly different from zero at the 5% level. a denotes significantly less (greater) than 1 (�1) at the 5%

level for positive (negative) returns. b denotes significantly greater (less) than 1 (�1) at the 5% level for positive (negative)

returns.
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indirect spill-in returns to scale are not counterintuitive, as an increase in the outputs of all but one bank in the sam-

ple in the current period is consistent with spatial competition intensifying for the remaining bank, leading to down-

ward pressure on its costs. To reflect this pressure, attached to an increase in the outputs of the remaining bank in

the current period is a negative cost spill-in to the bank in horizon γ. We now turn to positive indirect spill-in returns

and the role of positive spatial dependence. In this case, if there is an increase in the outputs of all but one bank in

the current period, attached to an increase in the outputs of the remaining bank in the current period is a positive

cost spill-in to the bank in horizon γ.

We noted above that we focus on the EPSE results because, unlike RSE, EPSE allows for the possibility that a

bank does not lie on a radial ray in the output space. Although we observe differences between corresponding direct

TABLE 5 Cumulative spatial expansion-path scale economies for bank size quintiles

Horizon, γ Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

0 EPSEDiri,γ
0:946� 0:988� 0:880�

a 0:907� 0:912�

EPSEIndIn,i,γ
0:899� 0:990� 0:983� 0:950� 1:018�

b

EPSEIndOut,i,γ
0:969� 0:953� 0:997� 1:093� 1:019�

b

EPSETotIn,i,γ
0:957� 0:975� 0:945�

a 0:967� 0:957�
a

EPSETotOut,i,γ
0:998� 0:993� 0:983� 0:975� 0:988�

1 EPSEDiri,γ
0:948� 0:988� 0:879�

a 0:923� 0:911�

EPSEIndIn,i,γ
0:976� 0:952� 0:964� 0:892� 0:959�

EPSEIndOut,i,γ
0:975� 0:968� 0:823�

a 0:991� 1:152�
b

EPSETotIn,i,γ
0:960� 0:943�

a 0:861� 0:990� 0:935�
a

EPSETotOut,i,γ
0:995� 0:977� 0:969� 0:953�

a 0:985�

2 EPSEDiri,γ
0:949� 0:988� 0:879�

a 0:927� 0:911�

EPSEIndIn,i,γ
0:962�

a 0:992� 0:962� 0:927� 0:856�

EPSEIndOut,i,γ
0:984� 0:969�

a 0:932�
a 0:939�

a 1:003�

EPSETotIn,i,γ
0:988� 0:961� 0:895� 0:933�

a 0:995�

EPSETotOut,i,γ
0:983� 0:867�

a 0:941� 0:887� 1:005�

3 EPSEDiri,γ
0:949� 0:988� 0:879�

a 0:928� 0:911�

EPSEIndIn,i,γ
0:940� 0:894�

a 0:999� 0:947� 0:822�
a

EPSEIndOut,i,γ
0:937�

a 0:975� 0:948�
a 0:924� 1:001�

EPSETotIn,i,γ
0:963� 0:908�

a 0:944� 0:935�
a 0:990�

EPSETotOut,i,γ
0:942� 0:963� 0:900�

a 0:878� 1:008�

4 EPSEDiri,γ
0:949� 0:988� 0:879�

a 0:929� 0:911�

EPSEIndIn,i,γ
0:951� 0:881�

a 0:905� 0:932� 0:893�
a

EPSEIndOut,i,γ
0:954�

a 0:970� 0:988� 0:889� 1:008�

EPSETotIn,i,γ
0:948� 0:924�

a 0:978� 0:846� 0:981�

EPSETotOut,i,γ
0:945� 0:922� 0:883�

a 0:961� 1:010�

Notes: At the 5% level, * denotes significantly different from zero, a denotes significantly less than 1, and b denotes

significantly greater than 1.

