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a b s t r a c t 

When analysing the efficiency of decision-making units, the robustness of efficiency scores to changes in 

the data is desirable, especially in the context of managerial or regulatory benchmarking. However, the 

robustness of maximum likelihood estimation of stochastic frontier models remains underexplored. We 

examine the behaviour of the influence function of the estimator in a stochastic frontier context, and 

derive some sufficient conditions for robust maximum likelihood estimation in terms of the properties of 

the marginal distributions of the error components and, in cases where they are dependent, the copula 

density. We find that the canonical distributional assumptions do not satisfy these conditions. The Stu- 

dent’s t noise distribution is found to have some particularly attractive properties which means it can 

be paired with a broad class of inefficiency distributions while still satisfying our conditions under in- 

dependence. We show that parameter estimates and efficiency predictions from robust specifications are 

significantly less sensitive to contaminating observations than those from non-robust specifications. 

© 2022 The Author(s). Published by Elsevier B.V. 
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. Introduction 

A regulator or manager of a group of firms or other decision- 

aking units has a clear interest in measuring or estimating their 

elative efficiency in order to benchmark them against one an- 

ther, and to provide a basis upon which to set targets for effi- 

iency gains. This constitutes a form of yardstick competition in 

hich decision-making units are incentivised to improve efficiency 

 Bogetoft, 1997; Shleifer, 1985 ). The use of efficiency analysis meth- 

ds such as data envelopment analysis (DEA) ( Charnes, Cooper, & 

hodes, 1978 ) and stochastic frontier (SF) modelling ( Aigner, Lovell, 

 Schmidt, 1977 ) in such contexts is well-established – for exam- 

les and discussion of the application of these methods in eco- 

omic regulation see e.g. Thanassoulis (20 0 0) , Jamasb & Pollitt 

2001) , Haney & Pollitt (2009) , and Agrell & Bogetoft (2017) . 

It is clearly desirable that efficiency analysis, when used to in- 

orm important managerial or regulatory decisions in this way, 

hould be robust in some sense to small changes in the data – e.g. 

deally our results should not be unduly sensitive to the addition 

r removal a single observation, or to small changes in an obser- 
∗ Corresponding author. 

E-mail address: a.d.stead@leeds.ac.uk (A.D. Stead) . 
1 The authors gratefully acknowledge funding from the CQC Efficiency Network 

see https://nhtnetwork.org/nht _ product/cqc-efficiency/ ). 
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ation. This is particularly desirable when such decisions are open 

o challenge by firms which have an incentive to game the analysis 

o their own advantage. 

In the case of DEA, adding, removing, or altering an observa- 

ion will influence the efficiency score of other firms only if the 

rm in question belongs to the set of firms that define the fron- 

ier. However, DEA efficiency scores are potentially very sensitive 

o changes affecting the observations that define the frontier, and 

hat sensitivity is compounded by the fact that DEA attributes all 

epartures from the frontier to inefficiency. Approaches to detect- 

ng and handling outliers in DEA are discussed by Ondrich & Rug- 

iero (2002) , Simar (2003) , Banker & Chang (2006) , Tran, Shively, 

 Preckel (2010) , and Bellini (2012) . 

On the other hand, in the case of econometric methods such as 

F modelling, adding, changing, or removing any observation will 

ave some impact on the estimated parameter vector, and there- 

ore the predicted efficiency scores for every observation in the 

ample. Furthermore, experience shows that the sensitivity of re- 

ults to even a single observation can be very considerable – for 

xample, several commonly-employed SF specifications are known 

o suffer from a ‘wrong skewness’ issue that arises when the least 

quares residuals are skewed in the opposite direction compared 

o the theoretical skewness of the model’s error – see Waldman 

1982) , Simar & Wilson (2010) , and Horrace & Wright (2020) and 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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2 Henceforth, when we refer to robustness, we mean B-robustness. 
thers for discussion of this phenomenon – which can force the 

redicted inefficiency for all observations to zero. 

Such sensitivity to small changes in the data is highly problem- 

tic from the perspective of a regulator or manager seeking robust 

fficiency scores. Following Jondrow, Lovell, Materov, & Schmidt 

1982) , the usual approach to efficiency prediction in SF modelling 

s to base efficiency predictions on the distribution of u i | ε i . Since

he conditional distribution of inefficiency is unknown, in prac- 

ice plug-in estimators are used, which means that efficiency pre- 

ictions are influenced by contaminating outliers via their effect 

n parameter estimates. This suggests that the use of robust es- 

imators should reduce the sensitivity of efficiency predictions to 

ontaminating outliers. A strand of recent literature – discussed 

n Section 3 – has explored different SF specifications or estima- 

ion methods which may offer greater robustness to outliers. De- 

pite this, there has been little explicit discussion of the robustness 

roperties of different estimators. 

In this paper, we focus on maximum likelihood (ML) estimation, 

hich is the standard approach to estimation in the SF literature. 

e derive a set of sufficient conditions for robust ML estimation 

f cross-sectional parametric stochastic frontier (SF) models of the 

orm described by Assumption 1 below. 

ssumption 1. 

 i = g( x i , θ) + ε i , ε i = v i − h ( θ) u i , 

here i = 1 , . . . , I indexes the observation, y i is the response vari-

ble, g( x i , θ) is some real-valued function, x i is a covariate vector, 

is a vector of parameters and v i and u i ≥ 0 are random variables 

epresenting noise and inefficiency, respectively, and h ( θ) ≥ 0 is a 

on-negative scaling function. The error components v i and u i may 

e dependent or independent of one another, but are uncorrelated 

ith x i .The inefficiency term h ( θ) u i is drawn from a distribution 

ith density function 

1 

h ( θ) 
f u 

(
u i 

h ( θ) 
, θ

)
, 

here f u is the density of u i , which is a density without a scale

arameter. 

SF models were introduced by Aigner et al. (1977) and Meeusen 

 van Den Broeck (1977) under specific distributional assump- 

ions – normally distributed v i , and half-normally or exponentially 

istributed u i . A number of alternative distributional assumptions 

ave been proposed – see Stead, Wheat, & Greene (2019) for a re- 

ent review. 

In recent years, several alternative distributions for v i have been 

roposed which have heavier tails than the normal distribution 

nd have loosely been described as more ‘robust’. There has also 

een increasing interest in alternative estimation methods, such 

s the use of quantile regression to estimate SF models – see 

ection 3 for a discussion of robustness in the SF literature. Despite 

his, the robustness properties of estimators of SF models have not 

een fully explored. This paper aims to further our knowledge of 

he robustness properties of SF models estimated via ML. For a 

iscussion of the robustness properties of alternative estimation 

ethods such as quantile regression in the context of SF modelling, 

ee Stead, Wheat, & Greene (Forthcoming). 

The remainder of this paper is organised as follows: In 

ection 2 , we discuss robust estimation generally, with a focus 

n influence functions and their use in analysing robustness. In 

ection 3 , we discuss previous work on robustness in the SF liter- 

ture. In Section 4 we derive some sufficient conditions for robust 

L estimation of the SF model. These are derived without making 

pecific distributional assumptions, and are based on simple prop- 

rties of the marginal noise and inefficiency distributions, with 

ome additional conditions relating to the copula density when the 
189 
rror components are not independent. We discuss specific distri- 

utional assumptions in light of these conditions, and show that a 

tudent’s t model with fixed degrees of freedom can satisfy our 

onditions for robust ML estimation under various distributional 

ssumptions about u i – including any one-parameter scale fam- 

ly of distributions, including e.g. the half normal and exponential 

istributions. In Section 5 , we compare influence across different 

pecifications in a simple application. We examine the influence of 

ndividual observations on our estimated parameter vector, and on 

fficiency predictions. We show that parameter estimates and ef- 

ciency predictions from specifications that satisfy our conditions 

or robust ML estimation are significantly less sensitive to individ- 

al observations in our application. Section 6 summarises and con- 

ludes. 

