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Abstract

The methods for ray-scale economies (RSE) and expansion-path scale econo-

mies (EPSE) are extended to the dynamic spatial setting. We apply these

methods to large U.S. banks using dynamic spatial cost and revenue models

and key findings include the following. First, accounting for spillovers and

dynamics strengthens the case for EPSE over RSE. Second, own, spillover and

total EPSE are very persistent in future periods. Third, the EPSE suggest that

an appropriate regulatory size cap would shift one systemically important bank

to its contemporaneous optimal scale. However, the EPSE suggest that this

would be a sub-optimal dynamic scale in future periods.

KEYWORD S

cost and revenue functions, dynamic spatial modelling, internal and external economies,

too-big-to-fail banks

1 | INTRODUCTION

An integral contributing factor to the 2008 financial

crisis was the excessive risk taking by very large

U.S. banks. This risk taking was promoted by the “too-

big-to-fail” (TBTF) status of these banks which was a

focus of the 2010 Dodd-Frank regulatory reforms. These

reforms took steps to prevent a repeat of this risk taking

and included tightening bank regulation through, for

instance, more stringent liquidity constraints, and estab-

lishing a formal process to resolve large bank failures

with the intention of no bank being TBTF. However,

Fisher and Rosenblum (2012), for example, argue that

the Dodd-Frank reforms would not prevent TBTF banks

and the reforms should have involved taking further

preventative action by imposing size caps on the largest

U.S. banks. This view is particularly interesting in light

of the observation by Wheelock and Wilson (2018) that

there were non-negligible post-crisis increases in the

sizes of certain very large U.S. banks.

When considering the merits of such size caps, mea-

suring the returns to scale of large U.S. banks is impor-

tant.i This is because size caps will likely lead to a change

in the magnitude of these returns and also possibly a

change in their classification (increasing / constant /

decreasing). The stakeholders which such changes in

returns to scale will impact include the relevant particu-

lar bank and its employees, society as a whole, the bank's

shareholders and bank regulators and antitrust policy-

makers. Specifically, a change in cost-oriented returns

to scale has implications for how efficiently a bank

uses society's resources to provide its services (Stern &

Feldman, 2009). Additionally, changes in revenue and

profit oriented returns to scale will be of concern to a

bank's shareholders, as well as to regulators and antitrust

policymakers interested in how such changes may impact
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industry consolidation (Wheelock & Wilson, 2018). A fur-

ther important issue is whether the impact of size caps on

cost, revenue and profit oriented returns to scale are con-

sistent with one another.ii Thus far we have in mind the

usual returns to scale that are internal to a bank, but size

caps can also influence how external returns to scale

impact a bank and other banks and are key component

of this paper. External scale economies are the returns to

a bank and other banks from the way in which a coun-

try's banking industry is organized. External economies

are not therefore as tightly defined as internal returns

to scale. To address this in one sense we follow Glass,

Kenjegaliev, and Kenjegalieva (2020) by using the struc-

ture of a spatial empirical model to specify the form of

the external returns, and in two other key respects, which

we turn to next, our contributions extend their work and

thus fill a gap in the literature.

The gap in the literature we identify and the two con-

tributions we make to fill this gap are as follows. The first

contribution of this paper to the literature is to extend the

methods for static external returns to scale in Glass,

Kenjegaliev, and Kenjegalieva (2020) to measure the dynamic

persistence in future in-sample periods of: (i) returns to scale

that are internal to a bank; and (ii) external returns to scale.

These new methods enable us to assess whether the classi-

fications of contemporaneous internal and external returns

to scale are consistent with the classifications of the

dynamic internal and external returns in future periods.

These measures of the persistence of internal and external

returns can be used to assess the dynamic optimality of,

first, a change in the size of a bank and, second and relat-

edly, some stakeholder policy decisions of bank regulators,

such as the decision not to impose size caps. Compared to

the familiar static (i.e., contemporaneous) internal returns

to scale that are widely reported in the banking literature

(e.g., Hughes & Mester, 2013; Wheelock & Wilson, 2001,

2012, 2018), the external and dynamic features of our

approach represent a different line of inquiry.

The focus in Glass, Kenjegaliev, and Kenjegalieva (2020)

is the presentation of their methods for static internal and

external returns to scale and they only provide a small and

general demonstration of these methods for the costs of

large and medium-sized U.S. banks (1998–2015). In light of

this, the second contribution of our paper is to carry out a

more detailed, policy focused empirical analysis that directly

relates to size caps by applying the methods we introduce

for dynamic internal and external returns to scale to the

costs and revenues of key large U.S. banks (1998–2019);

namely, global systemically important banks (G-SIBs)

(Financial Stability Board, 2019) and the banks included in

the Comprehensive Capital Analysis and Review (CCAR)

(Federal Reserve Board, 2019). G-SIBs and the banks

included in the CCAR are groups where a constituent bank

has the capability to influence the global banking system

and the domestic banking industry, respectively. Moreover,

by considering contemporaneous and dynamic cost and rev-

enue oriented internal and external returns to scale, we are

able to analyse whether the implications for bank size from

these two sets of findings are consistent.iii

We calculate the internal and external returns to scale

from a dynamic spatial Durbin model (SDM). The reduced

form of the SDM yields what are referred to in the spatial

literature as contemporaneous and dynamic direct, indi-

rect and total elasticities (LeSage & Pace, 2009), which we

collectively refer to as spatial elasticities and use to calcu-

late the corresponding returns to scale measures. Contem-

poraneous and dynamic direct elasticities measure the

effect of a change in a bank's own independent variable in

the current period on its dependent variable in current

and future periods, and are used to compute the contem-

poraneous and dynamic direct (i.e., internal) returns to

scale. Also associated with the change in the bank's own

independent variable are contemporaneous and dynamic

indirect elasticities which measure the spill-in/spill-out to

and from the bank in current and future periods, and are

used to compute the contemporaneous and dynamic indi-

rect (i.e., external) returns to scale. Summing the direct

and indirect spill-in / spill-out elasticities yields two total

elasticities which are used to compute the two total

returns to scale. The total elasticities represent two net-

work perspectives: (i) the direct impact plus the indirect

spill-in to a bank is what the bank would focus on and

would also be of interest to bank regulators and antitrust

policymakers; and (ii) the direct impact plus the indirect

spill-out from the bank is a network perspective that bank

regulators and antitrust policymakers may also find infor-

mative, as this has implications for all the banks in the

sample. Given both these network perspectives would be

of interest to bank regulators, if the two total returns to

scale measures are at odds with one another as they indi-

cate that a size cap on a large bank would leave the bank,

for example, below and above its optimal size, the policy

decision on the imposition of the cap would involve the

regulator prioritizing the interests of the bank over the

other banks in the industry, or vice-versa.iv With regard to

some terminology from hereon, when referring to the con-

temporaneous and dynamic returns to scale we can use

internal and direct, and external and indirect, interchange-

ably. In the parlance of the spatial econometrics literature

we use the direct and indirect labels when referring to

these returns.

Specifically, we extend the methods for the standard

own ray-scale economies (RSE) and expansion-path scale

economies (EPSE) to the dynamic spatial setting. The

above second contribution of this paper from the empiri-

cal analysis of the contemporaneous and dynamic spatial
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RSE and EPSE for large U.S. banks involves addressing

the following three research questions (RQ1–RQ3). During

the course of the paper we revisit RQ1–RQ3 in detail.

RQ1. Are there significant contemporaneous

and dynamic geographical interdependencies

between the costs (revenues) of large U.S.

banks, and if so, what are the signs of these

interdependencies?

RQ2. If corresponding estimates ofRSE and

EPSE are at odds with one another, which of

the two might be preferred, and how may

accounting for spatial interdependencies impact

this preference?

RQ3. Can a contemporaneous spatial returns

to scale measure point to an optimal bank

size that is inconsistent with that from the

corresponding dynamic measure for one of

the next few in-sample periods? If so, what

are the recommendations in such a situation?

To provide some initial insights, we summarize the

three empirical findings for RQ1–RQ3. For RQ1, signifi-

cant coefficients on the contemporaneous spatial lag of the

cost (revenue) dependent variable and its time lag point to

contemporaneous and dynamic geographical interdepen-

dencies between the costs (revenues) of large U.S. banks.

The contemporaneous and dynamic interdependencies of

banks' costs and the contemporaneous interdependency of

banks' revenues are all positive, which is consistent with

the banks' observations for each of these variables being

impacted by common geographical economic phenomena.

The dynamic interdependency of banks' revenues is nega-

tive, which is consistent with there being a time lag before

the impacts of spatial competition take effect.

For RQ2, one can interpret a non-spatial or spatial

EPSE measure as more suitable than the corresponding

RSE, which is because for banks' costs (revenues) the

EPSE measure does not assume that a bank lies on a

radial ray in the output (input) space. We find that when

we account for spillovers between bank networks, the

case for EPSE (which we find to be very persistent in

future in-sample periods) over RSE is stronger, and for

this reason we focus on spatial EPSE.

For RQ3, to demonstrate the impact of the aforemen-

tioned first network perspective of the total EPSE, which

is what a bank would focus on, we consider the results for

a particular G-SIB, BNY Mellon. From this first perspec-

tive we observe a noticeable difference between BNY Mel-

lon's cost oriented contemporaneous and dynamic total

EPSE. Such a difference between these contemporaneous

and dynamic measures suggests that a bank will be faced

with a situation whereby, if it acts on its contemporaneous

total EPSE by (not) changing its size in the current period,

this can lead to sub-optimal dynamic returns in the follow-

ing periods. When there is such an inconsistency between

these contemporaneous and dynamic total EPSE, we sug-

gest that a bank should aim to optimize its contemporane-

ous and dynamic total returns over the time frame of its

future plans, which would involve some returns being

sub-optimal for particular periods within this time frame.

Additionally for RQ3, to demonstrate the impact of

the second network perspective of the total EPSE, we

consider the results for another G-SIB, JPMorgan Chase.

Its cost oriented contemporaneous total EPSE suggests

that an appropriate size cap would be consistent with the

bank operating at its minimum efficient scale. However,

from this second perspective, its cost oriented dynamic

total EPSE measures suggest that a size cap would lead to

a sub-optimal dynamic scale in the following periods.

This and similar other conclusions suggest that dynamic

spatial measures can provide additional insights for the

stakeholder policy decisions of bank regulators and anti-

trust policymakers.

The remainder of this paper is organized as follows.

The background in Section 2 motivates our focus on large

U.S. banks. To show how we build on the current litera-

ture, in Section 3 we set out the standard internal returns

to scale theory and via a review of the empirical evidence

on returns to scale for U.S. banks we highlight the key

features of this literature. In the research design in

Section 4, which has four parts, we provide detailed

explanations of the three research questions we address.

The first part of the research design provides a general

presentation of the structural form of the dynamic SDM

we estimate; the second shows how the reduced form of

this model is used to compute the contemporaneous and

dynamic spatial elasticities; the third relates the general

models from the first and second parts to the spatial cost

and revenue models we consider; and the fourth uses the

reduced forms of the spatial cost and revenue models to

set out the methods for the contemporaneous and

dynamic spatial returns to scale measures. In Section 5,

using recent panel data, we present the empirical analysis

of the spatial returns to scale measures for large

U.S. banks. Section 6 concludes by summarizing the con-

tributions of the returns to scale methods and the practi-

cal industry relevance of the empirical findings.

2 | BACKGROUND

In the previous section we touched on how Fisher and

Rosenblum (2012), for example, argue that the Dodd-Frank
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regulatory reforms would not prevent TBTF U.S. banks.

They are therefore of the opinion that these reforms

should have involved further preventative action by

imposing size caps on the largest banks. Consistent with

Fisher and Rosenblum's predictions, we have seen that

the Dodd-Frank regulatory reforms did not prevent non-

negligible post�2008 increases in the sizes of many large

banks. To illustrate, Wheelock and Wilson (2018) note that

at the end of 2006, the largest U.S. bank holding company,

Citigroup, had total consolidated assets of $1.9 trillion, with

a further two (Bank of America and JPMorgan Chase) hav-

ing assets in excess of $1 trillion. In comparison, at the end

of 2015, they also report that the largest holding company

was JPMorgan Chase with assets of $2.35 trillion, with

three others having assets of more than $1.7 trillion. One

interpretation of these size increases is that they make a

stronger case for size caps on the largest banks as a means

of more concerted regulatory action against these banks

being TBTF. One key reason why we focus on very large

U.S. banks is to examine whether these banks are charac-

terized by cost and revenue diseconomies of scale, as

this would be consistent with this stronger case. If, on the

other hand, there is an inconsistency, then from the cost

and / or revenue perspective(s) a size cap will move a

very large bank further below its optimal size(s). From

the cost perspective this would not be in society's inter-

ests as it would involve the bank using society's

resources more inefficiently to provide its services, while

from the revenue perspective a more sub-optimal size

would not be in the interests of bank shareholders.

Turning next to further reasons why we consider these

banks and others that collectively represent our sample

of large U.S. banks.

We carry out a policy focused empirical analysis that

directly relates to size caps by applying the methods for

contemporaneous and dynamic spatial returns to scale to

the key largest banks in our sample; namely, global sys-

temically important banks (G-SIBs) (Financial Stability

Board, 2019) and banks included in the Comprehensive

Capital Analysis and Review (CCAR) (Federal Reserve

Board, 2019). We consider these banks because the defi-

nitions of a G-SIB and CCAR bank are consistent with

these banks being TBTF. This is because G-SIBs and

CCAR banks are groups where a constituent bank has

the capability to influence the global banking system and

the domestic banking industry, respectively. The contem-

poraneous and dynamic spatial returns to scale are well-

suited to G-SIBs and CCAR banks, as the capabilities of

these banks to impact the global banking system and the

domestic banking industry will be determined by, among

other things, how the geographical interconnectedness of

the bank impacts how its size affects (and is affected by)

the sizes of other banks. This highlights the importance

of accounting for indirect returns to scale spill-ins and

spill-outs and assessing how they affect the optimal sizes

of G-SIBs and CCAR banks. We assess this by comparing

a bank's contemporaneous and dynamic direct-own EPSE

with its corresponding two total EPSE.

We also consider large U.S. banks because their geo-

graphical interconnectedness, which we measure using

the degree of overlap between banks' branch networks, is

more marked than it is for smaller banks. This is because

large banks have bigger branch networks which means

that there will be more cases where banks operate in the

same market, where a banking market is taken to be a

metropolitan statistical area (MSA) or non-MSA county

(Hirtle, 2007). Given the branch network of each large

bank overlaps with a sufficient number of networks of the

other banks, there is no lack of geographical interconnec-

tedness between the banks in our sample, and so spatial

methods are therefore well suited to modelling the spatial

interactions between these banks. In these methods the

geographical interconnectedness between the banks is

accounted for using what is referred to as the spatial

weights matrix. See Section 5.1 for details on how we go

about the a priori construction of this matrix for the

empirical analysis. Finally, and crucially, U.S. banks are

the subject of the empirical analysis due to the rich data

that is available on the zip codes of the locations of all the

banks' branches. Using this branch location data we spec-

ify the geographical linkages between the banks in the

spatial weights matrix.