22 GLASS AND KENJEGALIEVA

 1
4

3
5

5
9

5
7

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://rsaico
n

n
ect.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
1

1
1

/p
irs.1

2
7
1
3
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [3

0
/0

1
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



RSE and EPSE in Tables 4 and 5, of the three types of RSE and EPSE results in these tables (i.e., direct, indirect, and

total), we have the strongest preference for indirect EPSE over indirect RSE, as this is where there is the greatest dif-

ference between our EPSE and RSE findings. We conclude therefore that extending own RSE and EPSE to the spatial

setting strengthens the case for the EPSE method over the RSE approach.

To illustrate, there are several notable differences between the reported cumulative indirect RSE and EPSE. Spe-

cifically, all the cumulative indirect EPSE in Table 5 are positive, non-negligible, significantly different from zero, and

persistent over at least horizons 0�4. The cumulative indirect RSE in Table 4, however, are a mix of positive and

negative estimates. As we discussed above, negative indirect returns are consistent with cost reductions that spill-

in/spill-out because of more intense spatial competition, while positive indirect returns are consistent with cost

increases that spill-in/spill-out because of the positive spatial dependence among the banks. Moreover, in contrast

to the cumulative indirect EPSE, for all five quintiles the cumulative indirect RSE does not tend to persist at (broadly)

similar levels across horizons 0�4. For instance, the cumulative indirect (spill-in and spill-out) RSE for quintile

5 increases sharply from their large negative values in horizon 0 to non-negligible positive values in horizon 4.

Given our preference for the EPSE estimates, to ascertain the impact of indirect returns to scale spillovers on

where a bank's returns sit relative to the optimal level, we should compare the direct EPSE (i.e., when we overlook

the indirect returns) with the two total EPSE. More specifically, from a bank's point of view it would focus on

EPSETotIn,i,γ and not on EPSETotOut,i,γ , as the former incorporates the indirect returns that spill-in to the bank, while the lat-

ter accounts for its indirect returns that spill-out to the other banks. EPSETotIn,i,γ would also be of interest to bank regu-

lators who may also find EPSETotOut,i,γ informative, as the latter measures whether a bank's returns to scale are optimal

from the perspective of the cost implications for all the banks in the analysis. Alternatively, by focusing on a bank's

indirect EPSE, one can analyze the returns that spill in (spill out) to (from) a bank from (to) the other banks and which

involve excluding self-impact. This is the approach we use in the next subsection to analyze the spatial interactions

of the largest banks.

At this juncture we focus on a bank's point of view and for each quintile compare the mean direct EPSE and

EPSETotIn,i,γ for horizons 0�4. This comparison for quintile 1 banks indicates that these direct and total measures have

(broadly) similar magnitudes that point to increasing returns. We can therefore conclude that returns to scale spill-ins

have little impact on the level of the optimal returns of the mean bank in quintile 1. This can be attributed to there

being an insufficient overlap between the branch networks of the banks in this quintile, as these networks are com-

paratively small in our sample. In other words, on average, there is insufficient spatial interaction between a bank in

quintile 1 and the others in the sample. The optimal size implications of the EPSETotIn,i,γ for quintile 1 banks are there-

fore the same as those discussed above for the direct EPSE. That is, for quintile 1 banks the contemporaneous and

dynamic total EPSETotIn,i,γ are consistent with one another and suggest that, on average, these banks should upsize in

the current period and remain at their new sizes in future periods, which would likely intensify present and future

competition in the industry as these banks are the smallest in our sample.21 This situation is another example of the

simpler case where the optimal size implications of the contemporaneous and dynamic EPSE are consistent with one

another.

To use our results to draw conclusions on how indirect spill-in returns to scale impact where the returns of the

mean banks in quintiles 2 � 4 sit relative to their optimal levels, we make two remarks about the reported direct

EPSE and EPSETotIn,i,γ . First, although to different degrees the magnitudes of the mean contemporaneous direct and

total returns differ, both returns are always less than 1 and their significance is the same, for example, not signifi-

cantly less than constant returns for quintile 4. In non-spatial and static spatial settings, these types of contempora-

neous results would be used to make inferences about the optimal size of a bank. Based only on these results, on

average, the banks in quintiles 2�4 should upsize, although our next remark indicates that in the dynamic spatial

setting these inferences are much more complex.