. Robust estimation 

Discussion of robust estimation often concerns the influence of 

utlying observations; this is the sense in which we discuss ro- 

ustness in the present study. Where F is the model’s underlying 

istribution function for the variable of interest, Hampel, Ronchetti, 

ousseeuw, & Stahel (1986) define the influence function of the 

unctional T (F ) as 

F 
(
y, T (F ) 

)
= lim 

h → 0 

T 
(
(1 − h ) F + hδy 

)
− T (F ) 

h 

, (1) 

here δy is a point mass at y . The influence function therefore 

ives the influence on T (F ) of an infinitesimal perturbation of the 

ata at y . An estimator T (F ) is said to be bias robust, or B-robust 2 

f the influence function is bounded. Many estimators examined 

n the literature on robust estimation belong to the class of M- 

stimators. Following Huber (1964) , an M-estimator ˆ θ is one that 

atisfies the definition 

ˆ = arg min 

θ

I ∑ 

i =1 

ρ(y i , θ) . (2) 

quivalently, so long as the loss function ρ(y i , θ) is continuous and 

ifferentiable with respect to θ, 

I 
 

i =1 

ψ( y i , ˆ θ) = 0 , (3) 

here ψ( y i , θ) = ∂ ρ(y i , θ) /∂ θ. The class of M-estimators encom- 

asses least squares and ML, and many others. It is well known in 

he literature on robust estimation that the ML estimator is often 

on-robust, and alternative robust M-estimators have been pro- 

osed. Examples include minimum Hellinger distance (MHD) esti- 

ation ( Beran, 1977 ), minimum density power divergence (MDPD) 

stimation ( Basu, Harris, Hjort, & Jones, 1998 ), maximum �- 

ikelihood (M �L) estimation ( Eguchi & Kano, 2001; Miyamura 

 Kano, 2006 ), and maximum L q -likelihood (M L q L) estimation 

 Ferrari & Yang, 2010 ). However, under certain distributional as- 

umptions, ML estimation can be shown to be robust, and a vast 

iterature explores the use of alternative distributional assump- 

ions. Lucas (1997) , Arslan & Genç (2009) , and Çankaya & Arslan 

2020) examine the robustness of ML estimation of the parame- 

ers of Student’s t, skew generalised t, and skew exponential power 

istributions, respectively. From Hampel et al. (1986) , the influence 

unction of an M-estimator is given by 

F ( y i , ˆ θ) = −
(

E 

(
∂ ψ( y i , ˆ θ) 

∂ ̂  θ′ 

))
−1 ψ( y i , ˆ θ) . (4) 
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he influence function is therefore a linear transformation of 

( y i , ̂  θ) . To show that an M-estimator is robust for a given model, 

t is sufficient to show that ψ( y i , ̂  θ) is bounded. The boundedness 

f ψ( y i , ̂  θ) follows from our distributional assumptions and the es- 

imation method used. 

. Robustness in the stochastic frontier literature 

The issue of robustness has received scant attention in the SF 

iterature over the years. Reflecting the broader literature on ro- 

ust estimation, contributions have tended to take one of several 

pproaches – outlier detection, the use of robust estimation meth- 

ds, or a change in distributional assumptions. 

Early contributions by Janssens & van den Broeck (1993) and 

eaver & Triantis (1995) focused on outlier detection and removal, 

dentifying outliers on the basis of standardised residuals from 

east median of squares and least trimmed squares regressions –

ee Rousseeuw (1984) . Such approaches have an obvious weak- 

ess in a SF setting, since they do not account for the asymme- 

ry of the composed error, and instances of large u i could be dis- 

arded as outliers, which defeats the purpose of the analysis. Re- 

ently, Henningsen (2020) proposed the use of a ‘pseudo-Cook’s 

istance’ in which ˆ y i is adjusted by removing the predicted value 

f h ( θ) E (u i | ε i ) . However, this adjustment is not completely satis-

actory since the distribution of predictions of efficiency scores dif- 

ers from the underlying efficiency distribution ( Wang & Schmidt, 

009 ). A case-weights perturbation approach to identifying influ- 

ntial observations in the normal-half normal SF model is pro- 

osed by Zhuo (2018) . There is no general consensus on appro- 

riate cut-off points for outlier detection, and outlier removal typi- 

ally causes greater loss of efficiency than the use of robust estima- 

ion methods – simulation evidence in Section 4.1 of Hampel et al. 

1986) shows that robust estimators outperform the combination 

f non-robust classical estimators with various rejection rules in 

erms of both efficiency and robustness. Intuitively, it makes more 

ense to simply down-weight some observations – as robust esti- 

ators do – rather than reject them entirely; though robust esti- 

ators may well effectively discard particularly gross outliers by 

iving them zero weight. 

The usual approaches to estimation are ML estimation and cor- 

ected ordinary least squares (COLS). COLS uses least squares to 

stimate the frontier parameters, with the parameters of the er- 

or distribution estimated based on moments of the least squares 

esiduals. Both of these methods require explicit distributional as- 

umptions to be made regarding the noise term v i and the ineffi- 

iency term u i . Alternatively, one may specify u i as a deterministic, 

on-negative function of some vector of covariates, z i , such that 

 i = g( x i , θ) + v i − u i ( z i , θ) , 

n which case we may estimate the model via nonlinear least 

quares, avoiding specific distributional assumptions. Note however 

hat the score function in this case is 

 

I ∑ 

i =1 

(
y i + u i 

(
z i , ˆ θ

)
− g 

(
x i , ˆ θ

))(
∂u i ( z i , ˆ θ) 

∂ ̂  θ
− ∂g( x i , ˆ θ) 

∂ ̂  θ

)
, 

hich is unbounded. Least squares estimation of the SF model, 

hether in the context of COLS or non-linear least squares, is 

herefore non-robust to outliers. Robust analogues of these ap- 

roaches are possible if we change the loss function. In this vein, 

here has been some recent interest in quantile regression as a 

eans of estimating SF models – see, e.g. Behr (2010) , Jradi & 

uggiero (2019) , Jradi, Parmeter, & Ruggiero (2019) , Tsionas (2020) , 

sionas, Assaf, & Andrikopoulos (2020) , Jradi, Parmeter, & Ruggiero 

2021) and Zhao (2021) . 

An in-depth exploration of the robustness properties of quan- 

ile regression and other robust regression methods the context 
190 
f SF modelling is beyond the scope of this paper – see Stead 

t al. (Forthcoming) for a recent discussion. 

Approaches to robustification remaining within an ML type 

ramework with specific distributional assumptions involve a 

hange in either the loss function or our distributional assump- 

ions such that the influence function is bounded. There has been 

ncreased interest in both approaches in recent years. Song, Oh, & 

ang (2008) propose the use of MDPD estimation, and show that 

stimator is robust in the normal-half normal case, while the ML 

stimator is not; the influence function is unbounded. The authors 

nd that the MDPD estimator of the normal-half normal model 

chieves robustness with relatively little loss of efficiency in es- 

imation. Similar approaches are taken by Bernstein, Parmeter, & 

right (2021) , who use M L q L and M �L estimation, and contrast 

he performance of these estimators in the normal-half normal 

ase, with that of the ML estimator in applications to simulated 

atasets with Cauchy contamination. 

A number of alternative distributional assumptions about v i 
ave also been proposed, with focus on distributions with ex- 

ess kurtosis, which are better able than the normal distribu- 

ion to accommodate outliers. An early contribution in this re- 

pect was the suggestion of an ‘approximative t’ distribution by 

anssens & van den Broeck (1993) . More recently, the use of 

aplace ( Nguyen, 2010; Horrace & Parmeter, 2018 ), logistic ( Stead, 

heat, & Greene, 2018 ), generalised logistic ( Bonnano, De Gio- 

anni, & Domma, 2017 ), skew normal ( Badunenko & Henderson, 

021 ), extended skew normal ( Wei, Zhu, & Wang, 2021 ), Cauchy 

 Zulkarnain & Indahwati, 2019; Gupta & Nguyen, 2010 , and Stu- 

ent’s t ( Tancredi, 2002; Wheat, Stead, & Greene, 2019 ) noise dis- 

ributions have been explored, with results generally indicating a 

aterial impact on parameter estimates and efficiency predictions 

ompared to the standard SF model. The Student’s t distribution is 

ttractive due to its flexibility, since the heaviness of its tails varies 

ith a degrees of freedom parameter, such that the normal distri- 

ution is encompassed as a limiting case. Wheat et al. (2019) dis- 

uss testing against the standard model, and present simulation 

vidence that the model approximates the standard model when 

he true noise distribution is normal. 

Despite this recent interest, the robustness of ML estimation 

f SF models remains largely unexplored. To our knowledge, only 

ong et al. (2008) have examined the properties of the influence 

unction, and their attention was restricted to the normal-half nor- 

al case. Hence the robustness properties of the ML estimator of 

he SF model is generally unknown, under both standard distribu- 

ional assumptions and proposed ‘robust’ alternatives. Hence it will 

e useful to examine the problem without making specific distri- 

utional assumptions, and consider conditions under which ML es- 

imation of SF models is robust. We then consider potential distri- 

utional assumptions that satisfy these requirements. 

. Maximum likelihood estimation 

In this section, we derive some sufficient conditions for robust 

L estimation of parametric SF models. The ML estimator of para- 

etric SF models of the form shown in Assumption 1 maximises 

he log-likelihood function or, equivalently, minimises the negative 

og-likelihood function, such that 

ˆ = arg min 

θ

I ∑ 

i =1 

(
− ln f ε (ε i , θ) 

)
, 

here f ε (ε i , θ) is the marginal density of ε i . This is derived by

olving the integral 

f ε (ε i , θ) = 

∫ 
f v ,u 

(
ε i + h ( θ) u i , θ

)
dμ(u i ) , (5)
E 
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here f v ,u (v i , u i , θ) is the joint density of v i and u i , and E is the

ubset of the real line that contains the support of h ( θ) u i ∈ E. The

rst-order conditions can be expressed 

I ∑ 

i =1 

∂ 

∂ ̂  θ
ln 

∫ 
E 

f v ,u 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)
dμ(u i ) = 0 , 

here 0 is a column vector of zeros and ˆ ε i = y i − g( x i , ̂
 θ) . We can

ee that this is an M-estimator as defined in Eqs. (2) and (3) ,

here 

(y i , x i , θ) = − ln 

∫ 
E 

f v ,u 
(
ε i + h ( θ) u i , θ

)
dμ(u i ) , 

( y i , x i , ˆ θ) = − ∂ 

∂ ̂  θ
ln 

∫ 
E 

f v ,u 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)
dμ(u i ) = 0 . 

ollowing Eq. (4) , the influence function is therefore 

F ( y i , x i , ˆ θ) = −
(
I ( ̂  θ) 

)−1 
(

∂ 

∂ ̂  θ
ln 

∫ 
E 

f v ,u 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)
dμ(u i ) 

)
. 

