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When analysing the efficiency of decision-making units, the robustness of efficiency scores to changes in
the data is desirable, especially in the context of managerial or regulatory benchmarking. However, the
robustness of maximum likelihood estimation of stochastic frontier models remains underexplored. We
examine the behaviour of the influence function of the estimator in a stochastic frontier context, and
derive some sufficient conditions for robust maximum likelihood estimation in terms of the properties of
the marginal distributions of the error components and, in cases where they are dependent, the copula
density. We find that the canonical distributional assumptions do not satisfy these conditions. The Stu-
dent’s t noise distribution is found to have some particularly attractive properties which means it can
be paired with a broad class of inefficiency distributions while still satisfying our conditions under in-
dependence. We show that parameter estimates and efficiency predictions from robust specifications are

Keywords:

Robustness and sensitivity analysis
Stochastic frontier analysis
Outliers
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1. Introduction

A regulator or manager of a group of firms or other decision-
making units has a clear interest in measuring or estimating their
relative efficiency in order to benchmark them against one an-
other, and to provide a basis upon which to set targets for effi-
ciency gains. This constitutes a form of yardstick competition in
which decision-making units are incentivised to improve efficiency
(Bogetoft, 1997; Shleifer, 1985). The use of efficiency analysis meth-
ods such as data envelopment analysis (DEA) (Charnes, Cooper, &
Rhodes, 1978) and stochastic frontier (SF) modelling (Aigner, Lovell,
& Schmidt, 1977) in such contexts is well-established - for exam-
ples and discussion of the application of these methods in eco-
nomic regulation see e.g. Thanassoulis (2000), Jamasb & Pollitt
(2001), Haney & Pollitt (2009), and Agrell & Bogetoft (2017).

It is clearly desirable that efficiency analysis, when used to in-
form important managerial or regulatory decisions in this way,
should be robust in some sense to small changes in the data - e.g.
ideally our results should not be unduly sensitive to the addition
or removal a single observation, or to small changes in an obser-
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vation. This is particularly desirable when such decisions are open
to challenge by firms which have an incentive to game the analysis
to their own advantage.

In the case of DEA, adding, removing, or altering an observa-
tion will influence the efficiency score of other firms only if the
firm in question belongs to the set of firms that define the fron-
tier. However, DEA efficiency scores are potentially very sensitive
to changes affecting the observations that define the frontier, and
that sensitivity is compounded by the fact that DEA attributes all
departures from the frontier to inefficiency. Approaches to detect-
ing and handling outliers in DEA are discussed by Ondrich & Rug-
giero (2002), Simar (2003), Banker & Chang (2006), Tran, Shively,
& Preckel (2010), and Bellini (2012).

On the other hand, in the case of econometric methods such as
SF modelling, adding, changing, or removing any observation will
have some impact on the estimated parameter vector, and there-
fore the predicted efficiency scores for every observation in the
sample. Furthermore, experience shows that the sensitivity of re-
sults to even a single observation can be very considerable - for
example, several commonly-employed SF specifications are known
to suffer from a ‘wrong skewness’ issue that arises when the least
squares residuals are skewed in the opposite direction compared
to the theoretical skewness of the model’s error - see Waldman
(1982), Simar & Wilson (2010), and Horrace & Wright (2020) and
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others for discussion of this phenomenon - which can force the
predicted inefficiency for all observations to zero.

Such sensitivity to small changes in the data is highly problem-
atic from the perspective of a regulator or manager seeking robust
efficiency scores. Following Jondrow, Lovell, Materov, & Schmidt
(1982), the usual approach to efficiency prediction in SF modelling
is to base efficiency predictions on the distribution of u;|e;. Since
the conditional distribution of inefficiency is unknown, in prac-
tice plug-in estimators are used, which means that efficiency pre-
dictions are influenced by contaminating outliers via their effect
on parameter estimates. This suggests that the use of robust es-
timators should reduce the sensitivity of efficiency predictions to
contaminating outliers. A strand of recent literature - discussed
in Section 3 - has explored different SF specifications or estima-
tion methods which may offer greater robustness to outliers. De-
spite this, there has been little explicit discussion of the robustness
properties of different estimators.

In this paper, we focus on maximum likelihood (ML) estimation,
which is the standard approach to estimation in the SF literature.
We derive a set of sufficient conditions for robust ML estimation
of cross-sectional parametric stochastic frontier (SF) models of the
form described by Assumption 1 below.

Assumption 1.
Yi=8®i.0)+¢&. &=vi—h@)u;,

where i =1,...,I indexes the observation, y; is the response vari-
able, g(x;, 0) is some real-valued function, x; is a covariate vector,
0 is a vector of parameters and v; and u; > 0 are random variables
representing noise and inefficiency, respectively, and h(#) > 0 is a
non-negative scaling function. The error components v; and u; may
be dependent or independent of one another, but are uncorrelated
with x;.The inefficiency term h(@)u; is drawn from a distribution
with density function
Ui

1
_ 7’0 ,
h®) f“(h(f)) )
where f, is the density of u;, which is a density without a scale
parameter.

SF models were introduced by Aigner et al. (1977) and Meeusen
& van Den Broeck (1977) under specific distributional assump-
tions - normally distributed v;, and half-normally or exponentially
distributed u;. A number of alternative distributional assumptions
have been proposed - see Stead, Wheat, & Greene (2019) for a re-
cent review.

In recent years, several alternative distributions for v; have been
proposed which have heavier tails than the normal distribution
and have loosely been described as more ‘robust’. There has also
been increasing interest in alternative estimation methods, such
as the use of quantile regression to estimate SF models - see
Section 3 for a discussion of robustness in the SF literature. Despite
this, the robustness properties of estimators of SF models have not
been fully explored. This paper aims to further our knowledge of
the robustness properties of SF models estimated via ML. For a
discussion of the robustness properties of alternative estimation
methods such as quantile regression in the context of SF modelling,
see Stead, Wheat, & Greene (Forthcoming).