21We thank an anonymous reviewer for suggesting us to relate our returns to scale results to the competitive environment.
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Second and importantly, in line with the reasonable view that it can take time for spillovers to occur, we can see

for quintiles 2 � 4 that it takes some time (one or two quarters) for there to be a significant departure from the con-

temporaneous total returns, for example, for quintile 4 it takes two quarters before we observe a change in signifi-

cant increasing returns. These total returns for quintiles 2 � 4 are therefore examples of the complex case where

the implications for the optimal size of a bank of the contemporaneous and dynamic total EPSE are at odds with one

another. This is because such changes in these total returns in subsequent quarters means that a bank can be in situ-

ation whereby if it acts on its contemporaneous total EPSE by, for example, not changing/increasing its outputs by a

particular percentage, this can lead to its returns being suboptimal in the following quarters. To manage these

dynamic returns to scale effects, we suggest that a bank should seek to optimize its returns over the time frame of

its future plans, which would involve its returns being suboptimal in particular periods within this time frame.

In the above case of quintile 1 banks, the contemporaneous and dynamic EPSETotIn,i,γ are consistent with one

another, so it is much clearer that if, on average, these banks were to upsize in the current period and remain at their

new sizes in future periods, this would likely intensify present and future competition in the industry as these banks

are the smallest in our sample. However, the contemporaneous and dynamic EPSETotIn,i,γ for quintiles 2�4 are at odds

with one another, so it is less clear what the implications would be for the competitive environment if, on average,

these banks optimize their returns over the time frame of their future plans. We can conclude though for quintiles

2�4 that the types of inferences about the optimal sizes of banks in the non-spatial and static spatial settings, ver-

sus those from our dynamic spatial setting, would likely be associated with notable differences in the competitive

environments.

For quintile 5, the reported mean direct EPSE and EPSETotIn,i,γ are all less than 1 and these total returns (i.e., when

we account for indirect spill-in returns) are (noticeably) larger than the direct EPSE. Relatedly, these direct and total

EPSE are either not significantly less than constant returns or significantly less than 1. The starting point for the dis-

cussion of these results is the role of the excessive risk taking by very large U.S. banks in the 2008 crisis. This risk

taking was promoted by the TBTF status of these banks, and accordingly this status was a focus of the 2010 Dodd-

Frank regulatory reforms. These reforms involved taking steps to avoid a repeat of this risk taking and included tight-

ening bank regulation through, for instance, more stringent liquidity constraints, and establishing a formal process to

resolve large bank failures with the intention of no bank being TBTF. However, Fisher and Rosenblum (2012), for

example, argue that Dodd-Frank would not prevent TBTF banks and that these reforms should have taken further

preventative action by imposing size caps on the largest banks. A key practical insight from the mean direct

EPSE and EPSETotIn,i,γ results for quintile 5 is that, on average, size caps would have a negative effect on how efficiently

the largest banks use society's resources to provide their products.22 That said, when assessing whether size caps

should be imposed, this cost should be balanced against the benefits associated with preventing banks from becom-

ing TBTF that are outside the scope of our analysis, such as the reduced risk exposure of the largest banks.

In Figure 1, for quintiles 1, 3, and 5 of the real total asset distribution in 2020:Q4, we present the contempora-

neous direct RSE over the study period. Of the full set of spatial RSE results (the direct, indirect spill-in and spill-out,

and two total measures for various horizons) we only present the direct RSE results for horizon 0 for illustrative pur-

poses. This is because, as we noted above, we have a preference for EPSE over RSE, and we also observed above

from Tables 4 and 5 that there is more similarity between the direct RSE and EPSE than there is between the

corresponding indirect and total measures. Accordingly, in Figure 2 for the same three quintiles and horizons 0 and

1, we present the full set of spatial EPSE results over the study period.23 Note that in both figures the gray vertical

bars represent the timing of U.S. recessions.24 For the three quintiles, Figure 1 indicates that the COVID pandemic

had very little impact on the contemporaneous direct (i.e., own) RSE. We can see from Figure 2 that this is also the

case for the contemporaneous direct EPSE for quintile 5. There is some evidence that COVID had more of an impact