3 | REVIEW OF RETURNS TO
SCALE THEORY AND BANKING
EVIDENCE

The vast majority of the literature on bank returns to

scale adopt the traditional approach and estimate RSE

and EPSE that are strictly internal to a bank. Of these

two measures internal RSE is by far the most commonly

estimated. For the case of a bank with two outputs or

inputs in Figure 1, internal RSE relates to an equipropor-

tional change in both of the bank's outputs or inputs

along the radial ray 0A. From an estimated cost function,

a rise in cost that is less than, equal to, or greater than an

increase in outputs along 0A corresponds to internal RSE

that is <, =, or >1, and represents increasing, constant or

decreasing returns to scale, respectively. Alternatively,

from an estimated revenue (alternative profit) function, a

rise in revenue (profit) that is less than, equal to, or

greater than an increase in inputs (outputs) along 0A cor-

responds to internal RSE that is <, =, or >1, and repre-

sents decreasing, constant, or increasing returns to scale.

The implications of increasing, constant and decreasing

4 GLASS AND KENJEGALIEVA
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internal RSE is that from a cost, revenue or profit per-

spective, the bank is smaller than, equal to, or larger than

its optimal size. Berger et al. (1987) recognized that a

bank may not lie on a radial ray and proposed internal

EPSE to account for this. The classification of internal

EPSE (increasing / constant / decreasing) from an esti-

mated cost, revenue or alternative profit function and the

associated bank size implications of the internal EPSE

are as above for the internal RSE. However, in contrast to

internal RSE, internal EPSE corresponds to incremental

changes in outputs or inputs along a non-radial ray, such

as BD or EF in Figure 1, where these rays represent por-

tions of the bank's output or input expansion-paths 0BA

or 0EA.

Moving on to the empirical research on returns to

scale of U.S. banks, where in our following coverage of

this research we draw a distinction between the two

strands of the literature. In particular, we highlight the

key features of each strand by drawing together the major

similarities and differences between studies. The studies

in first strand, which is by far the largest of the two

strands, estimate the commonly reported standard inter-

nal returns to scale, where the vast majority of these stud-

ies estimate internal RSE. With regard to the empirical

estimates from this first strand, a key feature of this liter-

ature is that the classifications of internal returns to scale

(increasing / constant / decreasing) are in many cases

mixed. More specifically, and as we indicate in the fol-

lowing discussion of this literature, the evidence on these

returns is not robust across different study periods, bank

sizes, functional forms and estimation methods. For

instance, Feng and Zhang (2014) and Restrepo-Tob�on

and Kumbhakar (2015) present evidence of decreasing

internal RSE in the operations of some large U.S. banks.

Both these studies use a sample period that ends in 2010

and a distance function approach, with the former study

using a Bayesian estimation procedure and the latter a

non-parametric estimator. Likewise, using a sample for

1986, Noulas et al. (1990) estimate a parametric translog

cost function and observe decreasing internal RSE for

large U.S. banks with assets between $3�$6 billion.

Of the vast majority of studies in the first strand that

estimate internal RSE for U.S. banks, there are noticeably

more studies that report increasing and/or constant inter-

nal RSE than there are studies that find decreasing inter-

nal RSE. The studies that report increasing and / or

constant internal RSE use a wide range of approaches,

such as Bayesian estimation (Feng & Serletis, 2010), the

Almost Ideal Demand System (Hughes & Mester, 2013)

and non-parametric methods (Wheelock & Wilson, 2012,

2018), and in some cases report quite substantial increas-

ing returns to scale. Kovner et al. (2014) is an interesting

further study that reports increasing returns to scale for a

particular expenditure category. Specifically, they find

that a 10% increase in assets can lead to a 0.3%–0.6%

decline in non-interest expenses. In contrast, when total

cost of U.S. banks is considered rather a particular expen-

diture category, Feng and Zhang (2014) find that there is

no clear pattern in the relationship between asset size

and the classification of returns to scale. Some studies

also report a mixture of constant and increasing returns

to scale across estimation methods (Wheelock &

Wilson, 2001) and across cost, revenue and alternative

profit functions (Wheelock & Wilson, 2018). The above

findings on increasing and / or constant internal RSE

remain broadly unchanged for internal EPSE estimates

for U.S. banks (Wheelock & Wilson, 2018).

As is often the case in panel or cross-sectional bank-

ing studies, studies that estimate internal RSE and EPSE

for U.S. banks consider the typical setting where the

model errors in each cross-section are taken to be spa-

tially independent. With this approach, if the errors in

each cross-section are not spatially independent, this will

at the very least invalidate the statistical inference

(i.e., the standard errors), and also potentially involve a

model where there is an omitted variable bias because of

the exclusion of spatially lagged independent variables

and / or the spatial lag of the dependent variable. In stud-

ies that estimate internal RSE and EPSE using a sample

that includes large U.S. banks one may expect there to be

such spatial autocorrelation. This is because these large

banks are often (but not always) among the banks with

the largest branch networks and so it follows that there is

greater geographical overlap between these networks.

Hence there are more cases where large banks operate in

the same markets, which is consistent with their being

FIGURE 1 Output and input levels for internal ray-scale and

internal expansion-path scale economies
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spatial autocorrelation for two reasons. First, there will be

more geographical competition between these banks and,

second, the greater the geographical overlap between

banks' branch networks, the more they will be exposed to

common geographical economic phenomena, such as

market growth and headline changes in regional, state

and city economies.

Such spatial autocorrelation is accounted for in the

much smaller and emerging second strand of the litera-

ture on returns to scale of U.S. banks (Glass, Kenjega-

lieva, & Douch, 2020; Glass & Kenjegalieva, 2019; Glass,

Kenjegaliev, & Kenjegalieva, 2020; Glass, Kenjegalieva, &

Weyman-Jones, 2020). Consistent with there being spa-

tial autocorrelation among U.S. banks these studies

report clear evidence of significant spatially lagged vari-

ables. The significance of the spatial lag of the dependent

variable in the relevant model, such as a spatial cost

model, is what allows one to proceed and compute

external returns to scale, for example, associated with a

change in a bank's outputs are: (a) cost returns that

spill-in to a bank from other banks; and (b) returns that

spill-out from the bank to others. Of these papers Glass,

Kenjegaliev, and Kenjegalieva (2020) focus on returns to

scale spillovers and is the paper in the second strand of

the literature that we concentrate on, while Glass and

Kenjegalieva (2019) and Glass, Kenjegalieva, and Douch

(2020) compute the growth of RSE spillovers as part of

their focus on spatial total factor productivity growth

decompositions.

Glass, Kenjegaliev, and Kenjegalieva (2020) consider the

usual contemporaneous internal RSE and EPSE, as well as

contemporaneous external spillover RSE and EPSE and the

corresponding contemporaneous total measures that incor-

porate the internal and external estimates. Using panel data

for large and medium-sized U.S. banks (1998–2015), they

estimate a static spatial cost model and, for the full sample

of U.S. banks and subsamples of large banks and medium-

sized banks, report average contemporaneous internal RSE

and EPSE that are, in general, not significantly different

from 1 (although in some cases are less than 1 in magni-

tude). These findings provide support for some of the results

in a number of the aforementioned studies (Hughes &

Mester, 2013; Wheelock & Wilson, 2012, 2018) and suggest

that when a bank is considered in isolation (i.e., spatial

interactions between banks are overlooked), on average,

bank size is not statistically sub-optimal.

Interestingly, Glass, Kenjegaliev, and Kenjegalieva

(2020) also find for their full sample, large banks and

medium-sized banks that the average contemporaneous

external RSE are not significantly different from zero,

which is due to the offsetting signs of the spatially

lagged independent variables and the spatial lag of

dependent variable, while the corresponding average

contemporaneous external EPSE are not significantly dif-

ferent from 1. The upshot is that for the full sample, large

banks and medium-sized banks they report both total

RSE and EPSE that are, in general, not significantly dif-

ferent from 1. Their headline conclusion from these

results is that when spatial interactions between banks

are accounted for, on average, bank size is not statisti-

cally sub-optimal. Given this conclusion is based on total

RSE and EPSE that are consistent with one another,

which importantly and rather unusually is due to very

different external RSE and EPSE that are likely due to a

particular rare feature of the data in Glass, Kenjegaliev,

and Kenjegalieva (2020), in our paper we investigate

three issues when the external RSE and EPSE differ and

we observe the more likely finding in this situation of dif-

ferent total RSE and EPSE. The first issue is whether the

bank size implications of contemporaneous total RSE and

EPSE remain the same when we estimate spatial cost and

revenue functions using updated data for only large

U.S. banks. Second, if there is an inconsistency between

corresponding contemporaneous (dynamic) total RSE and

EPSE, which of the two measures do we favour. Third, if

there is an inconsistency between the contemporaneous

estimate of our preferred total returns to scale measure and

the corresponding dynamic estimate for one of the next

few in-sample periods, how is the inconsistency addressed

to arrive at a clear and unequivocal policy recommenda-

tion on what is the optimal size of a particular bank.

4 | RESEARCH DESIGN

4.1 | Dynamic spatial model with fixed
effects

The structural form of the dynamic SDM with fixed

effects for balanced panel data that we estimate is

yt ¼ αιþβ0Xtþγ0WXtþη0WXt�1þδWyt

þλWyt�1þζþ εt: ð1Þ

The balanced panel data comprises observations for

T periods (indexed t � 1, …, T) and N banks (indexed i,

j � 1, …, N8 i≠ j).v yt is the N-dimensional stacked vec-

tor of logged cost or revenue observations, Xt is the

stacked N � K matrix of logged observations of the non-

spatial regressors (indexed k � 1, …, K), and β0 is the asso-

ciated vector of parameters. ι and ζ are N-dimensional

vectors of ones and fixed effects, respectively, α is the

common intercept and εt is the N-dimensional stacked

vector of idiosyncratic disturbances. To account for

unobserved heterogeneity, rather than use, for example,

6 GLASS AND KENJEGALIEVA
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random effects, we use fixed effects so that there can be

correlation between the effects and the regressors.

W is the fixed N � N spatial weights matrix compris-

ing the non-negative weights wij. W is specified a priori

and represents: (i) the spatial arrangement of the

N banks in the cross-sections; and (ii) the strength of the

spatial interaction between these banks. Typically, W is

exogenous, which is also an assumption we make about

W in Equation 1. In line with this exogeneity, a measure

of geographical proximity is frequently used to specify

the spatial weights, which is the approach we adopt in

the empirical analysis using a novel measure of geo-

graphical interconnectedness. Since a bank cannot be

linked to itself, all the elements on the main diagonal of

W are set to zero. Wyt is the contemporaneous spatial

lag of the dependent variable, otherwise known as the

SAR variable. Our model is dynamic because, for reasons

we discuss further in this section, rather than include a

time lag of the dependent variable, we include Wyt�1.

This is because it is entirely reasonable for it to take some

time for spillovers to occur. The SAR parameters

δ, λf g� 1=dmin , 1=dmaxð Þ, where dmin and dmax are the

most negative and positive real characteristic roots of W.

Note that W denotes a normalized specification of the

spatial weights matrix, where the normalization we use

in the empirical analysis gives dmax ¼ 1. For details of this

normalization see Section 5.1 in the empirical analysis.

In a number of respects we follow influential non-

spatial U.S. banking returns to scale studies (Wheelock &

Wilson, 2012, 2018) by estimating a theoretical functional

form of the technology. We therefore omit yt�1 as it does

not form part of the theoretical function. For the same

reason, we also omit non-spatial variables that shift the

frontier. In our spatial setting this has the benefit of par-

simony because given the translog functional form we

use and our focus on modelling spillovers, we have quite

a number of spatial variables that shift the frontier. As

noted by Orea et al. (2018), modelling spatial dependence

also represents a way to mitigate omitted variables and

the resulting endogeneity. In this respect we are compre-

hensive as we include a range of spatial variables that

shift the frontier. These spatial variables fall into two cat-

egories. (i) WXt and WXt�1 (N � K matrices of spatially

lagged observations, where γ0 and η0 are the associated

vectors of parameters) are exogenous local spatial regres-

sors that account for only spatial interaction between a

bank and its 1st order neighbours. Some dynamic SDMs

in the literature include WXt, but not its one period time

lag (e.g., Ciccarelli & Elhorst, 2018 and LeSage &

Sheng, 2014). This is likely for parsimony, whereas we

include WXt�1 to be consistent with the rationale for the

inclusion of Wyt�1: namely, both WXt�1 and Wyt�1 cap-

ture spillovers that take some time to occur. (ii) By

including Wyt and Wyt�1 the reduced form of Equation 1

(see Equation 2) accounts for contemporaneous and

dynamic global spatial interactions: namely, contemporane-

ous and dynamic spatial interactions between a bank and

its 1st order, 2nd order, 3rd order, etc. neighbouring banks.

Using the fitted dynamic spatial cost and revenue

models, we address the following first research question:

Are there significant contemporaneous and dynamic

geographical interdependencies between the costs (reve-

nues) of large U.S. banks, and if so, what are the signs of

these interdependencies

Tackling RQ1 will inform whether and how the geo-

graphical interconnectedness between banks impacts

their costs and revenues. More specifically, in RQ1 con-

temporaneous interdependency between banks' costs (rev-

enues) relates to the coefficient on the contemporaneous

SAR variable, while the corresponding dynamic interde-

pendency is captured by the coefficient on the time lag of

this variable. Thus far, only contemporaneous inter-

dependency between U.S. banks' costs (revenues) has been

analysed using static spatial models. Over the period 1992–

2015 for large U.S. banks (Glass & Kenjegalieva, 2019),

and 1998–2015 for large and medium-sized U.S. banks

(Glass, Kenjegaliev, & Kenjegalieva, 2020), the signi-

ficant non-negligible SAR parameters point to positive

contemporaneous interdependency between banks' costs.