The remainder of this paper is organised as follows: In
Section 2, we discuss robust estimation generally, with a focus
on influence functions and their use in analysing robustness. In
Section 3, we discuss previous work on robustness in the SF liter-
ature. In Section 4 we derive some sufficient conditions for robust
ML estimation of the SF model. These are derived without making
specific distributional assumptions, and are based on simple prop-
erties of the marginal noise and inefficiency distributions, with
some additional conditions relating to the copula density when the
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error components are not independent. We discuss specific distri-
butional assumptions in light of these conditions, and show that a
Student’s t model with fixed degrees of freedom can satisfy our
conditions for robust ML estimation under various distributional
assumptions about u; - including any one-parameter scale fam-
ily of distributions, including e.g. the half normal and exponential
distributions. In Section 5, we compare influence across different
specifications in a simple application. We examine the influence of
individual observations on our estimated parameter vector, and on
efficiency predictions. We show that parameter estimates and ef-
ficiency predictions from specifications that satisfy our conditions
for robust ML estimation are significantly less sensitive to individ-
ual observations in our application. Section 6 summarises and con-
cludes.

2. Robust estimation

Discussion of robust estimation often concerns the influence of
outlying observations; this is the sense in which we discuss ro-
bustness in the present study. Where F is the model’s underlying
distribution function for the variable of interest, Hampel, Ronchetti,
Rousseeuw, & Stahel (1986) define the influence function of the
functional T(F) as

T((1—h)F +hdy) —T(F)

h ,
where §, is a point mass at y. The influence function therefore
gives the influence on T(F) of an infinitesimal perturbation of the
data at y. An estimator T(F) is said to be bias robust, or B-robust?
if the influence function is bounded. Many estimators examined
in the literature on robust estimation belong to the class of M-

estimators. Following Huber (1964), an M-estimator 0 is one that
satisfies the definition

(1)

IF(y, T(F)) = m

~

6 = arg min
0

I
Y oW 0).

i=1

(2)

Equivalently, so long as the loss function p(y;, @) is continuous and
differentiable with respect to 6,

1
Z W(Vi, é) = oa

i=1

3)

where ¥ (y;, ) = 0p(y;, 0)/00. The class of M-estimators encom-
passes least squares and ML, and many others. It is well known in
the literature on robust estimation that the ML estimator is often
non-robust, and alternative robust M-estimators have been pro-
posed. Examples include minimum Hellinger distance (MHD) esti-
mation (Beran, 1977), minimum density power divergence (MDPD)
estimation (Basu, Harris, Hjort, & Jones, 1998), maximum W-
likelihood (MWL) estimation (Eguchi & Kano, 2001; Miyamura
& Kano, 2006), and maximum Lg-likelihood (ML4L) estimation
(Ferrari & Yang, 2010). However, under certain distributional as-
sumptions, ML estimation can be shown to be robust, and a vast
literature explores the use of alternative distributional assump-
tions. Lucas (1997), Arslan & Geng (2009), and Cankaya & Arslan
(2020) examine the robustness of ML estimation of the parame-
ters of Student’s t, skew generalised t, and skew exponential power
distributions, respectively. From Hampel et al. (1986), the influence
function of an M-estimator is given by

IF(y,.0) = —(E(W»wwi, d).

4
Py (4)

2 Henceforth, when we refer to robustness, we mean B-robustness.
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The influence function is therefore a linear transformation of
¥ (y;, ). To show that an M-estimator is robust for a given model,
it is sufficient to show that ¥ (y;, 5) is bounded. The boundedness
of ¥ (i, 5) follows from our distributional assumptions and the es-
timation method used.

3. Robustness in the stochastic frontier literature

The issue of robustness has received scant attention in the SF
literature over the years. Reflecting the broader literature on ro-
bust estimation, contributions have tended to take one of several
approaches - outlier detection, the use of robust estimation meth-
ods, or a change in distributional assumptions.

Early contributions by Janssens & van den Broeck (1993) and
Seaver & Triantis (1995) focused on outlier detection and removal,
identifying outliers on the basis of standardised residuals from
least median of squares and least trimmed squares regressions —
see Rousseeuw (1984). Such approaches have an obvious weak-
ness in a SF setting, since they do not account for the asymme-
try of the composed error, and instances of large u; could be dis-
carded as outliers, which defeats the purpose of the analysis. Re-
cently, Henningsen (2020) proposed the use of a ‘pseudo-Cook’s
distance’ in which j; is adjusted by removing the predicted value
of h(6)E(u;|&;). However, this adjustment is not completely satis-
factory since the distribution of predictions of efficiency scores dif-
fers from the underlying efficiency distribution (Wang & Schmidt,
2009). A case-weights perturbation approach to identifying influ-
ential observations in the normal-half normal SF model is pro-
posed by Zhuo (2018). There is no general consensus on appro-
priate cut-off points for outlier detection, and outlier removal typi-
cally causes greater loss of efficiency than the use of robust estima-
tion methods - simulation evidence in Section 4.1 of Hampel et al.
(1986) shows that robust estimators outperform the combination
of non-robust classical estimators with various rejection rules in
terms of both efficiency and robustness. Intuitively, it makes more
sense to simply down-weight some observations — as robust esti-
mators do - rather than reject them entirely; though robust esti-
mators may well effectively discard particularly gross outliers by
giving them zero weight.

The usual approaches to estimation are ML estimation and cor-
rected ordinary least squares (COLS). COLS uses least squares to
estimate the frontier parameters, with the parameters of the er-
ror distribution estimated based on moments of the least squares
residuals. Both of these methods require explicit distributional as-
sumptions to be made regarding the noise term v; and the ineffi-
ciency term u;. Alternatively, one may specify u; as a deterministic,
non-negative function of some vector of covariates, z;, such that

yi =g, 0) +v; —ui(z.0),

in which case we may estimate the model via nonlinear least
squares, avoiding specific distributional assumptions. Note however
that the score function in this case is

2 XI: (y,- + u,-(zi, 5) _g<xi’ g)) <8ui(zi, 0) _ 0g(x;, o)
i=1

00 a0

which is unbounded. Least squares estimation of the SF model,
whether in the context of COLS or non-linear least squares, is
therefore non-robust to outliers. Robust analogues of these ap-
proaches are possible if we change the loss function. In this vein,
there has been some recent interest in quantile regression as a
means of estimating SF models - see, e.g. Behr (2010), Jradi &
Ruggiero (2019), Jradi, Parmeter, & Ruggiero (2019), Tsionas (2020),
Tsionas, Assaf, & Andrikopoulos (2020), Jradi, Parmeter, & Ruggiero
(2021) and Zhao (2021).

An in-depth exploration of the robustness properties of quan-
tile regression and other robust regression methods the context
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of SF modelling is beyond the scope of this paper - see Stead
et al. (Forthcoming) for a recent discussion.