22This is in line with the conclusion for the largest U.S. banks from Wheelock and Wilson's (2018) analysis of own scale economies (1986:Q4 � 2015:Q4).
23All the EPSE results in Figure 2 are after outliers have been removed as they accentuate the volatility; that is, the top and bottom 2.5% of bank-year

estimates are dropped.
24The dates of the recessions are from the FRED database.
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on the contemporaneous direct EPSE for quintile 1, although the more noticeable effects of COVID are on the indi-

rect EPSE which is what we discuss in detail next. Our analysis, however, only considers the impact of the 2020 por-

tion of the pandemic. An area for future research therefore is to analyze the impact of the entirety of the pandemic

on banks' scale economies.

Interestingly, for each of the three quintiles in Figure 2, we can see that there is hardly any asymmetry between

the contemporaneous indirect spill-in and spill-out EPSE. There is, however, evidence of asymmetry between the

two indirect EPSE for horizon 1, which is much more marked for quintile 5. There is also evidence of differences

between the results for larger and smaller banks during the 2008 crisis and the COVID pandemic. During the

COVID pandemic, we can see that the two contemporaneous indirect EPSE for quintile 1 declined further below

1, whereas for quintile 5 they increased further above 1. In terms of the cost spill-in and spill-out interactions of a

quintile 1 (quintile 5) bank with the other banks in the sample, this suggests that, on average, the pandemic led to

quintile 1 (quintile 5) banks becoming suboptimally smaller (larger). This is consistent with large banks providing most

of the required funding to firms in the U.S. when they turned to the banks for the liquidity provision using pre-

existing lines of credit during the pandemic (Li et al., 2020). Relatedly, we can see from Figure 2 that during the 2008

crisis there are differences between the direct (indirect) EPSE results for quintiles 1 and 5, while differences are also

observed between these results and the corresponding result for the same quintile during the pandemic. Differences

between these EPSE results are not unexpected and point to the inadequacy of general purpose responses in such

situations because although the crisis and the pandemic were both detrimental shocks these shocks were very differ-

ent in nature, while the business models of the smallest and largest banks are also very different.25

Now we turn to consider the findings following the 2008 crisis. For quintiles 1 and 3 and horizons 0 and 1, there

are sustained declines in the two indirect EPSE measures. Conversely, for quintile 5 there are steady / irregular

increases in these indirect measures. We can also see for quintile 5 and horizons 0 and 1 that post-crisis there are

upward trends in the direct and two total EPSE. Such increases coincide with a period where there were notable

increases in the sizes of banks that are among the largest in the industry. Despite these size increases, the own scale

economies that Wheelock and Wilson (2018) report suggest that the biggest U.S. banks do not tend to be sub-

optimally large. Their study period ends in 2015:Q4, and at this point in our sample we can see for quintile 5 that the

contemporaneous direct EPSE and one of the contemporaneous total EPSE are slightly above 1 and increase gradu-

ally in the following few years. For this period in isolation, this suggests that, on average, appropriate small size caps

on the largest banks would improve how efficiently they use society's resources to provide their products. This con-

clusion does not also apply to the next few years of our sample because the contemporaneous direct and total

25We thank an anonymous reviewer for highlighting this finding from Figure 2.

F IGURE 1 Quarterly contemporaneous direct ray-scale economies
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EPSE for quintile 5 fall below 1. Given we find that there can be short-term changes in the implications of size caps

for banks, if regulators use scale economies to inform such policy decisions, we suggest they consider these returns

over a sufficiently long period and have a similarly long-term policy view.

5.4 | Spatial interactions of the largest banks

We focus on the banks in quintile 5 of the real total assets distribution in 2020:Q4 as this includes the TBTF banks.