(6) 

n (6) , I ( ̂  θ) denotes the Fisher information matrix. Since I ( ̂  θ) and

ts inverse are matrices of constants, we can draw two conclusions. 

irst, as noted in Section 2 , the influence function is simply a lin-

ar transformation of ψ( y i , x i , ̂  θ) ; in this case, the score vector. 

econd, inspection of the off-diagonal elements of the Hessian for 

arious SF specifications is enough to tell us that their expectations 

ill generally be non-zero, and therefore any given element of the 

nfluence function – that is, the influence function for any given 

arameter – will generally depend on every element of the score 

ector. 

.1. Propositions and assumptions 

With the preceding discussion in mind, the most we can say in 

eneral is that boundedness of every element of the score function 

s a necessary and sufficient condition for boundedness of every 

lement of the influence function, and therefore robustness of the 

L estimator of the parameter vector. That is, a sufficient condition 

or robust ML estimation of the SF model is given by Proposition 1 .

roposition 1. Satisfaction of the inequality 

∂ 

∂ ̂  θ
ln f v ,u 

(
ˆ ε i + h ( ̂  θ) u i , 

ˆ θ
)∣∣∣ ≤ b , || b || ∞ 

≤ ∞ . (7) 

s a sufficient condition for the boundedness of the influence function. 

 proof is shown in the Supplementary Materials (Online Appendices). 

One could, in principle, check whether this inequality is satis- 

ed on a case-by-case basis for each SF specification. A preferable 

pproach, which significantly simplifies the process of identifying 

articular distributional assumptions consistent with robust ML es- 

imation, is to derive some sufficient conditions for robust ML esti- 

ation based directly on our underlying distributional assumptions 

bout the error components, v i and u i , embodied in the joint den- 

ity. From Sklar’s theorem, any joint density f v ,u (v i , u i , θ) can be

xpressed in terms of the product of the marginal densities of the 

wo components and a copula density governing the dependency 

etween them. This leads us to Assumption 2 . 

ssumption 2. The marginal densities of v i and u i are known so 

hat, following Sklar’s theorem, we express their joint density in 

erms of the products of their marginal densities and a copula den- 

ity such that 

f v ,u (v i , u i , θ) = f v (v i , θ) f u (u i , θ) c v ,u 
(
F v (v i , θ) , F u (u i , θ) , θ

)
, 
191 
here f v and F v are the marginal density and distribution functions 

f v i , f u and F u are the marginal density and distribution functions 

f u i , and c v ,u is the copula density. 

We therefore derive sufficient conditions for robust ML estima- 

ion in terms of properties of the marginal densities and the copula 

ensity. As we do so, it will be useful to consider certain important 

pecial cases. For instance, although various forms of dependence 

etween v i and u i have been considered – see e.g. Smith (2008) , 

l Mehdi & Hafner (1976) , and Gómez-Déniz & Pérez-Rodríguez 

2015) – we typically assume independence. In this case, our suf- 

cient conditions simplify significantly so that they concern only 

he marginal densities. 

ssumption 3. The error components v i and u i are independent. 

n terms of Assumption 2 , the copula density is 

 v ,u 
(
F v (v i , θ) , F u (u i , θ) , θ

)
= 1 . 

Another special case is models in which satisfy 

ssumption 4 below. This encompasses all cases in which the 

nefficiency distribution comes from a one-parameter scale family 

f distributions, and generalisations of these that possess the 

scaling property’ – see Alvarez, Amsler, Orea, & Schmidt (2006) . 

his is an important case that applies to many of the simpler 

nefficiency distributions found in the SF literature. We derive an 

lternative set of sufficient conditions for these cases, which may 

e easier to satisfy. 

ssumption 4. h ( θ) u i is drawn from a distribution with density 

unction 

1 

h ( θ) 
f u 

(
u i 

h ( θ) 

)
, 

∂ f u ( u i ) 

∂ θ
= 0 , 

here f u is the density of u i . 

Finally, we consider alternative assumptions about the support 

f h ( θ) u i ∈ E. 

ssumption 5. The support of the inefficiency term h ( θ) u i ∈ E is

iven by E = { u i ∈ R : u i ≥ 0 } . 
ssumption 6. The support of the inefficiency term h ( θ) u i ∈ E is

iven by E = { u i ∈ R : l( θ) ≥ u i ≥ 0 } . 
Models with bounded inefficiency are discussed by Almanidis, 

ian, & Sickles (2014) . We find that even when the bound is a 

unction of θ, our general results can be applied, and we show 

hat bounding u i from above at some constant could help to sat- 

sfy our sufficient conditions for robust ML estimation. These con- 

itions make use of the following propositions. 

roposition 2. Under Assumption 2 , the logarithmic derivative of the 

oint density f v ,u with respect to ˆ θ may be expressed 

∂ 

∂ ̂  θ
ln f v ,u 

(
ˆ ε i + h ( ̂  θ) u i , 

ˆ θ
)

= 

∂ 

∂ ̂  θ
ln f v 

(
ˆ ε i + h ( ̂  θ) u i , 

ˆ θ
)

+ 

∂ 

∂ ̂  θ
ln f u (u i , 

ˆ θ) 

+ 

∂ 

∂ ̂  θ
ln c v ,u (F v , F u , ˆ θ) . 

nder Assumption 3 , this simplifies to 

∂ 

∂ ̂  θ
ln f v ,u 

(
ˆ ε i + h ( ̂  θ) u i , 

ˆ θ
)

= 

∂ 

∂ ̂  θ
ln f v 

(
ˆ ε i + h ( ̂  θ) u i , 

ˆ θ
)

+ 

∂ 

∂ ̂  θ
ln f u (u i , 

ˆ θ) . 
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roposition 3. The logarithmic derivatives of f v and c v ,u with respect 

o ˆ θ are 

∂ 

∂ ̂  θ
ln f v 

(
ˆ ε i + h ( ̂  θ) u i , 

ˆ θ
)

= D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)

(
∂ 

∂ ̂  θ
h ( ̂  θ) u i −

∂ 

∂ ̂  θ
g( ̂  θ) 

)

+ D 2 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)
, 

∂ 

∂ ̂  θ
ln c v ,u (F v , F u , ˆ θ) = D 1 ln c v ,u (F v , F u , ˆ θ) f v 

(
ˆ ε i + h ( ̂  θ) u i , 

ˆ θ
)

×
(

f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)( ∂ 

∂ ̂  θ
h ( ̂  θ) u i 

− ∂ 

∂ ̂  θ
g( ̂  θ) 

)
+ D 2 F v 

)

+ D 2 ln c v ,u (F v , F u , ˆ θ) D 2 F u 

+ D 3 ln c v ,u (F v , F u , ˆ θ) , 

here D j denotes the derivative of a function with respect to its jth 

rgument. 

.2. Conditions for robust maximum likelihood estimation of 

tochastic frontier models 

In this section, we consider conditions for robust ML estimation 

f the SF model. These follow quite straightforwardly from the as- 

umptions and propositions in the previous subsection. Two sets 

f conditions are given. Conditions 1a to 4a concern robustness 

o contamination with respect to y i only, while Conditions 1b to 

b concern robustness to contamination with respect to both y i 
nd x i . The first set of conditions is therefore when considering x i 
xed, while the second set is relevant when considering sensitivity 

ot only simple outliers in y i but also to outliers in x i , i.e. leverage

oints. 

Within both sets, four alternative conditions are given. The first 

nd second conditions relate to the cases in which there is no up- 

er bound on u i , and v i and u i are, respectively, dependent and in-

ependent. The third and fourth relate to the cases in which there 

s an upper bound on u i , and v i and u i are, respectively, dependent

nd independent. 

We note that Conditions 2a, 4a, 2b , and 4b , which apply under

ndependence of v i and u i , are relatively simple, since we do not 

eed to consider the properties of the copula density as in Condi- 

ions 1a, 3a, 1b , and 3b . Conditions 2a and 2b are of greatest in-

erest, given that the majority of specifications proposed in the SF 

iterature, and the vast majority of empirical applications, assume 

ndependence of the error components and do not place an upper 

ound on u i . 