Approaches to robustification remaining within an ML type
framework with specific distributional assumptions involve a
change in either the loss function or our distributional assump-
tions such that the influence function is bounded. There has been
increased interest in both approaches in recent years. Song, Oh, &
Kang (2008) propose the use of MDPD estimation, and show that
estimator is robust in the normal-half normal case, while the ML
estimator is not; the influence function is unbounded. The authors
find that the MDPD estimator of the normal-half normal model
achieves robustness with relatively little loss of efficiency in es-
timation. Similar approaches are taken by Bernstein, Parmeter, &
Wright (2021), who use MLgL and MWL estimation, and contrast
the performance of these estimators in the normal-half normal
case, with that of the ML estimator in applications to simulated
datasets with Cauchy contamination.

A number of alternative distributional assumptions about v;
have also been proposed, with focus on distributions with ex-
cess kurtosis, which are better able than the normal distribu-
tion to accommodate outliers. An early contribution in this re-
spect was the suggestion of an ‘approximative t' distribution by
Janssens & van den Broeck (1993). More recently, the use of
Laplace (Nguyen, 2010; Horrace & Parmeter, 2018), logistic (Stead,
Wheat, & Greene, 2018), generalised logistic (Bonnano, De Gio-
vanni, & Domma, 2017), skew normal (Badunenko & Henderson,
2021), extended skew normal (Wei, Zhu, & Wang, 2021), Cauchy
(Zulkarnain & Indahwati, 2019; Gupta & Nguyen, 2010, and Stu-
dent’s t (Tancredi, 2002; Wheat, Stead, & Greene, 2019) noise dis-
tributions have been explored, with results generally indicating a
material impact on parameter estimates and efficiency predictions
compared to the standard SF model. The Student’s t distribution is
attractive due to its flexibility, since the heaviness of its tails varies
with a degrees of freedom parameter, such that the normal distri-
bution is encompassed as a limiting case. Wheat et al. (2019) dis-
cuss testing against the standard model, and present simulation
evidence that the model approximates the standard model when
the true noise distribution is normal.

Despite this recent interest, the robustness of ML estimation
of SF models remains largely unexplored. To our knowledge, only
Song et al. (2008) have examined the properties of the influence
function, and their attention was restricted to the normal-half nor-
mal case. Hence the robustness properties of the ML estimator of
the SF model is generally unknown, under both standard distribu-
tional assumptions and proposed ‘robust’ alternatives. Hence it will
be useful to examine the problem without making specific distri-
butional assumptions, and consider conditions under which ML es-
timation of SF models is robust. We then consider potential distri-
butional assumptions that satisfy these requirements.

4. Maximum likelihood estimation

In this section, we derive some sufficient conditions for robust
ML estimation of parametric SF models. The ML estimator of para-
metric SF models of the form shown in Assumption 1 maximises
the log-likelihood function or, equivalently, minimises the negative
log-likelihood function, such that

I
§=argmin Y (~Inf.(c:.0)).
b ia

where fg(&;,6) is the marginal density of ;. This is derived by
solving the integral

o 61.0) = [ fualei+ h®u, O)dpu(wy), (5)
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where fy4(v;, u;, 0) is the joint density of v; and u;, and E is the
subset of the real line that contains the support of h(f)u; € E. The
first-order conditions can be expressed

I
— Z % ln[E fv,u(éi +h()u;, é)dﬂ(u,-) -0,
i=1

where 0 is a column vector of zeros and &; = y; — g(x;, é). We can
see that this is an M-estimator as defined in Eqs. (2) and (3),
where

P .0 = =In [ fou(ei + h®)u O)dp(uy),

¥ %, 0) = —% in [ foa(8i+ h(@us. O)duuy = 0.

Following Eq. (4), the influence function is therefore

~ N1/ 9 P
IF (. .0) =~ (2(6)) (80 In [ fuu(8+h@u, 0)du(ui>>.
(6)

In (6), I(é) denotes the Fisher information matrix. Since I(é) and
its inverse are matrices of constants, we can draw two conclusions.
First, as noted in Section 2, the influence function is simply a lin-
ear transformation of ¥ (y;, x;, 9); in this case, the score vector.
Second, inspection of the off-diagonal elements of the Hessian for
various SF specifications is enough to tell us that their expectations
will generally be non-zero, and therefore any given element of the
influence function - that is, the influence function for any given
parameter - will generally depend on every element of the score
vector.

4.1. Propositions and assumptions

With the preceding discussion in mind, the most we can say in
general is that boundedness of every element of the score function
is a necessary and sufficient condition for boundedness of every
element of the influence function, and therefore robustness of the
ML estimator of the parameter vector. That is, a sufficient condition
for robust ML estimation of the SF model is given by Proposition 1.

Proposition 1. Satisfaction of the inequality

9 R A oA
(ﬁlnfu.u(mh(o)u,-,o)\ <b, bl = . (7)
is a sufficient condition for the boundedness of the influence function.
A proof is shown in the Supplementary Materials (Online Appendices).

One could, in principle, check whether this inequality is satis-
fied on a case-by-case basis for each SF specification. A preferable
approach, which significantly simplifies the process of identifying
particular distributional assumptions consistent with robust ML es-
timation, is to derive some sufficient conditions for robust ML esti-
mation based directly on our underlying distributional assumptions
about the error components, v; and u;, embodied in the joint den-
sity. From Sklar's theorem, any joint density f, ,(v;, u;, ) can be
expressed in terms of the product of the marginal densities of the
two components and a copula density governing the dependency
between them. This leads us to Assumption 2.

Assumption 2. The marginal densities of v; and u; are known so
that, following Sklar’s theorem, we express their joint density in
terms of the products of their marginal densities and a copula den-
sity such that

fou(Vi, i, 0) = fy(vi, 0) fu (i, 0)cyu(F(vi, 0), Fy (uy, 6),0),
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where f, and F, are the marginal density and distribution functions
of v, fy and F, are the marginal density and distribution functions
of u;, and ¢y is the copula density.

We therefore derive sufficient conditions for robust ML estima-
tion in terms of properties of the marginal densities and the copula
density. As we do so, it will be useful to consider certain important
special cases. For instance, although various forms of dependence
between v; and u; have been considered - see e.g. Smith (2008),
El Mehdi & Hafner (1976), and Gémez-Déniz & Pérez-Rodriguez
(2015) - we typically assume independence. In this case, our suf-
ficient conditions simplify significantly so that they concern only
the marginal densities.