For 1998–2015 and large and medium-sized U.S. banks

(Glass, Kenjegalieva, & Douch, 2020), the significant

non-negligible SAR parameters indicate positive contempo-

raneous interdependency between banks' revenues.vi

Although we use more recent data for large U.S. banks

(1998–2019), we expect that the contemporaneous SAR

parameters in our dynamic spatial models would also be

significant, non-negligible and point to positive contem-

poraneous interdependencies between banks' costs and

revenues. However, compared to the aforementioned

results from static spatial models, the inclusion of a time

lag of the SAR variable may well impact the magnitude

of a positive contemporaneous SAR parameter and

could even lead to a change in its sign. There is no study

that has estimated a dynamic spatial model for banks

that we can draw to indicate what results we might

expect for the dynamic SAR parameters. That said, one

might think that positive dynamic SAR parameters are

more likely as negative spatial interdependency is

less common in the spatial literature. Positive spatial

interdependency is associated with units which face

common geographical economic phenomena; while

negative spatial interdependency is attributed to the

effects of competition (e.g., Boarnet & Glazer, 2002 and

Garrett & Marsh, 2002). For example, a decrease in a

firm's revenue is the spatial competitive effect of a rise

in the revenues of its neighbouring firms.
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To estimate Equation (1) we use the quasi-maximum

likelihood (QML) approach in Yu et al. (2008). ML

assumes normally distributed errors, whereas QML is less

restrictive as it involves no such assumption. The estima-

tion of our model has three further features. First, as is

standard for fixed effects models, we use the within trans-

formation to circumvent the incidental parameter prob-

lem. Second, the estimator corrects for the biases from

the fixed effects (Nickell, 1981). Third, the concentrated

log-likelihood function includes T log jIN �δWj, which is

the scaled logged determinant of the Jacobian of the

transformation from ε�t to y�t . IN is the N-dimensional

identity matrix and a * denotes the demeaned transfor-

mations of εt and yt. As is standard in spatial economet-

rics, the transformation from ε�t to y�t accounts for the

endogeneity of the contemporaneous SAR variable and

also the fact that εt is not observed (Anselin, 1988;

Elhorst, 2009).vii,viii

4.2 | Contemporaneous and dynamic
elasticities to measure global spillovers

The coefficients on Xt and Xt�1 in the structural form in

Equation (1) are own elasticities. From the same equa-

tion, the coefficients on WXt and WXt�1 are elasticities

that represent the local spillovers to a bank from mar-

ginal changes in these weighted contemporaneous and

dynamic independent variables of its 1st order neigh-

bours. These elasticities do not therefore represent the

global spillovers to a bank from marginal changes in

these variables of its higher order (as well as its 1st order)

neighbours. This is because elasticities that account

for global spillovers, which are referred to as direct,

indirect and total impacts, are a function of the SAR

parameter(s). Using the fitted parameters from the struc-

tural form of our model we compute the contemporane-

ous and dynamic direct, indirect and total elasticities of

the Xt variables.

A contemporaneous direct elasticity is interpreted in

the same way as a contemporaneous own elasticity from

a non-spatial model, although the direct elasticity takes

into account feedback. This feedback is the contempora-

neous effect of a change in an independent variable for a

particular bank which partially reverberates back to the

same bank's dependent variable through its effect on the

dependent variables of the other banks in the sample. A

contemporaneous indirect elasticity for an individual

bank can be calculated in two ways: (i) average change in

the dependent variable of all the other banks in the sam-

ple due to a change in an independent variable for one

bank that is, a spill-out from one bank; or (ii) average

change in the dependent variable for one bank due to a

change in an independent variable of all the other banks

in the sample that is, a spill-in to one bank. To facilitate

interpretation it is common to report an average indirect

elasticity across the N banks. As will become evident

from the formal presentation below, averaging (i) or

(ii) across all the N banks yields the same value. In the

empirical analysis, since the average indirect (i) and

(ii) elasticities across the N banks are of the same magni-

tude, we obtain the same average value for the contempo-

raneous indirect spill-in and spill-out returns to scale.

Summing a variable's contemporaneous direct elastic-

ity and indirect elasticity (i) or (ii) gives the correspond-

ing total elasticity. We therefore obtain the same average

value for the total elasticity using the average of (i) or

(ii) across the N banks. Hence, using the average of (i) or

(ii) across the N banks, we obtain the same average value

for the two measures of the contemporaneous total

returns to scale.

However, for an individual bank (or an average

across any subset of the N banks), the two contempora-

neous indirect elasticities will be of different magni-

tudes. As a result, for individual banks there will be an

asymmetry between the two contemporaneous total

elasticities and between the two contemporaneous indi-

rect (total) returns to scale.

From the spatial model we also obtain average mea-

sures across the N banks of the corresponding dynamic

elasticities and returns to scale (direct, symmetric indirect

spill-out and spill-in, and the resulting two symmetric

total measures). These dynamic elasticities quantify how

marginal changes in the X variables in period t impact on

y in future in-sample periods. For individual banks, the

dynamic indirect and total elasticities are asymmetric

and are used to compute asymmetric indirect and total

returns to scale.

To compute the contemporaneous and dynamic

direct, indirect and total elasticities for the X variables

involves using the reduced form of Equation 1. In partic-

ular, to compute these elasticities we make a minor

adjustment to the approach in Debarsy et al. (2012) to

account for the omission of yt�1 in our model. At the out-

set, we note that we condition on the vector of observa-

tions of y for the initial period and assume that this

period is only subject to spatial dependence. We can

therefore write the dependent variable for the whole sam-

ple as eY¼ y01, …, y
0
T

� �0
. The reduced form of Equation (1)

that is, the data generating process (DGP) of eY, is there-
fore as follows.

eY¼
X

k¼1

K

Z�1 βkINT þ γk IT
O

W
� �

þηk IT
O

W
� �h i

eXk

þZ�1 αιNT þBζþ εð Þ, ð2Þ

8 GLASS AND KENJEGALIEVA

 1
0
9
9
1
1
5
8
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/ijfe.2

7
7
6
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

8
/0

1
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



where

Z¼

U 0 � � � 0

V U 0

0 V .
.

.
.
.
.

.

.

.
.
.

.
0

0 � � � V U

0
BBBBBBB@

1
CCCCCCCA

andZ�1

¼

U�1 0 � � � 0

L1 U�1 0

L2 L1
.
.

.
.
.
.

.

.

.
.
.

.
0

LT�1 LT�2 � � � L1 U�1

0
BBBBBBBB@

1
CCCCCCCCA

:

B is the NT � N matrix that assigns each of the fixed

effects to the corresponding bank in each period of the

sample. Z denotes the time and space filtered NT � NT

block matrix, where U¼ IN �δWð Þ and V = �λW �Z�1

denotes the NT �NT lower triangular block matrix, and

the time filtered eXk denotes the kth column of the

NT �K matrix X. The current period and remaining

periods in the dataset (where the latter represent the in-

sample future time horizons) in Z�1 are indexed ϕ � 0,

1, …, T� 2, T� 1 that is, 0 denotes the contemporaneous

period and, for any time period in the dataset, the num-

ber of future in-sample time periods can range from

1 through to T� 1. This highlights that the DGP in

Equation (2) is in a form that can be used to compute the

partial derivative of eY for each of the ϕ periods with

respect to a marginal change in xkt, where these partial

derivatives yield the contemporaneous and dynamic direct,

indirect and total elasticities. Lϕ ¼ �1ð Þϕ U�1Vð Þ
ϕ
U�1, and

so it is clear that to compute these elasticities we only

need to compute U�1 and V.

∂eYtþ1=∂eX
0

kt is the matrix of one period ahead partial

derivative impacts of a permanent marginal change in xk
at time t.

∂eYtþ1

∂eX0

kt

¼ L1þU�1
� �

βkIN þ γkW þ ηkWð Þ: ð3Þ

By a permanent marginal change in xk at time t,

we mean that the values of this variable increase to a new

level and remain there in future periods that is,

∂eX0

kt ¼ xktþρ, xktþ1þρ, …, xkT þρð Þ. The elements on

the main diagonal of ∂eYtþ1=∂eX
0

kt represent the one

period ahead direct elasticities for each of the N banks.

The sums of the off-diagonal elements along a row (and

the corresponding column) of this matrix represent a

bank's two asymmetric one period ahead indirect elastici-

ties. They measure the one period ahead spill-in (spill-

out) to (from) the bank from (to) all the other banks. The

two summations for a bank of its direct elasticity and, in

turn, each indirect elasticity yields its two asymmetric

one period ahead total elasticities. As we noted above,

although for an individual bank (or an average across

any subset of the N banks) the two indirect (total) elastic-

ities are asymmetric, averaging the two indirect (total)

elasticities across the N banks yields the same value. This

is because, across the N banks, the average one period

ahead total impact is the average of the row or column

sums of ∂eYtþ1=∂eX
0

kt, while the average indirect one

period ahead impact is the average of the sums of the off-

diagonal elements of these rows or columns.

Let Φ denote the set of periods from the contemporane-

ous period 0 up to ϕ periods ahead. ∂eYϕ=∂eX
0

kt is the matrix

of (cumulative) ϕ periods ahead partial derivative impacts

of a permanent marginal change in xk at time t. Computing

this matrix involves cumulating down the columns of Z�1.

∂eYϕ

∂eX0

kt

¼
X

ϕ � Φ

Lϕ βkIN þ γkW þ ηkWð Þ: ð4Þ

Recall that calculating the average one period ahead

direct, symmetric indirect and symmetric total elasticities

across the N banks involves taking averages of the sums

of the relevant elements of the N � N matrix ∂eYtþ1=∂eX
0

kt .

In a similar way we calculate the average (cumulative) ϕ

periods ahead direct, symmetric indirect and symmetric

total elasticities across the N banks. This involves taking

averages of the same sums of the elements of the N�N

matrix ∂eYϕ=∂eX
0

kt . For individual banks (or an average

across any subset of the N banks), the asymmetric mea-

sures of the (cumulative) ϕ periods ahead indirect and

total elasticities are computed in the same way as the cor-

responding one period ahead elasticities.

Following the spatial literature (e.g., LeSage &

Pace, 2009), statistical inference for the contemporaneous

and dynamic direct, indirect and total elasticities is via

1, 000 Monte Carlo simulations.

4.3 | Relating direct, indirect and total
elasticities to translog functions

In the empirical analysis we estimate dynamic spatial

cost and revenue functions using the model specification

in Equation (1). We use the following spatial translog

functional forms for the models, which involves, among

other things, including as regressors the spatial lag of the

translog specification of the technology in period t and its

GLASS AND KENJEGALIEVA 9
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one period time lag. Note to aid the interpretation we

present various components of Equations (5) and (6) in

scalar form for example, an individual spatial weight wij.

cit ¼ αþTL t, q, sð Þitþ
XN

j¼1

wijTL t, q, sð Þjt

þ
XN

j¼1

wijTL t, q, sð Þjt�1þδ
XN

j¼1

wijcjt

þ λ
XN

j¼1

wijcjt�1þζiþ εit,

ð5Þ

rit ¼ αþTL t, m, pð Þitþ
XN

j¼1

wijTL t, m, pð Þjt

þ
XN

j¼1

wijTL t, m, pð Þjt�1þδ
XN

j¼1

wijrjt

þ λ
XN

j¼1

wijrjt�1þ ζiþ εit:

ð6Þ

cit and rit are logged total cost and total revenue observa-

tions for the ith bank in period t. q, s, m and p are logged

vectors of observations of the outputs, input prices, inputs

and output prices, respectively. Each of the dependent

variables in Equations (5) and (6) together with the trans-

log function TLit represent the frontier technology and all

the other terms shift the frontier. t, t2 and interactions

between t and the other first order variables form part of

TLit and collectively represent a non-linear time trend

that measures non-neutral technical change. Everything

else is as previously defined. Details of the data that is

used in the empirical analysis for the variables in Equa-

tions (5) and (6) is provided in Section 5.1.

To compute the estimates of the spatial scale economies

for period ϕ, we use five translog equations for different cost

and revenue measures: direct; two indirect (spill-in and

spill-out); and thus two total. We obtain these five translog

cost and revenue equations from the estimates of Equa-

tions (5) and (6). In the empirical analysis, for the G-SIBs

and the banks included in the CCAR, we compare their

direct returns to scale, which are essentially own returns as

there is very little feedback in our results, with their two

total returns that account for the two different network

effects. We therefore in Equation (7) illustrate the form of

one of the two total translog revenue equations that incor-

porates revenue spill-ins to a bank from the other banks in

the sample rTotIn,iϕ

� �
. The translog equations for the follow-

ing have a similar form to Equation 7, but for brevity we

do not present them: a bank's direct revenue rDiriϕ

� �
; the

indirect revenue spill-in to a bank from the other banks

rIndIn,if

� �
; the indirect revenue spill-out from a bank to the

other banks rIndOut,iϕ

� �
; the other total revenue measure

that incorporates revenue spill-outs from a bank

rTotOut,iϕ

� �
; and the corresponding five translog cost equa-

tions. To illustrate, in the other four translog revenue

equations, the independent variables are as in

Equation (7), with the subscripts and superscripts of the

parameters (ξ and τ) and vectors (θ0; ϱ0; φ0; ϖ0) and matri-

ces (Υ; Ω; Ψ) of parameters matching those of the depen-

dent variable.

rTotIn,iϕ ¼ ξTotIn,iϕtþ
1

2
τTotIn,iϕt

2þθTot
0

In,iϕmitþϱTot
0

In,iϕpitþ
1

2
m0

itΥ
Tot
In,iϕmit

þ
1

2
p0
itΩ

Tot
In,iϕpitþm0

itΨ
Tot
In,iϕpitþφTot0

In,iϕmittþϖTot0

In,iϕpitt:

ð7Þ

A subscript ϕ is attached to the parameters and the

dependent variable in Equation (7) to indicate that a

parameter relates to the impact in horizon ϕ of a mar-

ginal change in a bank's independent variable in t. When

t and ϕ correspond to the same period, which is only

when ϕ = 0, these parameters are contemporaneous.

When this is not the case, the parameters in Equation (7)

are dynamic. This indicates that a change in a bank's

independent variable in t will impact the dependent vari-

able ϕ (in-sample) periods ahead.

There are some differences between Equations (5)

and (6) and the direct, indirect and total translog cost

and revenue functions. Unlike Equations (5) and (6), the

direct, indirect and total functions are not regressions.

This is because the dependent variables in the direct,

indirect and total equations are not observed and so there

are no error terms in these equations. One can use the

direct, indirect and total equations to compute these

unobserved dependent variables, where, to illustrate,

rTotIn,iϕ ¼ rDiriϕ þ rIndIn,iϕ and rTotOut,iϕ ¼ rDiriϕ þ rIndOut,iϕ. In addition,

in contrast to Equations (5) and (6), none of the observa-

tions in the direct, indirect and total equations are pre-

multiplied by the sum of the spatial weights. This is

because the effect of the spatial weights is incorporated

within the direct, indirect and total parameter estimates.

4.4 | Contemporaneous and dynamic
spatial returns to scale

Using the five (direct, indirect spill-in and spill-out, and

hence two total) cost and revenue translog functions for

horizon ϕ (e.g., Equation 7 is one of the two total revenue

10 GLASS AND KENJEGALIEVA
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functions), we calculate the corresponding five spatial

RSE and EPSE. For horizon ϕ = 0 these five RSE and

EPSE are contemporaneous, and for ϕ = 1, …, T � 1 they

are dynamic. Below we use one of the total cost and total

revenue RSE and EPSE (i.e., Tot
In,iϕ) to set out the methods

for all five cases. This is because it is simple to modify

our presentation to the other four spatial cost and reve-

nue RSE and EPSE by replacing Tot
In,iϕ with the notation for

direct (Diriϕ ), indirect spill-in (IndIn,iϕ), etc.

