On graph products of monoids ${ }^{\omega \tau}$

Yang Dandan ${ }^{\text {a }}$, Victoria Gould ${ }^{\text {b,* }}$
${ }^{a}$ School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China
${ }^{\text {b }}$ Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK

A R T I C L E I N F O

Article history:

Received 12 August 2021
Available online 30 December 2022
Communicated by Volodymyr
Mazorchuk

MSC:

primary 20M05, 20M10
secondary 20 F 05

Keywords:

Monoid
Graph product
Regularity
Abundancy

Abstract

Graph products of monoids provide a common framework for direct and free products, and graph monoids (also known as free partially commutative monoids). If the monoids in question are groups then any graph product is a group. For monoids that are not groups, regularity is perhaps the first and most important algebraic property that one considers: however, graph products of regular monoids are not in general regular. We show that a graph product of regular monoids satisfies the related, but weaker, condition of being abundant. More generally, we show that the classes of left abundant and left Fountain monoids are closed under graph product. As a very special case we obtain the earlier result of Fountain and Kambites that the graph product of right cancellative monoids is right cancellative. To achieve our aims we show that elements in (arbitrary) graph products have a unique Foata normal form, and give some useful reduction results; these may equally well be applied to groups as to the broader case of monoids.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

[^0]
1. Introduction

Graph products arise from many sources and provide an important and wide ranging construction. They are defined by presentations, where the edges of a simple, non-directed graph determine commutativity of elements associated with the vertices. Further details are given in Section 2. Graph products of monoids are defined in the same way as graph products of groups, a notion introduced by Green in her thesis [25], and generalise at one and the same time free products, restricted direct products, free (commutative) monoids and graph monoids ${ }^{1}$. The latter are graph products of free monogenic monoids, and were introduced by Cartier and Foata [6] to study combinatorial problems for rearrangements of words; they have been extensively studied by mathematicians and computer scientists, having applications to the study of concurrent processes [12,13]. Graph monoids are also known as free partially commutative monoids, right-angle Artin monoids and trace monoids (sometimes with the condition the underlying graph is finite); corresponding terminology applies in the case for groups. Graph groups were first defined by Baudisch [4]; for a recent survey see [16] and for the analogous notion for inverse semigroups see [10,14].

Although mentioned in [25] and in other earlier works focussing on groups, graph products of monoids per se were first defined in [8], and have subsequently been studied in various contexts, e.g. [8,19]. Much of the existing work in graph products of monoids, and groups, has been to show that various properties are preserved under graph product, see e.g. [28,15,9,32]. These properties are often of algorithmic type, for example, automaticity [28,9]. In a different direction, articles such as [2,3,24] consider algebraic conditions. Of particular interest to us here is that Fountain and Kambites [24] show that a graph product of right cancellative monoids is right cancellative.

A monoid M is regular if for any $a \in M$ there is a $b \in M$ such that $a=a b a$; note that $a b, b a$ are, respectively, idempotent left and right identities for a. From an algebraic point of view, regularity is often the first property to look for in a monoid. Yet, it is easy to see that only in very special cases will a graph product of regular monoids be regular.

The aim of this paper is easy to state. We consider two properties that each provide a natural weakening of regularity, and show that the classes of monoids satisfying these properties are closed under graph product. In general, the properties we consider provide the natural framework to study classes of monoids that need not be regular, but which have behaviour strongly influenced by idempotent elements. We first prove:

Theorem 5.22. The graph product of left abundant monoids is left abundant.
A monoid M is left abundant if every principal left ideal is projective (so that sometimes a left abundant monoid is called left PP [20]). This property may handily be

[^1]expressed by saying that every \mathcal{R}^{*}-class of M contains an idempotent. We define the relation \mathcal{R}^{*} in Section 2 ; it suffices to say here that \mathcal{R}^{*} contains Green's relation \mathcal{R}, whence it follows immediately that regular semigroups are left abundant. We note that a monoid is a single \mathcal{R}^{*}-class if and only if it is right cancellative. Certainly then such monoids are abundant. The above mentioned result of [24] easily follows.

Corollary 7.1. [24, Theorem 1.5] The graph product of right cancellative monoids is right cancellative.

Our second main result is:

Theorem 6.10. The graph product of left Fountain monoids is left Fountain.
One way to define a left Fountain (also known as weakly left abundant, or left semiabundant) monoid M is to say that every $\widetilde{\mathcal{R}}$-class of M must contain an idempotent; we give further details in Section 2. Here $\widetilde{\mathcal{R}}$ is a relation containing \mathcal{R}^{*}, whence it is clear that left abundant monoids are left Fountain. As for left abundancy, there is a natural approach to left Fountainicity using principal one-sided ideals. Again as for left abundancy, such semigroups arise independently from a number of sources. They (and their two-sided versions) appear in the work of de Barros [11], in that of Ehresmann on certain small ordered categories [17] and in the thesis of El Qallali [18]. A systematic study of such semigroups was initiated by Lawson, who establishes in [33] the connection with Ehresmann's work. A useful source for the genesis of these ideas is Holling's survey [29]. We note here that the class of left Fountain monoids contains a number of important subclasses: we have mentioned left abundant, but we also have left ample and left restriction [29]. The study of left abundant monoids, left Fountain monoids, their two-sided versions, and monoids in related classes, continues to provide one focus in algebraic semigroup theory. Some results show similarities with the structure of regular and inverse monoids [26,23], whereas others illustrate significantly different behaviour [31,37,5].

In order to prove Theorems 5.22 and 6.10 we have considerable work to do to get a grip on normal forms of elements of graph products. Essentially, the difficulty in the transition from graph monoids to graph products of monoids lies in the fact that for the broader concept the group of units of the monoids in question need not be trivial. Some of our techniques and results concerning normal forms and reduction of products of words may be of independent interest. In particular, in Proposition 3.18, we establish that elements in graph products of monoids have a left Foata normal; previously this was an important tool in the study of graph monoids, and the same holds here.

The structure of this paper is as follows. In Section 2 we give the necessary definitions and gather together the results we need from the literature. In Section 3 we begin our analysis of the form of words, and how these behave with respect to products. We establish the left Foata normal form for elements of graph products, not relying on any
assumption of cancellativity. In the next two sections we build a suite of techniques that allow us to simplify the words we need to consider when determining the relation \mathcal{R}^{*}, these then enable us eventually to prove Theorem 5.22. In Section 6 we use the earlier techniques, together with a further analysis of words, to establish Theorem 6.10. There is a corresponding notion of graph product for semigroups; the behaviour of the resulting semigroup is similar to that of a graph monoid and hence sheds some of the technical difficulties we encounter in graph products of monoids. We apply our results to the semigroup case in Section 7, and mention a number of other applications. We finish with some open questions.

2. Preliminaries

We outline the notions required to read this article. For further details, we recommend the classic texts [7] and [30].

2.1. Presentations and graph products of monoids

We begin with an account of the notion on which this article is based: that of graph product of monoids. They are determined by monoid presentations. Let X be a set. The free monoid X^{*} on X consists of all words over X with operation of juxtaposition. We denote a non-empty word by $x_{1} \circ \cdots \circ x_{n}$ where $x_{i} \in X$ for $1 \leq i \leq n$; we also use \circ for juxtaposition of words. The empty word is denoted by ϵ and is the identity of X^{*}. Throughout, our convention is that if we say $x_{1} \circ \cdots \circ x_{n} \in X^{*}$, then we mean that $x_{i} \in X$ for all $1 \leq i \leq n$, unless we explicitly say otherwise. We write $|x|$ for the length of a word $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ and denote by x^{r} the word $x_{n} \circ \cdots \circ x_{1} \in X^{*}$.

A monoid presentation $\langle X \mid R\rangle$, where X is a set and $R \subseteq X^{*} \times X^{*}$, determines the monoid X^{*} / R^{\sharp}, where R^{\sharp} is the congruence on X^{*} generated by R. In the usual way, we identify $(u, v) \in R$ with the formal equality $u=v$ in a presentation $\langle X \mid R\rangle$.

We now define graph products of monoids $[25,8]$. Let $\Gamma=\Gamma(V, E)$ be a simple, undirected, graph with no loops. Here V is a non-empty set of vertices and $E \subseteq V_{2}$ is the set of edges of Γ, where V_{2} is the set of 2-element subsets of V. We think of $\{\alpha, \beta\} \in E$ as joining the vertices $\alpha, \beta \in V$. For notational reasons we denote an edge $\{\alpha, \beta\}$ as (α, β) or (β, α); since our graph is undirected we are identifying (α, β) with (β, α).

Definition 2.1. Let $\Gamma=\Gamma(V, E)$ be a graph and let $\mathcal{M}=\left\{M_{\alpha}: \alpha \in V\right\}$ be a set of mutually disjoint monoids. We write 1_{α} for the identity of M_{α} and put $I=\left\{1_{\alpha}: \alpha \in V\right\}$. The graph product $\mathscr{G} \mathscr{P}=\mathscr{G} \mathscr{P}(\Gamma, \mathcal{M})$ of \mathcal{M} with respect to Γ is the monoid defined by the presentation

$$
\mathscr{G} \mathscr{P}=\langle X \mid R\rangle
$$

where $X=\bigcup_{\alpha \in V} M_{\alpha}$ and $R=R_{i d} \cup R_{v} \cup R_{e}$ are given by:

$$
\begin{aligned}
R_{i d} & =\left\{1_{\alpha}=\epsilon: \alpha \in V\right\} \\
R_{v} & =\left\{x \circ y=x y: x, y \in M_{\alpha}, \alpha \in V\right\} \\
R_{e} & \left.=\left\{x \circ y=y \circ x: x \in M_{\alpha}, y \in M_{\beta},(\alpha, \beta) \in E\right)\right\}
\end{aligned}
$$

The monoids M_{α} in Definition 2.1 are known as vertex monoids. Throughout we assume $|V| \geq 2$, as otherwise $\mathscr{G} \mathscr{P}$ is isomorphic to the single vertex monoid. We denote the R^{\sharp}-class of $w \in X^{*}$ in $\mathscr{G} \mathscr{P}$ by [w]. It is worth noting that there are various different ways to set up graph products, which all yield equivalent constructions. In particular, if one starts with monoids that are groups, the process above yields the graph product of groups.

The main focus of this article is on monoids, although we briefly visit graph products of semigroups in Section 7. Free products of semigroups, and a discussion of their universal properties, may be found in $[7,30]$. Free products of monoids may be viewed as a special case of an amalgamated free product of semigroups; this is commented on explicitly in [30, p. 266]. Here we remark that a free product of monoids is a graph product for a graph $\Gamma(V, \emptyset)$.

We now touch on the other extreme where $E=V_{2}$. Let $\mathcal{M}=\left\{M_{\alpha}: \alpha \in V\right\}$ be as above. The restricted direct product (or direct sum) $\oplus_{\alpha \in V} M_{\alpha}$ of \mathcal{M} is defined by

$$
\oplus_{\alpha \in V} M_{\alpha}=\left\{f \in \Pi_{\alpha \in V} M_{\alpha}: \alpha f \neq 1_{v} \text { for only finitely many } v \in V\right\}
$$

Clearly $\oplus_{\alpha \in V} M_{\alpha}$ is a submonoid of $\Pi_{\alpha \in V} M_{\alpha}$ and $\oplus_{\alpha \in V} M_{\alpha}=\Pi_{\alpha \in V} M_{\alpha}$ if and only if V is finite. It is easy to see that a restricted direct product of monoids is a graph product for a graph $\Gamma\left(V, V_{2}\right)$.

Graph products of monoids behave beautifully with respect to certain substructures, as we now demonstrate. To do so we need some terminology.

Definition 2.2. Let $\mathscr{G} \mathscr{P}=\mathscr{G} \mathscr{P}(\Gamma, \mathcal{M})$. Let $s: X \rightarrow V$ be a map defined by $s(a)=\alpha$ if $a \in M_{\alpha}$. The support $s(x)$ of $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ is defined by

$$
s(x)=\left\{s\left(x_{i}\right): 1 \leq i \leq n\right\} .
$$

In particular, $s(\epsilon)=\emptyset$.

Notice that when $s(x)$ is a singleton, we simply drop braces around it. Below we use [,] for the equivalence class of a word under two different relations, so the reader should bear in mind the context in each case.

Proposition 2.3. Let $V^{\prime} \subseteq V$ and let $\Gamma^{\prime}=\Gamma\left(V^{\prime}, E^{\prime}\right)$ be the resulting full subgraph of Γ. Let $\mathscr{G} \mathscr{P}^{\prime}$ be the corresponding graph product of the monoids $\mathcal{M}^{\prime}=\left\{M_{\alpha}: \alpha \in V^{\prime}\right\}$. Then $\mathscr{G} \mathscr{P}^{\prime}$ is a retract of $\mathscr{G} \mathscr{P}$.

Proof. Let $\eta:=\eta_{V, V^{\prime}}: X^{*} \rightarrow \mathscr{G} \mathscr{P}^{\prime}$ be the morphism extending the map defined on X by

$$
x \eta= \begin{cases}{[x]} & s(x) \in V^{\prime} \\ {[\epsilon]} & \text { else }\end{cases}
$$

We show that $R^{\sharp} \subseteq \operatorname{ker} \eta$.
First, for any $\alpha \in V$, whether or not $\alpha \in V^{\prime}$, we have $1_{\alpha} \eta=[\epsilon]=\epsilon \eta$ so that $R_{i d} \subseteq$ ker η.

To see that $R_{v} \subseteq \operatorname{ker} \eta$, let $\alpha \in V$ and let $u, v \in M_{\alpha}$. If $\alpha \notin V^{\prime}$, then

$$
(u \circ v) \eta=(u \eta)(v \eta)=[\epsilon][\epsilon]=[\epsilon]=(u v) \eta .
$$

If $\alpha \in V^{\prime}$, then

$$
(u \circ v) \eta=(u \eta)(v \eta)=[u][v]=[u \circ v]=[u v]=(u v) \eta .
$$

Now consider $u \in M_{\alpha}, v \in M_{\beta}$ with $(\alpha, \beta) \in E$. If neither α nor β is in V^{\prime}, then

$$
(u \circ v) \eta=(u \eta)(v \eta)=[\epsilon][\epsilon]=(v \eta)(u \eta)=(v \circ u) \eta .
$$

If $\alpha, \beta \in V^{\prime}$ with $(\alpha, \beta) \in E$, then, as Γ^{\prime} is a full subgraph of Γ, we have $(\alpha, \beta) \in E^{\prime}$, so that

$$
(u \circ v) \eta=(u \eta)(v \eta)=[u][v]=[u \circ v]=[v \circ u]=[v][u]=(v \eta)(u \eta)=(v \circ u) \eta .
$$

If $\alpha \in V^{\prime}$ but $\beta \notin V^{\prime}$ then

$$
(u \circ v) \eta=(u \eta)(v \eta)=[u][\epsilon]=[\epsilon][u]=(v \eta)(u \eta)=(v \circ u) \eta
$$

and dually if $\alpha \notin V^{\prime}$ but $\beta \in V^{\prime}$. Thus $R_{e} \subseteq \operatorname{ker} \eta$.
It follows that $R^{\sharp} \subseteq \operatorname{ker} \eta$ and so $\bar{\eta}:=\bar{\eta}_{V, V^{\prime}}: \mathscr{G} \mathscr{P} \rightarrow \mathscr{G} \mathscr{P}^{\prime}$ given by $[w] \bar{\eta}=w \eta$ is a well defined morphism.

It is easy to see that $\iota:=\iota_{V^{\prime}, V}: \mathscr{G} \mathscr{P}^{\prime} \rightarrow \mathscr{G} \mathscr{P}$ such that $[w] \iota=[w]$ is well defined, and by considering $\iota \eta$ it is clear that ι is an embedding. It is then immediate that $\eta \iota$ is a retraction of $\mathscr{G} \mathscr{P}$ onto a submonoid $\mathscr{G} \mathscr{P}^{\prime} \iota$.

We identify $\mathscr{G} \mathscr{P}^{\prime}$ with its image under ι and regard $\mathscr{G} \mathscr{P}^{\prime}$ as a submonoid of $\mathscr{G} \mathscr{P}$.

Remark 2.4. Let $\alpha \in V$. By taking $V^{\prime}=\{\alpha\}$ in Proposition 2.3, we immediately see that M_{α} is naturally embedded in $\mathscr{G} \mathscr{P}$ via $\iota_{\alpha}: M_{\alpha} \rightarrow \mathscr{G} \mathscr{P}$, where for $x \in M_{\alpha}$ we have $x \iota_{\alpha}=[x]$.

Proposition 2.5. A graph product $\mathscr{G} \mathscr{P}=\mathscr{G} \mathscr{P}(\Gamma, \mathcal{M})$ is a direct limit of the graph products corresponding to the finite full subgraphs of Γ.

Proof. The finite full subgraphs of Γ are partially ordered by inclusion, and form a directed set under union. It is routine to see that the direct limit of the graph products $\mathscr{G} \mathscr{P}^{\prime}$, corresponding to finite full subgraphs with vertex set $V^{\prime} \subseteq V$ and embeddings $\iota_{V^{\prime}, V^{\prime \prime}}$ where $V^{\prime} \subseteq V^{\prime \prime}$, is isomorphic to $\mathscr{G} \mathscr{P}$.

We end this subsection by remarking that there are universal approaches to describe graph products of monoids as indicated in [24, Proposition 1.6], in the same way as there are for direct and free products.

2.2. Regular, abundant and Fountain monoids

We will denote the set of idempotents of a monoid M by $E(M)$. We recall that Green's relation \mathcal{R} is defined on M by the rule $a \mathcal{R} b$ if and only if $a M=b M$. Equivalently, $a=b t$ and $b=a s$ for some $s, t \in M$, thus, \mathcal{R} is a relation of mutual divisibility. The relation \mathcal{L} is defined dually. It is easy to see that M is regular if and only if every $a \in M$ is \mathcal{R}-related to an idempotent and so, from considerations of duality, if and only if every $a \in M$ is \mathcal{L}-related to an idempotent. Graph products do not behave well with regard to regularity. Let M and N be regular monoids containing elements m, n respectively which do not have one-sided inverses. Then $[m \circ n]$ is not regular in the graph product $\mathscr{G} \mathscr{P}(\Gamma, \mathcal{M})$ where $\Gamma=(\{1,2\}, \emptyset)$ and $\mathcal{M}=\left\{M_{1}, M_{2}\right\}$ (that is, in the free product). See [8] for a discussion of regularity in graph products. We therefore consider relations larger than \mathcal{R} and \mathcal{L} and ask whether they contain idempotents.

The relation \mathcal{R}^{*} on a monoid M was first defined in [35,36]. For elements $a, b \in M$ we have $a \mathcal{R}^{*} b$ if and only if $a \mathcal{R} b$ in some over-monoid N of M. Equivalently, for any $x, y \in M$ we have

$$
x a=y a \text { if and only if } x b=y b .
$$

Thus, \mathcal{R}^{*} is a relation of mutual cancellativity. A third equivalent condition is that the principal left ideals $M a$ and $M b$ are isomorphic under a left ideal isomorphism where $a \mapsto b$ [21]. It is easy to see that $\mathcal{R} \subseteq \mathcal{R}^{*}$ with equality if M is regular. The relation \mathcal{L}^{*} is the left-right dual of \mathcal{R}^{*}.