Assumption 3. The error components v; and u; are independent.
In terms of Assumption 2, the copula density is

Cv,u(Fv(Viv 0).E (u;,0), 0) =1.

Another special case is models in which satisfy
Assumption 4 below. This encompasses all cases in which the
inefficiency distribution comes from a one-parameter scale family
of distributions, and generalisations of these that possess the
‘scaling property’ — see Alvarez, Amsler, Orea, & Schmidt (2006).
This is an important case that applies to many of the simpler
inefficiency distributions found in the SF literature. We derive an
alternative set of sufficient conditions for these cases, which may
be easier to satisfy.

Assumption 4. h(f)uy; is drawn from a distribution with density
function

U;

1
h<o>f(h<o>)

where f is the density of u;.

0 fu(ui)
36 %

Finally, we consider alternative assumptions about the support
of h(@)u; € E.

Assumption 5. The support of the inefficiency term h(@)u; € E is
given by E = {u; e R : y; > 0}.

Assumption 6. The support of the inefficiency term h(@)u; € E is
given by E = {u; e R : 1(0) > u; > 0}.

Models with bounded inefficiency are discussed by Almanidis,
Qian, & Sickles (2014). We find that even when the bound is a
function of €, our general results can be applied, and we show
that bounding u; from above at some constant could help to sat-
isfy our sufficient conditions for robust ML estimation. These con-
ditions make use of the following propositions.

Proposition 2. Under Assumption 2, the logarithmic derivative of the
joint density f,, with respect to @ may be expressed

S0 fua(6+ h@u0) = in o6+, )

J ~
+ —In fu(u;, 9)
00
8 ~
+ —=Incu(F, F, 0).
a0

Under Assumption 3, this simplifies to

% in fua (4 + h@u, 0)

% In £, (& +h(@)u;. 9)

P “
+—In f, (u;, 0).
00
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Proposition 3. The logarithmic derivatives of f, and cy,,, with respect
to § are

S0 fo(8 -+ h(@u. B) = Dy n u(6 + hByu. 0)

d A d A
ﬁh (7] U — — 0
(ao @) 80g( ))
+Dy1In f, (& + h(@)u;. ),
% Incou(Fy. Fy. ) = Dy Incyu (B Fu. 0) £ (8 + h(@)u;. 9)
o 9 A
Al’ h is ﬁh i
x(f,,(s +hu (9)(80 )
0 ~
~- Zg)+D,F,
58®) +DoF,)

+ Dy Incyu (F,, Fy, O)D,F,
+ D3 In CU,U(FUv Fus é>,

where D; denotes the derivative of a function with respect to its jth
argument.

4.2. Conditions for robust maximum likelihood estimation of
stochastic frontier models

In this section, we consider conditions for robust ML estimation
of the SF model. These follow quite straightforwardly from the as-
sumptions and propositions in the previous subsection. Two sets
of conditions are given. Conditions 1a to 4a concern robustness
to contamination with respect to y; only, while Conditions 1b to
4b concern robustness to contamination with respect to both y;
and x;. The first set of conditions is therefore when considering x;
fixed, while the second set is relevant when considering sensitivity
not only simple outliers in y; but also to outliers in x;, i.e. leverage
points.

Within both sets, four alternative conditions are given. The first
and second conditions relate to the cases in which there is no up-
per bound on u;, and v; and u; are, respectively, dependent and in-
dependent. The third and fourth relate to the cases in which there
is an upper bound on u;, and v; and u; are, respectively, dependent
and independent.

We note that Conditions 2a, 4a, 2b, and 4b, which apply under
independence of v; and u;, are relatively simple, since we do not
need to consider the properties of the copula density as in Condi-
tions 1a, 3a, 1b, and 3b. Conditions 2a and 2b are of greatest in-
terest, given that the majority of specifications proposed in the SF
literature, and the vast majority of empirical applications, assume
independence of the error components and do not place an upper
bound on u;.

These conditions will generally be difficult to satisfy. However,
focusing on the most general case covered by Condition 1a, we
can see that the first inequality will be satisfied by any log-convex
noise density. Likewise, the third and fourth inequalities will be
satisfied if the noise and inefficiency densities are log-convex in
their parameters, and the fifth, seventh, and eight inequalities will
be satisfied if the copula density is log-convex in all of its ar-
guments. This leaves only the the second and sixth inequalities,
which are stronger. Subsequent discussion will focus on Conditions
1a to 4a, i.e. conditions for robustness to outliers in y;, though we
will return to the case of outliers in y; and «; in Section 4.3, when
discussing the robustness properties of models with Student’s t
distributed v;.
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Condition 1a. Under Assumptions 1, 2 and 5, a sufficient condition
for robustness of the ML estimator to contamination in y; is:
Dy In f, (& + h(@)u;, B)u;

=0,

Dy tn fy(& + h@)ui, 9)| < ox.

Datn fy(8+h@ui.8)| <br. | In fu(ws. )| <b.

Dy lncv,u(FmFuyé)) = 0, DilIncyy(E, Fi, é)ui) = 09,

D, lncv,u(Fu,Fu,é)’ < o0,
[b1||co + [1b2]]c0 + |1b3]]00 < o0

mmquaaﬁﬂsm

Condition 2a. Under Assumptions 1,2,3 and 5, a sufficient condi-
tion for robustness of the ML estimator to contamination in y; is:

<by,

Dy In fi (& + h(@)u, é)‘ < 00, ‘91 In f, (&-+h @y, 5)u,~‘ <o
D210 £ (5 + h@u; B)|
[1b1]]sc + [1b2]|o < o0.

& n fy (s 0)| < by

Condition 3a. Under Assumptions 1,2 and 6, a sufficient condition
for robustness of the ML estimator to contamination in y; is:

Dilnfy(&+ h@)u;.0) <o |DaIn fo(E + h@ui.0)| < by,
|41 fu(ui.9)| <ba.

Dy Incyou(Fy, o, é)) < oo,

’Dl Incyu(F, By, é)’ =< 00,

\mmqumaﬁﬂsm
1181 + |12l + |13 < 0.

Condition 4a. Under Assumptions 1,2,3 and 6, a sufficient condi-
tion for robustness of the ML estimator to contamination in y; is:

)Dl In f, (& + h(@)u, é)‘ < oo, ‘Dz In f, (& + h@)u;, é)’ < b,

[[B1]loc + [1b2]|o = 00.