To aid the interpretations of the five spatial revenue

(cost) RSE and EPSE and the related two remaining

research questions that follow, we assume for simplicity

that a bank's input (output) space is two-dimensional and

consider the pair of inputs (outputs) mit1, mit2 (qit1, qit2).

The RSE measures assume that mit1, mit2 (qit1, qit2)

change equiproportionally along a radial ray, whereas

the EPSE measures consider incremental changes in mit1,

mit2 (qit1, qit2) along a bank's input (output)

expansion-path.

(i) RSEDir
iϕ and EPSEDir

iϕ measure the impact in horizon

ϕ of a change in mit1, mit2 (qit1, qit2) on the ith bank's

direct revenue (cost) that is, its own revenue (cost) plus

any feedback to this revenue (cost). (ii) RSEInd
Out,iϕ and

EPSEInd
Out,iϕ measure the indirect spill-out impact in ϕ of a

change in mit1, mit2 (qit1, qit2) on the revenues (costs) of

all the other banks in the sample. (iii) RSEInd
In,iϕ and

EPSEInd
In,iϕ measure the impact in ϕ of a change in mit1,

mit2 (qit1, qit2) on the ith bank's revenue (cost), where this

impact is due to an indirect spill-in from all the other

banks. (iv) RSETot
Out,iϕ and EPSETot

Out,iϕ measure the impact

in ϕ of a change in mit1, mit2 (qit1, qit2) on the first of the

ith bank's total revenue (cost) measures, where the two

drivers of this impact are the direct impact from (i) and

the indirect spill-out impact from (ii). (v) RSETot
In,iϕ and

EPSETot
In,iϕ measure the impact in ϕ of a change in mit1,

mit2 (qit1, qit2) on the second measure of the ith bank's

total revenue (cost), where the two drivers of this impact

are (i) and (iii) above.

Glass, Kenjegaliev, and Kenjegalieva (2020) use a

static spatial cost model and therefore analyse only con-

temporaneous spatial cost returns to scale that is, when

ϕ = 0. In particular, they consider RSEDir
i0 and EPSEDir

i0

because they closely resemble standard own returns to

scale, and they consider RSEInd
In,i0 and EPSEInd

In,i0 because

from a bank's own perspective it is the cost spill-ins that

matter (and not the cost spill-outs from the bank). To

account for both RSEDir
i0 and RSEInd

In,i0, and EPSEDir
i0 and

EPSEInd
In,i0, they also consider RSETot

In,i0 and EPSETot
In,i0. From

a fitted model for large and medium-sized U.S. banks

they report, among other things, estimates of the afore-

mentioned spatial returns to scale for the mean large

bank (i.e., outside the sample mean). For large U.S. banks

they find that RSEDir
i0 and EPSEDir

i0 are not significantly

different from constant returns, and that RSEInd
In,i0 and

EPSEInd
In,i0 are not significantly different from zero and

constant returns, respectively. Note that the big differ-

ence between these RSEInd
In,i0 and EPSEInd

In,i0 estimates is

because RSE and EPSE measure different things. Based

on what we noted above, RSE assume that outputs

change equiproportionally along a radial ray, while EPSE

allow for the possibility that a bank's output expansion-

path is not a radial ray and consider incremental changes

along this path. The upshot is that for different reasons

they observe that RSETot
In,i0 and EPSETot

In,i0 are not signifi-

cantly different from constant returns. As they therefore

reach the same policy conclusion using both these

total measures – namely, size caps on large banks will,

on average, lead to these banks being sub-optimally small

and therefore using society's resources inefficiently to

provide their services – they do not indicate a preference

between spatial RSE and EPSE. For a different data

sample, such as the one we use comprising only large

U.S. banks, different estimates of corresponding spatial

RSE and EPSE may point to different policy recom-

mendations. This is the focus of the following second

research question, where the first part of this question

also applies to the standard non-spatial RSE and

EPSE (RQ2).

Further extensions of Glass, Kenjegaliev, and Kenje-

galieva (2020) include looking at optimal bank size

through a different lens by computing contemporaneous

spatial revenue returns to scale, while also considering

the contemporaneous impact of spatial interdepend-

encies from an industry perspective. The latter involves

accounting for the cost spill-outs from the banks by com-

puting RSEInd
Out,i0 and EPSEInd

Out,i0 and hence RSETot
Out,i0 and

EPSETot
Out,i0. Our principal extension, however, is to

account for dynamic spatial interactions. This leads to

the following third, and final, research question (RQ3).

The type of situation we have in mind in RQ3 is when

a contemporaneous total returns to scale measure (e.g.,

EPSEInd
In,i0) points to one returns to scale classification

(e.g., increasing returns), while the corresponding

dynamic total returns to scale measure for one or more of

the next few in-sample periods points to a different classi-

fication (e.g., decreasing returns). The contemporaneous

measure indicates that it is optimal for the bank to

increase its size in the current period, while the dynamic

measure indicates that this would move it further away

from its optimal size in one or more of the next few in-

sample periods. These contemporaneous and dynamic

returns to scale measures are therefore inconsistent with

one another, so in the empirical analysis we make a rec-

ommendation for banks in this type of situation.

Turning to the methods for the spatial revenue and

cost RSETot
In,iϕ and EPSETot

In,iϕ.

GLASS AND KENJEGALIEVA 11
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4.4.1 | Spatial revenue and cost RSE

We compute RSETot
In,iϕ rð Þ as follows and RSETot

In,iϕ cð Þ using

Equation 9.

RSETot
In,iϕ rð Þ¼

XG

g¼1

∂rTotIn,iϕ t, m, pð Þit
∂mgit

, ð8Þ

where the inputs are indexed g � 1, …, G. The elasticity

∂rTotIn,iϕ t, m, pð Þit=∂mgit is the first order derivative of the

translog function for rTotIn,iϕ (Equation 7) with respect to

input g.

RSETot
In,iϕ cð Þ¼

XH

h¼1

∂cTotIn,iϕ t, q, sð Þit
∂qhit

, ð9Þ

where the outputs are indexed h � 1, …, H. The elasticity

∂cTotIn,iϕ t, q, sð Þit=∂qhit is the first order derivative of the

translog function for cTotIn,iϕ with respect to output h.

According to production theory, own revenue (cost)

RSE should be positive and an estimate <, = or >1 indicates

decreasing (increasing), constant or increasing (decreasing)

returns to scale. However, there is no theory to indicate

whether any of RSEDir
iϕ , RSEInd

In,iϕ, RSE
Ind
Out,iϕ, RSE

Tot
In,iϕ, and

RSETot
Out,iϕ should be positive or negative. Should any of

these five spatial revenue (cost) RSE measures be posi-

tive, then the classification of returns to scale is as above

for the standard non-spatial case. Should any of these five

spatial revenue (cost) RSE measures be negative, then an

estimate <, = or>�1 indicates decreasing (increasing),

constant or increasing (decreasing) returns to scale. The

classification of the five spatial revenue (cost) RSE mea-

sures need not of course be the same.

The five spatial revenue (cost) RSE measures are par-

tially or entirely made up of a spill-in/spill-out. Of these

five spatial RSE measures, only RSEInd
In,iϕ and RSEInd

Out,iϕ are

entirely made up of a spill-in / spill-out. Therefore, it is

the sign and magnitude of this spill-in / spill-out that is

of interest. RSEDir
iϕ is made up of own RSE and feedback

RSE. As we noted above, from production theory own

RSE should be positive, but there is no theory to indicate

whether feedback RSE should be positive or negative. If

the feedback RSE measure is negative, the issue is

whether it is sufficiently negative to make the RSEDir
iϕ

negative. As the feedback parameter estimates in the

empirical spatial literature are small

(e.g., Autant-Bernard & LeSage, 2011), we would expect

this to also be the case for the feedback RSE. So, even if

the feedback RSE measure is negative, RSEDir
iϕ would

likely be relatively large and positive. As a result of the

above method to calculate the five spatial RSE, and a

total elasticity being the sum of the direct and indirect

spill-in / spill-out elasticities, RSETot
In,iϕ ¼RSEDir

iϕ þRSEInd
In,iϕ

and RSETot
Out,iϕ ¼RSEDir

iϕ þRSEInd
Out,iϕ. Given RSEDir

iϕ will

likely be large and positive, if RSEInd
In,iϕ and RSEInd

Out,iϕ are

negative, the issue is whether they are sufficiently nega-

tive to make RSETot
In,iϕ and RSETot

Out,iϕ negative.

The economic explanations for the signs of the

RSEInd
In,iϕ and RSEInd

Out,iϕ measures are the same as the

explanations we gave for the sign of a SAR parameter in

the above discussion of RQ1; namely, a positive sign is

due to banks facing common economic phenomena,

while a negative sign is attributed to the effects of spatial

competition.

The statistical inference involves using the parame-

ters from the Monte Carlo simulations to compute 1, 000

estimates of each spatial RSE measure.

4.4.2 | Spatial revenue and cost EPSE

Own and spatial RSE are convenient measures and own

RSE is the most widely reported measure in the litera-

ture. However, in practice, RSE measures may not be the

most appropriate because it is entirely feasible that a

bank is not located along a radial ray. To overcome this

issue, Berger et al. (1987) propose a measure of own scale

economies (EPSE) along a bank's non-radial input (out-

put) expansion-path.

To adapt the method for the own contemporaneous

revenue EPSE to compute the contemporaneous and

dynamic spatial revenue EPSE measures, in the t, m, pð Þit
space, consider a point t�, m�, p�ð Þit that lies somewhere

along a non-radial ray. Likewise, to compute the spatial

cost EPSE measures, consider a point t�, q�, s�ð Þit .

EPSETot
In,iϕ rð Þ quantifies the change in expected rTotIn,iϕ as a

bank moves along the non-radial ray between the points

t�, 1� κð Þm�, p�ð Þit and t�, 1þ κð Þm�, p�ð Þit, where κ is a

small pre-specified number, the choice of which we dis-

cuss below. Along the same lines, EPSETot
In,iϕ cð Þ quantifies

the change in expected cTotIn,iϕ as a bank moves along the

non-radial ray between the points t�, 1� κð Þq�, s�ð Þit
and t�, 1þ κð Þq�, s�ð Þit .

Using the translog total revenue function in

Equation (7) and the corresponding total cost function,

we compute EPSETot
In,iϕ rð Þ and EPSETot

In,iϕ cð Þ as follows.

EPSETot
In,iϕ rð Þ¼

rTotIn,iϕ t�, ϑ 1� κð Þm�, p�ð Þit
ϑrTotIn,iϕ t�, 1� κð Þm�, p�ð Þit

¼
rTotIn,iϕ t�, 1þ κð Þm�, p�ð Þit

1þκ
1�κ

� �
rTotIn,iϕ t�, 1� κð Þm�, p�ð Þit

, ð10Þ
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EPSETot
In,iϕ cð Þ¼

cTotIn,iϕ t�, ϑ 1� κð Þq�, s�ð Þit
ϑcTotIn,iϕ t�, 1� κð Þq�, s�ð Þit

¼
cTotIn,iϕ t�, 1þ κð Þq�, s�ð Þit

1þκ
1�κ

� �
cTotIn,iϕ t�, 1� κð Þq�, s�ð Þit

: ð11Þ

Due to the relative proportions of the ith bank's G

inputs being constant, ϑ 1� κð Þm�
it ¼ 1þ κð Þm�

it . As this is

also the case for the ith bank's H outputs,

ϑ 1� κð Þq�
it ¼ 1þ κð Þq�

it . This gives ϑ¼ 1þ κð Þ= 1� κð Þ and

thus Equations (10) and (11).

We follow Wheelock and Wilson's (2012) non-spatial

study of returns to scale in U.S. banking by using

κ = 0.05. We compute the spatial revenue (cost) EPSE

measures for movements along the input (output)

expansion-path between ±κ of the mean input (output)

vector for the full sample or a subsample. In other words,

we consider movements between 95% and 105% of the

relevant mean input (output) vector.

As we noted above for the spatial RSE measures,

there is no production theory that suggests whether

any of the five spatial EPSE measures should be posi-

tive or negative. Thus, the returns to scale classifica-

tion of the five spatial revenue (cost) EPSE measures

is the same as the above classification for the corre-

sponding spatial RSE. Therefore, for a positive con-

temporaneous / dynamic spatial revenue (cost) EPSE

measure, an estimate <, = or >1 indicates decreasing

(increasing), constant or increasing (decreasing)

returns to scale along the specified portion of the

relevant expansion-path. Should any of the contempo-

raneous / dynamic spatial revenue (cost) EPSE mea-

sures be negative, then an estimate <, = or > �1

indicates decreasing (increasing), constant or increas-

ing (decreasing) returns to scale. As we noted above

for the spatial RSE, the classification of the five spatial

EPSE measures need not be the same. The two eco-

nomic explanations that we gave above for positive

and negative spatial RSE are also applicable to explain

the sign of a spatial EPSE estimate. Moreover, follow-

ing the above approach for the spatial RSE, statistical

inference for the spatial EPSE for horizon ϕ involves

computing 1, 000 estimates.

In contrast to the case of the spatial RSE, EPSETot
In,iϕ

and EPSETot
Out,iϕ are not the sum of the direct and indirect

spill-in / spill-out EPSE. This is because the five spatial

EPSE measures are ratios with different denominators.

EPSETot
In,iϕ does though incorporate indirect spill-in

returns to a bank from all the other banks in the sample;

while EPSETot
Out,iϕ incorporates indirect spill-out returns

from the bank to all the other banks.

5 | EMPIRICAL RESULTS AND
DISCUSSION

5.1 | Data

Glass and Kenjegalieva (2019) estimate a static spatial

cost function for large U.S. banks over the period 1992–

2015. As we pointed out in Section 3 the issues they

explore differ from those we consider. That is, rather that

focus on dynamic returns to scale spillovers as we do

here, they compute the growth in static returns to scale

spillovers as part of their focus on the decomposition of

static spatial total factor productivity growth. Their study

period was able go back to 1992 as they use distances

between pairs of bank headquarters to specify their spa-

tial weights matrix. We, on the other hand, use richer

branch location information to specify the spatial weights

matrix (see further in this subsection for a discussion of

the a priori construction of this matrix). This branch loca-

tion information goes back to 1994, while the Interstate

Banking and Branching Efficiency (IBBE) Act, otherwise

known as the Riegle-Neal Act, came into effect on June

1, 1997. This Act allowed a bank to open branches out-

side its state of origin and presented greater opportunities

for banks to have overlapping branch networks, leading

to greater potential spatial dependence between banks.