These conditions will generally be difficult to satisfy. However, 

ocusing on the most general case covered by Condition 1a , we 

an see that the first inequality will be satisfied by any log-convex 

oise density. Likewise, the third and fourth inequalities will be 

atisfied if the noise and inefficiency densities are log-convex in 

heir parameters, and the fifth, seventh, and eight inequalities will 

e satisfied if the copula density is log-convex in all of its ar- 

uments. This leaves only the the second and sixth inequalities, 

hich are stronger. Subsequent discussion will focus on Conditions 

a to 4a , i.e. conditions for robustness to outliers in y i , though we

ill return to the case of outliers in y i and x i in Section 4.3 , when

iscussing the robustness properties of models with Student’s t 

istributed v . 
i 

192 
ondition 1a. Under Assumptions 1, 2 and 5 , a sufficient condition 

or robustness of the ML estimator to contamination in y i is: 

D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)∣∣∣ ≤ ∞ , 

∣∣∣D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)
u i 

∣∣∣ ≤ ∞

D 2 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)∣∣∣ ≤ b 1 , 

∣∣∣ ∂ 

∂ ̂  θ
ln f u (u i , 

ˆ θ) 

∣∣∣ ≤ b 2 , 

D 1 ln c v ,u (F v , F u , ˆ θ) 

∣∣∣ ≤ ∞ , 

∣∣∣D 1 ln c v ,u (F v , F u , ˆ θ) u i 

∣∣∣ ≤ ∞ , 

D 2 ln c v ,u (F v , F u , ˆ θ) 

∣∣∣ ≤ ∞ , 

∣∣∣D 3 ln c v ,u (F v , F u , ˆ θ) 

∣∣∣ ≤ b 3 , 

| b 1 || ∞ 

+ || b 2 || ∞ 

+ || b 3 || ∞ 

≤ ∞ . 

ondition 2a. Under Assumptions 1,2,3 and 5 , a sufficient condi- 

ion for robustness of the ML estimator to contamination in y i is: 

D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)∣∣∣ ≤ ∞ , 

∣∣∣D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)
u i 

∣∣∣ ≤ ∞ 

D 2 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)∣∣∣ ≤ b 1 , 

∣∣∣ ∂ 

∂ ̂  θ
ln f u (u i , 

ˆ θ) 

∣∣∣ ≤ b 2 , 

| b 1 || ∞ 

+ || b 2 || ∞ 

≤ ∞ . 

ondition 3a. Under Assumptions 1,2 and 6 , a sufficient condition 

or robustness of the ML estimator to contamination in y i is: 

D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)∣∣∣ ≤ ∞ , 

∣∣∣D 2 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)∣∣∣ ≤ b 1 ,

∂ 

∂ ̂  θ
ln f u (u i , 

ˆ θ) 

∣∣∣ ≤ b 2 , 

∣∣∣D 1 ln c v ,u (F v , F u , ˆ θ) 

∣∣∣ ≤ ∞ , 

D 2 ln c v ,u (F v , F u , ˆ θ) 

∣∣∣ ≤ ∞ , 

∣∣∣D 3 ln c v ,u (F v , F u , ˆ θ) 

∣∣∣ ≤ b 3 , 

| b 1 || ∞ 

+ || b 2 || ∞ 

+ || b 3 || ∞ 

≤ ∞ . 

ondition 4a. Under Assumptions 1,2,3 and 6 , a sufficient condi- 

ion for robustness of the ML estimator to contamination in y i is: 

D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)∣∣∣ ≤ ∞ , 

∣∣∣D 2 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)∣∣∣ ≤ b 1 , 

∂ 

∂ ̂  θ
ln f u (u i , 

ˆ θ) 

∣∣∣ ≤ b 2 , || b 1 || ∞ 

+ || b 2 || ∞ 

≤ ∞ . 

ondition 1b. Under Assumptions 1,2 and 5 , a sufficient condition 

or robustness of the ML estimator to contamination in y i and x i 
s: 

D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , ̂  θ
)

∂g( x i , ̂ θ) 

∂ ̂ θ

∣∣∣ ≤ b 1 , 

∣∣∣D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , ̂  θ
)
u i 

∣∣∣ ≤ ∞

D 2 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , ̂  θ
)∣∣∣ ≤ b 2 , 

∣∣∣ ∂ 

∂ ̂ θ
ln f u (u i , ̂  θ) 

∣∣∣ ≤ b 3 , 

D 1 ln c v ,u (F v , F u , ̂  θ) 

∣∣∣ ≤ ∞ , 

∣∣∣D 1 ln c v ,u (F v , F u , ̂  θ) u i 

∣∣∣ ≤ ∞ , 

D 2 ln c v ,u (F v , F u , ̂  θ) 

∣∣∣ ≤ ∞ , 

∣∣∣D 3 ln c v ,u (F v , F u , ̂  θ) 

∣∣∣ ≤ b 4 , 

| b 1 || ∞ 

+ || b 2 || ∞ 

+ || b 3 || ∞ 

+ || b 4 || ∞ 

≤ ∞ . 

ondition 2b. Under Assumptions 1,2,3 and 5 , a sufficient condi- 

ion for robustness of the ML estimator to contamination in y i and 

 i is: 

D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , ̂  θ
)

∂g( x i , ̂ θ) 

∂ ̂ θ

∣∣∣ ≤ b 1 , 

∣∣∣D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , ̂  θ
)
u i 

∣∣∣ ≤ ∞ 

D 2 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , ̂  θ
)∣∣∣ ≤ b 2 , 

∣∣∣ ∂ 

∂ ̂ θ
ln f u (u i , ̂  θ) 

∣∣∣ ≤ b 3 , 

| b 1 || ∞ 

+ || b 2 || ∞ 

+ || b 3 || ∞ 

≤ ∞ . 

ondition 3b. Under Assumptions 1,2 and 6 , a sufficient condition 

or robustness of the ML estimator to contamination in y and x 
i i 
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s: 

D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , ̂  θ
)

∂g( x i , ̂ θ) 

∂ ̂ θ

∣∣∣ ≤ b 1 , 

∣∣∣D 2 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , ̂  θ
)∣∣∣ ≤ b

∂ 

∂ ̂ θ
ln f u (u i , ̂  θ) 

∣∣∣ ≤ b 3 , 

∣∣∣D 1 ln c v ,u (F v , F u , ̂  θ) 

∣∣∣ ≤ ∞ , 

D 2 ln c v ,u (F v , F u , ̂  θ) 

∣∣∣ ≤ ∞ , 

∣∣∣D 3 ln c v ,u (F v , F u , ̂  θ) 

∣∣∣ ≤ b 4 , 

| b 1 || ∞ 

+ || b 2 || ∞ 

+ || b 3 || ∞ 

+ || b 4 || ∞ 

≤ ∞ . 

ondition 4b. Under Assumptions 1,2,3 and 6 , a sufficient condi- 

ion for robustness of the ML estimator to contamination in y i and 

 i is: 

D 1 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , ̂  θ
)∂g( x i , ̂  θ) 

∂ ̂  θ

∣∣∣ ≤ b 1 , 

∣∣∣D 2 ln f v 
(

ˆ ε i + h ( ̂  θ) u i , ̂  θ
)∣∣∣ ≤ b 2 

∂ 

∂ ̂  θ
ln f u (u i , ̂  θ) 

∣∣∣ ≤ b 3 , || b 1 || ∞ 

+ || b 2 || ∞ 

+ || b 3 || ∞ 

≤ ∞

In the SF literature, it is common to specify one or more of the 

riginal parameters of the error distribution as a function of some 

ector of covariates, z , and parameters ϑ . It is useful to note that 

his does not fundamentally affect the robustness properties of the 

odel, since for some parameter θk ( z , ϑ ) 

∂ ln f ε 
(
ε i , θ

)
∂ ϑ 

= 

∂ ln f ε 
(
ε i , θ(z i , ϑ) 

)
∂θk ( z i , ϑ ) 

∂θk ( z i , ϑ ) 

∂ ϑ 

, 

nd θk ( z , ϑ ) and its derivative are constant with respect to ε i , un-

ess we are considering contamination with respect to z i . 

Following the discussion and conditions above, log-convex dis- 

ributions for noise and inefficiency, and log-convex copula den- 

ities are a good place to look, since they are log-convex in their 

ocation and scale parameters. This suggests the Student’s t distri- 

ution and its Cauchy special case as candidate noise distributions. 

n terms of inefficiency distributions, note that f u has no scale pa- 

ameter. This means that any inefficiency distribution which is log- 

onvex in its non-scale parameters can satisfy our conditions for 

obust estimation. This is a useful result, since it encompasses any 

ne-parameter scale family, such as the half normal or exponential 

istributions. 

The online supplement to this paper explores the properties of 

everal candidate noise, inefficiency, and copula densities in detail. 

hese results reinforce our discussion here. We find that, of several 

oise distributions considered, only the Student’s t and its Cauchy 

pecial case satisfy our conditions. Note that the log derivative of 

he Student’s t density with respect to its shape parameter does 

ot appear to be bounded. However, this can be remedied either 

y fixing the shape parameter – treating it as a tuning parameter –

r placing some upper bound upon it. We also find that, aside from 

ne parameter scale families, none of the inefficiency distributions 

roposed in the SF literature satisfy our condition, and nor do the 

ivariate copula densities found in the literature. 

To summarise, the majority of noise distributions found in the 

iterature are not compatible with our conditions for robust ML es- 

imation, but the Student’s t and Cauchy distributions have good 

obustness properties which mean that they can be paired with 

ny one-parameter scale family of distributions for inefficiency, un- 

er the assumption of independence between v i and u i . 

.3. Robustness properties of the Student’s t model 

Discussion in Section 4.2 and the online supplement suggests a 

odel with Student’s t distributed v i , paired with a one-parameter 

cale family for u i , for robust ML estimation. It is worth exploring 

he robustness properties of this estimator in more detail, since 

ts robustness properties appear particularly strong, not only com- 

ared to ML estimation under other distributional assumptions 
193 
onsidered, but also compared to the quantile regression estima- 

or. 