)imeﬁkm,
a0

Condition 1b. Under Assumptions 1,2 and 5, a sufficient condition
for robustness of the ML estimator to contamination in y; and x;
is:

D110, (8 + h(@)u; 0) 242 | < by, D1 1n , (8@, | < oc.

D2 10, (8 + h(@)u. )| < b | &5in fu(wi.0)| < b,

20

D, lncv.u<Fv,Fu,é)\ < oo,

Dy Incyu(Fy, Fi, é)u,-’ < 00,

Dy Incyu(Fy, Fi, é)‘ =< 00,

DsIncyu(F, Fi, é)‘ < by,
[1b1]loc + |Ib2]loc + |1b3lcc + [1ball0 < o0.
Condition 2b. Under Assumptions 1,2,3 and 5, a sufficient condi-

tion for robustness of the ML estimator to contamination in y; and
X; is:

Dy In £, (&-+h(@)u;, ) E80 | < by,

D, lnf,,(é,»-i—h((;‘A)ui, 5)ui‘ < o0

D2 10, (8 + h(@)u. )| < b
1Bl + 1Bl + 1B < o0

| &5 in fu(us. 0] < b,

Condition 3b. Under Assumptions 1,2 and 6, a sufficient condition
for robustness of the ML estimator to contamination in y; and x;
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is:

D, 1nfv(é,-+h(é)u,-,é)%) <by,

%lnfu(uivé)‘ < bs, ‘Dl lncv,u(FvwFu’é)‘ < oo,

DyIncyu(F), Fi, é)‘ < o0, ‘DB Incyu(F. R, é)’ < by,

[1b1loc + [1b2]loe + [1b3]loc + [|a| |0 < 0.
Condition 4b. Under Assumptions 1,2,3 and 6, a sufficient condi-
tion for robustness of the ML estimator to contamination in y; and

X is:

DyIn f, (& + h@)u, a)a%")) < by,

Dyl fy(& -+ h(@)u;.0)| < b,

0 ~
\ﬁ lnfu<ui,o>\ <bs, 1151 [oo+| 1B |o-+] B3] | < 0.

In the SF literature, it is common to specify one or more of the
original parameters of the error distribution as a function of some
vector of covariates, z, and parameters #. It is useful to note that
this does not fundamentally affect the robustness properties of the
model, since for some parameter 6, (z, #)

dln fé‘ (81, 0) _ dIn fE (8i7 o(ziv 1’)) 89k(2i, 1})
o - 89]((21', 19) o ’

and 6, (z, ¥) and its derivative are constant with respect to &;, un-
less we are considering contamination with respect to z;.

Following the discussion and conditions above, log-convex dis-
tributions for noise and inefficiency, and log-convex copula den-
sities are a good place to look, since they are log-convex in their
location and scale parameters. This suggests the Student’s t distri-
bution and its Cauchy special case as candidate noise distributions.
In terms of inefficiency distributions, note that f;, has no scale pa-
rameter. This means that any inefficiency distribution which is log-
convex in its non-scale parameters can satisfy our conditions for
robust estimation. This is a useful result, since it encompasses any
one-parameter scale family, such as the half normal or exponential
distributions.

The online supplement to this paper explores the properties of
several candidate noise, inefficiency, and copula densities in detail.
These results reinforce our discussion here. We find that, of several
noise distributions considered, only the Student’s t and its Cauchy
special case satisfy our conditions. Note that the log derivative of
the Student’s t density with respect to its shape parameter does
not appear to be bounded. However, this can be remedied either
by fixing the shape parameter - treating it as a tuning parameter —
or placing some upper bound upon it. We also find that, aside from
one parameter scale families, none of the inefficiency distributions
proposed in the SF literature satisfy our condition, and nor do the
bivariate copula densities found in the literature.

To summarise, the majority of noise distributions found in the
literature are not compatible with our conditions for robust ML es-
timation, but the Student’s t and Cauchy distributions have good
robustness properties which mean that they can be paired with
any one-parameter scale family of distributions for inefficiency, un-
der the assumption of independence between v; and u;.

4.3. Robustness properties of the Student’s t model

Discussion in Section 4.2 and the online supplement suggests a
model with Student’s t distributed v;, paired with a one-parameter
scale family for u;, for robust ML estimation. It is worth exploring
the robustness properties of this estimator in more detail, since
its robustness properties appear particularly strong, not only com-
pared to ML estimation under other distributional assumptions

1D 1n (8 + h(@)u. )| < bz
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considered, but also compared to the quantile regression estima-
tor.

For the sake of simplicity, we consider a simple case in which
the frontier is linear in its parameters, v; is Student’s t distributed,
and h(é)ui is drawn from a one-parameter scale family. That is, we
begin with Assumptions 1,2, and 3, and additionally assume that

o= (p 6.). 8(x.0)=xp.
Ps 0
h(0) = 64, —In f,(u;)) =0,
00 J

Gy

where 0 denotes a vector of zeros, and that

In fy (yi — X} + 6uu;, 6y, o)

=1nF<a”+l) —1nI‘<
(Yi — XB + Guy;

2
1 1 ~
—ilnn — Elnoz,, —Inéy,
1+ — =
Oy

(g, J)

Note that, in line with the preceding discussion (see the online
supplement for further explanation) we are treating the degrees of
freedom parameter o, as a fixed tuning parameter, rather than es-
timating it via ML. Since we may disregard f;, the relevant deriva-
tives are

dln f,(y; — x;B + Gyl;, 6y, @)

%y
2

_av—i-l 1

Yi— X;ﬂ + 6'“111'

A =(ty+1)— = i»
2B 0(1/01;+(yx'—x;ﬁ+0'uui)2
OInfuyi X+ 6.6 0) 1 e+l Gi- X+ Gw)’
06y Oy ov w6y + (¥; — X;ﬂ + Gyu;)?
dln i~ XB+ 6uui 6y, 0t i~ XB+ 6
foyi :{’ﬂA ulli, Oy )=*(0lv+1) AYI ,B Aui i
Ou a0y + (yf—xéﬂ+UUUf)2

which are all bounded so long as oy < oo, 6y > 0. From Condi-
tion 2a, ML estimation under these assumptions is robust. What
is notable about this case is that the estimator is robust not only
to contamination in y;, treating x; as fixed, but also when we allow
for contamination in both y; and x;. In other words, the estimator
is robust not only to outliers, but also to leverage points.