From this quintile, Table 6 presents the top five ranked banks with the largest positive estimates of eight

EPSEmeasures of the spatial interactivity of a bank's scale economies. The eight measures are means over the sample

and are a mix of contemporaneous and dynamic measures. (i) and (ii) are the contemporaneous indirect spill-out and

spill-in EPSE, respectively. (iii) and (iv) are the net contemporaneous indirect spill-out and spill-in EPSE, which are

(i) minus and (ii) vice versa. (v) is the dynamic indirect spill-out EPSE, which is the mean of this measure over the next

four in-sample quarters. (vi) is the dynamic indirect spill-in EPSE, which is calculated in the same way as (v). (vii) and

(viii) are the net dynamic indirect spill-out and spill-in EPSE, which are (v) minus and (vi) vice versa.

To set the scene for the discussion of the results in Table 6 we note two things. First, we can interpret the banks

with a high-ranking contemporaneous and dynamic indirect spill-out EPSE as those who when their outputs increase

in the current period initiate the spill-out of the largest cost returns to the other banks in the sample in current and

future periods. Conversely, we can interpret the banks with a high-ranking contemporaneous and dynamic indirect

spill-in EPSE as those who when their outputs increase in the current period are the recipients of the largest cost

returns that spill-in from other banks in current and future periods. Second, we report the banks with the highest-

ranking net contemporaneous and dynamic measures to examine which banks have the highest-ranking asymmetries

between their indirect spill-out and spill-in EPSE.

The general finding is that the top 5 ranked banks for the eight measures in Table 6 include a wide range of

banks, a small number of which are global systemically important banks (G-SIBs) (Financial Stability Board, 2019).

We elaborate on this in the discussion of the following three specific findings from Table 6. First, a number of the

banks with a high-ranking (net) contemporaneous indirect spill-in and/or spill-out EPSE have geographically concen-

trated branches and/or specialize in particular activities. For example, all of the branches of the Independent Bank

are in Michigan, while the Silicon Valley Bank focuses on funding hi-tech businesses and although it has a very small

number of branches it has the largest local deposits in Silicon Valley. Such high-ranking indirect EPSE may be because

the geographical and operational focus of the banks is associated with higher-quality service spillovers that lead to

relatively high-cost spillovers.

Second, JPMorgan Chase and Wells Fargo have high-ranking net dynamic indirect spill-out EPSE measures,

whereas there are other G-SIBs with much lower corresponding rankings, namely, Bank of America and Citibank that

are ranked 20 and 22, respectively. This indicates that only certain G-SIBs are among the initiators of the largest net

cost returns that spill-out to the other banks in the sample in future periods. Third, of the banks included in the Com-

prehensive Capital Analysis and Review (CCAR) (Federal Reserve Board, 2019), which is a group of banks where a con-

stituent bank has the capability to influence the domestic U.S. banking industry, only Capital One, Fifth Third, and

the Discover Bank have high-ranking (net) dynamic spill-in EPSE. This suggests that only certain CCAR banks are

among the recipients of the largest cost returns that spill-in from the other banks in future periods.

In Figure 3, for the quintile 5 banks, we map their net dynamic indirect spill-out EPSE onto their 2020 branch

networks. Note that the corresponding map of the net dynamic indirect spill-in EPSE is the reverse of Figure 3; that

is, the bank branch networks in red in Figure 3 are the banks with the lowest net dynamic indirect spill-in EPSE. We

can see from Figure 3 that banks with the highest net dynamic indirect spill-out EPSE have branches that cluster in

areas such as New York City and the surrounding area and along the West Coast. We now turn to a comparison of

Figure 3 and the 2020 branch networks of JPMorgan Chase and Wells Fargo in Figure 4. Consistent with these

banks having net dynamic indirect spill-out EPSE that are in the top three in our sample, this comparison indicates
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TABLE 6 Highest-ranked quintile 5 banks for spill-out and spill-in EPSE

Bank

Real total assets

(millions)

Number of

branches Bank

Real total assets

(millions)