Definition 2.6. A monoid M is left abundant if every element in M is \mathcal{R}^{*}-related to an idempotent. The notion of right abundant is defined dually, and M is abundant if it is both left and right abundant.

Examples of (left) abundant monoids abound; regular monoids are, of course, abundant; for a favourite non-regular example take the monoid $M_{n}(\mathbb{Z})$ of $n \times n$ integer matrices under matrix multiplication [22].

Remark 2.7. It is easy to see that for $a \in M$ and $e \in E(M)$ we have that $a \mathcal{R}^{*} e$ if and only if $e a=a$ and for any $x, y \in M$

$$
x a=y a \Rightarrow x e=y e
$$

A monoid M is right cancellative if for all $a, b, c \in M$, from $a c=b c$ we deduce that $a=b$; left cancellative is dual and M is cancellative if it is right and left cancellative. It is easy to see that M is right cancellative if and only if it is a single \mathcal{R}^{*}-class. Thus, a right cancellative monoid is left abundant. A right cancellative monoid has no non-identity idempotents, and need not be left cancellative. It follows that left abundancy does not imply right abundancy, which contrasts with the case for regularity.

The relation $\widetilde{\mathcal{R}}$ arose from many sources, as indicated in the Introduction. It extends the relation \mathcal{R}^{*} and coincides with it in the case where the monoid is left abundant. For elements a, b of a monoid M we have that

$$
a \widetilde{\mathcal{R}} b \text { if and only if } e a=a \Leftrightarrow e b=b \text { for all } e \in E(M) .
$$

The relation $\widetilde{\mathcal{L}}$ is defined dually.
Definition 2.8. A monoid M is left Fountain if every element in M is $\widetilde{\mathcal{R}}$-related to an idempotent. The notion of right Fountain is defined dually, and M is Fountain if it is both left and right Fountain.

Remark 2.9. Similarly to Remark 2.7, it is easy to see that for $a \in M$ and $e \in E(M)$ we have that $a \widetilde{\mathcal{R}} e$ if and only if $e a=a$ and for any $f \in E(M)$

$$
f a=a \Rightarrow f e=e
$$

Formerly, left Fountain was referred to as weakly left abundant, but in view of the perceived significance the notion was renamed by Margolis and Steinberg in [34]. It is easy to see that M is left Fountain if and only if for any $a \in M$ the intersection of the principal, idempotent generated, right ideals containing a is principal and idempotent generated. As for abundancy, there are many natural examples of (non-abundant) (left) Fountain semigroups. These include finite monoids such that every principal (left) ideal has at most one idempotent generator, for instance, any finite monoid with commuting idempotents [34]. For some recent examples of Fountain monoids, consisting of semigroups of tropical matrices, see [27].

Remark 2.10. The relation \mathcal{R} on a monoid M is easily seen to be a left congruence, for any $a, b, c \in M$, if $a \mathcal{R} b$ then $c a \mathcal{R} c b$. Similarly, \mathcal{R}^{*} is a left congruence. The same is not true, in general, for $\widetilde{\mathcal{R}}$, even for some quite natural monoids (see, for example, [27, Proposition 6.10]). Thus we do not assume that $\widetilde{\mathcal{R}}$ is a left congruence in our calculations.

3. (Left) Foata normal forms

Throughout we let $\mathscr{G} \mathscr{P}=\mathscr{G} \mathscr{P}(\Gamma, \mathcal{M})$ and follow the notation as established in Section 2 . We show that elements in $\mathscr{G} \mathscr{P}$ may be written in a normal form we refer to as
left Foata normal form. Such normal forms were previously known for elements of graph monoids, that is, where all the vertex monoids are free monogenic. The existing proofs rely on cancellativity, which is not available to us. Moreover, the presence of units in our vertex monoids provides an added complication.

Definition 3.1. Let $x_{1} \circ \cdots \circ x_{n} \in X^{*}$. A reduction step is one of:
(id) $x_{1} \circ \cdots \circ x_{n} \rightarrow x_{1} \circ \cdots \circ x_{i-1} \circ x_{i+1} \circ \cdots \circ x_{n}$ where $x_{i} \in I$;
(v) $x_{1} \circ \cdots \circ x_{n} \rightarrow x_{1} \circ \cdots \circ x_{i-1} \circ x_{i} x_{i+1} \circ x_{i+2} \circ \cdots \circ x_{n}$ where $x_{i}, x_{i+1} \in M_{\alpha}$ for some $\alpha \in V$.

A shuffle is a step:
(e) $x_{1} \circ \cdots \circ x_{n} \rightarrow x_{1} \circ \cdots \circ x_{i-1} \circ x_{i+1} \circ x_{i} \circ x_{i+2} \circ \cdots \circ x_{n}$ where $\left(s\left(x_{i}\right), s\left(x_{i+1}\right)\right) \in E$.

Definition 3.2. Two words in X^{*} are shuffle equivalent if one can be obtained from the other by applying relations in R_{e}, or, equivalently, by shuffle steps.

Definition 3.3. A word $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ is pre-reduced if it is not possible to apply a reduction step to x.

A word $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ is reduced if for all $1 \leq i \leq n, x_{i} \notin I$, and for all $1 \leq i<j \leq n$ with $s\left(x_{i}\right)=s\left(x_{j}\right)$, there exists some $i<k<j$ with $\left(s\left(x_{i}\right), s\left(x_{k}\right)\right) \notin E$.

We denote by K the set of reduced words in X^{*}.

If $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ is reduced, then any factor $x_{i} \circ x_{i+1} \circ \cdots \circ x_{j}$ is reduced. A reduced word is pre-reduced, but the converse is not necessarily true. For example, $x_{1} \circ x_{2} \circ x_{3}$ where $s\left(x_{1}\right)=s\left(x_{3}\right)=\alpha, s\left(x_{2}\right)=\beta,(\alpha, \beta) \in E$ and no x_{i} is an identity, is pre-reduced, but not reduced. Notice that ϵ is always reduced. The following remarks are clear from Definition 3.3.

Remark 3.4. A word is reduced if and only if any word shuffle equivalent is pre-reduced. In particular, any word shuffle equivalent to a reduced word is reduced.

Remark 3.5. Let $x=x_{1} \circ \cdots \circ x_{n}$ and $y=y_{1} \circ \cdots \circ y_{n} \in X^{*}$ be such that $x_{i}, y_{i} \notin I$ and $s\left(x_{i}\right)=s\left(y_{i}\right)$ for all $1 \leq i \leq n$. If one of x, x^{r}, y, y^{r} is reduced, then so are all four.

We will frequently concatenate reduced words in X^{*}, wanting to know if the product is reduced. The next remark is useful in this regard.

Remark 3.6. Let $x=x_{1} \circ \cdots \circ x_{m}, y=y_{1} \circ \cdots \circ y_{n} \in X^{*}$ be reduced. Then $x \circ y$ is not reduced exactly if there exists i, j with $1 \leq i \leq m, 1 \leq j \leq n$ such that $s\left(x_{i}\right)=s\left(y_{j}\right)$ and for all h, k with $i<h \leq m, 1 \leq k<j$ we have $\left(s\left(x_{i}\right), s(z)\right) \in E$ where $z=x_{h}$ or $z=y_{k}$.

The lemma below is standard but it is worth making explicit.

Lemma 3.7. Let $w \in X^{*}$. Applying reduction steps and shuffles leads in a finite number of steps to a reduced word \bar{w} with $[w]=[\bar{w}]$.

Proof. Note that applying reduction steps to w reduces its length. There are finitely many words shuffle equivalent to w. Either these are all pre-reduced, and we let $\bar{w}=w$, or we can apply a reduction step to some w^{\prime} shuffle equivalent to w. Continue applying reduction steps to w^{\prime} until we arrive at a pre-reduced word w_{1}. Notice that $\left|w_{1}\right|<|w|$. Repeat this process, obtaining a finite list of words $w=w_{0}, w_{1}, w_{2}, \ldots, w_{m}$ where all words shuffle equivalent to w_{m} are pre-reduced. By Remark 3.4, w_{m} is reduced; let $\bar{w}=w_{m}$.

The next result is fundamental to our arguments. As commented in [24], it is the monoid version of Theorem 3.9 of Green [25] (which can be applied directly to monoids). It can also be deduced from [8, Theorem 6.1]; the reader should note that [8] uses different terminology to ours. However, we note that [25] and [8] deal only with the case of a finite graph. Here we give the general result, calling upon Proposition 2.3.

Proposition 3.8. Every element of $\mathscr{G} \mathscr{P}$ is represented by a reduced word. Two reduced words represent the same element of $\mathscr{G} \mathscr{P}$ if and only if they are shuffle equivalent. An element $x \in[w]$ is of minimal length if and only if it is reduced.

Proof. We have already shown the first part.
For the second, it is clear that if two reduced forms are shuffle equivalent then they represent the same element of $\mathscr{G} \mathscr{P}$. Conversely, suppose that $w, w^{\prime} \in X^{*}$ are reduced forms and $[w]=\left[w^{\prime}\right]$ in $\mathscr{G} \mathscr{P}$. Let $V^{\prime}=s(w) \cup s\left(w^{\prime}\right)$ and let $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the corresponding full subgraph. Let $X^{\prime}=\bigcup_{\alpha \in V^{\prime}} M_{\alpha}$ and let $\mathscr{G} \mathscr{P}^{\prime}$ be the corresponding graph product. Clearly, $w, w^{\prime} \in\left(X^{\prime}\right)^{*}$ are pre-reduced and from Proposition 2.3, $[w]=$ [w^{\prime}] in $\mathscr{G} \mathscr{P}^{\prime}$. Theorem 1.1 of [24], which may be deduced directly from original case for groups in [25], now tells us that w and w^{\prime} are shuffle equivalent in $\mathscr{G} \mathscr{P}^{\prime}$ and hence clearly shuffle equivalent in $\mathscr{G} \mathscr{P}$.

For the final point, it is clear that a word $w \in X^{*}$ such that $|w|$ is minimal in $[w]$ is a reduced form. For the converse, suppose that $x \in X^{*}$ is a reduced form and $[x]=[y]$. Choosing \bar{y} as in Lemma 3.7 we have that $[x]=[y]=[\bar{y}]$ where \bar{y} is reduced and $|y| \geq|\bar{y}|$. By the above x, \bar{y} are shuffle equivalent and hence $|x|=|\bar{y}| \leq|y|$.

Definition 3.9. If $x \in X^{*}$ and $[x]=[w]$ for a reduced word $w \in X^{*}$, then we say that w is a reduced form of x.

Notice that:
(1) The equality $[x]=[y]$ where $x=x_{1} \circ \cdots \circ x_{n}$ and $y=y_{1} \circ \cdots \circ y_{m}$, does not, in general, imply that $s(x)=s(y)$. However, if both x and y are reduced, we must have $m=n$ and $s(x)=s(y)$, by Proposition 3.8.
(2) If $x_{1} \circ \cdots \circ x_{n}$ is reduced and $s\left(x_{1} \circ \cdots \circ x_{n}\right)$ is a complete subgraph, then $s\left(x_{i}\right) \neq s\left(x_{j}\right)$ for all $1 \leq i<j \leq n$, again by Proposition 3.8.

We now show that, starting with a reduced word $x \in X^{*}$, and multiplying by a single letter p from X, we have a narrow range of possibilities for any reduced form of the product $p \circ x$.

Lemma 3.10. Let $p \in X$, where $p \notin I$, and let $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ be reduced. Then one of the following occurs:
(i) $p \circ x_{1} \circ \cdots \circ x_{n}$ is reduced;
(ii) there exists $1 \leq k \leq n$ such that $s\left(x_{k}\right)=s(p)$ and $\left(s(p), s\left(x_{l}\right)\right) \in E$ for all $1 \leq l \leq$ $k-1$, and $p \circ x_{1} \circ \cdots \circ x_{n}$ reduces to

$$
\begin{equation*}
p x_{k} \circ x_{1} \circ \cdots \circ x_{k-1} \circ x_{k+1} \circ \cdots \circ x_{n} \tag{1}
\end{equation*}
$$

and also to

$$
\begin{equation*}
x_{1} \circ \cdots \circ x_{k-1} \circ p x_{k} \circ x_{k+1} \circ \cdots \circ x_{n} . \tag{2}
\end{equation*}
$$

Further, in Case (ii)
(a) if $p x_{k}$ is not an identity then (1) and (2) are reduced;
(b) if $p x_{k}$ is an identity then $p \circ x_{1} \circ \cdots \circ x_{n}$ reduces to the reduced word

$$
\begin{equation*}
x_{1} \circ \cdots \circ x_{k-1} \circ x_{k+1} \circ \cdots \circ x_{n} . \tag{3}
\end{equation*}
$$

Consequently, if $\alpha \in s(x)$ and $q \in X$ with $s(q) \neq \alpha$, then α must be in the support of any reduced form of $q \circ x$.

Proof. Suppose that $p \circ x$ is not reduced. Then, by the definition of reduced, k as defined in the statement must exist. Clearly, for $p \circ x$, we may shuffle x_{k} and glue it to p to obtain

$$
p x_{k} \circ x_{1} \circ \cdots \circ x_{k-1} \circ x_{k+1} \circ \cdots \circ x_{n}
$$

which is shuffle equivalent to

$$
x_{1} \circ \cdots \circ x_{k-1} \circ p x_{k} \circ x_{k+1} \circ \cdots \circ x_{n} .
$$

If $p x_{k}$ is not an identity, then these words are reduced, by Remark 3.5.
If $p x_{k}$ is an identity then $p \circ x$ reduces to

$$
x_{1} \circ \cdots x_{k-1} \circ x_{k+1} \circ \cdots \circ x_{n}
$$

which is reduced, since it is a right factor of the word $x_{k} \circ x_{1} \circ \cdots x_{k-1} \circ x_{k+1} \circ \cdots \circ x_{n}$, which is shuffle equivalent to the reduced word x.

The final statement is clear if $q \in I$; if $q \notin I$ it follows by examining the cases above.

Corollary 3.11. Let $x, y \in X^{*}$ where y is reduced. If $\alpha \in s(y)$ but $\alpha \notin s(x)$, then α must be in the support of any reduced form of $x \circ y$.

Proof. Let $x=x_{1} \circ \cdots \circ x_{m}$ and proceed by induction on m. If $m=1$ then the result is true by Lemma 3.10. Suppose therefore that $m \geq 2$ and the result is true for $m-1$. Let $z_{1} \circ \cdots \circ z_{k}$ be a reduced form of $x_{2} \circ \cdots \circ x_{m} \circ y$. Then α is in the support of $z_{1} \circ \cdots \circ z_{k}$ by assumption, and so α is in the support of the reduced form of $x_{1} \circ z_{1} \circ \cdots \circ z_{k}$ and hence $x \circ y$, again by Lemma 3.10.

We will make extensive use of Corollary 3.11 to find reduced forms of products of reduced words. The expression of elements in $\mathscr{G} \mathscr{P}$ using reduced forms has a very useful cancellation-type property, as we now explain. First, another technical result using a strategy that will be key in this paper. Recall from Definition 3.3 that $K=\left\{w \in X^{*}\right.$: w is reduced $\}$.

Lemma 3.12. Let $\alpha \in V$ and define maps

$$
\theta_{\alpha}: K \longrightarrow \mathscr{G} \mathscr{P} \text { and } \eta_{\alpha}: K \longrightarrow \mathscr{G} \mathscr{P}
$$

where for each $x=x_{1} \circ \cdots \circ x_{n} \in K$,

$$
x \theta_{\alpha}=\left\{\begin{array}{ll}
{\left[x^{i(\alpha)}\right]} & \alpha \in s(x) \\
{[\epsilon]} & \text { else }
\end{array} \quad \text { and } x \eta_{\alpha}= \begin{cases}{\left[x_{i(\alpha)}\right]} & \alpha \in s(x) \\
{[\epsilon]} & \text { else } .\end{cases}\right.
$$

Here $i(\alpha)$ is the smallest i such that $s\left(x_{i}\right)=\alpha$ and $x^{i(\alpha)}$ is obtained by deleting $x_{i(\alpha)}$ from x. Then θ_{α} and η_{α} are constant on R^{\sharp}-classes, that is, they extend to maps

$$
\bar{\theta}_{\alpha}: \mathscr{G} \mathscr{P} \longrightarrow \mathscr{G} \mathscr{P} \text { and } \bar{\eta}_{\alpha}: \mathscr{G} \mathscr{P} \longrightarrow \mathscr{G} \mathscr{P}
$$

given by

$$
[w] \bar{\theta}_{\alpha}=w^{\prime} \theta_{\alpha} \text { and }[w] \bar{\eta}_{\alpha}=w^{\prime} \eta_{\alpha}
$$

where w^{\prime} is any reduced form of w.

Proof. Let $[p]=[q]$ where both $p, q \in K$ are reduced. We need show $p \theta_{\alpha}=q \theta_{\alpha}$ and $p \eta_{\alpha}=q \eta_{\alpha}$. By Proposition 3.8, p and q are shuffle equivalent; by finite induction we can assume that q is obtained from p by exactly one shuffle.

Let

$$
p=x_{1} \circ \cdots \circ x_{j-1} \circ x_{j} \circ x_{j+1} \circ x_{j+2} \circ \cdots \circ x_{n}
$$

and

$$
q=x_{1} \circ \cdots \circ x_{j-1} \circ x_{j+1} \circ x_{j} \circ x_{j+2} \circ \cdots \circ x_{n} .
$$

If $\alpha \notin s(p)$ (and so $\alpha \notin s(q)$), then

$$
p \theta_{\alpha}=[p]=[q]=q \theta_{\alpha} \text { and } p \eta_{\alpha}=[\epsilon]=q \eta_{\alpha}
$$

Suppose now that $\alpha \in s(p)$. Considering p, pick the smallest k such that $s\left(x_{k}\right)=\alpha$. If $1 \leq k \leq j-1$ or $j+2 \leq k \leq n$, then, clearly, $p \theta_{\alpha}=q \theta_{\alpha}$ and $p \eta_{\alpha}=q \eta_{\alpha}$. If $k=j$, then since $\left(s\left(x_{j}\right), s\left(x_{j+1}\right)\right) \in E$ we have $s\left(x_{j}\right) \neq s\left(x_{j+1}\right)$; it follows that $p \eta_{\alpha}=q \eta_{\alpha}=\left[x_{j}\right]$ and $p \theta_{\alpha}=q \theta_{\alpha}=\left[x_{1} \circ \cdots \circ x_{j-1} \circ x_{j+1} \circ x_{j+2} \circ \cdots \circ x_{n}\right]$. Similarly if $k=j+1$.