This contrasts with ML estimation under standard distribu-
tional assumptions, which is robust to neither outliers nor leverage
points, but also with the quantile regression estimator, which is ro-
bust to outliers but not to leverage points - see Stead et al. (Forth-
coming) for a discussion of the influence function of the quantile
regression estimator and its robustness properties generally in an
SF context.

A corollary of this is that the Student’s t model, estimated via
ML, has a breakdown point greater than 1/n; since the influence
function is bounded, it would take more than a single contami-
nating observation to force the estimator to take on arbitrary val-
ues. This is true whether we are considering the conditional or
finite sample breakdown point, which considers only contamina-
tion in y;, or the unconditional or ordinary breakdown point which
also considers contamination in x;. This compares favourably with
the quantile regression estimator, which has also has a finite sam-
ple breakdown point greater than 1/n, but an ordinary breakdown
point of 1/n. A more in-depth investigation of the breakdown
points of the estimator is beyond the scope of this paper - see
again Stead et al. (Forthcoming) for further discussion is the con-
text of SF modelling.

5. Empirical application

In this section, we provide a simple empirical application
whereby we estimate cross-sectional SF models under several dif-
ferent distributional assumptions and compare the influence of the



A.D. Stead, P. Wheat and W.H. Greene

Table 1
Parameter estimates.
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u; ~ N+ (0, 02) u; ~ Exponential (0, o)
(1) (2) (3) (4) (5) (6)
B1 (Ing) 0.966*** 0.961*** 0.959*** 0.966*** 0.962*** 0.961***
(0.013)  (0.008)  (0.011)  (0.012)  (0.011)  (0.012)
Ba (lnzq) 0.030*** 0.027*** 0.027*** 0.029*** 0.027*** 0.028***
(0.003)  (0.002)  (0.003)  (0.003)  (0.002)  (0.002)
B3 (Inw) 0.261*** 0.321%** 0.324+** 0.270%** 0.343*** 0.324***
(0.066)  (0.039)  (0.061)  (0.063)  (0.065)  (0.067)
B4 (Inr) 0.055 0.024 0.036 0.033 0.037 0.034
(0.062)  (0.046)  (0.053)  (0.059)  (0.053)  (0.053)
Bo 3.735%** 3.714%** 3.749%** 3.764*** 3.756%** 3.766***
(0.035)  (0.014)  (0.047)  (0.020)  (0.017)  (0.033)
oy 0.109 0.023 0.072 0.104 0.037 0.077
(0.023)  (0.007)  (0.030)  (0.014)  (0.010)  (0.017)
oy 0.149 0.178 0.130 0.097 0.101 0.094
(0.049)  (0.013)  (0.062)  (0.022)  (0.016)  (0.042)
a o) 1.000 2.695 00 1.000 3.557
, , (1.231) - - (2.220)

Standard errors in parentheses N.B. where a — oo, v; ~ N(0,6?) and where a = 1,v; ~
Cauchy(0, 0y). In these models, a is fixed * p < 0.10, ** p < 0.05, *** p < 0.01

observations on various model parameters. We use the dataset of
Christensen & Greene (1976) on the costs, output, and input prices
of a cross-section of US electricity generating firms in 1970. We es-
timate a generalised Cobb-Douglas stochastic cost frontier specified
as follows:

In (g) = fo+BiIng;+ B2 In* gi + f31n (%)
; 1
Ti

+,341n(e

)+vi+ui, u; >0,

1

where ¢; is total cost, g; is output in millions of kilowatt-hours gen-
erated, w; is the price of labour, r; is the price of capital, and e; is
the price of fuel. The cost and input price variables have all been
divided through by the fuel price in order to impose linear homo-
geneity of degree one in input prices, and the output variable has
been normalised by the sample mean for ease of interpretation of
the first-order coefficient. We have opted for a relatively simple
functional form, as opposed to the translog specification used by
Christensen & Greene (1976), in order to keep the number of fron-
tier parameters manageable given the focus here on comparing in-
fluence on parameter estimates between error specifications.

Our models differ only in their assumptions about the distribu-
tions of v; and u;. Models 1-3 assume that u; follows a half normal
distribution, while Models 4-6 assume an exponential distribution
for u;. Models 1 and 4 assume that v; is normally distributed, Mod-
els 2 and 5 assume that v; follows a Cauchy distribution, and Mod-
els 3 and 6 assume that v; follows a Student’s t distribution.

The models we estimate differ with respect to their robustness
properties. To simplify matters, all of our models assume that v;
and u; are independently distributed. Both of our assumed distri-
butions for u;, half normal and exponential, belong to the class of
one-parameter scale families. However, the normal distribution for
v; assumed in Models 1 and 4 does not satisfy our conditions for
ML estimation. Nor does the Student’s t distribution for v; assumed
for Models 3 and 6, since we estimate the degrees of freedom pa-
rameter rather than treat it as a fixed tuning parameter. Models 2
and 5 assume Cauchy distributed v;; that is, a Student’s t distribu-
tion with degrees of freedom fixed at 1. Following the discussion
in Section 4, we therefore expect that parameter estimates and ef-
ficiency predictions from Models (2) and (5) to display less sensi-
tivity to individual observations than those from Models (1), (3),
(4), and (6).

Models 1 and 4 were estimated via ML. Models 2, 3, 5, and 6
were estimated via maximum simulated likelihood using 250 Hal-
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ton draws per observation to approximate the integral in Eq. (5).
Parameter estimates and standard errors are shown in Table 1. The
estimated frontier parameters are broadly comparable across all six
error specifications. The most significant differences can be seen in
the estimated parameters of the error distributions. This is highly
significant in SF modelling, since the estimated error distributions
are critical to efficiency prediction. Across Models 1 to 3, we can
obtain an estimate of mean cost efficiency via

E(exp(-u;)) = exp (67“2) (1 - erf(%)),
u~N*(0,62),

B(exp(-u) = .
u

u ~ Exponential (0, 6,),

and significant differences in the estimates parameters of the in-
efficiency distribution can therefore lead to significantly varying
pictures of mean cost efficiency. When considering observation-
specific efficiency, predicted using ]E(exp(—uj)|8i), our assump-
tions about the distribution of v; and our estimates of 6, have
a significant impact, especially for large values of |§;|, as shown
by Stead et al. (2018) and Wheat et al. (2019) who compare effi-
ciency predictions from the normal-half normal model with those
from logistic-half normal and Student’s t-half normal models, re-
spectively.