For the sake of simplicity, we consider a simple case in which 

he frontier is linear in its parameters, v i is Student’s t distributed, 

nd h ( ̂  θ) u i is drawn from a one-parameter scale family. That is, we

egin with Assumptions 1,2 , and 3 , and additionally assume that 

ˆ θ′ = 

(
ˆ β ˆ σv ˆ σu 

)
, g( x i , ˆ θ) = x ′ i ˆ β, 

h ( ̂  θ) = ˆ σu , 
∂ 

∂ ̂  θ
ln f u (u i ) = 0 , 

here 0 denotes a vector of zeros, and that 

ln f v (y i − x ′ i ˆ β + ˆ σu u i , ˆ σv , αv ) 

= ln �
(
αv + 1 

2 

)
− ln �

(
αv 

2 

)

−1 

2 

ln π − 1 

2 

ln αv − ln ˆ σv 

−αv + 1 

2 

ln 

(
1 + 

1 

αv 

(y i − x ′ 
i 

ˆ β + ˆ σu u i 

ˆ σv 

)
2 
)
. 

ote that, in line with the preceding discussion (see the online 

upplement for further explanation) we are treating the degrees of 

reedom parameter αv as a fixed tuning parameter, rather than es- 

imating it via ML. Since we may disregard f u , the relevant deriva- 

ives are 

∂ ln f v (y i − x ′ 
i 

ˆ β + ˆ σu u i , ̂  σv , α) 

∂ ̂  β
= (αv + 1) 

y i − x ′ 
i 

ˆ β + ˆ σu u i 

αv ̂  σv + (y i − x ′ 
i 

ˆ β + ˆ σu u i ) 2 
x i , 

∂ ln f v (y i − x ′ 
i 

ˆ β + ˆ σu u i , ̂  σv , α) 

∂ ̂  σv 
= − 1 

ˆ σv 
+ 

αv + 1 

ˆ σv 

(y i − x ′ 
i 

ˆ β + ˆ σu u i ) 
2 

αv ̂  σv + (y i − x ′ 
i 

ˆ β + ˆ σu u i ) 2 
, 

∂ ln f v (y i − x ′ 
i 

ˆ β + ˆ σu u i , ̂  σv , α) 

∂ ̂  σu 
= −(αv + 1) 

y i − x ′ 
i 

ˆ β + ˆ σu u i 

αv ̂  σv + (y i − x ′ 
i 

ˆ β + ˆ σu u i ) 2 
u i , 

hich are all bounded so long as αv < ∞ , ˆ σv > 0 . From Condi-

ion 2a , ML estimation under these assumptions is robust. What 

s notable about this case is that the estimator is robust not only 

o contamination in y i , treating x i as fixed, but also when we allow 

or contamination in both y i and x i . In other words, the estimator 

s robust not only to outliers, but also to leverage points. 

This contrasts with ML estimation under standard distribu- 

ional assumptions, which is robust to neither outliers nor leverage 

oints, but also with the quantile regression estimator, which is ro- 

ust to outliers but not to leverage points – see Stead et al. (Forth- 

oming) for a discussion of the influence function of the quantile 

egression estimator and its robustness properties generally in an 

F context. 

A corollary of this is that the Student’s t model, estimated via 

L, has a breakdown point greater than 1 /n ; since the influence 

unction is bounded, it would take more than a single contami- 

ating observation to force the estimator to take on arbitrary val- 

es. This is true whether we are considering the conditional or 

nite sample breakdown point, which considers only contamina- 

ion in y i , or the unconditional or ordinary breakdown point which 

lso considers contamination in x i . This compares favourably with 

he quantile regression estimator, which has also has a finite sam- 

le breakdown point greater than 1 /n , but an ordinary breakdown 

oint of 1 /n . A more in-depth investigation of the breakdown 

oints of the estimator is beyond the scope of this paper – see 

gain Stead et al. (Forthcoming) for further discussion is the con- 

ext of SF modelling. 

. Empirical application 

In this section, we provide a simple empirical application 

hereby we estimate cross-sectional SF models under several dif- 

erent distributional assumptions and compare the influence of the 
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Table 1 

Parameter estimates. 

u i ∼ N + (0 , σ 2 
v ) u i ∼ Exponential (0 , σv ) 

(1) (2) (3) (4) (5) (6) 

β1 ( ln q ) 0.966 ∗∗∗ 0.961 ∗∗∗ 0.959 ∗∗∗ 0.966 ∗∗∗ 0.962 ∗∗∗ 0.961 ∗∗∗

(0.013) (0.008) (0.011) (0.012) (0.011) (0.012) 

β2 ( ln 
2 
q ) 0.030 ∗∗∗ 0.027 ∗∗∗ 0.027 ∗∗∗ 0.029 ∗∗∗ 0.027 ∗∗∗ 0.028 ∗∗∗

(0.003) (0.002) (0.003) (0.003) (0.002) (0.002) 

β3 ( ln w ) 0.261 ∗∗∗ 0.321 ∗∗∗ 0.324 ∗∗∗ 0.270 ∗∗∗ 0.343 ∗∗∗ 0.324 ∗∗∗

(0.066) (0.039) (0.061) (0.063) (0.065) (0.067) 

β4 ( ln r) 0.055 0.024 0.036 0.033 0.037 0.034 

(0.062) (0.046) (0.053) (0.059) (0.053) (0.053) 

β0 3.735 ∗∗∗ 3.714 ∗∗∗ 3.749 ∗∗∗ 3.764 ∗∗∗ 3.756 ∗∗∗ 3.766 ∗∗∗

(0.035) (0.014) (0.047) (0.020) (0.017) (0.033) 

σv 0.109 0.023 0.072 0.104 0.037 0.077 

(0.023) (0.007) (0.030) (0.014) (0.010) (0.017) 

σu 0.149 0.178 0.130 0.097 0.101 0.094 

(0.049) (0.013) (0.062) (0.022) (0.016) (0.042) 

a ∞ 1.000 2.695 ∞ 1.000 3.557 

- - (1.231) - - (2.220) 

Standard errors in parentheses N.B. where a → ∞ , v i ∼ N(0 , σ 2 
v ) and where a = 1 , v i ∼

Cauchy (0 , σv ) . In these models, a is fixed ∗ p < 0 . 10 , ∗∗ p < 0 . 05 , ∗∗∗ p < 0 . 01 
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bservations on various model parameters. We use the dataset of 

hristensen & Greene (1976) on the costs, output, and input prices 

f a cross-section of US electricity generating firms in 1970. We es- 

imate a generalised Cobb-Douglas stochastic cost frontier specified 

s follows: 

n 

(
c i 
e i 

)
= β0 + β1 ln q i + β2 ln 

2 
q i + β3 ln 

(
w i 

e i 

)

+ β4 ln 

(
r i 
e i 

)
+ v i + u i , u i ≥ 0 , 

here c i is total cost, q i is output in millions of kilowatt-hours gen- 

rated, w i is the price of labour, r i is the price of capital, and e i is

he price of fuel. The cost and input price variables have all been 

ivided through by the fuel price in order to impose linear homo- 

eneity of degree one in input prices, and the output variable has 

een normalised by the sample mean for ease of interpretation of 

he first-order coefficient. We have opted for a relatively simple 

unctional form, as opposed to the translog specification used by 

hristensen & Greene (1976) , in order to keep the number of fron- 

ier parameters manageable given the focus here on comparing in- 

uence on parameter estimates between error specifications. 

Our models differ only in their assumptions about the distribu- 

ions of v i and u i . Models 1–3 assume that u i follows a half normal

istribution, while Models 4–6 assume an exponential distribution 

or u i . Models 1 and 4 assume that v i is normally distributed, Mod-

ls 2 and 5 assume that v i follows a Cauchy distribution, and Mod- 

ls 3 and 6 assume that v i follows a Student’s t distribution. 

The models we estimate differ with respect to their robustness 

roperties. To simplify matters, all of our models assume that v i 
nd u i are independently distributed. Both of our assumed distri- 

utions for u i , half normal and exponential, belong to the class of 

ne-parameter scale families. However, the normal distribution for 

 i assumed in Models 1 and 4 does not satisfy our conditions for 

L estimation. Nor does the Student’s t distribution for v i assumed 

or Models 3 and 6, since we estimate the degrees of freedom pa- 

ameter rather than treat it as a fixed tuning parameter. Models 2 

nd 5 assume Cauchy distributed v i ; that is, a Student’s t distribu- 

ion with degrees of freedom fixed at 1. Following the discussion 

n Section 4 , we therefore expect that parameter estimates and ef- 

ciency predictions from Models (2) and (5) to display less sensi- 

ivity to individual observations than those from Models (1), (3), 

4), and (6). 