Many states implemented this Act in advance of the

effective date. See Table 1 in Dick (2006) for the date

when each state implemented the Act. For example, Ore-

gon was the first contiguous state to do so on 2/27/95,

while 12 states were the last to implement it on 6/1/97.ix

For large and medium-sized U.S. banks over the

period 1998–2015, and using branch location information

to specify the spatial weights matrix, Glass, Kenjegaliev,

and Kenjegalieva (2020); Glass, Kenjegalieva, and Douch

(2020) estimate static spatial cost and revenue models,

respectively. Glass, Kenjegalieva, and Douch (2020) find

evidence of a time lag between when states began imple-

menting the IBBE Act and the spatial dependence

between banks that we associate with overlapping branch

networks. As we also use branch location information

to specify the spatial weights matrix, we follow Glass,

Kenjegaliev, and Kenjegalieva (2020); Glass, Kenjegalieva,

and Douch (2020) and use a study period that begins in

1998, as this allows time for a sufficient overlap of branch

networks and thus spatial dependence to materialize.

We use an updated study period of 1998–2019, which, as is

also the case for the study period in Glass, Kenjegaliev,

and Kenjegalieva (2020); Glass, Kenjegalieva, and Douch

(2020), is an interesting period as it includes different

bank operating environments, such as, among others, the

2008 crisis. On the evolution over time of spatial returns
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to scale for U.S. banks (albeit only static returns), see

Glass, Kenjegaliev, and Kenjegalieva (2020). To clearly dis-

tinguish our paper from theirs we provide a detailed, pol-

icy focused empirical analysis that considers the entirely

different issue of the implications of size caps. That is, we

apply the methods we introduce for dynamic internal and

external returns to scale to the costs and revenues of key

large U.S. banks; namely, G-SIBs and CCAR banks.

By applying Berger and Roman's (2017) large bank

size total assets threshold to 2015, we classify a U.S. bank

as large if its total assets are greater than $3 billion. This

yields data comprising 201 large U.S. banks, which

because the panel data is balanced represent the core

group of surviving large banks. In 2019, the total assets of

these banks accounted for 73.5% of the total assets in the

U.S. banking system and these banks had 52, 336

branches. In terms of the charter status of the banks, the

sample comprises 55 Fed member federal charter com-

mercial banks; 43 state charter commercial or savings

Fed member banks; 75 state charter Fed nonmember

commercial banks; 16 savings banks; and 12 savings asso-

ciations. 86.1% of the banks in the sample (173 banks)

specialize in commercial lending. As we noted in

Section 2, we focus on large banks because their branch

networks are sufficiently large and so there is a more

than sufficient overlap between their networks that is,

there is not a lack of interconnectedness between the

banks in our spatial weights matrix.

TABLE 1 Variable descriptions and descriptive statistics

Variable description Model notation Mean SD

Dependent variables

Total operating cost (000 s of 2005 U.S.

dollars): Sum of salaries, interest expenses

on deposits and expenditure on fixed assets

and premises

c 779, 698 3, 319, 010

Total revenue measure (000 s of 2005 U.S.

dollars): Interest income plus non-interest

income

r 1, 844, 788 7, 984, 531

Input prices and outputs in the cost model

Cost of fixed assets and premises:

Expenditure on fixed assets and premises

divided by their value

s1 1.05 20.07

Cost of labor: Salaries divided by the number

of full-time equivalent employees

s2 66.09 22.79

Cost of deposits: Interest expenses on deposits

divided by total deposits

s3 0.02 0.01

Net loans and leases (000 s of 2005 U.S.

dollars)

q1 17, 543, 583 73, 260, 471

Securities (000 s of 2005 U.S. dollars) q2 6, 449, 827 29, 147, 718

Non-interest income (000s of 2005 U.S.

dollars)

q3 615, 346 2, 886, 586

Output prices and inputs in the revenue model

Price of loans and leases: Interest income

from loans and leases divided by loans and

leases

p1 0.057 0.016

Price of securities: Interest income from

securities divided by securities

p2 0.038 0.028

Price of other activities: Approximated by

non-interest income divided by total assets

p3 0.013 0.016

Fixed assets and premises: Value in 000s of

2005 U.S. dollars

m1 269, 847 996, 639

Labor: number of full-time equivalent

employees

m2 5, 664 22, 953

Deposits in 000s of 2005 U.S. dollars m3 23, 956, 077 108, 700, 007

14 GLASS AND KENJEGALIEVA
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The data for the variables is from the Call Reports

and was sourced from the Federal Deposit Insurance

Corporation (FDIC). This data is at the bank level and

having based the general categorization of a variable as

an input or an output on the well-established intermedia-

tion approach to banking (Sealey & Lindley, 1977) –

e.g., this approach regards deposits as an input—the

specific measures of the outputs and inputs (as well as

their prices) are based on those in Koetter et al. (2012).x

See Table 1 for a description of the measures of the first

order outputs and inputs (as well as their prices), along

with the summary statistics. It, of course, follows from

the translog functional form that we also include squared

and interaction terms pertaining to the time trend, t, out-

puts and inputs (and their prices).

In summary, there are three input prices and three

outputs in the cost model and hence, three output prices

and three inputs in the revenue model. The outputs (and

their prices) relate to net loans and leases, q1 (p1), securi-

ties, q2 (p2) and non-interest income, q3 (p3). The inputs

(and their prices) relate to fixed assets and premises, m1

(s1), labor, m2 (s2) and deposits, m3 (s3). c denotes total

operating cost and is the sum of the expenditures on the

inputs, and r denotes the total revenue measure – interest

income plus non-interest income. We deflate c, r, q1 � q3,

m1 and m3 to 2005 prices using the CPI, but not the input

and output prices because, as we can see from Table 1,

they are ratios. All the variables are then logged, mean

adjusted and, finally, we use s1 as the normalizing factor

for c and the other input prices, and p1 as the normaliz-

ing factor for r and the other output prices. By mean

adjusting the data, the contemporaneous and dynamic

direct, indirect and total parameters on the first order

variables are elasticities at the sample mean. From

Table 1 we can see for a number of variables that the

standard deviation is rather large, vis-à-vis the mean.

Such dispersion between the observations of a variable is

because there are a relatively small number of very large

banks in the sample.

Using the state locations of each bank's branches in

the Summary of Deposits from the FDIC, we specify the

same W for the cost and revenue models in four steps.

1. Set about obtaining a W before normalization for each

year by setting all the cells on the main diagonals of

these annual matrices to zero. This is because a bank

cannot be its own neighbour.

2. For each state where the ith and jth banks have

branches in year t, we calculate the ratio of the num-

ber of jth bank branches to the number of ith bank

branches. We then sum these ratios across the states

where the ith and jth banks have branches to obtain

the non-zero off-diagonal elements of the annual

matrices. All the other off-diagonal elements in the

annual matrices are set to zero to signify that the cor-

responding ith and jth banks' branch networks do not

overlap. Relative to the branch network of the ith

bank, each of the off-diagonal elements can be inter-

preted as the relative branch network intensity of the

jth bank.

3. We then average the annual matrices from (2).xi

4. We obtain the W we use in the estimation of the

models by normalizing the average matrix from (3) by

dividing throughout by its largest cell

(i.e., eigenvalue). The advantage of this normalization

is that it retains the information on the relative inten-

sities of the banks' branch networks, as it does not

change the proportional relationship between the spa-

tial weights.xii

5.2 | Estimated dynamic spatial cost and
revenue models

In Tables 2 and 3 we present the estimated dynamic spa-

tial cost and revenue models (Equations 5 and 6). Further

in this subsection we discuss the estimates of the cumula-

tive indirect parameters which measure the global spill-

overs pertaining to a bank's 1st order and higher order

neighbours. In Tables 2 and 3, the estimates of the coeffi-

cients on Wct and Wrt (Wct�1 and Wrt�1) are local

impacts that measure the contemporaneous (dynamic)

cost and revenue spillovers to a bank from only its 1st

order neighbours.

From Table 2 we can see that the estimates of the

coefficients on Wct and Wct�1 are positive, non-

negligible and significant at the 5% level or lower. These

positive contemporaneous and dynamic local cost spill-

overs are consistent with neighbouring banks' costs being

impacted by common economic phenomena, such as

industry-wide regulatory policies, market growth and

headline changes in city, state and regional economies.

In particular, we observe a non-negligible difference

between the larger Wct�1 parameter and the coefficient

on Wct. This points to it taking some time for the larger

of these two local cost spillovers to occur. Our finding

that the Wct parameter is positive, non-negligible and

significant is very much in line with the extant evidence

for U.S. banks. This evidence is from Glass and Kenjega-

lieva (2019) for large banks and Glass, Kenjegaliev, and

Kenjegalieva (2020) for large and medium-sized banks.

However, our paper is the first to apply a dynamic spatial

cost model to U.S. banks and finds that the Wct�1 vari-

able (which by construction was omitted in the above

authors' static spatial models) is a particularly important

regressor for our application.
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The estimate of the Wrt parameter in Table 3 is posi-

tive, of moderate magnitude and significant at the 10%

level. Finding that this parameter is positive is in line

with the extant evidence for large and medium-sized

U.S. banks from a static spatial revenue model (Glass,

Kenjegalieva, & Douch, 2020) and is consistent with

neighbouring banks' revenues being impacted by com-

mon contemporaneous economic phenomena. Our paper

is the first to apply a dynamic spatial revenue model to

U.S. banks and, whereas it is the Wrt parameters in the

Glass, Kenjegalieva, and Douch (2020) model that are

non-negligible and significant at the 5% level or lower,

we find that it is the Wrt�1 variable that has a large, sig-

nificant (at the 1% level) and, interestingly, negative

impact, which provides support for the inclusion of this

dynamic SAR variable.xiii This negative impact is by far

the largest of the two SAR revenue dependencies we con-

sider and is consistent with it taking some time for the

diffusion of competitive effects across space to take effect.

Additionally, it is evident from Tables 2 and 3 that some

of the WXt and WXt�1 variables are significant at the

10% level or lower. These results are supportive of our

dynamic SDM specification, as opposed to a dynamic

SAR model which would omit WXt and WXt�1.

In Tables 2 and 3 the coefficients on the first order

outputs (q1t � q3t), input prices (s2t and s3t), inputs

(m1t � m3t) and output prices (p2t and p3t) are own elas-

ticities at the sample mean. To satisfy at the sample mean

the monotonicity properties of the functions from pro-

duction theory, these elasticities must be positive, which

is the case for the output and input price elasticities from

the fitted cost function.

However, although the m2t, m3t, p2t and p3t parame-

ters from the fitted revenue function are positive, the m1t

(fixed assets and premises) parameter is negative and sig-

nificant at the 1% level, although its magnitude is

extremely small. Despite the negative sign of this parame-

ter being at odds with the theoretical monotonicity prop-

erty that underpins a revenue function, fixed assets and

premises is retained as an input in the model. This is

because there is some evidence to suggest that for a large

portion of our sample the own m1t elasticity at the sample

TABLE 2 Estimated dynamic

spatial cost model
Model coeff. Model coeff. Model coeff.

Wct 0.205*** t2 0.000 Wq2ts3t 0.011

Wct�1 0.260** q1tt �0.004*** Wq3ts2t 0.127

q1t 0.549*** q2tt �0.001 Wq3ts3t �0.011

q2t 0.188*** q3tt 0.004*** Wq1t�1 �0.259*

q3t 0.179*** s2tt �0.001 Wq2t�1 0.148

s2t 0.620*** s3tt �0.003*** Wq3t�1 �0.168*

s3t 0.294*** Wq1t 0.229* Ws2t�1 �0.310

q21t 0.062*** Wq2t �0.134 Ws3t�1 �0.056

q22t 0.023*** Wq3t �0.228** Wq21t�1 0.286***

q23t 0.044*** Ws2t �0.350** Wq22t�1
0.015

q1tq2t �0.050*** Ws3t �0.066 Wq23t�1 0.058

q1tq3t �0.073*** Wq21t �0.195** Wq1t�1q2t�1 �0.267***

q2tq3t �0.003 Wq22t �0.036 Wq1t�1q3t�1 �0.247**

s22t 0.041*** Wq23t 0.012 Wq2t�1q3t�1 0.163**

s23t 0.036*** Wq1tq2t 0.182* Ws22t�1
�0.101

s2ts3t �0.077*** Wq1tq3t 0.099 Ws23t�1 �0.010

q1ts2t 0.066*** Wq2tq3t �0.073 Ws2t�1s3t�1 �0.081

q1ts3t 0.033*** Ws22t �0.120 Wq1t�1s2t�1 � 0.214

q2ts2t �0.017** Ws23t �0.001 Wq1t�1s3t�1 �0.051

q2ts3t 0.021*** Ws2ts3t 0.090 Wq2t�1s2t�1 �0.046

q3ts2t �0.016** Wq1ts2t 0.093 Wq2t�1s3t�1 0.022

q3ts3t �0.044*** Wq1ts3t 0.020 Wq3t�1s2t�1 0.220**

t �0.004*** Wq2ts2t �0.163 Wq3t�1s3t�1 0.012

Note: LL = 3959.6; *, ** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.
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mean is likely to be positive. This is consistent with the

estimate of this elasticity that Glass, Kenjegalieva, and

Douch (2020) report from a static spatial revenue model

for a larger sample of U.S. banks (both medium-sized

and large institutions) over the shorter period 1998–

2015. Given this finding, using data for the same

201 banks that we use to estimate the spatial revenue

model, we estimate standard non-spatial translog reve-

nue models with fixed effects for 1998–2019 and a series

of shorter periods which successively drop the final year.

From these non-spatial models we find that the m1t

elasticity at the sample mean goes from being small,

negative and significant for the samples that end in

2016–2019; to small, negative or positive, and not signif-

icant for the samples that end in 2011–2015; and then

small, positive and significant for the sample that ends

in 2010.xiv This suggests that in recent years there has

been a change in the nature of the relationship between

banks' fixed assets and premises and their revenues,

which is consistent with the growth in online banking

leading to branch closures.

From the cost and revenue models we also obtain

direct, symmetric indirect and symmetric total parame-

ters. Unlike the own parameters, direct, indirect and total

parameters are partially or entirely made up of spillovers.

In Table 4, from the cost function and for the full set of

in-sample time horizons, we present the cumulative

direct, indirect and total output and input price elastici-

ties at the sample mean. In Table 5, from the revenue

function, we present the corresponding contemporaneous

and dynamic elasticities for the inputs and output prices.

We can see from Tables 4 and 5 that the cumulative

direct elasticities at the sample mean for all the in-sample

time horizons are, with the exception of one estimate, sig-

nificant at the 5% level or lower.xv These direct elasticities

are also essentially of the same magnitude as the corre-

sponding own elasticity in Tables 2 and 3 which points to

two things. First, there are negligible feedback effects

within the direct parameters and so in the next sub-

section the direct returns to scale are akin to own returns.

Second, the direct effects in the contemporaneous hori-

zon are very persistent, as the magnitudes of these direct

TABLE 3 Estimated dynamic

spatial revenue model
Model coeff. Model coeff. Model coeff.