It is useful to state the dual of Lemma 3.12.
Lemma 3.13. Let $\alpha \in V$ and define maps

$$
\delta_{\alpha}: K \longrightarrow \mathscr{G} \mathscr{P} \text { and } \tau_{\alpha}: K \longrightarrow \mathscr{G} \mathscr{P}
$$

where for each $x=x_{1} \circ \cdots \circ x_{n} \in K$,

$$
x \delta_{\alpha}=\left\{\begin{array}{ll}
{\left[x^{j(\alpha)}\right]} & \alpha \in s(x) \\
{[x]} & \text { else }
\end{array} \quad \text { and } x \tau_{\alpha}= \begin{cases}{\left[x_{j(\alpha)}\right]} & \alpha \in s(x) \\
{[\epsilon]} & \text { else } .\end{cases}\right.
$$

Here $j(\alpha)$ is the largest j such that $s\left(x_{j}\right)=\alpha$ and $x^{j(\alpha)}$ is obtained by deleting $x_{j(\alpha)}$ from x. Then δ_{α} and τ_{α} are constant on R^{\sharp}-classes, that is, they extend to maps

$$
\bar{\delta}_{\alpha}: \mathscr{G} \mathscr{P} \longrightarrow \mathscr{G} \mathscr{P} \text { and } \bar{\tau}_{\alpha}: \mathscr{G} \mathscr{P} \longrightarrow \mathscr{G} \mathscr{P}
$$

given by

$$
[w] \bar{\delta}_{\alpha}=w^{\prime} \delta_{\alpha} \text { and }[w] \bar{\tau}_{\alpha}=w^{\prime} \tau_{\alpha}
$$

where w^{\prime} is any reduced form of w.
We use the maps defined in Lemmas 3.12 and 3.13 to prove our first cancellation-type result.

Lemma 3.14. Let $[x]=[y]$ where $x=x_{1} \circ \cdots \circ x_{n}$ and $y=y_{1} \circ \cdots \circ y_{n}$ are reduced and let $1 \leq m \leq n$. Then $\left[x_{1} \circ \cdots \circ x_{m}\right]=\left[y_{1} \circ \cdots \circ y_{m}\right]$ if and only if $\left[x_{m+1} \circ \cdots \circ x_{n}\right]=$ $\left[y_{m+1} \circ \cdots \circ y_{n}\right]$.

Proof. Suppose that $\left[x_{1} \circ \cdots \circ x_{m}\right]=\left[y_{1} \circ \cdots \circ y_{m}\right]$. Since $\left[x_{1} \circ \cdots \circ x_{n}\right]=\left[y_{1} \circ \cdots \circ y_{n}\right]$, we have

$$
\left[x_{1} \circ \cdots x_{m} \circ x_{m+1} \circ \cdots \circ x_{n}\right]=\left[x_{1} \circ \cdots x_{m} \circ y_{m+1} \circ \cdots \circ y_{n}\right]
$$

As $x_{1} \circ \cdots x_{m} \circ x_{m+1} \circ \cdots \circ x_{n}$ is reduced and $x_{1} \circ \cdots x_{m} \circ y_{m+1} \circ \cdots \circ y_{n}$ has the same length, we deduce that $x_{1} \circ \cdots x_{m} \circ y_{m+1} \circ \cdots \circ y_{n}$ is reduced, by Proposition 3.8. Let $s\left(x_{r}\right)=\alpha_{r}$ for all $1 \leq r \leq m$. Then, observing that any right factor of a reduced word is reduced,

$$
\left[x_{1} \circ \cdots \circ x_{m} \circ x_{m+1} \circ \cdots \circ x_{n}\right] \bar{\theta}_{\alpha_{1}} \cdots \bar{\theta}_{\alpha_{m}}=\left[x_{1} \circ \cdots \circ x_{m} \circ y_{m+1} \circ \cdots \circ y_{n}\right] \bar{\theta}_{\alpha_{1}} \cdots \bar{\theta}_{\alpha_{m}}
$$

by Lemma 3.12, which gives $\left[x_{m+1} \circ \cdots \circ x_{n}\right]=\left[y_{m+1} \circ \cdots \circ y_{n}\right]$ as desired.
The remainder of the lemma follows dually from Lemma 3.13, by applying the maps $\overline{\delta_{\alpha}}$.

Definition 3.15. A word $w \in X^{*}$ is a complete block if it is reduced, and $s(w)$ forms a complete subgraph of $\Gamma=\Gamma(V, E)$.

We now show that any reduced word in X^{*} may be shuffled into a word that is a product of complete blocks.

Definition 3.16. Let $w \in X^{*}$. Then w is a left Foata normal form with block length k and blocks $w_{i} \in X^{*}, 1 \leq i \leq k$, if:
(i) $w=w_{1} \circ \cdots \circ w_{k} \in X^{*}$ is a reduced word;
(ii) $s\left(w_{i}\right)$ is a complete subgraph for all $1 \leq i \leq k$;
(iii) for any $1 \leq i<k$ and $\alpha \in s\left(w_{i+1}\right)$, there is some $\beta \in s\left(w_{i}\right)$ such that $(\alpha, \beta) \notin E$.

If $[x]=[w]$ where w is a left Foata normal form, then we may say w is a left Foata normal form of x.

Remark 3.17. (i) The empty word ϵ is a left Foata normal form with block length 0 . (ii) A complete block is precisely a word in left Foata normal form with block length 1. (iii) If $w=w_{1} \circ \cdots \circ w_{k} \in X^{*}$ is in left Foata normal form with blocks $w_{i}, 1 \leq i \leq k$, then for any $1 \leq j \leq j^{\prime} \leq k$ we have $w_{j} \circ w_{j+1} \circ \cdots \circ w_{j^{\prime}}$ is also in left Foata normal form, with blocks $w_{h}, j \leq h \leq j^{\prime}$.

Proposition 3.18. Every element in $\mathscr{G} \mathscr{P}$ may be represented by a left Foata normal form.

Proof. We know that any element of $\mathscr{G} \mathscr{P}$ may be represented by a reduced word. Take a reduced word $w=y_{0}$ and let w_{1} be chosen such that $w_{1} \circ y_{1}$ is shuffle equivalent to w for some $y_{1}, s\left(w_{1}\right)$ is complete, and $\left|w_{1}\right|$ is maximum with respect to these constraints. Assume that $w_{1}, y_{1}, w_{2}, y_{2}, \ldots, w_{k}, y_{k}$ have been chosen such that for each $1 \leq j \leq k$ we have that y_{j-1} is shuffle equivalent to $w_{j} \circ y_{j}, s\left(w_{j}\right)$ is complete, and $\left|w_{j}\right|$ is maximum with respect to these constraints. Clearly this process must end after a finite number of steps with $y_{k}=\epsilon$.

For any $1 \leq j \leq k$ we have by finite induction that y_{j-1} is shuffle equivalent to $w_{j} \circ w_{j+1} \circ \cdots \circ w_{k}$ and, in particular, w is shuffle equivalent to $w_{1} \circ \cdots \circ w_{k}$. We now claim that $w_{1} \circ \cdots \circ w_{k}$ is a left Foata normal form with blocks w_{i} for $1 \leq i \leq k$. Certainly (i) and (ii) of Definition 3.16 hold. To see that (iii) holds, suppose that $1 \leq i<k$ and let $\alpha \in s\left(w_{i+1}\right)$; say $w_{i+1}=p \circ a \circ q$ where $a \in X$ and $s(a)=\alpha$. Suppose for contradiction that for all $\beta \in s\left(w_{i}\right)$ we have $(\alpha, \beta) \in E$. Since y_{i-1} is shuffle equivalent to $w_{i} \circ w_{i+1} \circ \cdots \circ w_{k}$ we would have y_{i-1} being shuffle equivalent to $w_{i} \circ a \circ y_{i+1}^{\prime}$ for some y_{i+1}^{\prime}, where $s\left(w_{i} \circ a\right)$ is complete and $\left|w_{i} \circ a\right|>\left|w_{i}\right|$, a contradiction.

Remark 3.19. Let $x=x_{1} \circ \cdots \circ x_{n}$ and $z=z_{1} \circ \cdots \circ z_{n}$ be reduced forms of w. Pick $\alpha \in s(x)(=s(z))$. Let i be least such that $s\left(x_{i}\right)=\alpha$ and j be least such that $s\left(z_{j}\right)=\alpha$. Since x and z are shuffle equivalent, $x_{i}=z_{j}$. Suppose that there exists some $1 \leq i^{\prime}<i$ such that $s\left(x_{i^{\prime}}\right)=\beta$ with $(\beta, \alpha) \notin E$; note that by minimality of i we have $\beta \neq \alpha$. Then, again as x and z are shuffle equivalent, there exists some $1 \leq j^{\prime}<j$ such that $s\left(z_{j^{\prime}}\right)=\beta$ and $z_{j^{\prime}}=x_{i^{\prime}}$.

We are now in a position to prove the main result of this section, which tells us that the left Foata normal form of an element of any $\mathscr{G} \mathscr{P}$ is essentially unique.

Theorem 3.20. Let $w \in X^{*}$ and let $w_{1} \circ w_{2} \circ \cdots \circ w_{k}$ and $w_{1}^{\prime} \circ w_{2}^{\prime} \circ \cdots \circ w_{h}^{\prime}$ be left Foata normal forms of w with blocks w_{i}, w_{j}^{\prime} for $1 \leq i \leq k, 1 \leq j \leq h$. Then $k=h$ and $\left[w_{i}\right]=\left[w_{i}^{\prime}\right]$ for $1 \leq i \leq k$.

Proof. Let $p_{1}=w_{2} \circ \cdots \circ w_{k}$ and $p_{1}^{\prime}=w_{2}^{\prime} \circ \cdots \circ w_{h}^{\prime}$; by Remark $3.17 p_{1}$ and p_{1}^{\prime} are also in left Foata normal form. We claim that $s\left(w_{1}\right)=s\left(w_{1}^{\prime}\right)$. Expressing as products of letters, let

$$
w_{1}=a_{1} \circ \cdots a_{r}, p_{1}=b_{1} \circ \cdots \circ b_{m}, w_{1}^{\prime}=u_{1} \circ \cdots \circ u_{t} \text { and } p_{1}^{\prime}=v_{1} \circ \cdots \circ v_{n}
$$

Suppose that there exists some $\delta \in s\left(w_{1}\right)$ but not in $s\left(w_{1}^{\prime}\right)$, so that $\delta \in s\left(p_{1}^{\prime}\right)$. Let i be least such that $s\left(a_{i}\right)=\delta$ and let j be least such that $s\left(v_{j}\right)=\delta$. By definition of left Foata normal form, either (i) v_{j} is in the first block w_{2}^{\prime} of p_{1}^{\prime}, in which case there exists some $1 \leq t^{\prime} \leq t$ with $\left(s\left(u_{t^{\prime}}\right), \delta\right) \notin E$, or (ii) v_{j} is in a subsequent block of p_{1}^{\prime} in which case certainly there exists $1 \leq j^{\prime}<j$ with $\left(s\left(v_{j^{\prime}}\right), \delta\right) \notin E$. Let $\gamma=s\left(u_{t^{\prime}}\right)$ (in Case (i)) and $\gamma=s\left(v_{j^{\prime}}\right)$ (in Case (ii)). In either case we have $\gamma \neq \delta$ and $(\delta, \gamma) \notin E$. By Remark 3.19 there must be some i^{\prime} with $1 \leq i^{\prime}<i$ such that $s\left(a_{i^{\prime}}\right)=\gamma$. This is
impossible since $s\left(w_{1}\right)$ is a complete subgraph. Together with the converse argument we deduce that $s\left(w_{1}\right)=s\left(w_{1}^{\prime}\right)$.

We now show that $\left[w_{1}\right]=\left[w_{1}^{\prime}\right]$ and $\left[p_{1}\right]=\left[p_{1}^{\prime}\right]$. Let $s\left(w_{1}\right)=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$. It then follows from Lemma 3.12 that

$$
\left[p_{1}\right]=\left[w_{1} \circ p_{1}\right] \bar{\theta}_{\alpha_{1}} \cdots \bar{\theta}_{\alpha_{r}}=\left[w_{1}^{\prime} \circ p_{1}^{\prime}\right] \bar{\theta}_{\alpha_{1}} \cdots \bar{\theta}_{\alpha_{r}}=\left[p_{1}^{\prime}\right]
$$

and

$$
\left[w_{1}\right]=\left[w_{1} \circ p_{1}\right] \bar{\eta}_{\alpha_{1}} \cdots\left[w_{1} \circ p_{1}\right] \bar{\eta}_{\alpha_{r}}=\left[w_{1}^{\prime} \circ p_{1}^{\prime}\right] \bar{\eta}_{\alpha_{1}} \cdots\left[w_{1}^{\prime} \circ p_{1}^{\prime}\right] \bar{\eta}_{\alpha_{r}}=\left[w_{1}^{\prime}\right]
$$

as required.
Noticing that $\left|p_{1}\right|<\left|w_{1} \circ p_{1}\right|$, the result now follows by induction.
Clearly, we may define the notion of a right Foata normal form of an element in X^{*}, and the dual arguments to those for left Foata normal form hold.

4. Towards a characterization of \mathcal{R}^{*}

We continue to consider a fixed, but arbitrary, graph product of monoids $\mathscr{G} \mathscr{P}$. We now show how we can use the left Foata normal forms developed in Section 3 to describe the relation \mathcal{R}^{*} in $\mathscr{G} \mathscr{P}$. We will build on this in Section 5 to show that if each vertex monoid is abundant, then so is $\mathscr{G} \mathscr{P}$.

The next lemma can be deduced from [8, Proposition 7.1], together with our Proposition 2.3 and Remark 2.4. Note that if $x=x_{1} \circ \cdots \circ x_{n}$ is reduced, then in Costa's terminology, the x_{i} are components.

Lemma 4.1. Let $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ be reduced. Then the following are equivalent:
(1) $[x]$ is left invertible in $\mathscr{G} \mathscr{P}$;
(2) $\left[x_{i}\right]$ is left invertible in $\mathscr{G} \mathscr{P}$ for $1 \leq i \leq n$;
(3) $x_{i} \in M_{s\left(x_{i}\right)}$ is left invertible in $M_{s\left(x_{i}\right)}$ for $1 \leq i \leq n$.

Moreover, if any of the above conditions hold, then any left inverse of $[x]$ has the form $[y]$ where $y=y_{n} \circ \cdots \circ y_{1}$ and y_{i} is a left inverse of x_{i} for $1 \leq i \leq n$.

The arguments in the next lemma essentially rely on the following simple observations. If $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ is shuffle equivalent to $y=x_{j_{1}} \circ \cdots \circ x_{j_{n}}$, then for any $1 \leq i<k \leq n$ with $j_{i}>j_{k}$ we have $\left(s\left(x_{j_{i}}\right), s\left(x_{j_{k}}\right)\right) \in E$. Suppose we can shuffle x to a word $x^{\prime} \circ x^{\prime \prime}$, where x^{\prime} has length m. Consequent to the previous remark, we can then shuffle x^{\prime} to a word $x_{i_{1}} \circ x_{i_{2}} \circ \cdots \circ x_{i_{m}}$ where $i_{1}<i_{2}<\cdots<i_{m}$ and $x^{\prime \prime}$ to the word obtained from x by deleting the letters $x_{i_{1}}, \cdots, x_{i_{m}}$. Moreover, for any $1 \leq \ell \leq m$ we can shuffle the letters $x_{1}, \cdots, x_{i_{\ell}-1}, x_{i_{\ell}}$ in $x^{\prime} \circ x^{\prime \prime}$ back to the first i_{ℓ} positions, resulting in having shuffled x
to $x_{1} \circ x_{2} \cdots \circ x_{i_{\ell}-1} \circ x_{i_{\ell}} \circ x_{i_{\ell+1}} \circ \cdots \circ x_{i_{m}} \circ z$ where z is $x_{i_{\ell}+1} \circ x_{i_{\ell}+2} \circ \cdots \circ x_{n}$ with $x_{i_{\ell+1}}, \cdots, x_{i_{m}}$ deleted.

Lemma 4.2. Let $u \in X^{*}$. Then:
(1) $[u]=[a][x]$ where $a \circ x$ is reduced, $[a]$ is left invertible, and $|a|$ is maximum with respect to these constraints;
(2) with $[u]=[a][x]$ as in (1), if in addition $[a][x]=[b][y]$ where (in addition) $b \circ y$ is reduced, $[b]$ is left invertible, and $|b|=|a|$, then $[a]=[b]$ and $[x]=[y]$;
(3) with $[u]=[a][x]$ as in (1), x has a left Foata normal form $x_{1} \circ \cdots \circ x_{m}$ with blocks $x_{i}, 1 \leq i \leq m$, such that x_{1} contains no left invertible letters.

Proof. We begin by finding a reduced form $p=p_{1} \circ \cdots \circ p_{n}$ for u. By shuffling p we may find a and x as in (1). By Lemma 4.1 and the above remark we may assume that $a=p_{i_{1}} \circ \cdots \circ p_{i_{k}}$ where $i_{1}<i_{2}<\cdots<i_{k}$, with $p_{i_{h}}$ is left invertible for all $1 \leq h \leq k$.

Suppose now that b, y are as given; again we may assume that $b=p_{j_{1}} \circ \cdots \circ p_{j_{k}}$ where $j_{1}<j_{2}<\cdots<j_{k}$. If $i_{1}<j_{1}$ then we notice that we can shuffle p to $p_{i_{1}} \circ p_{1} \circ \cdots \circ$ $p_{j_{1}-1} \circ p_{j_{1}} \circ p_{j_{1}+1} \circ \cdots \circ p_{n}$ and then to $p_{i_{1}} \circ p_{j_{1}} \circ p_{j_{2}} \circ \cdots \circ p_{j_{k}} \circ y^{\prime}$ where y^{\prime} is y with $p_{i_{1}}$ deleted. But, this contradicts the maximality of $|a|$. With the dual argument we obtain that $i_{1}=j_{1}$.

Suppose for finite induction that $i_{\ell}=j_{\ell}$ for $1 \leq \ell \leq s<k$ and that $i_{s+1}<j_{s+1}$. Then similarly to the preceding argument we have that p shuffles to $p_{i_{1}} \circ p_{i_{2}} \circ \cdots \circ p_{i_{s}} \circ p_{i_{s+1}} \circ z$ where z is p with $p_{i_{1}}, p_{i_{2}}, \cdots, p_{i_{s+1}}$ deleted. But then we can shuffle z to obtain a word $p_{j_{s+1}} \circ p_{j_{s+2}} \circ \cdots \circ p_{j_{k}} \circ w$ where w is p with $p_{i_{1}}, p_{i_{2}}, \cdots, p_{i_{s+1}}, p_{j_{s+1}}, p_{j_{s+2}}, \cdots, p_{j_{k}}$ deleted. Again, this contradicts the maximality of $|a|$. We deduce that $i_{s}=j_{s}$ for $1 \leq s \leq k$ and hence $[a]=[b]$. Clearly then $[x]=[y]$ follows.

Suppose now that $[u]=[a][x]$ as in (1), and shuffle x to left Foata normal form $x_{1} \circ \cdots \circ x_{m}$, where the x_{i} are the blocks for $1 \leq i \leq m$. Clearly, since $s\left(x_{1}\right)$ is complete, x_{1} cannot contain any left invertible letters, else this would contradict the maximality of $|a|$.

To simplify the description of \mathcal{R}^{*} on $\mathscr{G} \mathscr{P}$ we now present two technical lemmas.