Models 1 and 4 were estimated via ML. Models 2, 3, 5, and 6 

ere estimated via maximum simulated likelihood using 250 Hal- 
194 
on draws per observation to approximate the integral in Eq. (5) . 

arameter estimates and standard errors are shown in Table 1 . The 

stimated frontier parameters are broadly comparable across all six 

rror specifications. The most significant differences can be seen in 

he estimated parameters of the error distributions. This is highly 

ignificant in SF modelling, since the estimated error distributions 

re critical to efficiency prediction. Across Models 1 to 3, we can 

btain an estimate of mean cost efficiency via 

 

(
exp (−u i ) 

)
= exp 

(
ˆ σ 2 

u 

2 

)(
1 − erf 

(
ˆ σu √ 

2 

))
, 

u ∼ N 

+ (0 , ˆ σ 2 
u ) , 

 

(
exp (−u i ) 

)
= 

1 

ˆ σ 2 
u + 1 

, 

u ∼ Exponential (0 , ˆ σu ) , 

nd significant differences in the estimates parameters of the in- 

fficiency distribution can therefore lead to significantly varying 

ictures of mean cost efficiency. When considering observation- 

pecific efficiency, predicted using E 

(
exp (−u i ) | ε i 

)
, our assump- 

ions about the distribution of v i and our estimates of θv have 

 significant impact, especially for large values of | ̂  ε i | , as shown 

y Stead et al. (2018) and Wheat et al. (2019) who compare effi- 

iency predictions from the normal-half normal model with those 

rom logistic-half normal and Student’s t-half normal models, re- 

pectively. 

.1. Calculating influence functions for parameter estimates 

For each model, we evaluate the influence function for each ob- 

ervation. As can be seen from Eq. (4) , this involves evaluation of 

he Fisher information matrix. For the models in question, many of 

he expectations involved will lack convenient analytical solutions. 

ne possible approach would be to use simulation. Instead, in or- 

er to simplify the problem, we use the observed information ma- 

rix; i.e., the negative of the Hessian. This is a consistent estimator 

f the Fisher information matrix, and is easy to obtain following 

odel estimation. The vectors of derivatives of the log-likelihood 

unctions with respect to their parameter vectors are likewise eas- 

ly obtained; for convenience’s sake, we use numerical rather than 

nalytical derivatives. 

Figs. 1 , 2 , 3 , 4 compare the influences of observations on the

arious model parameters between models. Note that, since the 

odels include several covariates, there is no straightforward re- 
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Fig. 1. Influence on ˆ β0 . 
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ationship between influence and any one of the covariates. We 

herefore plot influence on the vertical axes against residual val- 

es on the horizontal while varying the darkness of the markers 

ccording to the absolute value of the leverage of the observation 

n question - i.e. the influence of observations on their own fitted 

alues of the dependent variable. 

Fig. 1 compares the influences of observations on the estimated 

ntercept in the cost frontier. Except for the normal-half normal 

ase, a relatively clear relationship can be seen between influence 

nd the value of the residual. Around the centre of the distribution 

f ˆ ε i , we can see in each case a positive relationship between the 

alue of the residual and influence, whereas in the tails the picture 

s more complicated. It is immediately noticeable that influence 

n the estimated intercept is generally lower in the models with 

auchy distributed v i . Comparison of the normal and student’s t 

odels is less straightforward; the most extreme values are in fact 

ound in the Student’s t models, but this seems to be offset by the 

elatively large influence of observations in the centre of the dis- 

ribution. 

Our main interest here is in the influence of observations on 

he estimated parameters of the distributions of v i and u i , given 

hat these appear in Table 1 to be the most sensitive to changes in

ur distributional assumptions, and the fact that they are crucial 

o the estimation of mean cost efficiency and for the prediction of 

rm-specific efficiencies. Figs. 2 and 3 compare the influences of 

bservations on ˆ σv and ˆ σu . It should be noted that the scale pa- 

ameter σv is not directly comparable across specifications; when 
195 
 i is normally distributed, σv is the standard deviation, whereas 

or the Cauchy distribution this is undefined, and when v i has a 

tudent’s t distribution, the standard deviation is σv 
√ 

αv / (αv − 1) . 

owever, we can see that observations appear to be generally more 

nfluential in the the normal models than in the Cauchy models. 

he results for the Student’s t models are interesting in that they 

uggest that observations become more influential as | ̂  ε i | increases, 

ut only to a point. For the most extreme values of | ̂  ε i | , influence

ppears to be declining in magnitude. 

Finally, Fig. 4 compares influence on ˆ αv – the degrees of free- 

om or shape parameter of the Student’s t distribution – when 

 i is assumed to follow half normal and exponential distributions. 

his figure is of less direct interest, given that we expect neither 

odel 3 nor Model 6 to be robust to outliers. Most outlying ob- 

ervations appear to exert a positive influence, which is intuitive 

iven that this parameter governs the heaviness of the tails of 

he noise distribution; note that ˆ αv is higher in the Student’s t- 

xponential model than in the Student’s t-half normal model. It is 

nteresting to note that parameter seems much more sensitive in 

he exponential case; contrast this with the sensitivity of ˆ σv be- 

ween the two models – it appears that the scale parameter of the 

oise distribution is more sensitive to outliers in Model (3) than 

n Model (6), while the reverse is true with respect to the shape 

arameter. 

Overall, the Cauchy and Student’s t models do appear to differ 

ubstantially from the normal models in terms of the influence of 

bservations on parameter estimates. The overall picture is that the 
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Fig. 2. Influence on ˆ σv . 

i

r

i

t

D

v

t

a

b

i

i

l

5

e

t

i

E  

i

E  , 

w

e

i  

f

d

t

fi

I

I

r

h

e

t

p

p

a

nfluence of observations in the shoulders of the distribution of | ̂  ε i | 
elative to the influence of observations in the tails is higher than 

n the normal models. There is some indication also of the magni- 

ude of influence diminishing for the most extreme values of | ̂  ε i | . 
ifferences in influence on the estimated coefficients on the co- 

ariates in the frontier are relatively hard to discern. However, for 

he estimated frontier intercept and the parameters of the noise 

nd inefficiency distributions, it is noticeable that the relationship 

etween influence and the value of ˆ ε i appears to be much clearer 

n the Student’s t and Cauchy cases than in the normal case. This 

s linked to the fact that the leverage of observations is generally 

ower in magnitude in these models. 

.2. Calculating influence on efficiency predictions 

We now consider the influence of observations on predicted 

fficiency scores. As discussed in Section 1 , efficiency predic- 

ion is based on the conditional distribution of efficiency. Follow- 

ng Battese & Coelli (1988) we use the conditional expectation 

 

(
exp (−u i ) | ε i 

)
. In practice, since θ is unknown, we use the plug-

n predictor 

 

(
exp (−u i ) 

∣∣ ˆ ε i 
)

= 

1 

f ε ( ̂  ε i , ˆ θ) 

∫ 
E 

exp (−u i ) f v ,u 
(

ˆ ε i + h ( ̂  θ) u i , 
ˆ θ
)
dμ(u i )

hich is a statistical functional for which we can derive an influ- 

nce function. Rather than derive the influence function directly, 

t is easier in cases such as this to exploit the fact that influence
196 
unctions are derivatives (specifically, limiting cases of Gâteaux 

erivatives), and that we may apply an influence function chain rule 

o derive influence of observation j on the efficiency prediction for 

rm i as 

F 

(
y j , x j , E 

(
exp (−u i ) 

∣∣ ˆ ε i 
))

= 

∂E 

(
exp (−u i ) 

∣∣ ˆ ε i 
)

∂ ̂  θ
′ IF ( y j , x j , ˆ θ) . (8) 

t is clear from Eq. (8) that if our parameter estimates are non- 

obust, our efficiency predictions will also be non-robust and 

ence sensitive to outliers in the data. On the other hand, a robust 

stimator implies robust efficiency prediction. We therefore expect 

hat our efficiency predictions from Models (2) and (5) should dis- 

lay less sensitivity to contaminating outliers than our efficiency 

redictions from other specifications. 

In principle, we are interested in calculating Eq. (8) across all i 

nd all j. If we define 

IF (y , X , ˆ θ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(
IF ( y 1 , x 1 , ˆ θ) 

)′ 
. . . (

IF ( y i , x i , ˆ θ) 
)′ 

. . . (
IF ( y I , x I , ˆ θ) 

)′ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 
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Fig. 3. Influence on ˆ σu . 

Fig. 4. Influence on ˆ α. 
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Fig. 5. Influence on efficiency predictions, models (1)–(3). 
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(
exp (−u ) 

∣∣ ˆ ε 

) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

E 

(
exp (−u 1 ) 

∣∣ ˆ ε 1 
)

. . . 

E 

(
exp (−u i ) 

∣∣ ˆ ε i 
)

. . . 

E 

(
exp (−u I ) 

∣∣ ˆ ε I 
)

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

hen we may define an I × I matrix of influences of observations 

n efficiency predictions 

F 
(

y , X , E 

(
exp (−u ) | ̂  ε 

)) = 

E 

(
exp (−u ) 

∣∣ ˆ ε 

)

∂ ̂  θ
′ 

(
IF (y , X , ˆ θ) 

)′ , 

f which the element belonging to column i and row j is the in- 

uence of observation j on the efficiency prediction for firm i , as 

iven by Eq. (8) . As with our calculation of the influence function 

or the parameter vector, we use numerical derivatives of the effi- 

iency predictors in practice for convenience’s sake. Rather than 

resent the full 123 × 123 matrices for each of our models, we 

imit our attention to the observations with the greatest influence 

n predicted efficiency scores. 