Number of

branches

Contemporaneous spill-out EPSE Net contemporaneous spill-out EPSE

1. Silicon Valley Bank 99,609 (20) 5 1. Silicon Valley

Bank

99,609 (20) 5

2. Renasant Bank 13,052 (77) 172 2. Bank Ozk 23,767 (51) 240

3. Bank Ozk 23,767 (51) 240 3. Centennial

Bank

14,321 (72) 170

4. Centennial Bank 14,321 (72) 170 4. Simmons Bank 19,520 (60) 233

5. Sterling National 26,022 (47) 80 5. Eastern Bank 13,958 (74) 89

Contemporaneous spill-in EPSE Net contemporaneous spill-in EPSE

1. Silicon Valley

Bank

99,609 (20) 5 1. Citizens

Business

12,612 (79) 59

2. Renasant

Bank

13,052 (77) 172 2. Fifth Third

Bank

177,776 (12) 1,137

3. Bank Ozk 23,767 (51) 240 3. Independent

Bank

15,529 (67) 96

4. Centennial

Bank

14,321 (72) 170 4. UMB Bank 28,854 (45) 95

5. Sterling

National

26,022 (47) 80 5. New York

Mellon

367,435 (9) 36

Dynamic spill-out EPSE Net dynamic spill-out EPSE

1. Centennial

Bank

14,321 (72) 170 1. People's

United

55,314 (30) 421

2. Cadence

Bank

16,363 (64) 102 2. JPMorgan

Chase

2,647,111 (1) 4,979

3. Arvest

Bank

21,311 (57) 273 3. Wells Fargo

Bank

1,546,824 (3) 5,410

4. Synovus

Bank

47,535 (32) 292 4. Centennial

Bank

14,321 (72) 170

5. First Horizon

Bank

73,392 (27) 269 5. Cadence

Bank

16,363 (64) 102

Dynamic spill-in EPSE Net dynamic spill-in EPSE

1. Capital One

Bank

318,080 (10) 451 1. Capital One

Bank

318,080 (10) 451

2. Fifth Third

Bank

177,776 (12) 1,137 2. Fifth Third

Bank

177,776 (12) 1,137

3. First Horizon

Bank

73,392 (27) 269 3. Wilmington

Savings

12,511 (80) 95

4. Wilmington

Savings

12,511 (80) 95 4. Discover

Bank

97,418 (21) 2

5. Discover

Bank

97,418 (21) 2 5. City Nat.

Bank of FL

16,289 (65) 32

Notes: Real total assets are for 2020:Q4 with the rankings in parentheses. The number of branches is the mid-year measure

in 2020.
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that they have clusters of branches in areas along the West Coast and in New York City and the surrounding area.

Interestingly, in Figure 4 there are parts of the U.S. where Wells Fargo (JPMorgan Chase) has a notable branch pres-

ence, but where Figure 3 suggests that banks operating in these areas tend to have relatively low net dynamic indi-

rect spill-out EPSE, for example, Wells Fargo's branches in the Southeast. This is because in such areas the relatively

F IGURE 3 Branch locations and net dynamic spill-out EPSE for quintile 5 banks

F IGURE 4 JPMorgan Chase and Wells Fargo mid-year 2020 branches
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low net dynamic indirect spill-out EPSE of other banks more than offsets the high value of this measure for Wells

Fargo (JPMorgan Chase).

6 | CONCLUDING SUMMARY WITH INSIGHTS FOR BANKS AND

REGULATORS

Spatial data science methods are a toolkit that is specifically designed to, among other things, account for the

impacts of geographical links, namely, who one's neighbors are and the nature of the links between neighbors. By

drawing on this spatial dependence in the data, this toolkit uses interneighbor spillovers to measure the impacts

of these links. This toolkit has been widely applied to regions, states, and cities because of their geographical con-

nectedness, for example, a common border or their relative close proximity. These methods are also well suited

to banks to analyze the impacts of the overlapping geography of their branch networks. To this end, we provide

an accessible presentation of the approach to apply spatial data science methods to analyze these impacts. In par-

ticular, our approach uses a dynamic spatial model because it is reasonable to think that it can take some time

for geographical spillovers to occur. We present this approach in terms of our empirical application to calculate

indirect spill-in and spill-out returns to scale using a dynamic spatial cost function. Areas for further work there-

fore include empirical applications of our approach to returns of scale of firms in other industries; returns to scale

of U.S. banks for the entirety of the pandemic and beyond and from other functions, such as dynamic spatial rev-

enue and alternative profit functions; and returns to scale of banks in other countries. As our approach is general,

it could also be applied to analyze the persistence of spillovers in models of other bank variables where the geog-

raphy of activities is regarded as an important determinant, including market value, loan quality measures, loan

growth, deposits per branch, small business loans per branch, and bank profitability. Moreover, in terms of applied

methodology, our model could be extended to allow for the possibility that there is some inefficiency in the oper-

ations of the units (banks, regions, etc.), as we are not aware of a study that presents a dynamic spatial stochastic

frontier model.