Lemma 4.3. Let $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ and $(\alpha, \beta) \notin E$. Suppose that x_{l} is non-left invertible with $s\left(x_{l}\right)=\beta$, for some $1 \leq l \leq n$, and $s\left(x_{k}\right)$ is neither α nor β for all $l<k \leq n$. Let $z=z_{1} \circ \cdots \circ z_{m} \in X^{*}$ be any reduced form of $x_{1} \circ \cdots \circ x_{n}$. Then $\beta \in s(z)$ and if j is greatest such that $1 \leq j \leq m$ with $s\left(z_{j}\right)=\beta$, then z_{j} is non left invertible, and $s\left(z_{t}\right) \neq \alpha$ for all $j<t \leq m$.

Proof. We begin by observing that if we can find one reduced form of x with the required property, then all reduced forms will have the required property.

We proceed by induction on n. If $n=1=l$ the result is clear, since $x=x_{1}$ is the only reduced form of x. Suppose now that $n>1$ and the result is true for all words of length strictly less than n.

Let $w_{1}=x_{1} \circ \cdots \circ x_{l-1}, w_{2}=x_{l+1} \circ \cdots \circ x_{n}$ and let $w_{1}^{\prime}, w_{2}^{\prime} \in X^{*}$ be reduced such that $\left[w_{1}\right]=\left[w_{1}^{\prime}\right]$ and $\left[w_{2}\right]=\left[w_{2}^{\prime}\right]$. Certainly $\alpha, \beta \notin s\left(w_{2}^{\prime}\right)$. Let $w_{1}^{\prime}=u_{1} \circ \cdots \circ u_{h}$ and $w_{2}^{\prime}=v_{1} \circ \cdots \circ v_{r}$. If $w_{1}^{\prime} \circ x_{l} \circ w_{2}^{\prime}$ is a reduced form, then we are done.

Suppose therefore that $w_{1}^{\prime} \circ x_{l} \circ w_{2}^{\prime}$ is not a reduced form, and consider first

$$
w_{1}^{\prime} \circ x_{l}=u_{1} \circ \cdots \circ u_{h} \circ x_{l} .
$$

If $w_{1}^{\prime} \circ x_{l}$ is not a reduced form then, from Remark 3.6, there exists some t with $1 \leq t \leq h$ with $s\left(u_{t}\right)=\beta$ and $\left(s\left(u_{k}\right), \beta\right) \in E$ for all $t<k \leq h$. By shuffling w_{1}^{\prime}, without loss of generality we can assume that $t=h$. Let $p=u_{h} x_{l}$ and notice that as x_{l} is not left invertible, then neither is p, and certainly $p \neq \epsilon$. Then

$$
y=u_{1} \circ \cdots \circ u_{h-1} \circ p \circ v_{1} \circ \cdots \circ v_{r}
$$

has length strictly less than $n, s(p)=\beta, p$ is not left invertible, and $\alpha, \beta \notin s\left(v_{1} \circ \cdots \circ v_{r}\right)$.
On the other hand, if $w_{1}^{\prime} \circ x_{l}$ is a reduced form, then again by Remark 3.6, and making use of the fact $\beta \notin s\left(w_{2}^{\prime}\right)$, we may assume that $s\left(u_{h}\right)=s\left(v_{1}\right)$ and $\left(\beta, s\left(u_{h}\right)\right) \in E$. Then

$$
y=u_{1} \circ \cdots \circ u_{h-1} \circ u_{h} v_{1} \circ x_{l} \circ v_{2} \circ \cdots \circ v_{r}
$$

has length strictly less than n, and $\alpha, \beta \notin s\left(v_{2} \circ \cdots \circ v_{r}\right)$.
In each case we have found a word y with $[y]=[x]$ to which we can apply the induction hypothesis. The result follows.

Lemma 4.4. Let $x=x_{1} \circ \cdots \circ x_{n}$ be a left Foata normal form with blocks $x_{i}, 1 \leq i \leq n$, such that x_{1} contains no left invertible letters. Let $u \in X^{*}$ and let z be a reduced form of $u \circ x_{1}$. Then $z \circ x_{2} \circ \cdots \circ x_{n}$ is a reduced form of $u \circ x$.

Proof. Certainly $[u \circ x]=\left[z \circ x_{2} \circ \cdots \circ x_{n}\right]$. Let $z=z_{1} \circ \cdots \circ z_{m}$. As both z and $x_{2} \circ \cdots \circ x_{n}$ are reduced, if $z \circ x_{2} \circ \cdots \circ x_{n}$ is not reduced, then by Remark 3.6 we can shuffle a letter z_{k} of z to the end of z and a letter a of $x_{2} \circ \cdots \circ x_{n}$ to the start of $x_{2} \circ \cdots \circ x_{n}$ where $s\left(z_{k}\right)=s(a)=\alpha$ say. We may assume that $k=m$ and as $x_{2} \circ \cdots \circ x_{n}$ is a left Foata normal form, that a is a letter of x_{2}, and then that it is the first letter of x_{2}. Since x is in left Foata normal form, it follows that $\alpha \notin s\left(x_{1}\right)$ and there exists a (unique) letter b in x_{1} such that $(\alpha, s(b)) \notin E$. Let $s(b)=\beta$; recall that b is non-left invertible. It then follows from Lemma 4.3 that $\beta \in s(z)$ and if t is greatest such that $1 \leq t \leq m$ with $s\left(z_{t}\right)=\beta$, then $s\left(z_{h}\right) \neq \alpha$ for all $t<h \leq m$. This contradicts the fact $s\left(z_{m}\right)=\alpha$.

We deduce that $z \circ x_{2} \circ \cdots \circ x_{n}$ is a reduced form of $u \circ x$, as required.

We can now get our first handle on the consideration of the \mathcal{R}^{*}-class of an element of $\mathscr{G} \mathscr{P}$ in the general case. Subsequently, we will focus on the case where the vertex monoids are abundant.

Proposition 4.5. (1) Let $x=x_{1} \circ \cdots \circ x_{n}$ be a left Foata normal form with blocks x_{i}, $1 \leq i \leq n$, such that x_{1} contains no left invertible letters. Then $[x] \mathcal{R}^{*}\left[x_{1}\right]$.
(2) Let $p \in X^{*}$. Then $[p]=[a][x]$ where $a \circ x$ is reduced, the letters of a are all left invertible, $|a|$ is maximum with respect to these constraints and x is a left Foata normal form x as in (1). Further, $[p] \mathcal{R}^{*}[a]\left[x_{1}\right]$.

Proof. (1) Let $[p],[q] \in \mathscr{G} \mathscr{P}$. Clearly it suffices to show that if $[p][x]=[q][x]$, then $[p]\left[x_{1}\right]=[q]\left[x_{1}\right]$. Suppose therefore that $[p][x]=[q][x]$ and let $\left(p \circ x_{1}\right)^{\prime}$ and $\left(q \circ x_{1}\right)^{\prime}$ be reduced forms of $p \circ x_{1}$ and $q \circ x_{1}$, respectively. By Lemma 4.4, $\left(p \circ x_{1}\right)^{\prime} \circ x_{2} \circ \cdots \circ x_{n}$ and $\left(q \circ x_{1}\right)^{\prime} \circ x_{2} \circ \cdots \circ x_{n}$ are reduced forms of $p \circ x_{1} \circ \cdots \circ x_{n}$ and $q \circ x_{1} \circ \cdots \circ x_{n}$, respectively. It then follows from Lemma 3.14 that $\left[\left(p \circ x_{1}\right)^{\prime}\right]=\left[\left(q \circ x_{1}\right)^{\prime}\right]$ and so $[p]\left[x_{1}\right]=[q]\left[x_{1}\right]$.
(2) This existence of a and x is guaranteed by Lemma 4.2, and then the result follows from (1) and the fact that \mathcal{R}^{*} is a left congruence.

5. Graph products of left abundant monoids are left abundant

The aim of this section is to prove the claim of the heading; this will involve us in some combinatorial intricacies. It might be helpful to the reader if we outline our strategy here. Proposition 4.5 is our first step in describing \mathcal{R}^{*} in $\mathscr{G} \mathscr{P}$. In Proposition 5.20 we show that if $z=z_{1} \circ \cdots \circ z_{n} \in X^{*}$ is a complete block, then $[z] \mathcal{R}^{*}\left[z^{\prime}\right]$ where $z^{\prime}=z_{1}^{\prime} \circ \cdots \circ z_{n}^{\prime}$ is chosen such that $z_{i}^{\prime} \in M_{s\left(z_{i}\right)}$ and $z_{i} \mathcal{R}^{*} z_{i}^{\prime}$ in $M_{s\left(z_{i}\right)}$ for all $1 \leq i \leq n$. In particular, if each M_{i} is left abundant, then for any idempotents z_{i}^{+}with $z_{i} \mathcal{R}^{*} z_{i}^{+}$in $M_{s\left(z_{i}\right)}$, we have that $[z]$ is \mathcal{R}^{*}-related to the idempotent $\left[z^{+}\right]$where $z^{+}=z_{1}^{+} \circ \cdots \circ z_{n}^{+}$. Proposition 4.5 tells us that for $p \in X^{*}$ we can write $[p]=[a][x]$ where $a \circ x$ is reduced, the letters of a are all left invertible, and x is a left Foata normal form, the first block of which contains no left invertible letters. Moreover, calling this first block z we have that $[p] \mathcal{R}^{*}[a][z]$. As \mathcal{R}^{*} is a left congruence, $[p] \mathcal{R}^{*}[a]\left[z^{+}\right]$and then as $[a]$ has a left inverse $\left[a^{\prime}\right]$ (so that $\left.\left[a^{\prime}\right] \mathcal{R}[\epsilon]\right)$ we have $[p] \mathcal{R}^{*}[a]\left[z^{+}\right]\left[a^{\prime}\right]$. The fact that $[a]\left[z^{+}\right]\left[a^{\prime}\right]$ is idempotent is easily seen.

To arrive at Proposition 5.20 we cannot escape a very careful analysis of products $[x][z]$ in $\mathscr{G} \mathscr{P}$ (remember, we are considering equations of the form $[x][z]=[y][z]$). To this end we find a new factorisation of elements in $\mathscr{G} \mathscr{P}$ that allows us to cancel and replace a final term in equalities. This we achieve in Lemma 5.19.

To arrive at Lemma 5.19 we now define the notions of α-absorbing, α-good and subsequently a stronger version of being α-good that we call α-amenable, where $\alpha \in V$. We show in Proposition 5.14 that in an α-amenable word, the inner factor reduces to a word which does not have α in its support. This enables us to pin down exactly which letters we can move to the right of a word (see Definition 5.16) and hence we arrive at the factorisation of Lemma 5.19.

First, we need to recall the description of idempotents in $\mathscr{G} \mathscr{P}$ from [8].

Definition 5.1. We say that an idempotent of $\mathscr{G} \mathscr{P}$ is in standard form if it is written as [u] where $u=b \circ e \circ b^{\prime} \in X^{*}$ is reduced,

$$
b=b_{1} \circ \cdots \circ b_{n}, e=e_{1} \circ \cdots \circ e_{m}, b^{\prime}=b_{n}^{\prime} \circ \cdots \circ b_{1}^{\prime}
$$

where $b_{i}^{\prime} b_{i}$ is an identity for $1 \leq i \leq n, s(e)$ is complete and $e_{i}^{2}=e_{i}$ for $1 \leq i \leq m$.

Note that $[u]$ is idempotent for any word u of the form in Definition 5.1.
Lemma 5.2. [8, Theorem 14.2] Any idempotent in $\mathscr{G} \mathscr{P}$ can be written in standard form.

Definition 5.3. Let $\alpha \in V$. A word $x \in X^{*}$ is said to be α-absorbing if α is not in the support of any reduced form of x.

Definition 5.4. Let $\alpha \in V$. A word $x \in X^{*}$ is said to be α-good if for all β in the support of any reduced form of x, we have $\beta=\alpha$ or $(\beta, \alpha) \in E$.

We remark that in Definitions 5.3 and 5.4, α may not be in the support of x. If for any β in the support of x, we have $\beta=\alpha$ or $(\beta, \alpha) \in E$, then certainly x is α-good, but the converse need not be true. If $[x]=[y]$, or x, y are reduced and $s(x)=s(y)$, then x is α-good (resp. α-absorbing) if and only if y is α-good (resp. α-absorbing). Further, as $s(\epsilon)=\emptyset$, we have that ϵ is both α-good and α-absorbing, and hence so is 1_{β} for all $\beta \in V$. Finally, if $w \in X^{+}$and $s(w)=\{\alpha\}$ for some $\alpha \in V$, then w is α-good. By Remark 3.5 we have:

Lemma 5.5. Let $x=x_{1} \circ \cdots \circ x_{n}, y=y_{1} \circ \cdots \circ y_{n} \in X^{*}$ be such that $x_{i}, y_{i} \notin I$ and $s\left(x_{i}\right)=s\left(y_{i}\right)$ for all $1 \leq i \leq n$. If one of x, x^{r}, y, y^{r} is a reduced word that is α-good, then so are all four.

The next lemma is crucial in allowing us to deduce the α-goodness (or otherwise) of a word in terms of its factors.

Lemma 5.6. Let $\alpha \in V$ and $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$.
(i) If $x_{k} \circ \cdots \circ x_{n}$ is α-good for some $1 \leq k \leq n$, then $x_{1} \circ \cdots \circ x_{n}$ is α-good if and only if $x_{1} \circ \cdots \circ x_{k-1}$ is α-good.
(ii) If $x_{1} \circ \cdots \circ x_{k-1}$ is α-good for some $1 \leq k \leq n+1$, then $x_{1} \circ \cdots \circ x_{n}$ is α-good if and only if $x_{k} \circ \cdots \circ x_{n}$ is α-good.

Proof. Suppose that $x_{k} \circ \cdots \circ x_{n}$ is α-good.

If $x_{1} \circ \cdots \circ x_{k-1}$ is α-good, then from Remark 3.6 and comments above it is clear that $x_{1} \circ \cdots \circ x_{n}$ is α-good.

Conversely, suppose that $x_{1} \circ \cdots \circ x_{n}$ is α-good but $x_{1} \circ \cdots \circ x_{k-1}$ is not α-good. Let $u_{1} \circ \cdots \circ u_{m}$ be a reduced form of $x_{1} \circ \cdots \circ x_{k-1}$. Then, by Definition 5.4, there exists some $1 \leq t \leq m$ such that $s\left(u_{t}\right)=\beta$ with $\beta \neq \alpha$ and $(\beta, \alpha) \notin E$. As $x_{1} \circ \cdots \circ x_{n}$ is α-good, β is not in the support of the reduced form of $x_{1} \circ \cdots \circ x_{n}$. Let $v_{1} \circ \cdots \circ v_{l}$ be a reduced form of $x_{k} \circ \cdots \circ x_{n}$. As $x_{k} \circ \cdots \circ x_{n}$ is α-good, β is not in the support of $v_{1} \circ \cdots \circ v_{l}$. Now consider the word $\left(u_{1} \circ \cdots \circ u_{m}\right) \circ\left(v_{1} \circ \cdots \circ v_{l}\right)$. Of course,

$$
\left[\left(u_{1} \circ \cdots \circ u_{m}\right) \circ\left(v_{1} \circ \cdots \circ v_{l}\right)\right]=\left[x_{1} \circ \cdots \circ x_{n}\right] .
$$

By the dual of Corollary 3.11, β lies in the support of the reduced form of $\left(u_{1} \circ \cdots \circ u_{t}\right) \circ$ $\left(v_{1} \circ \cdots \circ v_{l}\right)$, and hence that of $x_{1} \circ \cdots \circ x_{n}$, contradiction.

The proof of (ii) is the dual of (i).

Corollary 5.7. Let $x \in X^{*}$ and let $z, z^{\prime}, t \in X$ where $s(z)=s\left(z^{\prime}\right)=\alpha, s(t)=\beta$ and $(\alpha, \beta) \in E$. Then the following are equivalent:
(1) x is α-good;
(2) $z \circ z^{\prime} \circ x$ is α-good;
(3) $z^{\prime} \circ x$ is α-good;
(4) $z z^{\prime} \circ x$ is α-good;
(5) $z \circ t \circ x$ is α-good.

Proof. From the remarks following Definition 5.4, $z, z \circ z^{\prime}, z z^{\prime}$ and $z \circ t$ are α-good. The result follows by Lemma 5.6.

Our next definition is more subtle, but crucial for subsequent analysis of products in $\mathscr{G} \mathscr{P}$.

Definition 5.8. Let $\alpha \in V$ and $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ be α-good. Then x is said to be α-amenable if one of the following holds:
(i) $n \leq 2$;
(ii) $n>2$ and either $\alpha \notin s\left(x_{2} \circ \cdots \circ x_{n-1}\right)$, or $\alpha \in s\left(x_{2} \circ \cdots \circ x_{n-1}\right)$ and for all x_{k} with $2 \leq k \leq n-1$ such that $s\left(x_{k}\right)=\alpha$, the word $x_{k} \circ \cdots \circ x_{n}$ is not α-good.

It might help to bear in mind that $x_{k} \circ \cdots \circ x_{n}$ is not α-good if and only if there exists some $\beta \neq \alpha$ in the support of a reduced form, such that $(\alpha, \beta) \notin E$. Notice that ϵ is α-amenable for any $\alpha \in V$.

As we remarked earlier, for $x, y \in X^{*}$, if $[x]=[y]$, then x is α-good if and only if y is α-good. One might ask: Is it always true that x is α-amenable if and only if y is
α-amenable? The answer is no, as illustrated by the following easy example. Let α, β, γ be distinct elements of V with $(\alpha, \beta),(\alpha, \gamma) \in E$ and $a \in M_{\alpha}, b \in M_{\beta}$ and $c \in M_{\gamma}$ non-identity elements. The word $a \circ b \circ c$ is reduced, α-amenable (by virtue of $\alpha \notin s(b)$). On the other hand it shuffles to $b \circ a \circ c$ which is α-good but not α-amenable (as $s(a)=\alpha$ and $(\alpha, \gamma) \in E)$.

On the positive side, we have the following result.
Lemma 5.9. Let $\alpha \in V$ and $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ be α-amenable. Let y be any word obtained by applying reduction steps and shuffles to $x_{2} \circ \cdots \circ x_{n-1}$. Then $x_{1} \circ y \circ x_{n}$ is also α-amenable.

Proof. Clearly the result is true for $n \leq 2$ as here $x_{2} \circ \cdots \circ x_{n-1}=\epsilon$ and there are no steps to apply.

Assume now that $n>2$. Since x is α-good, so is any word in the same equivalence class, so that $x_{1} \circ y \circ x_{n}$ is also α-good. To show $x_{1} \circ y \circ x_{n}$ is α-amenable, it is sufficient to consider the case where y is obtained from $p=x_{2} \circ \cdots \circ x_{n-1}$ in a single step.

Clearly, if $\alpha \notin s(p)$, then we are done; suppose therefore that $\alpha \in s(p)$. We consider the following cases.