Fig. 5 plots influence on predicted efficiency against predicted 

fficiency for Models (1)–(3) (i.e. models in which u i ∼ N 

+ (0 , σ 2 
u ) ).

ach plot corresponds to a specific observation, and shows the 

nfluence of that observation on the efficiency predictions for 

ll 123 observations. The six most influential observations, de- 

ned in terms of the range of influences, are shown. We can see 
198 
hat these observations have a substantial impact on many effi- 

iency predictions from Models (1) and (3). Efficiency predictions 

rom Model (2) appear to be much less sensitive, with observa- 

ions having no material impact on efficiency scores for the most 

art. 

Fig. 6 plots influence on predicted efficiency against predicted 

fficiency for Models (4)-(6) (in which u i ∼ Exponential (0 , σu ) ). 

ere the picture is somewhat different, with the highest influence 

een in Model (6). However the general picture remains that the 

bservations do not have a material impact on efficiency scores 

rom Model (5) in which v i ∼ Cauchy (0 , σv ) , with the exception of 

ne observation shown in the bottom left plot. 

Overall, the influences of observations on efficiency predictions 

re in line with our expectation that efficiency predictions from 

odels (2) and (5) ought to be less sensitive than those from Mod- 

ls (1), (3), (4), and (6), given the robustness of the parameter 

stimates in the former cases. This demonstrates the practical im- 

ortance of outlier robustness in SF modelling. When parame- 

er estimation is not robust, the most influential observations are 

hown in this case to influence some efficiency predictions by 

ve to ten percentage points in either direction. Furthermore, it 

s clear that the lowest efficiency predictions tend to be the most 

eavily influenced. From a regulatory or managerial benchmarking 

erspective, this sensitivity is clearly not ideal. Our findings sug- 

est that robust alternatives, such as the Student’s t model with 

xed degrees of freedom, considerably reduce the sensitivity of ef- 

ciency predictions to outliers. 
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Fig. 6. Influence on efficiency predictions, models (4)–(6). 
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. Discussion and conclusions 

For managers or regulators applying efficiency analysis tech- 

iques to benchmark firms or other decision making units, ro- 

ustness of efficiency scores to changes in the data is desirable. 

owever, the estimation of standard stochastic frontier models via 

aximum likelihood is known to be potentially very sensitive to 

ven small changes in the sample. This in turn means that effi- 

iency predictions derived from standard SF models estimated in 

his way are not robust to outliers and other contaminating obser- 

ations in the data. 

Robustness has received increased attention in the stochastic 

rontier literature in recent years. Alternative distributional as- 

umptions and estimation methods aimed at robustification have 

een put forward, but without a direct examination of the robust- 

ess properties of either these alternatives or existing models and 

ethods. We fill this gap by considering the robustness of maxi- 

um likelihood estimation of stochastic frontier models in terms 

f the behaviour of the influence function, and deriving conditions 

nder which maximum likelihood estimation can be considered 

obust. We derive sufficient conditions for robust maximum like- 

ihood estimation of the stochastic frontier model based on rela- 

ively simple and easily checked properties of the marginal densi- 

ies of the error components and, in the case of dependence, the 

opula density. This provides a convenient method of checking the 

obustness properties of various specifications without the need to 
t

199 
onsider each set of distributional assumptions on a case-by-case 

asis. 

We find that most of the canonical distributional assumptions –

.g. normally distributed noise – and recently proposed ‘robust’ al- 

ernatives do not satisfy our conditions for robust maximum likeli- 

ood estimation. However, the Student’s t distribution satisfies our 

onditions, subject to some innocuous upper bound being placed 

n the degrees of freedom parameter, and has a particularly at- 

ractive property such that it can be paired with a broad class of 

nefficiency distributions – including any one parameter scale fam- 

ly such as the half normal or exponential distributions – under 

ndependence, and maximum likelihood estimation will remain ro- 

ust. Finding more flexible inefficiency distributions, or allowing 

or dependence between error terms, in such a way that our con- 

itions for robust maximum likelihood estimation are satisfied is 

ore challenging. 

The use of a Student’s t distribution for noise is therefore 

 viable approach to robust maximum likelihood estimation of 

tochastic frontier models in many cases. This proposal has other 

ttractive features. Since the model with normally distributed 

oise is recovered as the degrees of freedom parameter increases, 

esting against the standard model is possible ( Wheat et al., 2019 ). 

elative to alternative approaches of modifying the loss function, 

e are able to retain the simplicity and attractive properties of 

aximum likelihood estimation, and avoid loss of efficiency in es- 

imation and the need to specify a tuning parameter governing the 

rade-off between robustness and efficiency that comes with such 
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pproaches. Alternatively, if we believe that the ‘true’ model be- 

ore contamination by outliers has normally distributed noise, we 

an view the Student’s t model as a pseudo-maximum likelihood 

stimator, analogous to changing the loss function, where the de- 

rees of freedom parameter controls the trade-off between robust- 

ess and efficiency (see Stead et al. (Forthcoming) for further dis- 

ussion). Wheat et al. (2019) provide simulation evidence that the 

odel performs well in terms of recovering the standard model 

hen the data generating process involves normally distributed 

oise. 

We demonstrate the calculation of influence functions in an 

mpirical application, and derive expressions for influence on ef- 

ciency predictions. Evidence from our empirical application ap- 

ears to confirm that the parameter estimates and efficiency pre- 

ictions from robust specifications are significantly less sensitive 

o individual observations than those from non-robust specifica- 

ions. These findings are therefore of practical value to applied 

esearchers, managers, regulators, and others who are concerned 

ith the robust efficiency prediction. 

Several possible avenues for future research are apparent. The 

dentification of additional marginal and copula densities consis- 

ent with our conditions for robust maximum likelihood estima- 

ion, particularly copulas that allow for stronger dependence than 

he Farlie-Gumbel-Morgenstern – the Student’s t copula may be a 

atural candidate – and extension to a panel data setting would be 

f interest. As noted in Section 2, an analysis of the resistance and 

reakdown points of stochastic frontier models along similar lines 

ould also add to our understanding of the impact of outliers. 
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upplementary material 

Appendices: Appendices containing discussion of the properties 

of particular distributions, and proofs of results. (.pdf file) 

Replication materials: This Stata.do file 3 loads the Christensen 

and Greene (1976) data and the rfrontier (version 1.1.0) pack- 

age 4 , and uses these to replicate the analysis in Section 5, 

reproducing Table 1 and Figs. 1–6 . 

upplementary material associated with this article can be found, 

n the online version, at doi: 10.1016/j.ejor.2022.12.033 . 
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rslan, O., & Genç, A . İ. (2009). The skew generalized t distribution as the scale

mixture of a skew exponential power distribution and its applications in robust 
estimation. Statistics, 43 (5), 4 81–4 98 . 

adunenko, O., & Henderson, D. J. (2021). Production analysis with asymmetric 
noise. MPRA Paper No. 110888. 
3 https://raw.githubusercontent.com/AlexStead/replication/main/robustMLEofSFM/ 

ode/influence.do 
4 See https://github.com/AlexStead/rfrontier for further information and the 

astest version. 

R

S  

200 
anker, R. D., & Chang, H. (2006). The super-efficiency procedure for outlier identi- 
fication, not for ranking efficient units. European Journal of Operational Research, 

175 (2), 1311–1320 . 
asu, A., Harris, I. R., Hjort, N. L., & Jones, M. C. (1998). Robust and efficient estima-

tion by minimising a density power divergence. Biometrika, 85 (3), 549–559 . 
attese, G. E., & Coelli, T. J. (1988). Prediction of firm-level technical efficiencies with 

a generalized frontier production function and panel data. Journal of Economet- 
rics, 38 (3), 387–399 . 

ehr, A. (2010). Quantile regression for robust bank efficiency score estimation. Eu- 

ropean Journal of Operational Research, 200 (2), 568–581 . 
ellini, T. (2012). Forward search outlier detection in data envelopment analysis. 