5.1. Calculating influence functions for parameter estimates

For each model, we evaluate the influence function for each ob-
servation. As can be seen from Eq. (4), this involves evaluation of
the Fisher information matrix. For the models in question, many of
the expectations involved will lack convenient analytical solutions.
One possible approach would be to use simulation. Instead, in or-
der to simplify the problem, we use the observed information ma-
trix; i.e., the negative of the Hessian. This is a consistent estimator
of the Fisher information matrix, and is easy to obtain following
model estimation. The vectors of derivatives of the log-likelihood
functions with respect to their parameter vectors are likewise eas-
ily obtained; for convenience’s sake, we use numerical rather than
analytical derivatives.

Figs. 1, 2, 3, 4 compare the influences of observations on the
various model parameters between models. Note that, since the
models include several covariates, there is no straightforward re-
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Model (1) (Normal-half normal)
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Model (2) (Cauchy-half normal)

Model (3) (Student's t-half normal)
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Fig. 1. Influence on Bg.

lationship between influence and any one of the covariates. We
therefore plot influence on the vertical axes against residual val-
ues on the horizontal while varying the darkness of the markers
according to the absolute value of the leverage of the observation
in question - i.e. the influence of observations on their own fitted
values of the dependent variable.

Fig. 1 compares the influences of observations on the estimated
intercept in the cost frontier. Except for the normal-half normal
case, a relatively clear relationship can be seen between influence
and the value of the residual. Around the centre of the distribution
of &;, we can see in each case a positive relationship between the
value of the residual and influence, whereas in the tails the picture
is more complicated. It is immediately noticeable that influence
on the estimated intercept is generally lower in the models with
Cauchy distributed v;. Comparison of the normal and student’s t
models is less straightforward; the most extreme values are in fact
found in the Student’s t models, but this seems to be offset by the
relatively large influence of observations in the centre of the dis-
tribution.

Our main interest here is in the influence of observations on
the estimated parameters of the distributions of v; and u;, given
that these appear in Table 1 to be the most sensitive to changes in
our distributional assumptions, and the fact that they are crucial
to the estimation of mean cost efficiency and for the prediction of
firm-specific efficiencies. Figs. 2 and 3 compare the influences of
observations on &, and 6,. It should be noted that the scale pa-
rameter oy, is not directly comparable across specifications; when
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v; is normally distributed, oy is the standard deviation, whereas
for the Cauchy distribution this is undefined, and when v; has a
Student’s t distribution, the standard deviation is o,/ /(0 — 1).
However, we can see that observations appear to be generally more
influential in the the normal models than in the Cauchy models.
The results for the Student’s t models are interesting in that they
suggest that observations become more influential as |&;| increases,
but only to a point. For the most extreme values of |&;|, influence
appears to be declining in magnitude.

Finally, Fig. 4 compares influence on &, - the degrees of free-
dom or shape parameter of the Student’s t distribution — when
u; is assumed to follow half normal and exponential distributions.
This figure is of less direct interest, given that we expect neither
Model 3 nor Model 6 to be robust to outliers. Most outlying ob-
servations appear to exert a positive influence, which is intuitive
given that this parameter governs the heaviness of the tails of
the noise distribution; note that &, is higher in the Student’s t-
exponential model than in the Student’s t-half normal model. It is
interesting to note that parameter seems much more sensitive in
the exponential case; contrast this with the sensitivity of &, be-
tween the two models - it appears that the scale parameter of the
noise distribution is more sensitive to outliers in Model (3) than
in Model (6), while the reverse is true with respect to the shape
parameter.

Overall, the Cauchy and Student’s t models do appear to differ
substantially from the normal models in terms of the influence of
observations on parameter estimates. The overall picture is that the
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Model (1) (Normal-half normal)

Model (2) (Cauchy-half normal)
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Model (3) (Student's t-half normal)
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Fig. 2. Influence on &,.

influence of observations in the shoulders of the distribution of |£;]
relative to the influence of observations in the tails is higher than
in the normal models. There is some indication also of the magni-
tude of influence diminishing for the most extreme values of |£;|.
Differences in influence on the estimated coefficients on the co-
variates in the frontier are relatively hard to discern. However, for
the estimated frontier intercept and the parameters of the noise
and inefficiency distributions, it is noticeable that the relationship
between influence and the value of &; appears to be much clearer
in the Student’s t and Cauchy cases than in the normal case. This
is linked to the fact that the leverage of observations is generally
lower in magnitude in these models.

5.2. Calculating influence on efficiency predictions

We now consider the influence of observations on predicted
efficiency scores. As discussed in Section 1, efficiency predic-
tion is based on the conditional distribution of efficiency. Follow-
ing Battese & Coelli (1988) we use the conditional expectation
E(exp(—ui)|8i). In practice, since # is unknown, we use the plug-
in predictor

o 1 R ” o
B(exp(-u)[&) = — - [ exp(-u) fou(8i + h(@yuy. O)dnu)
fe(é:,0) JE
which is a statistical functional for which we can derive an influ-
ence function. Rather than derive the influence function directly,
it is easier in cases such as this to exploit the fact that influence

functions are derivatives (specifically, limiting cases of Gateaux
derivatives), and that we may apply an influence function chain rule
to derive influence of observation j on the efficiency prediction for
firm i as

IE(exp(—u;) |&)

a

IF(yj,xj,IE(exp(—u,-) IF(yj,xj,é). (8)

§)) =

It is clear from Eq. (8) that if our parameter estimates are non-
robust, our efficiency predictions will also be non-robust and
hence sensitive to outliers in the data. On the other hand, a robust
estimator implies robust efficiency prediction. We therefore expect
that our efficiency predictions from Models (2) and (5) should dis-
play less sensitivity to contaminating outliers than our efficiency
predictions from other specifications.

In principle, we are interested in calculating Eq. (8) across all i
and all j. If we define

(IF(y1, %1, 0)Y

IF(y,X,0) = (IF(.Vi»'Xi’é)), ’

(IF(y1, %1, 0))
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E(GXD(—U1)|51)
E(exp(-u)|é) = E(exp(‘—ui)|§,-) ,

E(exp(-u)|é)

then we may define an I x I matrix of influences of observations
on efficiency predictions

IF(y. X.E(exp(-w)|é)) = E(e)q)a(‘;u)lé)(ﬂ-'(y,X, by,

of which the element belonging to column i and row j is the in-
fluence of observation j on the efficiency prediction for firm i, as
given by Eq. (8). As with our calculation of the influence function
for the parameter vector, we use numerical derivatives of the effi-
ciency predictors in practice for convenience’s sake. Rather than
present the full 123 x 123 matrices for each of our models, we
limit our attention to the observations with the greatest influence
on predicted efficiency scores.