Case (1): $s\left(x_{j}\right)=\beta$ and $s\left(x_{j+1}\right)=\gamma$ with $(\beta, \gamma) \in E$, where $2 \leq j<n-1$. We show that the word

$$
x^{\prime}=x_{1} \circ x_{2} \circ \cdots \circ x_{j-1} \circ x_{j+1} \circ x_{j} \circ x_{j+2} \circ \cdots \circ x_{n-1} \circ x_{n}
$$

is α-amenable. Clearly, we are fine in the case where neither β nor γ equals α. If $\beta=\alpha$ (and so $\gamma \neq \alpha$), then, by Definition 5.8, $x_{j} \circ x_{j+1} \circ x_{j+2} \circ \cdots \circ x_{n-1} \circ x_{n}$ is not α-good. But, on the other hand, as $x_{j} \circ x_{j+1}$ is α-good, $x_{j+2} \circ \cdots \circ x_{n}$ is not α-good by Lemma 5.6, and hence, again by Lemma 5.6, $x_{j} \circ x_{j+2} \circ \cdots \circ x_{n}$ is not α-good. For any k with $2 \leq k \leq n-1$ and $k \neq j, j+1$ with $s\left(x_{k}\right)=\alpha$, it is clear that the factor $x_{k} \circ \cdots \circ x_{n}$ of x^{\prime} is not α-good by the assumption that x is α-amenable. Similarly if $\gamma=\alpha$.

Case (2): $s\left(x_{j}\right)=s\left(x_{j+1}\right)=\beta$ where $2 \leq j<n-1$. We show that the word

$$
x^{\prime \prime}=x_{1} \circ x_{2} \circ \cdots \circ x_{j-1} \circ x_{j} x_{j+1} \circ x_{j+2} \circ \cdots \circ x_{n-1} \circ x_{n}
$$

is α-amenable. As in Case (1) it is enough to show that if $\beta=\alpha$ then $x_{j} x_{j+1} \circ x_{j+2} \circ$ $\cdots \circ x_{n}$ is not α-good. To this end, if $\beta=\alpha$, then as $x_{j} \circ x_{j+1}$ and $x_{j} x_{j+1}$ are α good but $x_{j} \circ x_{j+1} \circ x_{j+2} \circ \cdots \circ x_{n}$ is not α-good, we deduce from Corollary 5.7 that $x_{j} x_{j+1} \circ x_{j+2} \circ \cdots \circ x_{n}$ is not α-good.

Case (3): $s\left(x_{j}\right)=\beta$ and $x_{j}=1_{\beta}$. An essentially vacuous argument easily gives that the word

$$
x^{\prime \prime \prime}=x_{1} \circ x_{2} \circ \cdots \circ x_{j-1} \circ x_{j+1} \circ x_{j+2} \circ \cdots \circ x_{n-1} \circ x_{n}
$$

is α-amenable.

The next corollary is immediate from Lemmas 3.7 and 5.9.

Corollary 5.10. Let $\alpha \in V$ and $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ be α-amenable. Let y be a reduced form of $x_{2} \circ \cdots \circ x_{n-1}$. Then $x_{1} \circ y \circ x_{n}$ is also α-amenable.

Lemma 5.11. Let $x=x_{1} \circ \cdots \circ x_{m}, y=y_{1} \circ \cdots \circ y_{n} \in X^{*}$ be reduced words. If $s\left(x_{m}\right)=\alpha$ but $\alpha \notin s(y)$ and there exists $\beta \in s(y)$ with $(\beta, \alpha) \notin E$, then β must be in the support of the reduced form of $x \circ y$.

Proof. We proceed by induction on n. If $n=1$, then $x \circ y=x_{1} \circ \cdots \circ x_{m} \circ y_{1}$. We must have $s\left(y_{1}\right)=\beta$ so that $x \circ y$ is clearly reduced by Remark 3.6. Suppose now that $n>1$ and the result is true for all words y of length strictly less than n.

Clearly, the result is true if $\left(x_{1} \circ \cdots \circ x_{m}\right) \circ\left(y_{1} \circ \cdots \circ y_{n}\right)$ is reduced. If not, by Remark 3.6, there exists some $1 \leq k \leq m, 1 \leq j \leq n$ such that $s\left(x_{k}\right)=s\left(y_{j}\right)$ and $\left(s\left(y_{j}\right), s(z)\right) \in E$ for any $z=x_{h}$ or $z=y_{t}$ with $k+1 \leq h \leq m, 1 \leq t \leq j-1$. Let $y^{\prime}=y_{1} \circ \cdots \circ y_{j-1} \circ y_{j+1} \circ \cdots \circ y_{n}$; notice that y shuffles to $y_{j} \circ y^{\prime}$, so that y^{\prime} is a reduced form. Further, let $p=x_{1} \circ \cdots \circ x_{k-1} \circ x_{k} y_{j} \circ x_{k+1} \circ \cdots \circ x_{m}$. Let $x^{\prime}=p$ if $x_{k} y_{j}$ is not an identity and otherwise let $x^{\prime}=x_{1} \circ \cdots \circ x_{k-1} \circ x_{k+1} \circ \cdots \circ x_{m}$; in either case, x^{\prime} is a reduced form. Now consider $x^{\prime} \circ y^{\prime}$. Clearly, $[x \circ y]=\left[x^{\prime} \circ y^{\prime}\right]$. As $\alpha \notin s(y)$, we have $\alpha \notin s\left(y^{\prime}\right)$ and $s\left(x_{k}\right)=s\left(y_{j}\right) \neq \alpha$, so that $k \neq m$. Moreover, as $s\left(x_{m}\right)=\alpha$ and $(\beta, \alpha) \notin E$, we have $s\left(y_{j}\right) \neq \beta$, and so $\beta \in s\left(y^{\prime}\right)$. By induction, β is in the support of any reduced form of $x^{\prime} \circ y^{\prime}$, and hence in that of $x \circ y$.

Lemma 5.12. Let $\alpha \in V$ and $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ be α-amenable with $s\left(x_{n}\right) \neq \alpha$. Then the word $x^{\prime}=x_{2} \circ \cdots \circ x_{n-1}$ is α-absorbing.

Proof. If $n \leq 2$, then we may take $x_{2} \circ \cdots \circ x_{n-1}$ as ϵ, which is certainly α-absorbing. Assume now that $n>2$. Let $y=y_{1} \circ \cdots \circ y_{m}$ be a reduced form of x^{\prime}. By Corollary 5.10, $x_{1} \circ y \circ x_{n}$ is α-amenable. We claim that x^{\prime} is α-absorbing. To prove this, we assume the contrary, so that $T \neq \emptyset$ where

$$
T=\left\{k: 1 \leq k \leq m, s\left(y_{k}\right)=\alpha\right\} .
$$

Let l and l^{\prime} be the least and greatest elements of T, respectively. Since $x_{1} \circ y \circ x_{n}$ is α-amenable, we have that for any $k \in T$ the word $y_{k} \circ y_{k+1} \circ \cdots \circ y_{m} \circ x_{n}$ is not α-good. We consider the following cases.

Case (1): $x_{1} \circ y$ is a reduced form. It follows that $x_{1} \circ y_{1} \circ \cdots \circ y_{l^{\prime}}$ is also a reduced form. Let z be a reduced form of $y_{l^{\prime}+1} \circ \cdots \circ y_{m} \circ x_{n}$. As commented, α-amenability gives us that $y_{l^{\prime}} \circ y_{l^{\prime}+1} \circ \cdots \circ y_{m} \circ x_{n}$ is not α-good. We deduce $y_{l^{\prime}+1} \circ \cdots \circ y_{m} \circ x_{n}$ is not α-good by Corollary 5.7, hence neither is z. Thus there exist $\beta \in s(z)$ such that $\beta \neq \alpha$ and $(\beta, \alpha) \notin E$. Further, as $s\left(x_{n}\right) \neq \alpha$ and by the minimality of l^{\prime} in T, we have $\alpha \notin s\left(y_{l^{\prime}+1} \circ \cdots \circ y_{m} \circ x_{n}\right)$ and so $\alpha \notin s(z)$. By Lemma 5.11, β is in the support of the
reduced form of $x_{1} \circ y_{1} \circ \cdots \circ y_{l^{\prime}} \circ z$, but $(\beta, \alpha) \notin E$, implying that $x_{1} \circ y_{1} \circ \cdots \circ y_{l^{\prime}} \circ z$ is not α-good, and hence neither is x, a contradiction.

Case (2): $x_{1} \circ y$ is not a reduced form and $s\left(x_{1}\right)=\alpha$. By Remark 3.6, $(\beta, \alpha) \in E$ for all $\beta \in s\left(y_{1} \circ \cdots \circ y_{l-1}\right)$, and so
$[x]=\left[x_{1} \circ y \circ x_{n}\right]=\left[x_{1} \circ y_{1} \circ \cdots \circ y_{m} \circ x_{n}\right]=\left[y_{1} \circ \cdots \circ y_{l-1} \circ x_{1} y_{l} \circ y_{l+1} \circ \cdots \circ y_{m} \circ x_{n}\right]$.
Notice that $y_{1} \circ \cdots \circ y_{l-1} \circ x_{1} y_{l}$ is α-good. By α-amenability $y_{l} \circ y_{l+1} \circ \cdots \circ y_{m} \circ x_{n}$ is not α-good. As $s\left(y_{l}\right)=\alpha$, we deduce that $y_{l+1} \circ \cdots \circ y_{m} \circ x_{n}$ is not α-good by Corollary 5.7, so that $y_{1} \circ \cdots y_{l-1} \circ x_{1} y_{l} \circ y_{l+1} \circ \cdots \circ y_{m} \circ x_{n}$ is not α-good by Lemma 5.6, a contradiction.

Case (3): $x_{1} \circ y$ is not a reduced form and $s\left(x_{1}\right) \neq \alpha$. Then, by Remark 3.6, there exists some $1 \leq j \leq m, j \notin T$, such that $s\left(y_{j}\right)=s\left(x_{1}\right)$ and $\left(s\left(x_{1}\right), s\left(y_{k}\right)\right) \in E$ for all $1 \leq k \leq j-1$. We consider two sub-cases.

Case (3)(a): $j<l^{\prime}$. Let $w=y_{1} \circ \cdots \circ y_{j-1} \circ x_{1} y_{j} \circ y_{j+1} \circ \cdots \circ y_{l^{\prime}}$. Let $w^{\prime}=w$ if $x_{1} y_{j}$ is not an identity, and otherwise let $w^{\prime}=y_{1} \circ \cdots \circ y_{j-1} \circ y_{j+1} \circ \cdots \circ y_{l^{\prime}}$, so that w^{\prime} is a reduced form of w. Let z be a reduced form of $y_{l^{\prime}+1} \circ \cdots \circ y_{m} \circ x_{n}$. Then $\left[w^{\prime} \circ z\right]=[x]$. Since $y_{l^{\prime}} \circ y_{l^{\prime}+1} \circ \cdots \circ y_{m} \circ x_{n}$ is not α-good, we deduce $y_{l^{\prime}+1} \circ \cdots \circ y_{m} \circ x_{n}$ is not α-good by Corollary 5.7, so that neither is z. Hence there exists $\beta \in s(z)$ such that $\beta \neq \alpha$ and $(\beta, \alpha) \notin E$. Further, as $s\left(x_{n}\right) \neq \alpha$, we have $\alpha \notin s\left(y_{l^{\prime}+1} \circ \cdots \circ y_{m} \circ x_{n}\right)$ and so $\alpha \notin s(z)$. It then follows from Lemma 5.11 that β is in the support of the reduced form of $w^{\prime} \circ z$. But, $(\beta, \alpha) \notin E$, implying that $w^{\prime} \circ z$ and hence x is not α-good, a contradiction.

Case (3)(b): $j>l^{\prime}$. Notice first that $\left[y_{l^{\prime}+1} \circ \cdots \circ y_{j-1} \circ x_{1} y_{j} \circ y_{j+1} \circ \cdots \circ y_{m} \circ x_{n}\right]=[w]$ where $w=x_{1} y_{j} \circ y_{l^{\prime}+1} \circ \cdots \circ y_{j-1} \circ y_{j+1} \circ \cdots \circ y_{m} \circ x_{n}$. We claim that w is not α-good. As $s\left(y_{j}\right)=s\left(x_{1}\right)$ and $\left(s\left(x_{1}\right), s\left(y_{l^{\prime}}\right)\right) \in E$, we have $\left(s\left(y_{j}\right), \alpha\right) \in E$, so that y_{j} is α-good. By α-amenability, $y_{l^{\prime}} \circ y_{l^{\prime}+1} \circ \cdots \circ y_{m} \circ x_{n}$ is not α-good and so $y_{l^{\prime}+1} \circ \cdots \circ y_{m} \circ x_{n}$ is not α-good by Corollary 5.7. As $\left[y_{l^{\prime}+1} \circ \cdots \circ y_{j-1} \circ y_{j} \circ y_{j+1} \circ \cdots \circ y_{m} \circ x_{n}\right]=\left[w^{\prime}\right]$ where $w^{\prime}=y_{j} \circ y_{l^{\prime}+1} \circ \cdots \circ y_{j-1} \circ y_{j+1} \circ \cdots \circ y_{m} \circ x_{n}$ we deduce that w^{\prime} is not α-good and so $y_{l^{\prime}+1} \circ \cdots \circ y_{j-1} \circ y_{j+1} \circ \cdots \circ y_{m} \circ x_{n}$ is not α-good by Lemma 5.6; similarly, as $x_{1} y_{j}$ is α-good, we deduce $x_{1} y_{j} \circ y_{l^{\prime}+1} \circ \cdots \circ y_{j-1} \circ y_{j+1} \circ \cdots y_{m} \circ x_{n}$ is not α-good. Let z be a reduced form of $x_{1} y_{j} \circ y_{l^{\prime}+1} \circ \cdots \circ y_{j-1} \circ y_{j+1} \circ \cdots y_{m} \circ x_{n}$ and notice $\alpha \notin s(z)$. As z is not α-good, there is $\beta \in s(z)$ such that $\beta \neq \alpha$ and $(\beta, \alpha) \notin E$. Consider the word $v=y_{1} \circ \cdots \circ y_{l^{\prime}} \circ z$. Clearly $[x]=[v]$. By Lemma $5.11, \beta$ is in the support of the reduced form of v and hence that of x. But $(\beta, \alpha) \notin E$, contradicting x being α-good.

We conclude that $x_{2} \circ \cdots \circ x_{n-1}$ is α-absorbing, thus completing the proof.
Corollary 5.13. Let $\alpha \in V$ and $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ be α-amenable with $s\left(x_{n}\right)=\alpha$, and let $\beta \in V$. Then $x_{1} \circ \cdots \circ x_{n-1} \circ 1_{\beta}$ is also α-amenable.

Proof. Certainly 1_{β} is α-good, as its unique reduced form is ϵ. Since $s\left(x_{n}\right)=\alpha$ and x is α-good, two applications of Lemma 5.6 give that $x_{1} \circ \cdots \circ x_{n-1} \circ 1_{\beta}$ is α-good. Suppose that $n \geq 3$ and $s\left(x_{k}\right)=\alpha$ where $2 \leq k \leq n-1$. By α-amenability, $x_{k} \circ \cdots \circ x_{n}$ is not α-good, but as x_{n} is α-good, two applications of Lemma 5.6 give that $x_{k} \circ \cdots \circ x_{n-1} \circ 1_{\beta}$ is not α-good. Therefore $x_{1} \circ \cdots \circ x_{n-1} \circ 1_{\beta}$ is α-amenable.

We have been working towards the following:
Proposition 5.14. Let $\alpha \in V$ and $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ be α-amenable. Then the factor $x_{2} \circ \cdots \circ x_{n-1}$ is α-absorbing.

Proof. The result is true when $s\left(x_{n}\right) \neq \alpha$, by Lemma 5.12. Suppose that $s\left(x_{n}\right)=\alpha$. By Corollary $5.13, x_{1} \circ \cdots \circ x_{n-1} \circ 1_{\beta}$ is α-amenable, for any $\beta \in V$. Since $|V| \geq 2$, taking $\beta \neq \alpha$ Lemma 5.12 tells us that $x_{2} \circ \cdots \circ x_{n-1}$ is α-absorbing.

Corollary 5.15. Let $\alpha \in V$ and $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ be α-amenable.
(i) If $s\left(x_{1}\right)=s\left(x_{n}\right)=\alpha$, then for all β in the support of the reduced form of $x_{2} \circ \cdots \circ x_{n-1}$ we have $\beta \neq \alpha$ and $(\alpha, \beta) \in E$.
(ii) If $s\left(x_{1}\right)=\alpha, s\left(x_{n}\right) \neq \alpha$, then for all β in the support of the reduced form of $x_{2} \circ \cdots \circ x_{n}$ we have $\beta \neq \alpha$ and $(\alpha, \beta) \in E$.

Proof. Clearly we may assume that $n>2$. Let y be a reduced form of $x_{2} \circ \cdots \circ x_{n-1}$, so that $\alpha \notin s(y)$ by Proposition 5.14.
(i) The result is true when $y=\epsilon$, so we assume that $y \neq \epsilon$. Let w be a reduced form of $x_{1} \circ y$. It follows from Corollary 3.11 that $s(y) \subseteq s(w)$. Further, by the dual of Corollary 3.11, $s(y)$ is contained in the support of the reduced form of $w \circ x_{n}$. As x is α-good, so are $x_{1} \circ y \circ x_{n}$ and $w \circ x_{n}$, implying $(\alpha, \beta) \in E$ for all $\beta \in s(y)$.
(ii) Let w be a reduced form such that $[w]=\left[y \circ x_{n}\right]=\left[x_{2} \circ \cdots \circ x_{n}\right]$. Since $s\left(x_{n}\right) \neq \alpha$, we deduce that $\alpha \notin s(w)$. Let v be a reduced form of $x_{1} \circ w$. Since x is α-good and $[v]=\left[x_{1} \circ w\right]=[x]$, we have that v is α-good, so that $\beta=\alpha$ or $(\beta, \alpha) \in E$ for all $\beta \in s(v)$. Further, as $s\left(x_{1}\right)=\alpha$ but $\alpha \notin s(w)$, we have $s(w) \subseteq s(v)$ by Corollary 3.11, so that $(\beta, \alpha) \in E$ for all $\beta \in s(w)$.

In what follows we use the foregoing analysis to allow us to factorise elements of $\mathscr{G} \mathscr{P}$ in a way that will enable us to achieve the aim of this section. First, another definition.

Definition 5.16. Let $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ and $\alpha \in V$. We define a set

$$
N_{\alpha}(x)=\left\{k \in\{1, \cdots, n\}: s\left(x_{k}\right)=\alpha \text { and } x_{k} \circ \cdots \circ x_{n} \text { is } \alpha \text {-good }\right\} .
$$

We will show that for a word x as in Lemma 5.16 we can move the letters indexed by elements of $N_{\alpha}(x)$ to the right of x (maintaining their order). Where convenient, in situations where the enumeration of indices is particularly involved, and where there is no danger of ambiguity, we may identify $N_{\alpha}(x)$ with $\left\{x_{k}: k \in N_{\alpha}(x)\right\}$.