Wrt 0.077* t2 0.0002*** Wm2tp3t 0.137

Wrt�1 �0.364*** m1tt 0.003*** Wm3tp2t 0.138

m1t �0.023*** m2tt �0.006*** Wm3tp3t 0.000

m2t 0.113*** m3tt 0.002* Wm1t�1 0.252**

m3t 0.902*** p2tt �0.009*** Wm2t�1 �0.062

p2t 0.143*** p3tt �0.002*** Wm3t�1 0.244

p3t 0.193*** Wm1t 0.050 Wp2t�1 0.194***

m2
1t �0.011*** Wm2t �0.370** Wp3t�1 0.059

m2
2t 0.009 Wm3t 0.246 Wm2

1t�1 �0.043

m2
3t

0.000 Wp2t 0.268*** Wm2
2t�1

�0.190

m1tm2t 0.024** Wp3t 0.042 Wm2
3t�1 �0.154

m1tm3t �0.004 Wm2
1t �0.063 Wm1t�1m2t�1 0.071

m2tm3t �0.018 Wm2
2t 0.218 Wm1t�1m3t�1 �0.004

p22t �0.018*** Wm2
3t 0.075 Wm2t�1m3t�1 0.313

p23t 0.053*** Wm1tm2t �0.090 Wp22t�1
0.051

p2tp3t �0.008 Wm1tm3t 0.194 Wp23t�1 �0.001

m1tp2t 0.000 Wm2tm3t �0.349* Wp2t�1p3t�1 �0.113*

m1tp3t �0.009** Wp22t �0.123*** Wm1t�1p2t�1 �0.151*

m2tp2t 0.002 Wp23t �0.055 Wm1t�1p3t�1 �0.013

m2tp3t 0.033*** Wp2tp3t 0.096 Wm2t�1p2t�1 0.150

m3tp2t �0.008 Wm1tp2t 0.016 Wm2t�1p3t�1 0.171

m3tp3t �0.020*** Wm1tp3t �0.163* Wm3t�1p2t�1 �0.022

t 0.000 Wm2tp2t �0.191 Wm3t�1p3t�1 �0.118

Note: LL = 5775.5; *, ** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.
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TABLE 4 Cumulative direct, indirect and total elasticities at the sample mean from the cost function

q1 (loans and leases) q2 (securities) q3 (non-interest income) s2 (cost of labor) s3 (cost of deposits)

Horizon,

ϕ Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total

0 0.550*** 0.098*** 0.647*** 0.188*** 0.062*** 0.250*** 0.178*** �0.423*** �0.245*** 0.619*** �0.628*** �0.009 0.294*** �0.071*** 0.222***

1 0.550*** 0.312*** 0.863*** 0.188*** 0.150*** 0.338*** 0.176*** �0.581*** �0.404*** 0.617*** �0.755*** �0.139** 0.294*** �0.019 0.275***

2 0.552*** 0.444** 0.995*** 0.189*** 0.204** 0.392*** 0.176*** �0.676*** �0.501*** 0.616*** �0.832*** �0.215* 0.294*** 0.014 0.308***

3 0.552*** 0.533* 1.085*** 0.189*** 0.240* 0.429*** 0.175*** �0.741*** �0.566** 0.616*** �0.883*** �0.267 0.294*** 0.036 0.330***

4 0.553*** 0.599 1.152** 0.189*** 0.267 0.456*** 0.175*** �0.789** �0.614** 0.616*** �0.921*** �0.306 0.294*** 0.052 0.347***

5 0.553*** 0.652 1.205* 0.189*** 0.289 0.478** 0.174*** �0.827** �0.653* 0.615*** �0.952*** �0.336 0.295*** 0.065 0.360***

6 0.554*** 0.697 1.250 0.189*** 0.307 0.497* 0.174*** �0.860* �0.686 0.615*** �0.978** �0.363 0.295*** 0.077 0.371**

7 0.554*** 0.737 1.291 0.190*** 0.324 0.513 0.174*** �0.889 �0.715 0.615*** �1.001** �0.386 0.295*** 0.087 0.381*

8 0.554*** 0.775 1.330 0.190*** 0.339 0.529 0.174*** �0.917 �0.743 0.615*** �1.023* �0.408 0.295*** 0.096 0.391*

9 0.554*** 0.813 1.368 0.190*** 0.355 0.545 0.173*** �0.944 �0.771 0.615*** �1.045 �0.430 0.295*** 0.105 0.400

10 0.555*** 0.852 1.407 0.190*** 0.371 0.560 0.173*** �0.972 �0.799 0.614*** �1.067 �0.453 0.295*** 0.115 0.410

11 0.555*** 0.893 1.448 0.190*** 0.387 0.577 0.173*** �1.001 �0.828 0.614*** �1.090 �0.476 0.295*** 0.125 0.420

12 0.555*** 0.937 1.492 0.190*** 0.405 0.595 0.173*** �1.033 �0.861 0.614*** �1.116 �0.502 0.295*** 0.136 0.431

13 0.556*** 0.987 1.542 0.190*** 0.425 0.616 0.172*** �1.069 �0.897 0.614*** �1.144 �0.530 0.295*** 0.148 0.443

14 0.556*** 1.043 1.599 0.191*** 0.448 0.639 0.172*** �1.110 �0.937 0.613*** �1.176 �0.563 0.295*** 0.162 0.457

15 0.557*** 1.109 1.665 0.191*** 0.475 0.666 0.172*** �1.157 �0.985 0.613*** �1.213 �0.600 0.295*** 0.178 0.473

16 0.557*** 1.186 1.743 0.191*** 0.506 0.697 0.171*** �1.212 �1.041 0.613*** �1.257 �0.644 0.296*** 0.196 0.492

17 0.558*** 1.279 1.837 0.191*** 0.544 0.735 0.171*** �1.278 �1.107 0.612*** �1.309 �0.697 0.296*** 0.219 0.514

18 0.559*** 1.391 1.950 0.192*** 0.589 0.781 0.170*** �1.358 �1.188 0.612*** �1.372 �0.760 0.296*** 0.246 0.542

19 0.560*** 1.528 2.088 0.192*** 0.644 0.837 0.169*** �1.455 �1.286 0.611*** �1.449 �0.838 0.296*** 0.279 0.575

20 0.562*** 1.697 2.259 0.193*** 0.713 0.905 0.168** �1.575 �1.407 0.611*** �1.544 �0.933 0.297*** 0.319 0.616

21 0.563*** 1.907 2.471 0.193*** 0.797 0.991 0.167 �1.724 �1.557 0.610*** �1.661 �1.051 0.297*** 0.370 0.667

Note: *, ** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.
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TABLE 5 Cumulative direct, indirect and total elasticities at the sample mean from the revenue function

m1 (fixed assets and

premises) m2 (labor) m3 (deposits) p2 (price of securities) p3 (price of other activities)

Horizon,

ϕ Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total

0 �0.023*** 0.282*** 0.259*** 0.112*** �0.399*** �0.287*** 0.903*** 0.528*** 1.431*** 0.144*** 0.445*** 0.589*** 0.193*** 0.109*** 0.302***

1 �0.024*** 0.129*** 0.105** 0.114*** �0.210*** �0.095 0.900*** �0.081 0.819*** 0.141*** 0.142 0.284*** 0.192*** �0.019 0.173***

2 �0.023*** 0.224*** 0.200*** 0.113*** �0.327*** �0.213*** 0.903*** 0.299*** 1.203*** 0.143*** 0.331*** 0.473*** 0.193*** 0.061*** 0.254***

3 �0.024*** 0.161*** 0.137*** 0.114*** �0.249*** �0.135** 0.901*** 0.046 0.947*** 0.142*** 0.205** 0.347*** 0.192*** 0.008 0.200***

4 �0.023*** 0.205*** 0.182*** 0.113*** �0.304*** �0.191*** 0.903*** 0.225** 1.128*** 0.142*** 0.294*** 0.437*** 0.193*** 0.046** 0.238***

5 �0.024*** 0.172*** 0.148*** 0.114*** �0.263*** �0.149*** 0.902*** 0.091 0.992*** 0.142*** 0.228** 0.369*** 0.193*** 0.017 0.210***

6 �0.024*** 0.198*** 0.175*** 0.113*** �0.295*** �0.182*** 0.903*** 0.197 1.099*** 0.142*** 0.280*** 0.422*** 0.193*** 0.040 0.232***

7 �0.024*** 0.176*** 0.153*** 0.114*** �0.268*** �0.155*** 0.902*** 0.109 1.011*** 0.142*** 0.237** 0.379*** 0.193*** 0.021 0.214***

8 �0.024*** 0.195*** 0.172*** 0.113*** �0.291*** �0.178*** 0.903*** 0.185 1.087*** 0.142*** 0.274*** 0.416*** 0.193*** 0.037 0.230***

9 �0.024*** 0.178*** 0.155*** 0.114*** �0.271*** �0.157** 0.902*** 0.117 1.019*** 0.142*** 0.241** 0.383*** 0.193*** 0.023 0.215***

10 �0.024*** 0.194*** 0.171*** 0.113*** �0.290*** �0.177** 0.902*** 0.180 1.083*** 0.142*** 0.272** 0.414*** 0.193*** 0.036 0.229***

11 �0.024*** 0.179** 0.155** 0.114*** �0.271*** �0.158* 0.902*** 0.119 1.021*** 0.142*** 0.242* 0.384*** 0.193*** 0.023 0.216***

12 �0.024*** 0.194** 0.171** 0.113*** �0.290*** �0.177* 0.902*** 0.180 1.083*** 0.142*** 0.272* 0.414*** 0.193*** 0.036 0.229***

13 �0.024*** 0.179* 0.155 0.114*** �0.271** �0.157 0.902*** 0.117 1.019** 0.142*** 0.241 0.383* 0.193*** 0.023 0.215**

14 �0.024*** 0.195 0.171 0.113*** �0.291* �0.178 0.903*** 0.184 1.086** 0.142*** 0.274 0.416* 0.193*** 0.037 0.230**

15 �0.024*** 0.177 0.153 0.114*** �0.269 �0.155 0.902*** 0.112 1.014 0.142*** 0.238 0.380 0.193*** 0.022 0.214

16 �0.024*** 0.197 0.173 0.113*** �0.293 �0.180 0.903*** 0.191 1.094 0.142*** 0.277 0.420 0.193*** 0.039 0.231

17 �0.024*** 0.175 0.151 0.114*** �0.266 �0.152 0.902*** 0.101 1.003 0.142*** 0.233 0.375 0.193*** 0.019 0.212

18 �0.024*** 0.200 0.177 0.113*** �0.297 �0.184 0.903*** 0.205 1.107 0.142*** 0.284 0.426 0.193*** 0.041 0.234

19 �0.024*** 0.171 0.147 0.114*** �0.261 �0.147 0.902*** 0.085 0.987 0.142*** 0.225 0.367 0.192*** 0.016 0.208

20 �0.024*** 0.205 0.182 0.113*** �0.304 �0.190 0.903*** 0.225 1.128 0.142*** 0.294 0.436 0.193*** 0.046 0.239

21 �0.024*** 0.164 0.140 0.114*** �0.253 �0.139 0.901*** 0.059 0.960 0.142*** 0.212 0.354 0.192*** 0.010 0.203

Note: *, ** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.
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effects essentially remain unchanged in all the future in-

sample horizons and, apart from the one aforementioned

exception, these effects are significant.

It is evident for each of the variables in Tables 4 and 5

that we observe a significant cumulative indirect elastic-

ity at the sample mean for at least one of the in-sample

time horizons. For the cost function variables in Table 4,

the significant cumulative indirect elasticities are for

horizons ranging from 0 (all variables at the 1% level) to

8 (cost of labor, s2, at the 10% level). The only significant

cumulative indirect elasticity for s3 (cost of deposits) is

for horizon 0, whereas for all the other cost function vari-

ables in Table 4 the cumulative indirect elasticities are

significant up to at least horizon 3.

For the revenue function variables in Table 5, the sig-

nificant cumulative indirect elasticities are for horizons

ranging from 0 (all variables at the 1% level) to 14 (labor,

m2, at the 5% level). For all the variables in this table we

observe significant cumulative indirect elasticities for

three or more in-sample time horizons. For the sample

average bank this indicates that for each of these vari-

ables there is significant contemporaneous and future

persistent spillover impacts. Interestingly, the magnitudes

of the reported cumulative indirect elasticities for the rev-

enue function variables fall and rise from 1 year to the

next. This variability is particularly marked for m3

(deposits). However, Table 5 shows that such fluctuations

die out over time. The reason for such variability is the

alternating annual impact on the cumulative indirect

elasticities of the positive and negative contemporaneous

and dynamic SAR parameters (in particular, the alternat-

ing annual impact of these parameters on Lϕ in Equa-

tion 4). In contrast, since the contemporaneous and

dynamic SAR parameters are positive in the fitted cost

function, the significant cumulative indirect elasticities in

Table 4 increase annually.

Summing the corresponding cumulative direct and

indirect elasticities in Tables 4 and 5 yields the cumula-

tive total elasticity. From these tables, when the signs of

the cumulative direct and indirect elasticities are gener-

ally the same (different), we find that the cumulative

total elasticities are significant over more (fewer) time

horizons than the corresponding indirect elasticity that

is, a cumulative total impact is more (less) persistent over

time than its indirect counterpart.

5.3 | Contemporaneous and dynamic
spatial returns to scale estimates

In panel A of Table 6, from the cost function, we

present for the sample average bank and time hori-

zons 0, …, 5, the cumulative estimates of RSEDir
iϕ cð Þ,

RSEInd
In,iϕ cð Þ¼RSEInd

Out,iϕ cð Þ, and RSETot
In,iϕ cð Þ¼RSETot

Out,iϕ cð Þ.

In panels B, C and D of the same table we present the

corresponding EPSE (c), RSE (r) and EPSE (r) estimates.

Recall that because we observed that there is negligible

feedback within the contemporaneous and dynamic

direct parameters, the contemporaneous and dynamic

direct RSE and EPSE are akin to the standard internal

returns to scale that are widely reported in the literature.

Hence, when there is an increase in the sample average

bank's outputs (inputs) in the current period, the RSEDir
iϕ

and EPSEDir
iϕ in Table 6 measure the percentage changes

in the contemporaneous and dynamic cost (revenue) of

this hypothetical bank.

For the sample average bank for horizons 0, …, 5, we

can see from Table 6 that the estimates of RSEDir
iϕ cð Þ are

all significantly less than 1, whereas with the exception

of horizon 4 we cannot reject EPSEDir
iϕ cð Þ¼ 1. In the main

therefore, these tests indicate that the EPSEDir
iϕ cð Þ esti-

mates point to constant direct cost returns, which is in

contrast to the corresponding increasing RSEDir
iϕ cð Þ. The

corresponding estimates of RSEDir
iϕ rð Þ and EPSEDir

iϕ rð Þ are

all of a very similar magnitude (0.99), which, in practice,

points to approximately constant direct revenue returns.