Fig. 5 plots influence on predicted efficiency against predicted
efficiency for Models (1)-(3) (i.e. models in which u; ~ N*(0, 02)).
Each plot corresponds to a specific observation, and shows the
influence of that observation on the efficiency predictions for
all 123 observations. The six most influential observations, de-
fined in terms of the range of influences, are shown. We can see

198

that these observations have a substantial impact on many effi-
ciency predictions from Models (1) and (3). Efficiency predictions
from Model (2) appear to be much less sensitive, with observa-
tions having no material impact on efficiency scores for the most
part.

Fig. 6 plots influence on predicted efficiency against predicted
efficiency for Models (4)-(6) (in which u; ~ Exponential(0, oy)).
Here the picture is somewhat different, with the highest influence
seen in Model (6). However the general picture remains that the
observations do not have a material impact on efficiency scores
from Model (5) in which v; ~ Cauchy(0, oy), with the exception of
one observation shown in the bottom left plot.

Overall, the influences of observations on efficiency predictions
are in line with our expectation that efficiency predictions from
Models (2) and (5) ought to be less sensitive than those from Mod-
els (1), (3), (4), and (6), given the robustness of the parameter
estimates in the former cases. This demonstrates the practical im-
portance of outlier robustness in SF modelling. When parame-
ter estimation is not robust, the most influential observations are
shown in this case to influence some efficiency predictions by
five to ten percentage points in either direction. Furthermore, it
is clear that the lowest efficiency predictions tend to be the most
heavily influenced. From a regulatory or managerial benchmarking
perspective, this sensitivity is clearly not ideal. Our findings sug-
gest that robust alternatives, such as the Student’s t model with
fixed degrees of freedom, considerably reduce the sensitivity of ef-
ficiency predictions to outliers.
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6. Discussion and conclusions

For managers or regulators applying efficiency analysis tech-
niques to benchmark firms or other decision making units, ro-
bustness of efficiency scores to changes in the data is desirable.
However, the estimation of standard stochastic frontier models via
maximum likelihood is known to be potentially very sensitive to
even small changes in the sample. This in turn means that effi-
ciency predictions derived from standard SF models estimated in
this way are not robust to outliers and other contaminating obser-
vations in the data.

Robustness has received increased attention in the stochastic
frontier literature in recent years. Alternative distributional as-
sumptions and estimation methods aimed at robustification have
been put forward, but without a direct examination of the robust-
ness properties of either these alternatives or existing models and
methods. We fill this gap by considering the robustness of maxi-
mum likelihood estimation of stochastic frontier models in terms
of the behaviour of the influence function, and deriving conditions
under which maximum likelihood estimation can be considered
robust. We derive sufficient conditions for robust maximum like-
lihood estimation of the stochastic frontier model based on rela-
tively simple and easily checked properties of the marginal densi-
ties of the error components and, in the case of dependence, the
copula density. This provides a convenient method of checking the
robustness properties of various specifications without the need to
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consider each set of distributional assumptions on a case-by-case
basis.

We find that most of the canonical distributional assumptions -
e.g. normally distributed noise - and recently proposed ‘robust’ al-
ternatives do not satisfy our conditions for robust maximum likeli-
hood estimation. However, the Student’s t distribution satisfies our
conditions, subject to some innocuous upper bound being placed
on the degrees of freedom parameter, and has a particularly at-
tractive property such that it can be paired with a broad class of
inefficiency distributions - including any one parameter scale fam-
ily such as the half normal or exponential distributions - under
independence, and maximum likelihood estimation will remain ro-
bust. Finding more flexible inefficiency distributions, or allowing
for dependence between error terms, in such a way that our con-
ditions for robust maximum likelihood estimation are satisfied is
more challenging.

The use of a Student’s t distribution for noise is therefore
a viable approach to robust maximum likelihood estimation of
stochastic frontier models in many cases. This proposal has other
attractive features. Since the model with normally distributed
noise is recovered as the degrees of freedom parameter increases,
testing against the standard model is possible (Wheat et al., 2019).
Relative to alternative approaches of modifying the loss function,
we are able to retain the simplicity and attractive properties of
maximum likelihood estimation, and avoid loss of efficiency in es-
timation and the need to specify a tuning parameter governing the
trade-off between robustness and efficiency that comes with such
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approaches. Alternatively, if we believe that the ‘true’ model be-
fore contamination by outliers has normally distributed noise, we
can view the Student’s t model as a pseudo-maximum likelihood
estimator, analogous to changing the loss function, where the de-
grees of freedom parameter controls the trade-off between robust-
ness and efficiency (see Stead et al. (Forthcoming) for further dis-
cussion). Wheat et al. (2019) provide simulation evidence that the
model performs well in terms of recovering the standard model
when the data generating process involves normally distributed
noise.

We demonstrate the calculation of influence functions in an
empirical application, and derive expressions for influence on ef-
ficiency predictions. Evidence from our empirical application ap-
pears to confirm that the parameter estimates and efficiency pre-
dictions from robust specifications are significantly less sensitive
to individual observations than those from non-robust specifica-
tions. These findings are therefore of practical value to applied
researchers, managers, regulators, and others who are concerned
with the robust efficiency prediction.

Several possible avenues for future research are apparent. The
identification of additional marginal and copula densities consis-
tent with our conditions for robust maximum likelihood estima-
tion, particularly copulas that allow for stronger dependence than
the Farlie-Gumbel-Morgenstern - the Student’s t copula may be a
natural candidate - and extension to a panel data setting would be
of interest. As noted in Section 2, an analysis of the resistance and
breakdown points of stochastic frontier models along similar lines
would also add to our understanding of the impact of outliers.
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Supplementary material

Appendices: Appendices containing discussion of the properties
of particular distributions, and proofs of results. (.pdf file)
Replication materials: This Stata.do file? loads the Christensen
and Greene (1976) data and the rfrontier (version 1.1.0) pack-
age?, and uses these to replicate the analysis in Section 5,

reproducing Table 1 and Figs. 1-6.

Supplementary material associated with this article can be found,
in the online version, at doi:10.1016/j.ejor.2022.12.033.
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