Notice that $N_{\alpha}(x)$ may be empty and, in particular, $N_{\alpha}(\epsilon)=\emptyset$. Further, $s\left(x_{n}\right)=\alpha$ if and only if $n \in N_{\alpha}(x)$. If $l, k \in N_{\alpha}(x)$ with $l<k$, there may exist some $l<j<k$ with $s\left(x_{j}\right)=\alpha$ such that $j \notin N_{\alpha}(x)$. For example, suppose that $n=6, s\left(x_{1}\right)=s\left(x_{3}\right)=$
$s\left(x_{4}\right)=s\left(x_{6}\right)=\alpha$, and $s\left(x_{2}\right)=s\left(x_{5}\right)=\beta$ where $\alpha \neq \beta,(\alpha, \beta) \notin E, x_{3} x_{4}=1_{\alpha}$, $x_{2}, x_{5} \notin I$ and $x_{2} x_{5}=1_{\beta}$. Then $N_{\alpha}(x)=\{1,6\}$. This also provides an example of an α-amenable word.

Lemma 5.17. Let $\alpha \in V$ and $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$ with $s\left(x_{n}\right)=\alpha$. Write

$$
N_{\alpha}(x)=\left\{l_{1}, \cdots, l_{r}: 1 \leq l_{1}<\cdots<l_{r}=n\right\} .
$$

Then

$$
[x]=\left[x^{\prime}\right]\left[x_{l_{1}} \circ \cdots \circ x_{l_{r}}\right]
$$

where x^{\prime} is the word obtained from $x_{1} \circ \cdots \circ x_{n}$ by deleting the letters $x_{l_{1}}, \cdots, x_{l_{r}}$.
Further, if z is a word obtained from x by replacing $x_{l_{1}}, \cdots, x_{l_{r}}$ by letters $z_{l_{1}}, \cdots, z_{l_{r}} \in$ M_{α}, respectively, we have

$$
[z]=\left[x^{\prime}\right]\left[z_{l_{1}} \circ \cdots \circ z_{l_{r}}\right] .
$$

Proof. Let $1 \leq k \leq r-1$.
Definition 5.16, and two applications of Lemma 5.6 give $x_{l_{k}} \circ \cdots \circ x_{l_{k+1}}$ is α-good. We now claim that $x_{l_{k}} \circ \cdots \circ x_{l_{k+1}}$ is α-amenable.

Clearly, $x_{l_{k}} \circ \cdots \circ x_{l_{k+1}}$ is α-amenable if either $l_{k+1}=l_{k}+1$ or $l_{k+1}>l_{k}+1$ and there exists no $l_{k}<j<l_{k+1}$ such that $s\left(x_{j}\right)=\alpha$. Suppose now that there exists $l_{k}<j<l_{k+1}$ such that $s\left(x_{j}\right)=\alpha$. Since $j \notin N_{\alpha}(x)$, the word $x_{j} \circ \cdots \circ x_{n}$ is not α-good. On the other hand, we know $x_{l_{k+1}+1} \circ \cdots \circ x_{n}$ is α-good, giving that $x_{j} \circ \cdots \circ x_{l_{k+1}}$ is not α-good by Lemma 5.6, and hence $x_{l_{k}} \circ \cdots \circ x_{l_{k+1}}$ is α-amenable.

For each k in the range above let w_{k} be a reduced form of $x_{l_{k}+1} \circ \cdots \circ x_{l_{k+1}-1}$. By Corollary 5.15, since $x_{l_{k}} \circ \cdots \circ x_{l_{k+1}}$ is α-amenable, for any $\beta \in s\left(w_{k}\right)$ we have $\beta \neq \alpha$ and $(\beta, \alpha) \in E$. Further,

$$
[x]=\left[x_{1} \circ \cdots \circ x_{l_{r}}\right]=\left[x_{1} \circ \cdots \circ x_{l_{1}} \circ w_{1} \circ x_{l_{2}} \circ \cdots \circ x_{l_{r-1}} \circ w_{r-1} \circ x_{l_{r}}\right]
$$

so that

$$
[x]=\left[y^{\prime} \circ x_{l_{1}} \circ \cdots \circ x_{l_{r}}\right]=\left[y^{\prime}\right]\left[x_{l_{1}} \circ \cdots \circ x_{l_{r}}\right]=\left[x^{\prime}\right]\left[x_{l_{1}} \circ \cdots \circ x_{l_{r}}\right]
$$

where y^{\prime} is the word obtained form $x_{1} \circ \cdots \circ x_{l_{1}} \circ w_{1} \circ x_{l_{2}} \circ \cdots \circ x_{l_{r-1}} \circ w_{r-1} \circ x_{l_{r}}$ by deleting $x_{l_{1}}, \cdots, x_{l_{r}}$ and x^{\prime} is the word obtained from $x_{1} \circ \cdots \circ x_{n}$ by deleting $x_{l_{1}}, \cdots, x_{l_{r}}$.

Suppose now that z is a word obtained from x by replacing $x_{l_{1}}, \cdots, x_{l_{r}}$ by letters $z_{l_{1}}, \cdots, z_{l_{r}} \in M_{\alpha}$, respectively. Since $\left[y^{\prime}\right]=\left[x^{\prime}\right]$, we have

$$
[z]=\left[y^{\prime} \circ z_{l_{1}} \circ \cdots \circ z_{l_{r}}\right]=\left[y^{\prime}\right]\left[z_{l_{1}} \circ \cdots \circ z_{l_{r}}\right]=\left[x^{\prime}\right]\left[z_{l_{1}} \circ \cdots \circ z_{l_{r}}\right] .
$$

We now remove the restriction that $s\left(x_{n}\right)=\alpha$ in Lemma 5.17.

Lemma 5.18. Let $\alpha \in V$ and $x=x_{1} \circ \cdots \circ x_{n} \in X^{*}$. Write

$$
N_{\alpha}(x)=\left\{l_{1}, \cdots, l_{r}: 1 \leq l_{1}<\cdots<l_{r} \leq n\right\} .
$$

Then

$$
[x]=\left[x^{\prime}\right]\left[x_{l_{1}} \circ \cdots \circ x_{l_{r}}\right]
$$

where x^{\prime} is the word obtained from $x_{1} \circ \cdots \circ x_{n}$ by deleting the letters $x_{l_{1}}, \cdots, x_{l_{r}}$.
Further, if z is a word obtained from x by replacing $x_{l_{1}}, \cdots, x_{l_{r}}$ by letters $z_{l_{1}}, \cdots, z_{l_{r}} \in$ M_{α}, respectively, we have

$$
[z]=\left[x^{\prime}\right]\left[z_{l_{1}} \circ \cdots \circ z_{l_{r}}\right]
$$

Proof. We are done with the case where $s\left(x_{n}\right)=\alpha$, by Lemma 5.17. Suppose now that $s\left(x_{n}\right) \neq \alpha$, and so $l_{r} \neq n$. Let $p=x_{1} \circ \cdots \circ x_{l_{r}}$. Applications of Lemma 5.6 that are now standard yield $N_{\alpha}(p)=\left\{l_{1}, \cdots, l_{r}\right\}$. By Lemma $5.17,[p]=\left[p^{\prime} \circ x_{l_{1}} \circ \cdots \circ x_{l_{r}}\right]$ where p^{\prime} is the word obtained from p by deleting letters $x_{l_{1}}, \cdots, x_{l_{r}}$. We now have

$$
[x]=\left[p \circ x_{l_{r}+1} \circ \cdots \circ x_{n}\right]=\left[p^{\prime} \circ x_{l_{1}} \circ \cdots \circ x_{l_{r}} \circ x_{l_{r}+1} \circ \cdots \circ x_{n}\right]
$$

To show the required result, we now consider the α-good word $x_{l_{r}} \circ \cdots \circ x_{n}$. We now claim that it is α-amenable. Clearly, we are done with the cases where either $n=l_{r}+1$ or $n>l_{r}+1$ and there exists no $l_{r}<j<n$ such that $s\left(x_{j}\right)=\alpha$. Suppose therefore that there exists $l_{r}<j<n$ such that $s\left(x_{j}\right)=\alpha$. As $j \notin N_{\alpha}(x)$, we have that $x_{j} \circ \cdots \circ x_{n}$ is not α-good, and so $x_{l_{r}} \circ \cdots \circ x_{n}$ is α-amenable. Let q be a reduced form of $x_{l_{r}+1} \circ \cdots \circ x_{n}$. Since $x_{l_{r}} \circ \cdots \circ x_{n}$ is α-amenable and $s\left(x_{n}\right) \neq \alpha$, we have that $\beta \neq \alpha$ and $(\alpha, \beta) \in E$ for all $\beta \in s(q)$ by Corollary 5.15. Therefore,
$[x]=\left[p^{\prime} \circ x_{l_{1}} \circ \cdots \circ x_{l_{r}} \circ x_{l_{r}+1} \circ \cdots \circ x_{n}\right]=\left[p^{\prime} \circ x_{l_{1}} \circ \cdots \circ x_{l_{r}} \circ q\right]=\left[p^{\prime} \circ q \circ x_{l_{1}} \circ \cdots \circ x_{l_{r}}\right]$.
Since $\left[p^{\prime} \circ q\right]=\left[x^{\prime}\right]$, we have

$$
[x]=\left[x^{\prime}\right]\left[x_{l_{1}} \circ \cdots \circ x_{l_{r}}\right] .
$$

Suppose now that z is a word obtained from x by replacing $x_{l_{1}}, \cdots, x_{l_{r}}$ by letters $z_{l_{1}}, \cdots, z_{l_{r}}$ from M_{α}, respectively. Clearly, $z=z^{\prime} \circ x_{l_{r}+1} \circ \cdots \circ x_{n}$ where z^{\prime} is the word obtained from p by replacing $x_{l_{1}}, \cdots, x_{l_{r}}$ by $z_{l_{1}}, \cdots, z_{l_{r}} \in M_{\alpha}$. We have shown that $N_{\alpha}(p)=\left\{l_{1}, \cdots, l_{r}\right\}$ and so from Lemma 5.17 we have $\left[z^{\prime}\right]=\left[p^{\prime} \circ z_{l_{1}} \circ \cdots \circ z_{l_{r}}\right]$. Then

$$
\begin{aligned}
{[z] } & =\left[z^{\prime} \circ x_{l_{r}+1} \circ \cdots \circ x_{n}\right]=\left[p^{\prime} \circ z_{l_{1}} \circ \cdots \circ z_{l_{r}} \circ q\right] \\
& =\left[p^{\prime} \circ q \circ z_{l_{1}} \circ \cdots \circ z_{l_{r}}\right]=\left[x^{\prime}\right]\left[z_{l_{1}} \circ \cdots \circ z_{l_{r}}\right] .
\end{aligned}
$$

The reader should note that we are not claiming that the maps $\bar{\phi}_{\alpha}$ and $\bar{\psi}_{\alpha}$ in Lemma 5.19 are morphisms.

Lemma 5.19. Let $\alpha \in V$. Then the maps

$$
\phi_{\alpha}: X^{*} \longrightarrow \mathscr{G} \mathscr{P} \text { and } \psi_{\alpha}: X^{*} \longrightarrow \mathscr{G} \mathscr{P}
$$

defined by

$$
x \phi_{\alpha}=\left[x_{l_{1}} \circ \cdots \circ x_{l_{r}}\right] \text { and } x \psi_{\alpha}=\left[x_{m_{1}} \circ \cdots \circ x_{m_{t}}\right]
$$

where $x=x_{1} \circ \cdots \circ x_{n}$, with

$$
N_{\alpha}(x)=\left\{l_{1}, \cdots, l_{r}\right\}, 1 \leq l_{1}<\cdots<l_{r} \leq n
$$

and

$$
\left\{m_{1}, \cdots, m_{t}\right\}=\{1, \cdots, n\} \backslash N_{\alpha}(x), 1 \leq m_{1}<\cdots<m_{t} \leq n
$$

induce maps

$$
\bar{\phi}_{\alpha}: \mathscr{G} \mathscr{P} \longrightarrow \mathscr{G} \mathscr{P} \text { and } \bar{\psi}_{\alpha}: \mathscr{G} \mathscr{P} \longrightarrow \mathscr{G} \mathscr{P}
$$

defined by

$$
[x] \bar{\phi}_{\alpha}=x \phi_{\alpha} \text { and }[x] \bar{\psi}_{\alpha}=x \psi_{\alpha}
$$

Further, $[x]=\left(x \psi_{\alpha}\right)\left(x \phi_{\alpha}\right)$.
Proof. To show that $\bar{\phi}_{\alpha}$ and $\bar{\psi}_{\alpha}$ are well defined we need to show that $R^{\sharp} \subseteq \operatorname{ker} \phi_{\alpha}$ and $R^{\sharp} \subseteq \operatorname{ker} \psi_{\alpha}$. Let L be the binary relation on X^{*} defined by

$$
L=\left\{(y \circ a \circ z, y \circ b \circ z): y, z \in X^{*},(a, b) \in R\right\} .
$$

Since R^{\sharp} is the transitive closure of L, and $\operatorname{ker} \phi_{\alpha}$ and $\operatorname{ker} \phi_{\alpha}$ are, of course, equivalence relations, it suffices to show that $L \subseteq \operatorname{ker} \phi_{\alpha}$ and $L \subseteq \operatorname{ker} \psi_{\alpha}$. This can be seen in a routine manner by using Corollary 5.7 and considering $(a, b) \in R_{i d}, R_{v}$ and R_{e} in turn.

It follows from Lemma 5.18 that $[x]=\left(x \psi_{\alpha}\right)\left(x \phi_{\alpha}\right)$.
Proposition 5.20. Let $z=z_{1} \circ \cdots \circ z_{n} \in X^{*}$ such that $s(z)$ is a complete subgraph such that $s\left(z_{j}\right) \neq s\left(z_{k}\right)$ for any $1 \leq j<k \leq n$. Suppose that $z_{k} \mathcal{R}^{*} z_{k}^{\prime}$ in $M_{s\left(z_{k}\right)}$ for $1 \leq k \leq n$ and put $z^{\prime}=z_{1}^{\prime} \circ \cdots \circ z_{n}^{\prime}$. Then $[z] \mathcal{R}^{*}\left[z^{\prime}\right]$ in $\mathscr{G} \mathscr{P}$.

Proof. Let $x=x_{1} \circ \cdots \circ x_{m}, y=y_{1} \circ \cdots \circ y_{h} \in X^{*}$ be such that $[x][z]=[y][z]$. We proceed by induction on n to show $[x]\left[z^{\prime}\right]=[y]\left[z^{\prime}\right]$. Clearly, the result is true when $n=|z|=0$, i.e. $z=\epsilon=z^{\prime}$. Suppose now that $n>0$ and the result is true for all such z with $|z|<n$. Let $s\left(z_{1}\right)=\alpha$. Then $s\left(z_{k}\right) \neq \alpha$ and $\left(\alpha, s\left(z_{k}\right)\right) \in E$ for all $1<k \leq n$, so that certainly z is α-good. Suppose that

$$
N_{\alpha}(x \circ z)=\left\{r_{1}, \cdots, r_{l}\right\} \text { and } N_{\alpha}(y \circ z)=\left\{d_{1}, \cdots, d_{t}\right\}
$$

where

$$
r_{1}<\cdots<r_{l} \text { and } d_{1}<\cdots<d_{t}
$$

Since $z=z_{1} \circ \cdots \circ z_{n}$ is a complete block and $s\left(z_{1}\right)=\alpha$, we have that z_{1} is the last letter in $x \circ z$ with support α and z is clearly α-good, so that $r_{l}=m+1$ by Definition 5.16. Similarly, $d_{t}=h+1$. By Lemma 5.18,

$$
[x \circ z]=\left[x^{\prime} \circ z_{2} \circ \cdots \circ z_{n}\right]\left[x_{r_{1}} \circ \cdots \circ x_{r_{l-1}} \circ z_{1}\right]
$$

and

$$
[y \circ z]=\left[y^{\prime} \circ z_{2} \circ \cdots \circ z_{n}\right]\left[y_{d_{1}} \circ \cdots \circ y_{d_{t-1}} \circ z_{1}\right]
$$

By replacing the first letter z_{1} of z by z_{1}^{\prime} in $x \circ z$, we have

$$
\left[x \circ z_{1}^{\prime} \circ \cdots \circ z_{n}\right]=\left[x^{\prime} \circ z_{2} \circ \cdots \circ z_{n}\right]\left[x_{r_{1}} \circ \cdots \circ x_{r_{l-1}} \circ z_{1}^{\prime}\right]
$$

by Lemma 5.18. Similarly,

$$
\left[y \circ z_{1}^{\prime} \circ \cdots \circ z_{n}\right]=\left[y^{\prime} \circ z_{2} \circ \cdots \circ z_{n}\right]\left[y_{d_{1}} \circ \cdots \circ y_{d_{t-1}} \circ z_{1}^{\prime}\right] .
$$

On the other hand, by applying the maps $\bar{\phi}_{\alpha}$ and $\bar{\psi}_{\alpha}$ to each side of $[x \circ z]=[y \circ z]$, we have
$\left[x^{\prime} \circ z_{2} \circ \cdots \circ z_{n}\right]=\left[y^{\prime} \circ z_{2} \circ \cdots \circ z_{n}\right]$, and $\left[x_{r_{1}} \circ \cdots \circ x_{r_{l-1}} \circ z_{1}\right]=\left[y_{d_{1}} \circ \cdots \circ y_{d_{t-1}} \circ z_{1}\right]$.
Using Remark 2.4, the latter gives $x_{r_{1}} \cdots x_{r_{l-1}} z_{1}=y_{d_{1}} \cdots y_{d_{t-1}} z_{1}$. As $z_{1} \mathcal{R}^{*} z_{1}^{\prime}$ in M_{α}, we have

$$
x_{r_{1}} \cdots x_{r_{l-1}} z_{1}^{\prime}=y_{d_{1}} \cdots y_{d_{t-1}} z_{1}^{\prime}
$$

so that $\left[x_{r_{1}} \circ \cdots \circ x_{r_{l-1}} \circ z_{1}^{\prime}\right]=\left[y_{d_{1}} \circ \cdots \circ y_{d_{t-1}} \circ z_{1}^{\prime}\right]$. Therefore,

$$
\left[x \circ z_{1}^{\prime} \circ \cdots \circ z_{n}\right]=\left[y \circ z_{1}^{\prime} \circ \cdots \circ z_{n}\right]
$$

and so

$$
\left[x \circ z_{1}^{\prime}\right]\left[z_{2} \circ \cdots \circ z_{n}\right]=\left[y \circ z_{1}^{\prime}\right]\left[z_{2} \circ \cdots \circ z_{n}\right] .
$$

Our inductive assumption now gives

$$
\begin{aligned}
{[x]\left[z_{1}^{\prime} \circ z_{2}^{\prime} \circ \cdots \circ z_{n}^{\prime}\right] } & =\left[x \circ z_{1}^{\prime}\right]\left[z_{2}^{\prime} \circ \cdots \circ z_{n}^{\prime}\right]=\left[y \circ z_{1}^{\prime}\right]\left[z_{2}^{\prime} \circ \cdots \circ z_{n}^{\prime}\right] \\
& =[y]\left[z_{1}^{\prime} \circ z_{2}^{\prime} \circ \cdots \circ z_{n}^{\prime}\right] .
\end{aligned}
$$

The result follows by induction.
Proposition 5.21. Let $u \in X^{*}$ and let $[u]=[a][v]$ where $a, v \in X^{*}$ are such that all letters contained in a are left invertible, and $v=v_{1} \circ \cdots \circ v_{m}$ is a left Foata normal form with blocks $v_{k}, 1 \leq k \leq n$, such that v_{1} contains no left invertible letters. Let $v_{1}=z_{1} \circ \cdots \circ z_{s} \in X^{*}$. Suppose that for each $1 \leq j \leq s$ an idempotent $z_{j}^{+} \in M_{s\left(z_{j}\right)}$ is chosen such that $z_{j}^{+} \mathcal{R}^{*} z_{j}$ in $M_{s\left(z_{j}\right)}$, and put $v_{1}^{+}=z_{1}^{+} \circ \cdots \circ z_{s}^{+}$. Let $\left[a^{\prime}\right]$ be a left inverse of $[a]$ in $\mathscr{G} \mathscr{P}$. Then

$$
[u] \mathcal{R}^{*}[a]\left[v_{1}^{+}\right]\left[a^{\prime}\right]
$$

and $[a]\left[v_{1}^{+}\right]\left[a^{\prime}\right]$ is idempotent.
Proof. Under the conditions of the hypothesis, it follows from (1) of Proposition 4.5 that $[v] \mathcal{R}^{*}\left[v_{1}\right]$ and then from Proposition 5.20 that $\left[v_{1}\right] \mathcal{R}^{*}\left[v_{1}^{+}\right]$. Since $\left[a^{\prime}\right][a]=[\epsilon]$, we have $\left[a^{\prime}\right] \mathcal{R}[\epsilon]$ and so certainly $\left[a^{\prime}\right] \mathcal{R}^{*}[\epsilon]$. Then

$$
[u]=[a][v] \mathcal{R}^{*}[a]\left[v_{1}^{+}\right] \mathcal{R}^{*}[a]\left[v_{1}^{+}\right]\left[a^{\prime}\right],
$$

using the fact that \mathcal{R}^{*} is a left congruence. Further, $[a]\left[v_{1}^{+}\right]\left[a^{\prime}\right]$ is idempotent by Lemma 5.2.