Interestingly though, these RSEDir
iϕ rð Þ are all significantly

less than 1, while there is also some evidence of this for

EPSEDir
iϕ rð Þ. Such results are due to these returns having

small standard deviations. With reference to the results

in the literature, our findings of constant and increasing

contemporaneous internal returns to scale are in line

with results reported in some of the studies reviewed in

Section 3 (e.g., Wheelock & Wilson, 2012, 2018).

From the above analysis of the direct cost and reve-

nue RSE and EPSE we reach two conclusions. First, we

conclude that these direct returns are very persistent as

their magnitudes in future time horizons are the same as

in horizon 0. Second, given an EPSE measure can be

viewed as more appropriate than the corresponding RSE

as a bank may not lie on a radial ray, and when we con-

sider banks in isolation (i.e., we overlook for the moment

returns to scale spillovers between banking networks),

the EPSEDir
iϕ cð Þ and EPSEDir

iϕ rð Þ suggest that the size of the

sample average bank is approximately optimal in hori-

zons 0–5. The issue is therefore whether we reach the

same conclusion from EPSE that account for such spill-

overs, which is what we now consider.

When there is an increase in the sample average

bank's outputs (inputs) in the current period, the RSEInd
iϕ

and EPSEInd
iϕ in Table 6 measure the percentage changes

in the contemporaneous and dynamic symmetric cost

(revenue) spill-in and spill-out to and from this hypothet-

ical bank. We observe that the RSEInd
iϕ cð Þ and RSEInd

iϕ rð Þ

in Table 6 do not consistently have the same sign for

horizons 0–5. In contrast, from the same table, we can
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see that all the EPSEInd
iϕ cð Þ and EPSEInd

iϕ rð Þ are positive.

We draw attention to two further differences between the

indirect cost (revenue) RSE and EPSE. First, whereas the

magnitudes of the direct cost (revenue) RSE and EPSE

are always not markedly different, we observe big differ-

ences between the magnitudes of the indirect cost (reve-

nue) RSE and EPSE. For example, for horizon 5, the

indirect revenue RSE and EPSE are not significantly

different from 0 and 1, respectively. Second, whereas we

noted above that the magnitudes of the direct cost (reve-

nue) RSE and EPSE are very persistent in future in-

sample periods, we find that this is only the case for the

indirect cost (revenue) EPSE. These two differences

between the cost (revenue) indirect RSE and EPSE sug-

gest that movements along an output (input) radial ray

and output (input) expansion-path lead to far less

TABLE 6 Sample average

cumulative spatial returns to scale
Panel A: Cost spatial cumulative ray-scale economies

Horizon, ϕ RSEDir
iϕ cð Þ RSEInd

In,iϕ cð Þ¼RSEInd
Out,iϕ cð Þ RSETot

In,iϕ cð Þ¼RSETot
Out,iϕ cð Þ

0 0.915*a �0.263*a 0.653*a

1 0.915*a �0.118*a 0.796*a

2 0.916*a �0.029*a 0.887*a

3 0.916*a 0.032*a 0.948*a

4 0.917*a 0.077*a 0.994*

5 0.917*a 0.113*a 1.030*

Panel B: Cost spatial cumulative expansion-path scale economies

Horizon, ϕ EPSEDir
iϕ cð Þ EPSEInd

In,iϕ cð Þ¼EPSEInd
Out,iϕ cð Þ EPSETot

In,if cð Þ¼EPSETot
Out,iϕ cð Þ

0 1.010* 0.971*a 1.026*b

1 0.982* 0.988* 0.997*

2 0.990* 0.985* 0.998*

3 1.001* 0.979* 1.002*

4 0.983*a 0.974* 1.012*

5 1.000* 0.964*a 0.992*

Panel C: Revenue spatial cumulative ray-scale economies

Horizon, ϕ RSEDir
iϕ rð Þ RSEInd

In,iϕ rð Þ¼RSEInd
Out,iϕ rð Þ RSETot

In,iϕ rð Þ¼RSETot
Out,iϕ rð Þ

0 0.993*a 0.411*a 1.404*b

1 0.990*a �0.162*a 0.828*a

2 0.993*a 0.196*a 1.190*b

3 0.991*a �0.043*a 0.949*a

4 0.993*a 0.127*a 1.120*b

5 0.992*a 0.000a 0.992*

Panel D: Revenue spatial cumulative expansion-path scale economies

Horizon, ϕ EPSEDir
iϕ rð Þ EPSEInd

In,iϕ rð Þ¼EPSEInd
Out,iϕ rð Þ EPSETot

In,iϕ rð Þ¼EPSETot
Out,iϕ rð Þ

0 0.998* 0.980* 0.994*a

1 0.991*a 0.989*a 1.002*

2 0.999* 0.985* 0.998*

3 0.998* 0.993* 0.995*a

4 0.997* 0.969*a 0.995*a

5 0.990*a 1.001* 0.998*

Note: At the 5% level: * denotes significantly different from zero; a denotes significantly less (greater) than 1

(�1) at the 5% level for positive (negative) returns; and b denotes significantly greater (less) than 1 (�1) at

the 5% level for positive (negative) returns.
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disparity between the direct cost (revenue) RSE and

EPSE than we observe in the indirect case. Thus, the

impact of allowing for the possibility that a bank may not

lie on a radial ray is much bigger when we account for

spillovers between banking networks which strengthens

the above case for EPSE over RSE.

We now turn to discuss the total returns to scale

results. Specifically, when there is an increase in the sam-

ple average bank's outputs (inputs) in the current period,

the RSETot
iϕ and EPSETot

iϕ in Table 6 measure the percent-

age changes in this hypothetical bank's two symmetric

total cost (revenue) measures in horizons 0–5. We note

two things about these total returns. First, they incorpo-

rate both direct and indirect scale economies and there-

fore provide the overall picture of the optimal size of a

bank. Second, as indirect spill-in and spill-out returns for

the sample average bank are symmetric, this is also the

case for the two total returns to scale measures. Along

the same lines as the above discussion of the indirect

RSE and EPSE, the case for EPSE over RSE is further

reinforced when we consider the total returns. This is

because in a large proportion of cases in Table 6 the mag-

nitude of the difference between the total cost (revenue)

RSE and EPSE is marked. We therefore focus on the total

EPSE results. In contrast, Glass, Kenjegaliev, and Kenje-

galieva (2020) did not indicate a preference between the

total RSE and EPSE measures. This is because for their

sample average U.S. bank both these measures are not

statistically different from 1.

For the purposes of comparison, first recall that when

we considered banks in isolation (i.e., when we over-

looked indirect returns to scale spillovers between bank-

ing networks), we concluded from the EPSEDir
iϕ cð Þ and

EPSEDir
iϕ rð Þ that the size of the sample average bank was

approximately optimal. The issue is whether we reach

the same conclusion when we account for indirect inter-

bank returns to scale spillovers by considering EPSETot
iϕ cð Þ

and EPSETot
iϕ rð Þ. We can see from Table 6 that the magni-

tudes of the EPSETot
iϕ cð Þ (EPSETot

iϕ rð Þ) and its direct coun-

terpart are very similar. Therefore, from the magnitudes

of these total EPSE, we once again conclude for horizons

0–5 that the size of the sample average bank is approxi-

mately optimal.

5.4 | Network perspectives of the scale
economies of the G-SIBs and CCAR banks

Given our above preference for EPSE measures over

RSE, in Table 7 for G-SIBs and banks included in the

CCAR, we present the mean direct and total EPSE for

horizons 0–3.xvi Note that we report two total EPSE,

which is because for individual banks (or any other

subset of the sample) the two total EPSE are asymmet-

ric. As we previously noted, there is negligible feedback

within the contemporaneous and dynamic direct

parameters, so the direct EPSE in Table 7 are essen-

tially own returns and are interpreted in the same way

as the above direct-own returns for the sample average

bank. The total EPSE in this table represent two net-

work perspectives of a bank's returns to scale. The net-

work perspective of EPSETot
In,iϕ is what a bank would

focus on as this measure accounts for a bank's direct-own

returns and the indirect spill-in returns to the bank.

EPSETot
In,iϕ would also be of interest to bank regulators and

antitrust policymakers who may also find the network

perspective of EPSETot
Out,iϕ informative, as the latter

accounts for a bank's direct-own returns and the indirect

spill-out returns to other banks. EPSETot
Out,iϕ therefore indi-

cates whether a bank's returns are optimal from the per-

spective of the cost or revenue implications for all the

banks in the sample. Hence, when there is an increase in

a bank's outputs (inputs) in the current period, the

EPSETot
In,iϕ and EPSETot

Out,iϕ in Table 7 measure the percent-

age changes in the bank's two total cost (revenue) mea-

sures in horizons 0–3. These two total cost (revenue)

measures comprise the bank's direct-own cost (revenue)

and the asymmetric indirect costs (revenues) that spill-in

and spill-out to and from the bank.

The capability of a G-SIB (CCAR bank) to influence

the global banking system (domestic banking industry)

will be affected by, among other things, the size of the

bank and, via its interconnectedness, how its size affects,

and is affected by, other banks. This highlights the impor-

tance of the optimal sizes of these banks and how this is

affected by indirect returns to scale spill-outs and spill-

ins, which we assess by comparing a bank's EPSEDir
iϕ with

its EPSETot
Out,iϕ and EPSETot

In,iϕ. We can see for many of the

banks in Table 7 that the contemporaneous direct-own

cost and revenue EPSE are around 1. This indicates that

when we overlook interbank geographical spillovers and

consider banks in isolation, on average for the current

period t = 1, …, T, many of the banks in this table are

around their optimal sizes. In line with the findings of

Wheelock and Wilson (2018), these results suggest that

non-negligible size caps would lead to such banks being

sub-optimally small (large) from a cost (revenue) perspec-

tive. For the relatively small number of remaining banks

in Table 7, the contemporaneous direct-own cost and rev-

enue EPSE may not be considered to be around 1. These

are all cases where the contemporaneous direct-own

EPSE is marginally below 1 for cost (BNY Mellon, Ban-

corp and Zions) and / or revenue (BNY Mellon and Fifth

Third). Again this suggests that size caps would lead to

these banks being pushed further away from their mini-

mum cost efficient scales.
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TABLE 7 Drect and total expansion-path scale economies for G-SIBs and CCAR banks

Contemporaneous horizon ϕ = 0 Dynamic horizon ϕ = 1 Dynamic horizon ϕ = 2 Dynamic horizon ϕ = 3

EPSEDir
iϕ EPSETot

In,iϕ EPSETot
Out,iϕ EPSEDir

iϕ EPSETot
In,iϕ EPSETot

Out,iϕ EPSEDir
iϕ EPSETot

In,iϕ EPSETot
Out,iϕ EPSEDir

iϕ EPSETot
In,iϕ EPSETot

Out,iϕ

Dynamic spatial cost model

G-SIBs

JPMorgan Chase 1.000 1.035b 1.126b 0.998 1.039b 0.997 0.997 1.041b 0.867a 0.996a 1.042b 0.842a

Citibank 1.003b 1.019b 0.985 1.003 1.020b 0.917a 1.003 1.021b 0.874a 1.003 1.021b 0.925a

Bank of America 1.002 1.021b 1.059b 1.001 1.023b 1.011 1.000 1.024b 0.954 1.000 1.025b 0.893a

Wells Fargo 1.007b 1.036b 1.091b 1.004b 1.040b 1.119b 1.003 1.041b 1.091 1.002 1.042b 1.081

BNY Mellon 0.970a 1.091b 0.965a 0.970a 1.114b 0.964a 0.970a 1.123b 0.963a 0.970a 1.128b 0.963a

CCAR banks

BBVA USA 0.985a 1.002 1.044 0.985a 1.005b 1.028 0.985a 1.007b 1.030b 0.985a 1.007 1.036b

Comerica 0.999 1.021b 0.992 0.999 1.025b 0.992 0.999 1.026b 0.991 0.999 1.027b 0.991

Fifth Third 0.984a 1.015b 1.042b 0.984a 1.021b 0.943 0.984a 1.023b 0.957a 0.984a 1.024b 0.937a

Huntington 1.003 1.017b 1.097b 1.003 1.019b 1.070 1.003 1.020b 1.017 1.003 1.020b 0.975a

PNC Bank 0.996a 1.018b 1.048b 0.995a 1.021b 1.024 0.994a 1.023b 0.931a 0.994a 1.023b 0.994

Regions 0.998 1.008b 1.040b 0.998 1.009b 0.996 0.998 1.010 0.934a 0.998 1.010b 0.965a

Bancorp 0.973a 1.003 0.977a 0.973a 1.012 0.980a 0.973a 1.017 0.981a 0.973a 1.019 0.982a

Union 0.999 1.013b 1.000 0.999 1.016b 0.999 0.999 1.017b 0.999 0.999 1.018b 0.999

Zions 0.973a 1.007 0.984a 0.973a 1.017b 0.991 0.973a 1.021b 0.993 0.973a 1.024b 0.994

Dynamic spatial revenue model

G-SIBs

JPMorgan Chase 0.996a 0.986a 1.021b 0.995a 0.989a 0.987a 0.996a 0.987a 1.062b 0.995a 0.988a 0.901

Citibank 1.000 0.994a 1.026b 0.999 0.996 0.967a 1.000 0.994a 1.038b 0.999 0.995a 1.041b

Bank of America 0.997 0.987a 1.022b 0.996a 0.990a 0.999 0.997 0.988a 1.055b 0.996a 0.989a 1.025

Wells Fargo 0.994a 0.986a 1.013b 0.993a 0.989a 1.080b 0.993a 0.987a 1.043b 0.993a 0.988a 1.006b

BNY Mellon 0.987a 0.965a 0.968a 0.967a 0.966a 0.968a 0.967a 0.966a 0.968a 0.967a 0.966a 0.968a

CCAR banks

BBVA USA 0.996a 0.991a 1.006b 0.996a 0.993 1.036b 0.996a 0.991a 1.008b 0.996a 0.992a 1.012b

Comerica 0.994a 0.988a 0.996a 0.994a 0.990 0.996 0.994a 0.989a 0.996 0.994a 0.989a 0.996a

Fifth Third 0.974a 0.974a 0.988a 0.974a 0.975a 1.003 0.973a 0.974a 0.989a 0.976a 0.975a 0.989

Huntington 0.992a 0.988a 0.997 0.992a 0.989a 0.988a 0.992a 0.988a 0.996a 0.992a 0.989a 0.998

PNC Bank 0.994a 0.986a 1.008b 0.993a 0.988a 0.983a 0.993a 0.987a 1.012b 0.993a 0.988a 1.037b

(Continues)
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Our conclusions from the dynamic direct-own EPSE

in Table 7 about the (sub-)optimal sizes of the banks in

each of the three future in-sample periods are the same

as those above for the current period from the contempo-

raneous direct-own EPSE. This is because the magnitudes

of the dynamic direct-own cost and revenue EPSE

are very similar to the corresponding contemporaneous

estimates. As a result, our findings from the dynamic

direct-own EPSE reiterate our above conclusions from

the corresponding contemporaneous estimates about

the impact of size caps on these banks.