We draw on two appealing features of the spatial model we propose. First, the contemporaneous and dynamic

indirect spill-in and spill-out elasticities measure how the impacts of the geography of activities are manifested

within the impacts of bank variables, such as in our application within the impacts of bank outputs. Second, these

indirect elasticities can be used to calculate informative post-estimation measures, such as the contemporaneous

and dynamic returns to scale spill-ins and spill-outs we compute. We then use these measures to ascertain which

banks are the top-ranked initiators of the biggest contemporaneous and dynamic returns to scale spill-outs, and

which are the top-ranked recipients of the biggest contemporaneous and dynamic spill-ins.

We compute cost-oriented contemporaneous and dynamic spatial returns to scale using quarterly panel data for

medium-sized and large U.S. banks. Three main findings are as follows. First, we observe that the most noticeable

impacts of the 2020 portion of the COVID pandemic are on banks' indirect spill-in and spill-out EPSE, while there is

relatively little impact on their direct-own EPSE. We observe a clear difference between the impacts of the pandemic

on the two contemporaneous indirect EPSE for smaller and larger banks. For quintile 1 of the bank size distribution,

the pandemic led to these two EPSE measures declining further below 1, while for quintile 5 they increased further

above 1. From the perspective of the cost spill-in and spill-out interactions of a quintile 1 (quintile 5) bank with the

other banks in the sample, this suggests that, on average, the pandemic led to quintile 1 (quintile 5) banks becoming

suboptimally smaller (larger). This is consistent with quintile 5 banks having more resources to absorb the impact of

the COVID-induced changes in the banking environment. Second, we find that a number of banks with a high-

ranking contemporaneous indirect spill-in and/or spill-out EPSE have geographically concentrated branches and/or

specialize in particular activities, for example, Silicon Valley Bank and Independent Bank. Such high-ranking indirect

EPSE may be because the geographical and operational focus of the banks is associated with higher-quality service

spillovers and thus relatively high-cost spillovers. Third, we observe that certain G-SIBs (JPMorgan Chase and Wells
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Fargo) have a high-ranking net dynamic indirect spill-out EPSE, whereas there are other G-SIBs (Bank of America and

Citibank) with much lower rankings for this measure.

These second and third findings highlight to regulators the leading roles that certain distinctive large banks and

certain G-SIBs play in bank cost interdependence. These findings also highlight how the nature of these roles can dif-

fer, namely, a contemporaneous role or a dynamic one, an absolute role or a net one, and finally, being one of the ini-

tiators of the largest cost spill-outs, or one of the recipients of the largest cost spill-ins. From a policy perspective,

ongoing bank stress testing by regulators will include the G-SIBs and CCAR banks, but regulators may consider

extending this testing to include the other large banks that we find are prominent in bank cost interdependence.

Finally, we note two limitations of our study. First, for the scope of our analysis to be manageable, we use only a

cost function to analyze where banks' returns to scale sit relative to the optimal levels. Although this is the most

common approach to analyze bank returns to scale, returns to scale can also be analyzed using other functions, such

as revenue and alternative profit functions. This then raises the issue of whether the findings on returns to scale are

robust across different functions. Second and relatedly, bank returns to scale from a cost function reflect how effi-

ciently a bank uses society's resources to provide its products, but this resource efficiency will not be the only objec-

tive of stakeholders. Changes in revenue and profit-oriented returns to scale would be of interest to bank

shareholders, and policymakers would also be interested in whether such changes have implications for industry

consolidation.
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