The main result of our paper now follows.
Theorem 5.22. The graph product $\mathscr{G} \mathscr{P}=\mathscr{G} \mathscr{P}(\Gamma, \mathcal{M})$ of left abundant monoids $\mathcal{M}=$ $\left\{M_{\alpha}: \alpha \in V\right\}$ with respect to Γ is left abundant.

Proof. Let $[u] \in \mathscr{G} \mathscr{P}$. By Lemma 4.2 we are guaranteed a decomposition of u as in Proposition 5.21. The result now follows from the assumption that each vertex monoid is left abundant.

Of course, the left-right dual of Theorem 5.22 holds, and hence one may also deduce that the graph product of abundant monoids is abundant. A consequence is worth stating separately.

Corollary 5.23. The graph product $\mathscr{G} \mathscr{P}=\mathscr{G} \mathscr{P}(\Gamma, \mathcal{M})$ of regular monoids $\mathcal{M}=\left\{M_{\alpha}\right.$: $\alpha \in V\}$ with respect to Γ is abundant.

6. Graph products of left Fountain monoids are left Fountain

We now discuss the left Fountainicity of the graph product $\mathscr{G} \mathscr{P}=\mathscr{G} \mathscr{P}(\Gamma, \mathcal{M})$ of left Fountain monoids $\mathcal{M}=\left\{M_{\alpha}: \alpha \in V\right\}$ with respect to Γ.

Our strategy is as follows. We know from Lemma 4.2 that any element of $\mathscr{G} \mathscr{P}$ has reduced form $a \circ x$ where the letters of a are all left invertible, $x=x_{1} \circ \cdots \circ x_{n}$ is a left Foata normal form with blocks $x_{i}, 1 \leq i \leq n$, such that x_{1} contains no left invertible letters. From Proposition 4.5 we then have $[a \circ x] \mathcal{R}^{*}\left[a \circ x_{1}\right]$ and so certainly $[a \circ x] \widetilde{\mathcal{R}}\left[a \circ x_{1}\right]$. We take an idempotent of $\mathscr{G} \mathscr{P}$ in standard form u and examine the reduction processes for the word $u \circ a \circ x_{1}$ in the case $\left[u \circ a \circ x_{1}\right]=\left[a \circ x_{1}\right]$. This eventually enables us to show that $\left[u \circ a \circ x_{1}\right]=\left[a \circ x_{1}\right]$ if and only if $\left[u \circ a \circ \bar{x}_{1}\right]=\left[a \circ \bar{x}_{1}\right]$ where \bar{x}_{1} is obtained from x_{1} by replacing each letter by an idempotent in the same $\widetilde{\mathcal{R}}$-class in the relevant vertex monoid. Hence $\left[a \circ x_{1}\right] \widetilde{\mathcal{R}}\left[a \circ \bar{x}_{1}\right]$ but then with $\left[a^{\prime}\right]$ being a left inverse for $[a]$ we arrive at $\left[a \circ x_{1}\right] \widetilde{\mathcal{R}}\left[a \circ \bar{x}_{1} \circ a^{\prime}\right]$. The latter element is clearly idempotent.

To proceed, we rely on the analysis of α-good suffices of words provided in Section 5. In addition, we need some further analysis of the way in which the product of two reduced words reduces in $\mathscr{G} \mathscr{P}$.

It is worth remarking that if every vertex monoid has the property that left invertible elements are also right invertible, then our arguments would need to be less delicate. Since, in that case, $\left[u \circ a \circ x_{1}\right]=\left[a \circ x_{1}\right]$ if and only if $\left[a^{\prime} \circ u \circ a \circ x_{1}\right]=\left[x_{1}\right]$, and the fact that $s\left(x_{1}\right)$ is complete then makes the subsequent analysis somewhat easier.

Lemma 3.10 shows the different ways in which multiplying a reduced word by $p \in X \backslash I$ leads to a reduced word. In some cases, we need to delete a letter of I, that is, use Step (id) of Definition 3.1; in other cases, we need only Steps (v) and (e). This leads to the following notion.

Definition 6.1. Let $x=x_{1} \circ \cdots \circ x_{n}, y=y_{1} \circ \cdots \circ y_{m} \in X^{*}$ be reduced words. We say that $x \circ y$ is S-reducible if in reducing $x \circ y$ to a reduced form we only use Steps (v) and (e) in Definition 3.1.

We use the term ' S-reducible' since using Steps (v) and (e) would be allowed in the corresponding notion of a semigroup graph product: see Section 7 .

Lemma 6.2. Let $x=x_{1} \circ \cdots \circ x_{n}, y=y_{1} \circ \cdots \circ y_{m} \in X^{*}$ be reduced words. Suppose that $x \circ y$ is S-reducible. Then $x \circ y$ shuffles to

$$
p_{1} \circ \cdots \circ p_{n} \circ y^{\prime}
$$

$$
q_{1} \circ \cdots \circ q_{n} \circ y^{\prime}
$$

where for all $1 \leq j \leq n, q_{j}=x_{j}=p_{j}$ or $p_{j}=x_{j} \circ y_{r_{j}}$ and $q_{j}=x_{j} y_{r_{j}}$ for some distinct indices $r_{j} \in\{1, \cdots, m\}$, and $y^{\prime} \in X^{*}$ is the word obtained from y by deleting the letters $y_{r_{j}}$.

Proof. We use induction on the length n of x. Clearly, the result is true for $n=1$ by Lemma 3.10. Suppose that $n>1$ and the result is true for all reduced words x of length strictly less than n. Let $x^{\prime}=x_{2} \circ \cdots \circ x_{n}$. Clearly, $x^{\prime} \circ y$ is also S-reducible, and so $x^{\prime} \circ y$ shuffles to

$$
u_{1}=p_{2} \circ \cdots \circ p_{n} \circ y^{\prime}
$$

and has a reduced form

$$
u_{2}=q_{2} \circ \cdots \circ q_{n} \circ y^{\prime}
$$

where for all $2 \leq j \leq n, q_{j}=x_{j}=p_{j}$ or $p_{j}=x_{j} \circ y_{r_{j}}$ and $q_{j}=x_{j} y_{r_{j}}$ for some distinct indices $r_{j} \in\{1, \ldots, m\}$, and y^{\prime} is the word obtained from y by deleting the letters $y_{r_{j}}$.

Now consider the words

$$
w_{1}=x_{1} \circ u_{1} \text { and } w_{2}=x_{1} \circ u_{2} .
$$

If w_{2} is reduced then we are done, with $p_{1}=q_{1}=x_{1}$. Suppose therefore that w_{2} is not reduced. Since $s\left(q_{j}\right)=s\left(x_{j}\right)$ for all $2 \leq j \leq n$, the word $x_{1} \circ q_{2} \circ \cdots \circ q_{n}$ is reduced by Remark 3.5. So, there must exist some letter y_{t} in y^{\prime} with $s\left(x_{1}\right)=s\left(y_{t}\right)$ that can be shuffled to the front of both u_{1} and u_{2}. Clearly t is distinct from any existing r_{j}; we put $r_{1}=t$. As $x \circ y$ is S-reducible, $x_{1} y_{r_{1}}$ is not an identity. Therefore, w shuffles to

$$
p_{1} \circ p_{2} \circ \cdots \circ p_{n} \circ y^{\prime \prime}
$$

and, from Lemma 3.10, has reduced form

$$
q_{1} \circ q_{2} \circ \cdots \circ q_{n} \circ y^{\prime \prime}
$$

where $p_{1}=x_{1} \circ y_{r_{1}}$ and $q_{1}=x_{1} y_{r_{1}}$ and $y^{\prime \prime}$ is the word obtained by deleting $y_{r_{1}}$ from y^{\prime}.

Corollary 6.3. Let $\alpha \in V$ and let $x, y \in X^{*}$ be reduced words such that x is not α-good but $x \circ y$ is α-good. Then $x \circ y$ is not S-reducible.

Proof. Let x, y be as given. If $x \circ y$ is S-reducible, then $s(x)$ is a subset of the support of the reduced form of $x \circ y$, by Lemma 6.2. Since x is not α-good, neither is $x \circ y$, a contradiction.

In what follows, we use $u=b \circ e \circ b^{\prime}$ to denote a standard form of an idempotent $[u] \in \mathscr{G} \mathscr{P}$, as described in Definition 5.1. We use $a \circ x$ to denote a word in X^{*} satisfying the following conditions:
(a) $a=a_{1} \circ \cdots \circ a_{l}$ is a reduced word such that all letters in a are left invertible;
(b) $x=x_{1} \circ \cdots \circ x_{k}$ such that $s(x)$ is complete and $s\left(x_{j}\right) \neq s\left(x_{t}\right)$ for all $1 \leq j<t \leq k$;
(c) there exists no j with $1 \leq j \leq l$ such that $\left(s\left(a_{j}\right), s\left(a_{t}\right)\right) \in E$ for all $j+1 \leq t \leq l$ and $s\left(a_{j}\right) \in s(x)$.

The reader by now might think we should assume $a \circ x$ is reduced and no letter in x is left invertible. However, we need this rather looser set up. The reason for this will become apparent later, when we apply Lemma 6.8 iteratively in Corollary 6.9.

Lemma 6.4. Let $a \circ x$ be defined as above. Then
(i) for any $y=y_{1} \circ \cdots \circ y_{k} \in X^{*}$ such that $s\left(y_{j}\right)=s\left(x_{j}\right)$ for all $1 \leq j \leq k$, $a \circ y$ is of the same form as $a \circ x$;
(ii) $a \circ x^{\prime}$ is a reduced form of $a \circ x$, where x^{\prime} is the word obtained from x by deleting all letters in x which are identities;
(iii) for each $\alpha \in s(x), N_{\alpha}(a \circ x)$ contains the unique letter x_{j} in x such that $s\left(x_{j}\right)=\alpha$.

Proof. (i) and (ii) are clear.
(iii) Let $\alpha \in s(x)$ and let j be the unique index guaranteed by (b) such that $s\left(x_{j}\right)=\alpha$. Since $s(x)$ is complete, $x_{j} \in N_{\alpha}(a \circ x)$. Suppose (with some abuse of notation) that $a_{h} \in N_{\alpha}(a \circ x)$. Then $s\left(a_{h}\right)=\alpha$ and $a_{h} \circ \cdots \circ a_{l} \circ x$ is α-good, hence so is its reduced form $a_{h} \circ \cdots \circ a_{l} \circ x^{\prime}$. Let $h \leq t \leq l$ be the largest such that $s\left(a_{t}\right)=\alpha$. Then $\left(s\left(a_{t}\right), s\left(a_{r}\right)\right) \in E$ for all $t+1 \leq r \leq l$, contradicting (c). Thus, $N_{\alpha}(a \circ x)=\left\{x_{j}\right\}$.

In Corollary 6.6, and Lemmas 6.7 and 6.8 let $a \circ x$ and $u=b \circ e \circ b^{\prime}$ be defined as above such that $[u][a \circ x]=[a \circ x]$, and let $w=u \circ a \circ x$.

Lemma 6.5. Suppose that u is α-good. For any $j \in\{1, \cdots, n\}$ we have $b_{j}^{\prime} \in N_{\alpha}(u)$ if and only if $b_{j} \in N_{\alpha}(u)$.

Proof. Using Lemma 5.6, Corollary 5.7 and Lemma 5.5, the following are equivalent

$$
\begin{array}{r}
b_{j}^{\prime} \in N_{\alpha}(u) \\
b_{j}^{\prime} \circ \cdots \circ b_{1}^{\prime} \text { is } \alpha \text {-good } \\
b_{j} \circ \cdots \circ b_{1} \text { is } \alpha \text {-good } \\
b_{1} \circ \cdots \circ b_{j} \text { is } \alpha \text {-good } \\
b_{j+1} \circ \cdots \circ b_{n} \circ e \circ b^{\prime} \text { is } \alpha \text {-good } \\
b_{j} \circ b_{j+1} \circ \cdots \circ b_{n} \circ e \circ b^{\prime} \text { is } \alpha \text {-good } \\
b_{j} \in N_{\alpha}(u) .
\end{array}
$$

We can now make progress in the case where $s\left(x_{1}\right)=\alpha$ and $a \circ x$ is α-good.
Corollary 6.6. Suppose that $s\left(x_{1}\right)=\alpha$ and $a \circ x$ is α-good. Then for any $j \in\{1, \cdots, n\}$ we have $b_{j}^{\prime} \in N_{\alpha}(w)$ if and only if $b_{j} \in N_{\alpha}(w)$.

Proof. Since $a \circ x$ is α-good, so is $u \circ a \circ x$ and hence from Lemma 5.6 so is u. Moreover (with substantial abuse of notation), $z \in N_{\alpha}(u)$ if and only if $z \in N_{\alpha}(w)$, for any letter z of u. The result follows from Lemma 6.5.

Without the assumption that $a \circ x$ is α-good, our analysis of the elements of $N_{\alpha}(w)$ becomes more delicate. We remark that in what follows, we could replace the suffix $a \circ x$ of w by any word v and the same argument would apply to $u \circ v$ as it does to w.

Lemma 6.7. Let $\alpha \in V$. If $b_{j}^{\prime} \notin N_{\alpha}(w)$ for all $1 \leq j \leq n$, then $b_{j} \notin N_{\alpha}(w)$ for all $1 \leq j \leq n$.

Proof. If $\alpha \notin s(b)$ there is nothing to show. Otherwise, let h be greatest such that $s\left(b_{h}^{\prime}\right)=\alpha$, so that

$$
v=b_{h}^{\prime} \circ b_{h-1}^{\prime} \circ \cdots \circ b_{1}^{\prime} \circ a \circ x
$$

is not α-good. Suppose that there exists some $b_{j} \in N_{\alpha}(w)$, so that

$$
z=b_{j} \circ \cdots \circ b_{n} \circ e \circ b_{n}^{\prime} \circ \cdots \circ b_{1}^{\prime} \circ a \circ x
$$

is α-good. Notice that $j \leq h$.
Suppose for contradiction that $b^{\prime} \circ a \circ x$ is not α-good. Then neither is $e \circ b^{\prime} \circ a \circ x$. To see this, let $y=y_{1} \circ \cdots \circ y_{r}$ be a reduced form of $b^{\prime} \circ a \circ x$, so that y is not α-good. Notice that a product $p q$ of two elements p, q in the same vertex monoid with at least one of p, q being a non-identity idempotent cannot be the identity, so that using Lemma 3.10 iteratively we see that $e \circ y$ is S-reducible. It follows from Lemma 6.2 that $e \circ y$ reduces to

$$
q_{1} \circ \cdots \circ q_{m} \circ y^{\prime}
$$

where for all $1 \leq t \leq m, q_{t}=e_{t}$ or $q_{t}=e_{t} y_{r_{t}}$ for some distinct indices r_{t}, and y^{\prime} is the word obtained from y by deleting the letters $y_{r_{t}}$. Clearly, $s(y) \subseteq s\left(q_{1} \circ \cdots \circ q_{m} \circ y^{\prime}\right)$, implying that $q_{1} \circ \cdots \circ q_{m} \circ y^{\prime}$ is not α-good, and hence neither is $e \circ b^{\prime} \circ a \circ x$.

By assumption,

$$
z^{\prime}=b_{j} \circ \cdots \circ b_{n} \circ q_{1} \circ \cdots \circ q_{m} \circ y^{\prime}
$$

is α-good. We next claim that it is a reduced form. Since $s\left(q_{t}\right)=s\left(e_{t}\right)$ for $1 \leq t \leq m$ and $b_{j} \circ \cdots \circ b_{n} \circ e_{1} \circ \cdots \circ e_{m}$ is a reduced form, we deduce that $b_{j} \circ \cdots \circ b_{n} \circ q_{1} \circ \cdots \circ q_{m}$
is also reduced by Remark 3.5. Further, it is impossible to shuffle some $b_{t}(j \leq t \leq n)$ in z^{\prime} and glue it to some letter in y^{\prime}, as this would imply that in the reduced form $b_{j} \circ \cdots \circ b_{n} \circ e \circ b_{n}^{\prime} \circ \cdots \circ b_{j}^{\prime}$ we may shuffle b_{t} and glue it to b_{t}^{\prime}, contradicting the fact $b \circ e \circ b^{\prime}$ is reduced. Thus z^{\prime} is indeed reduced. Since $q_{1} \circ \cdots \circ q_{m} \circ y^{\prime}$ is not α-good, neither is z^{\prime}, contradicting the fact that $[z]=\left[z^{\prime}\right]$ and $b_{j} \in N_{\alpha}(w)$.

We have shown that $b^{\prime} \circ a \circ x$ must be α-good. Since v is not α-good, there exists $\beta \neq \alpha$ in the support of the reduced form of v such that $(\alpha, \beta) \notin E$. On the other hand, $b^{\prime} \circ a \circ x$ and hence $b_{n}^{\prime} \circ \cdots \circ b_{h+1}^{\prime} \circ v$ are α-good, Corollary 3.11 forces there to be some l with $h<l \leq n$ such that $s\left(b_{l}^{\prime}\right)=\beta$. Since $s\left(b_{l}^{\prime}\right)=s\left(b_{l}\right)$ and $h \geq j$, and z^{\prime} is a reduced form, we have that z is not α-good, which again contradicts our initial assumption that $b_{j} \in N_{\alpha}(w)$.