To assess the impact of the two network perspectives

we now consider the EPSETot
In,iϕ and EPSETot

Out,iϕ in Table 7,

as both these measures incorporate the direct-own

returns and also indirect spill-in or spill-out returns. For

a number of the banks in this table the contemporaneous

and dynamic EPSETot
In,iϕ cð Þ are around 1 and are margin-

ally higher than the corresponding EPSEDir
iϕ cð Þ. The clear

exception where the contemporaneous and dynamic

EPSETot
In,iϕ cð Þ are markedly greater than 1 and larger than

the corresponding EPSEDir
iϕ cð Þ is BNY Mellon, and other

exceptions where to a lesser extent this is the case include

JPMorgan Chase and Wells Fargo. These contemporane-

ous and dynamic EPSETot
In,iϕ cð Þ suggest that the three

banks are sub-optimally large, which is not out of line

with what the corresponding revenue estimates suggest.

However, the suggestion that these banks are sub-

optimally large is at odds with the contemporaneous and

dynamic EPSEDir
iϕ cð Þ for BNY Mellon and JPMorgan

Chase and some of the dynamic EPSEDir
iϕ cð Þ results for

Wells Fargo. Focusing for the moment on only the con-

temporaneous and dynamic EPSETot
In,iϕ results suggests

that appropriate size caps would move these three banks

in the direction of their minimum efficient scales. This

conclusion though may be viewed by regulators and anti-

trust policymakers as representing half the picture

because it overlooks the implications of the EPSETot
Out,iϕ

results, which we illustrate using the EPSETot
Out,iϕ cð Þ esti-

mates for JPMorgan Chase.

We can see from Table 7 that the contemporaneous

EPSETot
Out,iϕ cð Þ for JPMorgan Chase is well above 1, which

is consistent with the corresponding EPSETot
In,iϕ cð Þ being

greater than 1, and suggests that the bank is sub-opti-

mally large. However, in horizon 1 the EPSETot
Out,iϕ cð Þ for

JPMorgan Chase is approximately equal to 1 and in hori-

zons 2 and 3 is well below 1 (e.g., 0.842 in horizon 3).

This suggests that although an appropriate size cap on

JPMorgan Chase in the current period would push the

bank towards its contemporaneous minimum efficient

scale, this would be sub-optimal in a dynamic setting.

This conclusion and other similar findings from our anal-

ysis suggest that dynamic spatial measures, such as

EPSETot
Out,iϕ and EPSETot

In,iϕ, can provide additional insightsT
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for the stakeholder policy decisions of bank regulators

and antitrust policymakers.

As we noted above, the network perspective of

EPSETot
In,iϕ is the reason why a bank would focus on this

measure. For all but one bank in Table 7 the magnitudes

of the contemporaneous and dynamic EPSETot
In,iϕ cð Þ are

similar. For BNY Mellon, however, there is a noticeable

difference between its contemporaneous EPSETot
In,iϕ cð Þ and

its corresponding dynamic measures. When there are

such differences between the contemporaneous and

dynamic EPSETot
In,iϕ, a bank will be faced with a situation

whereby, if it acts on the estimate of its contemporaneous

EPSETot
In,iϕ by, for example, reducing its size by a certain

percentage in the current period, this can lead to sub-

optimal dynamic returns in the following periods. To

manage these dynamic returns to scale effects, we suggest

that a bank should aim to optimize its contemporaneous

and dynamic returns over the time frame of its future

plans, which would involve some returns being sub-

optimal for particular periods within this time frame.

6 | SUMMARY AND
CONCLUSIONS

This paper makes two contributions to the literature. The

first contribution extends the methods for static external

returns to scale in Glass, Kenjegaliev, and Kenjegalieva

(2020) to measure the dynamic persistence in future in-

sample periods of: (i) returns to scale that are internal to

a bank; and (ii) external returns to scale. These new

methods enable us to assess whether the classifications of

contemporaneous internal and external returns to scale

are consistent with the classifications of the dynamic

internal and external returns in future in-sample periods.

These measures of the persistence of internal and exter-

nal returns can be therefore be used to assess the

dynamic optimality of a change in the size of a bank.

A priori, an EPSE measure can be viewed as more

appropriate than the corresponding RSE. This is because,

in contrast to the latter, the former allows for the possi-

bility that a bank may not lie on a radial ray. For the

sample average bank we find that the magnitudes of the

direct-own cost (revenue) RSE and EPSE are not mark-

edly different, whereas when we account for indirect

spillover returns we observe non-negligible differences

between the cost (revenue) oriented total RSE and

EPSE. This raises the question: which of these two total

returns to scale measures do we prefer? Glass, Kenjega-

liev, and Kenjegalieva (2020) did not indicate a prefer-

ence between these measures because for their sample

average U.S. bank both measures are not statistically dif-

ferent from 1. Given the non-negligible differences we

observe between the cost (revenue) oriented total RSE

and EPSE, we conclude that accounting for spillovers

strengthens the above case for EPSE over RSE and explains

why we focus on EPSE. Moreover, for the sample average

bank we find that the direct-own, indirect and total EPSE

are very persistent. This is based on these returns being

non-negligible and significant for at least 5 years.

The focus in Glass, Kenjegaliev, and Kenjegalieva

(2020) is the presentation of their methods for static inter-

nal and external returns to scale and they only provide a

small and general demonstration of these methods for the

costs of large and medium-sized U.S. banks. In light of

this, the second contribution of our paper is to carry out a

policy focused empirical analysis that directly relates to

size caps by applying the methods we introduce to the

costs and revenues of key large U.S. banks; that is, global

systemically important banks (G-SIBs) (Financial Stability

Board, 2019) and the banks included in the Comprehensive

Capital Analysis and Review (CCAR) (Federal Reserve

Board, 2019).

To assess how accounting for returns to scale spill-

overs impacts the conclusions about the optimality of the

sizes of G-SIBs and CCAR banks, we compare a bank's

direct-own EPSE with its EPSETot
In,iϕ and EPSETot

Out,iϕ. These

two total EPSE measures represent two network perspec-

tives of a bank's returns to scale. The network perspective

of EPSETot
In,iϕ is what a bank would focus on as this mea-

sure accounts for a bank's direct-own returns and the

indirect returns that spill-in to the bank. EPSETot
In,iϕ would

also be of interest to bank regulators and antitrust policy-

makers who may also find the network perspective of

EPSETot
Out,iϕ informative. This is because EPSETot

Out,iϕ

accounts for a bank's direct-own returns and its indirect

spill-out returns to other banks. EPSETot
Out,iϕ therefore indi-

cates whether a bank's returns are optimal from the per-

spective of the cost (revenue) implications for all the

banks in the analysis.

To demonstrate the implications of the contempora-

neous and dynamic EPSETot
In,iϕ measures for a bank, we

focus on the results for a particular G-SIB, BNY Mellon.

We observe a noticeable difference between its cost ori-

ented contemporaneous and dynamic EPSETot
In,iϕ mea-

sures. When there is such a difference between these

measures a bank will be faced with a situation whereby,

if it acts on its contemporaneous EPSETot
In,iϕ by (not)

changing its size in the current period, this can lead to

sub-optimal dynamic returns in the following periods. In

this situation, we suggest that a bank seeks to manage

these dynamic returns to scale effects by optimizing its

contemporaneous and dynamic returns over the time

frame of its future plans, which would involve some

returns being sub-optimal in particular periods within

this time frame.
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To demonstrate the implications of the contempora-

neous and dynamic EPSETot
Out,iϕ measures for bank regula-

tors, we focus on the results for another G-SIB, JPMorgan

Chase. The cost oriented contemporaneous EPSETot
Out,iϕ

measure suggests that an appropriate size cap would be

consistent with JPMorgan Chase operating at its mini-

mum efficient scale in the current period. However, its

cost oriented dynamic EPSETot
Out,iϕ measures suggest that

any size cap would lead to a sub-optimal dynamic scale

in the following periods. This and other similar conclu-

sions from our analysis suggest that dynamic spatial mea-

sures can provide additional insights for bank regulators

to further inform their policymaking and its impacts on

the various stakeholders.

Finally, we recognize that we focus on extending a

common non-spatial approach to the modelling of the

banking production technology (e.g., Wheelock &

Wilson, 2012, 2018) to simultaneously account for the

contemporaneous and dynamic spatial interactions

among the banks. Due to our focus being on these spatial

interactions we do not explicitly model two further

aspects of the banking production technology that feature

in related research: namely; the level of risk which is

endogenously related to the bank business model (Delis

et al., 2017), and the level of diversification of banking

activities (Laeven & Levine, 2007). Rather we adopt the

approach in Orea et al. (2018) and implicitly account for

such factors by modelling the spatial dependencies

among the banks, as this modelling approach represents

a way to mitigate omitted variables and the resulting

endogeneity. Given our paper sets out a dynamic spatial

framework to model the banking production technology,

our framework can be used in future research that

focuses on explicitly modelling these two further factors.
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ENDNOTES
i We recognize that size caps might be imposed for other reasons,

for example, to reduce the risk exposure of the largest banks. A

full assessment of size caps should therefore take account of all

the impacts of size caps. Such an assessment is outside the scope

of this paper and we instead focus on the returns to scale implica-

tions of size caps.

ii Note that the profit function that is often estimated in the bank-

ing literature is the alternative functional form, and not its stan-

dard counterpart. This is because profit in the alternative

specification is a function of, among other things, outputs, where

the impacts of these quantities accounts for higher quality outputs

via the additional revenue they generate.

iii The alternative profit function, of course, takes into account costs

and revenues. We explored using a dynamic spatial alternative

profit function for large U.S. banks to calculate the contempora-

neous and dynamic internal and external returns to scale. We did

not pursue this alternative function because we found that the

coefficient on the time lag of the spatially lagged profit variable

(which is key in the calculations of the dynamic external returns

to scale) was not significant. From the positive and negative sig-

nificant coefficients we observe on the time lags of the spatially

lagged cost and revenue variables, it is evident that is because

these two effects offset one another in the dynamic spatial alter-

native profit model. By focusing on the dynamic spatial cost and

revenue models, we get insights into how these offsetting effects

impact the dynamic external (cost and revenue) returns to scale.

iv We thank an anonymous reviewer for making the point that in

this situation the regulator would be faced with prioritizing par-

ticular stakeholder interests.

v We use balanced panel data because the asymptotic properties of

spatial panel data estimators breakdown when the panel is unbal-

anced and the reason why data are missing is not known

(Elhorst, 2009).

vi Note that there are two contemporaneous SAR variables in the

Glass et al. (2020a, 2020b) models, but only one in Equation (1).

This is because via multiple spatial weights matrices their static

spatial models account for multiple contemporaneous spatial

regimes. This is something we overlook to simplify matters, as

the focus of our study is the complexity of dynamic spatial

interactions.

vii In line with the properties of the estimator, N is large in the

empirical analysis (201). In panel data T is often small, and so in

a dynamic setting the time lag of the dependent variable is

endogenous. When this is the case in a dynamic spatial setting,

the time lag of the SAR variable will also be endogenous. In the

empirical analysis T is not particularly small (22 years), so fol-

lowing Yu et al. (2008), the time lag of the SAR variable is taken

to be exogenous.

viii Following LeSage and Pace (2009) in the spatial econometrics

literature, we obtain the standard errors for the estimates of the

parameters in Equation (1) using a mixed analytical-numerical

Hessian matrix. When the equation for a second order derivative

of the log-likelihood function in this matrix does not contain the

spatial multiplier matrix (U�1 ¼ IN �δWð Þ�1 period, which

plays a key role in the reduced form of Equation (1), see

Equation (2), as it captures the global spatial interactions

between a bank and its 1st order, 2nd order, etc. neighbouring

banks) the derivative is computed analytically, otherwise it is

computed numerically. Evaluating such derivatives analytically

is less sensitive to badly scaled data, while numerical evaluation

when N is very large avoids any difficulties (or lengthy
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computation time) associated with the evaluation of the spatial

multiplier matrix. We do not adjust the standard errors for clus-

tering on the basis that ‘…it is difficult to motivate clustering if

the regression function already includes fixed effects’ (Abadie

et al., 2017, p. 1). This is particularly so for clustering at the bank

level due to the bank level fixed effects in Equation (1). More-

over, along the same lines, we posit that the spatial bank inter-

dependencies that Equation (1) accounts for make it difficult to

motivate clustering at a geographical level.

ix These 12 states are as follows: Colorado; Georgia; Hawaii;

Illinois; Kansas; Kentucky; Louisiana; Minnesota; Missouri; New

Hampshire; Tennessee; and Wisconsin.

x Two further important aspects of the banking production technol-

ogy that feature in related research which an anonymous reviewer

highlighted are the level of risk which is endogenously related to

the bank business model (Delis et al., 2017), and the level of diver-

sification (Laeven & Levine, 2007). Given our focus is on simulta-

neously accounting for contemporaneous and dynamic spatial

interactions among banks, we do not explicitly model these fac-

tors. Rather, and as we noted in Section 4.1, we follow the

approach of Orea et al. (2018) and implicitly account for such fac-

tors by modelling the spatial dependencies among the banks, as

this modelling approach represents a way to mitigate omitted var-

iables and the resulting endogeneity. Given our paper sets out a

dynamic spatial framework to model the banking production

technology our framework can be used in future research that

focuses on explicitly modelling these two factors.

xi Recall from the above discussion of Equation (1) that exogenous

spatial weights is an assumption of the modelling. As the off-

diagonal elements of the average matrix from (3) are based on

state level micro information on branch locations, and the depen-

dent variables are at the aggregate bank level, it is reasonable to

take the spatial weights to be exogenous.

xii Frequently in the spatial literature, the weights matrix is normal-

ized by its row sums. This is suited to binary spatial weights that

represent, for example, contiguous geographical areas, which is

very different to the spatial arrangement of the branches in our

application. If we row-normalized our non-binary weights we

would lose the information on the relative branch network

intensities.

xiii Note that there are two Wrt parameters in the Glass et al.

(2020b) static spatial revenue model. This is because their model

allows for multiple contemporaneous spatial weights matrices

(i.e., multiple spatial regimes). This is something we overlook to

simplify matters as the focus of our study is the complexity of

dynamic spatial interactions.

xiv For brevity we do not report these standard non-spatial models,

but they are available from the corresponding author on request.

xv The exception that is not significant is the estimate in Table 4 of

the q3 (non-interest income) direct elasticity for horizon 21.

xvi The group of banks that the CCAR covers comprise the G-SIBs

and a further group. The CCAR has been conducted annually

since 2011 and from 2013 has included results for individual

banks. The G-SIBs have been ever present in the CCAR,

while the other banks in Table 7 have featured in the CCAR

over the following periods: BBVA USA (2013–2017); Comerica

(2013–2016); Fifth Third (2011–2019); Huntington (2014–2017);

PNC Bank (2011–2019); Regions (2011–2018); Bancorp

(2011–2019); Union (2014); Zions (2013–2016).
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