European Journal of Operational Research, 216 (1), 200–207 . 
eran, R. (1977). Minimum Hellinger distance estimates for parametric models. An- 

nals of Statistics, 5 (3), 445–463 . 
ernstein, D. H., Parmeter, C. F., & Wright, I. A. (2021). Robust estimation of the

stochastic frontier model. Working Paper, University of Miami. 

ogetoft, P. (1997). DEA-based yardstick competition: The optimality of best-practice 
regulation. Annals of Operations Research, 73 , 277–298 . 

onnano, G., De Giovanni, D., & Domma, F. (2017). The ‘wrong skewness’ problem: 
A re-specification of stochastic frontiers. Journal of Productivity Analysis, 47 (1), 

49–64 . 
ankaya, M. N., & Arslan, O. (2020). On the robustness properties for maximum 

likelihood estimators of parameters in exponential power and generalized t dis- 

tributions. Communications in Statistics - Theory and Methods, 49 (3), 607–630 . 
harnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision 

making units. European Journal of Operational Research, 2 (6), 429–4 4 4 . 
hristensen, L. R., & Greene, W. H. (1976). Economies of scale in U.S. electric power

generation. Journal of Political Economy, 84 (4), 655–676 . 
guchi, S., & Kano, Y. (2001). Robustifying maximum likelihood estimation by psi- 

divergence. Research Memorandum 802, Institute of Statistical Mathematics. 

l Mehdi, R., & Hafner, C. M. (1976). Inference in stochastic frontier analysis with 
dependent error terms. Mathematics and Computers in Simulation, 102 (Supple- 

ment C), 104–116 . 
errari, D., & Yang, Y. (2010). Maximum L q -likelihood estimation. Annals of Statistics, 

38 (2), 753–783 . 
ómez-Déniz, E., & Pérez-Rodríguez, J. V. (2015). Closed-form solution for a bivari- 

ate distribution in stochastic frontier models with dependent error. Journal of 

Productivity Analysis, 43 (2), 215–223 . 
upta, A. K., & Nguyen, N. (2010). Stochastic frontier analysis with fat-tailed error 

models applied to who health data. International Journal of Innovative Manage- 
ment, Information and Production, 1 (1), 43–48 . 

ampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust statis-
tics: The approach based on influence functions . New York, NY: John Wiley . 

aney, A., & Pollitt, M. (2009). Efficiency analysis of energy networks: An interna- 

tional survey of regulators. Energy Policy, 37 (12), 5814–5830 . 
enningsen, A. (2020). Influential observations in stochastic frontier analysis. Work- 

ing Paper, Konkurrence-og Forbrugstyrelsen. 
orrace, W. C., & Parmeter, C. F. (2018). A Laplace stochastic frontier model. Econo- 

metric Reviews, 37 (3), 260–280 . 
orrace, W. C., & Wright, I. A. (2020). Stationary points for parametric stochastic 

frontier models. Journal of Business & Economic Statistics, 38 (3), 516–526 . 
uber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathemati- 

cal Statistics, 35 (1), 73–101 . 

amasb, T., & Pollitt, M. (2001). Benchmarking and regulation: International electric- 
ity experience. Utilities Policy, 9 (3), 107–130 . 

anssens, G. K., & van den Broeck, J. (1993). Outliers, sample size and robust esti-
mation of stochastic frontier production models. Journal of Information and Op- 

timization Sciences, 14 (3), 257–274 . 
ondrow, J., Lovell, C. A. K., Materov, I. S., & Schmidt, P. (1982). On the estimation

of technical inefficiency in the stochastic frontier production function model. 

Journal of Econometrics, 19 (2), 233–238 . 
radi, S., Parmeter, C. F., & Ruggiero, J. (2019). Quantile estimation of the stochastic 

frontier mode. Economics Letters, 182 , 15–18 . 
radi, S., Parmeter, C. F., & Ruggiero, J. (2021). Quantile estimation of stochastic fron- 

tiers with the normal-exponential specification. European Journal of Operational 
Research, 295 (2), 475–483 . 

radi, S., & Ruggiero, J. (2019). Stochastic data envelopment analysis: A quantile re- 

gression approach to estimate the production frontier. European Journal of Oper- 
ational Research, 278 (2), 385–393 . 

ucas, A. (1997). Robustness of the student t based m-estimator. Communications in 
Statistics - Theory and Methods, 26 (5), 1165–1182 . 

eeusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas 
production functions with composed error. International Economic Review, 18 (2), 

435–4 4 4 . 

iyamura, M., & Kano, Y. (2006). Robust Gaussian graphical modeling. Journal of 
Multivariate Analysis, 97 (7), 1525–1550 . 

guyen, N. (2010). Estimation of technical efficiency in stochastic frontier analysis . 
Bowling Green State University Ph.D. thesis. . 

ndrich, J., & Ruggiero, J. (2002). Outlier detection in data envelopment analy- 
sis: An analysis of jackknifing. Journal of the Operational Research Society, 53 (3), 

342–346 . 

ousseeuw, P. J. (1984). Least median of squares regression. Journal of the American 
Statistical Association, 79 (388), 871–880 . 

eaver, B. L., & Triantis, K. P. (1995). The impact of outliers and leverage points for
technical efficiency measurement using high breakdown procedures. Manage- 

ment Science, 41 (6), 937–956 . 

https://doi.org/10.1016/j.ejor.2022.12.033
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0005
https://raw.githubusercontent.com/AlexStead/replication/main/robustMLEofSFM/code/influence.do
https://github.com/AlexStead/rfrontier
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0040


A.D. Stead, P. Wheat and W.H. Greene European Journal of Operational Research 309 (2023) 188–201 

S

S

S

S

S  

S  

S

 

S

T

T  

T  

T

T

W

W

W

W  

Z

Z

Z

hleifer, A. (1985). A theory of yardstick competition. Rand Journal of Economics, 
16 (3), 319–327 . 

imar, L. (2003). Detecting outliers in frontier models: A simple approach. Journal 
of Productivity Analysis, 20 (3), 391–424 . 

imar, L., & Wilson, P. W. (2010). Inferences from cross-sectional, stochastic frontier 
models. Econometric Reviews, 29 (1), 62–98 . 

mith, M. D. (2008). Stochastic frontier models with dependent error components. 
Econometrics Journal, 11 (1), 172–192 . 

ong, J., Oh, D., & Kang, J. (2008). Robust estimation in stochastic frontier models.

Computational Statistics and Data Analysis, 105 , 243–267 . 
tead, A. D., Wheat, P., & Greene, W. H. (2018). Estimating efficiency in the presence

of extreme outliers: A logistic-half normal stochastic frontier model with ap- 
plication to highway maintenance costs in england. In W. H. Greene, L. Khalaf, 

P. Makdissi, R. C. Sickles, M. Veall, & M. Voia (Eds.), Productivity and Inequality 
(pp. 1–19). Cham, Switzerland: Springer . chapter 1 

tead, A. D., Wheat, P., & Greene, W. H. (2019). Distributional forms in stochastic 

frontier analysis. In T. ten Raa, & W. H. Greene (Eds.), Palgrave Handbook of Eco-
nomic Performance Analysis (pp. 225–274). Cham, Switzerland: Palgrave Macmil- 

lan . chapter 8 
tead, A. D., Wheat, P., & Greene, W. H. Forthcoming. Robustness in stochastic fron- 

tier analysis. In P. Macedo, V.F. Moutinho, & M. Madaleno (Eds.), Advanced Math- 
ematical Methods in Economic Efficiency Analysis . Springer. 

ancredi, A. (2002). Accounting for heavy tails in stochastic frontier models. Work- 

ing Paper 2002.16, University of Padua. 
hanassoulis, E. (20 0 0). DEA and its use in the regulation of water companies. Eu-

ropean Journal of Operational Research, 127 (1), 1–13 . 
201 
ran, N. A., Shively, G., & Preckel, P. (2010). A new method for detecting outliers in
data envelopment analysis. Applied Economics Letters, 17 (4), 313–316 . 

sionas, M. G. (2020). Quantile stochastic frontiers. European Journal of Operational 
Research, 282 (3), 1177–1184 . 

sionas, M. G., Assaf, A. G., & Andrikopoulos, A. (2020). Quantile stochastic frontier 
models with endogeneity. Economics Letters, 188 , 108964 . 

aldman, D. M. (1982). A stationary point for the stochastic frontier likelihood. 
Journal of Econometrics, 18 (2), 275-279 . 

ang, W. S., & Schmidt, P. (2009). On the distribution of estimated technical effi- 

ciency in stochastic frontier models. Journal of Econometrics, 148 (1), 36–45 . 
ei, Z., Zhu, X., & Wang, T. (2021). The extended skew-normal-based stochastic 

frontier model with a solution to ‘wrong skewness’ problem. Statistics, 55 (6), 
1387–1406 . 

heat, P., Stead, A. D., & Greene, W. H. (2019). Robust stochastic frontier analysis: A
Student’s t-half normal model with application to highway maintenance costs 

in England. Journal of Productivity Analysis, 51 (1), 21–38 . 

hao, S. (2021). Quantile estimation of stochastic frontier models with the nor- 
mal–half normal specification: A cumulative distribution function approach. 

Economics Letters, 206 , 109998 . 
huo, S. (2018). Local influence analysis of stochastic frontier estimation: A 

case-weights perturbation approach. Economics Letters, 164 , 79–81 . 
ulkarnain, R., & Indahwati, I. (2019). Robust stochastic frontier using Cauchy distri- 

bution for noise component to measure efficiency of rice farming in East Java. 

Journal of Physics: Conference Series, 1863 , 012031 . 

http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0045
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0048
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0049
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0050
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0051
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0052
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0053
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0054
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0055
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0056
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0057
http://refhub.elsevier.com/S0377-2217(22)00997-3/sbref0058

	Robust maximum likelihood estimation of stochastic frontier models
	1 Introduction
	2 Robust estimation
	3 Robustness in the stochastic frontier literature
	4 Maximum likelihood estimation
	4.1 Propositions and assumptions
	4.2 Conditions for robust maximum likelihood estimation of stochastic frontier models
	4.3 Robustness properties of the Student’s t model

	5 Empirical application
	5.1 Calculating influence functions for parameter estimates
	5.2 Calculating influence on efficiency predictions

	6 Discussion and conclusions
	Declaration of Competing Interest
	Supplementary material
	References