We can now show that, given $[u \circ a \circ x]=[a \circ x]$, we can replace a letter of x by any corresponding element in the same $\widetilde{\mathcal{R}}$-class in the relevant vertex monoid. Note that it may be we replace a letter not in I by a letter in I. It is for this reason that our set-up for $a \circ x$ is so delicate.

Lemma 6.8. Let $s\left(x_{1}\right)=\alpha$ and let $\tilde{x}=x_{1}^{\prime} \circ x_{2} \circ \cdots \circ x_{k}$ where $x_{1}^{\prime} \in M_{\alpha}$ is chosen so that $x_{1} \widetilde{\mathcal{R}} x_{1}^{\prime}$ in M_{α}. Then

$$
[u][a \circ x]=[a \circ x]
$$

implies that

$$
[u][a \circ \tilde{x}]=[a \circ \tilde{x}] .
$$

Proof. If $a \circ x$ is α-good, then by Corollary 6.6 and Lemma 6.4 (iii)

$$
N_{\alpha}(w)=\left\{b_{t_{1}}, \cdots, b_{t_{r}}, e_{h}, b_{t_{r}}^{\prime}, \cdots, b_{t_{1}}^{\prime}, x_{1}\right\} \text { or } N_{\alpha}(w)=\left\{b_{t_{1}}, \cdots, b_{t_{r}}, b_{t_{r}}^{\prime}, \cdots, b_{t_{1}}^{\prime}, x_{1}\right\}
$$

for some $0 \leq r \leq n$ and $1 \leq t_{1}<\cdots<t_{r} \leq n$ and $1 \leq h \leq m$. Whether or not $a \circ x$ is α-good, in the case where $b_{j}^{\prime} \notin N_{\alpha}(u \circ a \circ x)$ for all $1 \leq j \leq n$, we have that $b_{j} \notin N_{\alpha}(u \circ a \circ x)$ for all $1 \leq j \leq n$, by Lemma 6.7, so that $N_{\alpha}(u \circ a \circ x)$ equals either $\left\{e_{h}, x_{1}\right\}$ or $\left\{x_{1}\right\}$ for some $1 \leq h \leq m$.

In either of these two special cases, let f be the idempotent $b_{t_{1}} \cdots b_{t_{r}} e_{h} b_{t_{r}}^{\prime} \cdots b_{t_{1}}^{\prime}$ or $b_{t_{1}} \cdots b_{t_{r}} b_{t_{r}}^{\prime} \cdots b_{t_{1}}^{\prime}$; note that we could have $f=\epsilon$. Then by Lemma 5.18,

$$
[u][a \circ x]=[u]\left[a \circ x_{1} \circ \cdots \circ x_{k}\right]=\left[w^{\prime}\right]\left[f \circ x_{1}\right], \text { or }\left[x_{1}\right] \text { if } f=\epsilon,
$$

where w^{\prime} is the word obtained from w by deleting all letters in $N_{\alpha}(w)$. By replacing the first letter x_{1} of x by x_{1}^{\prime} in $u \circ a \circ x$, we have

$$
[u]\left[a \circ x_{1}^{\prime} \circ x_{2} \circ \cdots \circ x_{k}\right]=\left[w^{\prime}\right]\left[f \circ x_{1}^{\prime}\right], \text { or }\left[x_{1}\right],
$$

again by Lemma 5.18.
On the other hand, by applying the maps $\bar{\phi}_{\alpha}$ and $\bar{\psi}_{\alpha}$ to $[u][a \circ x]$ and $[a \circ x]$, we have $\left[w^{\prime}\right]=\left[(a \circ x)^{\prime}\right]$ and $\left[f \circ x_{1}\right]=\left[x_{1}\right]($ if $f \neq \epsilon)$ where $(a \circ x)^{\prime}$ is the word obtained from $a \circ x$ by deleting the first letter x_{1} of x. The latter gives $f x_{1}=x_{1}$ in M_{α} (if $f \neq \epsilon$). If $f \in M_{\alpha}$ is idempotent, then given $x_{1} \widetilde{\mathcal{R}} x_{1}^{\prime}$ in M_{α}, we have $f x_{1}^{\prime}=x_{1}^{\prime}$. Therefore

$$
[u]\left[a \circ x_{1}^{\prime} \circ x_{2} \circ \cdots \circ x_{k}\right]=\left[(a \circ x)^{\prime}\right]\left[x_{1}^{\prime}\right]=\left[a \circ x_{1}^{\prime} \circ x_{2} \circ \cdots \circ x_{k}\right]
$$

so that

$$
[u][a \circ \tilde{x}]=[a \circ \tilde{x}] .
$$

We now proceed by induction on the length of u. If $|u|=1$, then $u=e_{1}$ for some nonidentity idempotent e_{1} from a vertex monoid. Clearly $b_{j}^{\prime} \notin N_{\alpha}(w)$ for all $j \in\{1, \ldots, n\}$ so that if $[u][a \circ x]=[a \circ x]$, then $[u][a \circ \tilde{x}]=[a \circ \tilde{x}]$, by the above.

Suppose now that $1<|u|$ and the result is true for all idempotents having length less than u, when written in standard form. By the above we only need to consider the case where $a \circ x$ is not α-good and there exists some $b_{j}^{\prime} \in N_{\alpha}(u \circ a \circ x)$. We pick j to be smallest such index. Then $b_{j-1}^{\prime} \circ \cdots \circ b_{1}^{\prime} \circ a \circ x$ is α-good. Since x is α-good we have $b_{j-1}^{\prime} \circ \cdots \circ b_{1}^{\prime} \circ a$ is α-good and since $a \circ x$ is not α-good we also have that a is not α-good. We see from Corollary 6.3 that $b_{j-1}^{\prime} \circ \cdots \circ b_{1}^{\prime} \circ a$ is not S-reducible. There must therefore be a smallest t such that $b_{t}^{\prime} \circ \cdots \circ b_{1}^{\prime} \circ a$ is S-reducible, but $b_{t+1}^{\prime} \circ b_{t}^{\prime} \circ \cdots \circ b_{1}^{\prime} \circ a$ is not. By Lemma 6.2, we know $b_{t}^{\prime} \circ \cdots \circ b_{1}^{\prime} \circ a$ shuffles to some

$$
p_{t} \circ \cdots \circ p_{1} \circ a^{\prime}
$$

and reduces to a reduced form

$$
q_{t} \circ \cdots \circ q_{1} \circ a^{\prime}
$$

where for all $1 \leq r \leq t$ we have $q_{r}=b_{r}^{\prime}=p_{t}$ or $p_{t}=b_{r}^{\prime} \circ a_{r_{j}}$ and $q_{r}=b_{r}^{\prime} a_{r_{j}}$, for some distinct indices $r_{j} \in\{1, \ldots, l\}$, and a^{\prime} is the word obtained from a by deleting the letters $a_{r_{j}}$.

Now consider the reduced form of

$$
b_{t+1}^{\prime} \circ q_{t} \circ \cdots \circ q_{1} \circ a^{\prime} \text { or, equivalently, } b_{t+1}^{\prime} \circ p_{t} \circ \cdots \circ p_{1} \circ a^{\prime}
$$

Since $s\left(q_{r}\right)=s\left(b_{r}^{\prime}\right)=s\left(p_{r}\right)$ for all $1 \leq r \leq t$ and $b_{t+1}^{\prime} \circ b_{t}^{\prime} \circ \cdots \circ b_{1}^{\prime}$ is a reduced form, we have that $b_{t+1}^{\prime} \circ q_{t} \circ \cdots \circ q_{1}$ is a reduced form. As $b_{t+1}^{\prime} \circ b_{t} \circ \cdots \circ b_{1} \circ a$ and hence $b_{t+1}^{\prime} \circ q_{t} \circ \cdots \circ q_{1} \circ a^{\prime}$ is not S-reducible, there must be a letter $a_{r_{t+1}}$ in a^{\prime} such that $s\left(b_{t+1}^{\prime}\right)=s\left(a_{r_{t+1}}\right), b_{t+1}^{\prime} a_{r_{t+1}}$ is an identity and such that we must be able to shuffle $a_{r_{t+1}}$ to the front of $q_{t} \circ \cdots \circ q_{1} \circ a^{\prime}$. Note that we can therefore also shuffle $a_{r_{t+1}}$ to the front of $p_{t} \circ \cdots \circ p_{1} \circ a^{\prime}$ and hence to the front of a, and b_{t+1}^{\prime} to the right of $p_{t} \circ \cdots \circ p_{1}$ and
hence to the right of $b_{t}^{\prime} \circ \cdots \circ b_{1}^{\prime}$. We can therefore assume that $t+1=1=r_{t+1}$ so that $b_{1}^{\prime} a_{1}$ is an identity.

We now have

$$
[u \circ a \circ x]=\left[b_{1} \circ \cdots \circ b_{n} \circ e \circ b_{n}^{\prime} \circ \cdots \circ b_{2}^{\prime} \circ a_{2} \cdots \circ a_{l} \circ x\right]=[a \circ x]
$$

so that multiplying by $\left[b_{1}^{\prime}\right]$ on the left we have

$$
\begin{equation*}
\left[b_{2} \circ \cdots \circ b_{n} \circ e \circ b_{n}^{\prime} \circ \cdots \circ b_{2}^{\prime}\right]\left[a_{2} \cdots \circ a_{l} \circ x\right]=\left[a_{2} \circ \cdots \circ a_{l} \circ x\right] . \tag{4}
\end{equation*}
$$

We note that $a_{2} \cdots \circ a_{l} \circ x$ is a word of the correct form for us to apply our inductive assumption, which gives us that

$$
\begin{equation*}
\left[b_{2} \circ \cdots \circ b_{n} \circ e \circ b_{n}^{\prime} \circ \cdots \circ b_{2}^{\prime}\right]\left[a_{2} \cdots \circ a_{l} \circ \tilde{x}\right]=\left[a_{2} \circ \cdots \circ a_{l} \circ \tilde{x}\right] . \tag{5}
\end{equation*}
$$

Now multiplying Equation (5) by $\left[b_{1}\right]$ on the left and re-instating $b_{1}^{\prime} \circ a_{1}$ we obtain

$$
[u \circ a \circ \tilde{x}]=\left[b_{1} \circ a_{2} \circ \cdots \circ a_{l} \circ \tilde{x}\right] .
$$

But multiplying Equation (4) by $\left[b_{1}\right]$ on the left and re-instating $b_{1}^{\prime} \circ a_{1}$ we also obtain

$$
[u \circ a \circ x]=[a \circ x]=\left[b_{1} \circ a_{2} \circ \cdots \circ a_{l} \circ x\right] .
$$

Let x^{\prime} be the word obtained from x by deleting letters which are identities. Then

$$
\left[u \circ a \circ x^{\prime}\right]=\left[a \circ x^{\prime}\right]=\left[b_{1} \circ a_{2} \circ \cdots \circ a_{l} \circ x^{\prime}\right]
$$

Since $a \circ x^{\prime}$ is a reduced form by Lemma 6.4 (ii) and $\left|b_{1} \circ a_{2} \circ \cdots \circ a_{l} \circ x^{\prime}\right|=\left|a \circ x^{\prime}\right|$, we deduce that $b_{1} \circ a_{2} \circ \cdots \circ a_{l} \circ x^{\prime}$ is a reduced form, so that $[a]=\left[b_{1} \circ a_{2} \circ \cdots \circ a_{l}\right]$ by Lemma 3.14. Therefore,

$$
[u \circ a \circ \tilde{x}]=[a \circ \tilde{x}] .
$$

Corollary 6.9. Suppose that for each $1 \leq j \leq k$ we have $x_{j}^{\prime} \in M_{s\left(x_{j}\right)}$ such that $x_{j} \widetilde{\mathcal{R}} x_{j}^{\prime}$ in $M_{s\left(x_{j}\right)}$. Let $\bar{x}=x_{1}^{\prime} \circ x_{2}^{\prime} \circ \cdots \circ x_{k}^{\prime}$. Then

$$
[a \circ x] \widetilde{\mathcal{R}}[a \circ \bar{x}] .
$$

Proof. Suppose that

$$
[u][a \circ x]=[a \circ x] .
$$

By Lemma 6.8, we have

$$
[u]\left[a \circ x_{1}^{\prime} \circ x_{2} \circ \cdots \circ x_{k}\right]=\left[a \circ x_{1}^{\prime} \circ x_{2} \circ \cdots \circ x_{k}\right] .
$$

Clearly, we may shuffle x_{1}^{\prime} to the back of $x_{1}^{\prime} \circ x_{2} \circ \cdots \circ x_{k}$ and note that, by Lemma 6.4 (i), $a \circ x_{2} \circ \cdots \circ x_{k} \circ x_{1}^{\prime}$ is of the correct form to apply Lemma 6.8. By repeating this process, and reshuffling, we obtain $[u][a \circ \bar{x}]=[a \circ \bar{x}]$.

Since $a \circ \bar{x}$ is of the same form as $a \circ x$, we may show that $[u][a \circ \bar{x}]=[a \circ \bar{x}]$ implies $[u][a \circ x]=[a \circ x]$ by exactly the same arguments as above. Therefore, $[a \circ x] \widetilde{\mathcal{R}}[a \circ \bar{x}]$.

We can now prove our second main result.

Theorem 6.10. The graph product $\mathscr{G} \mathscr{P}=\mathscr{G} \mathscr{P}(\Gamma, \mathcal{M})$ of left Fountain monoids $\mathcal{M}=$ $\left\{M_{\alpha}: \alpha \in V\right\}$ with respect to Γ is a left Fountain monoid.

Proof. Let $[w] \in \mathscr{G} \mathscr{P}$. From Proposition 4.5 we may write $[w]=[a][v]$, where all letters contained in a are left invertible, $a \circ v$ is a reduced form, and $v=v_{1} \circ \cdots \circ v_{m}$ is a left Foata normal form with blocks $v_{i}, 1 \leq i \leq m$, such that v_{1} contains no left invertible letters; we prefer to use v here since for convenience in this section we have been using x to denote a single block. Suppose that $v_{1}=x_{1} \circ \cdots \circ x_{k}=x$ and for each $j \in\{1, \ldots, k\}$ choose an idempotent $x_{j}^{+} \in M_{s\left(x_{j}\right)}$ such that $x_{j} \widetilde{\mathcal{R}} x_{j}^{+}$in $M_{s\left(x_{j}\right)}$. Let $v_{1}^{+}=x_{1}^{+} \circ \cdots \circ x_{k}^{+}=\bar{x}$. Let $\left[a^{\prime}\right]$ be a left inverse for [a]. Using the fact that \mathcal{R} and \mathcal{R}^{*} are left congruences contained in $\widetilde{\mathcal{R}}$, Proposition 4.5 and Corollary 6.9 give us that

$$
[a][v] \widetilde{\mathcal{R}}[a]\left[v_{1}\right] \widetilde{\mathcal{R}}[a]\left[v_{1}^{+}\right] \widetilde{\mathcal{R}}[a]\left[v_{1}^{+}\right]\left[a^{\prime}\right],
$$

the final step following from the fact $\left[a^{\prime}\right]$, being right invertible, is \mathcal{R}-related to the identity of $\mathscr{G} \mathscr{P}$. We have earlier seen that $[a]\left[v_{1}^{+}\right]\left[a^{\prime}\right]$ is an idempotent, so that $\mathscr{G} \mathscr{P}$ is indeed a left Fountain monoid.

Of course, the left-right dual of Theorem 6.10 holds, and hence one may also deduce that the graph product of Fountain monoids is Fountain.

7. Applications and open questions

The aim of this section is to explore some applications of Theorems 5.22 and 6.10. Further, we will discuss some open problems related to this work.

We make the following observation before re-obtaining one of the main results of [24]. If M is a right cancellative monoid with identity 1 and $b \in M$ is a left inverse of $a \in M$, then $1 a=a 1=a(b a)=(a b) a$, giving $1=a b$, so that b is also a right inverse of a, and hence an inverse.

Corollary 7.1. [24, Theorem 1.5] The graph product $\mathscr{G} \mathscr{P}=\mathscr{G} \mathscr{P}(\Gamma, \mathcal{M})$ of right cancellative monoids $\mathcal{M}=\left\{M_{\alpha}: \alpha \in V\right\}$ with respect to Γ is right cancellative.

Proof. In Proposition 5.21 we take z_{j}^{+}as the identity of the vertex monoid $M_{s\left(z_{j}\right)}$ for each $1 \leq j \leq s$. By Lemma 4.1, bearing in mind $[a]$ is a reduced form, we have that $\left[a^{\prime}\right]$ as a product of left inverses (hence two-sided inverses) of the letters in a. Then

$$
[u] \mathcal{R}^{*}[a]\left[v_{1}^{+}\right]\left[a^{\prime}\right]=[a][\epsilon]\left[a^{\prime}\right]=[\epsilon]
$$

and it follows from the comment after Remark 2.7 that $\mathscr{G} \mathscr{P}$ is right cancellative.

Of course, the corresponding result is true for graph products of left cancellative, and cancellative, monoids.

We now turn our attention to graph products of semigroups [1]. This is an essentially different construction to that for monoids, since semigroups are algebras with a different signature from that for monoids. The combinatorics of graph products of semigroups are significantly easier to handle than graph products of monoids; they behave in a way more akin to graph monoids, where the only unit in any vertex monoid is the identity.

As in the case for monoids, graph products of semigroups are given by a presentation. The difference here is that a presentation denotes a quotient of a free semigroup X^{+}on a set X, where $X^{+}=X^{*} \backslash\{\epsilon\}$ is the set of non-empty words on X under juxtaposition. Still with $\Gamma=\Gamma(V, E)$, let $\mathcal{S}=\left\{S_{\alpha}: \alpha \in V\right\}$ be a set of semigroups, called vertex semigroups, such that $S_{\beta} \cap S_{\gamma}=\emptyset$ for all $\beta \neq \gamma \in V$.

Definition 7.2. The graph product $\mathscr{G} \mathscr{P} \mathscr{S}=\mathscr{G} \mathscr{P} \mathscr{S}(\Gamma, \mathcal{S})$ of \mathcal{S} with respect to Γ is defined by the presentation

$$
\mathscr{G} \mathscr{P} \mathscr{S}=\left\langle X \mid R^{s}\right\rangle
$$

where $X=\bigcup_{\alpha \in V} S_{\alpha}$ and $R^{s}=R_{v} \cup R_{e}$, with R_{v} and R_{e} as in Definition 2.1.
As before, identifying a relation in R^{s} with a pair in $X^{+} \times X^{+}$, we have

$$
\mathscr{G} \mathscr{P} \mathscr{S}=X^{+} /\left(R^{s}\right)^{\sharp}
$$

where $\left(R^{s}\right)^{\sharp}$ is the congruence on X^{+}generated by R^{s}.
Note that, in Definition 7.2, even if S_{α} and S_{β} are monoids for some $\alpha, \beta \in V$, we do not identify their identities in $\mathscr{G} \mathscr{P} \mathscr{S}$. We denote the $\left(R^{s}\right)^{\sharp}$-class of $x_{1} \circ \cdots \circ x_{n} \in X^{+}$ in $\mathscr{G} \mathscr{P} \mathscr{S}$ by $\left\lfloor x_{1} \circ \cdots \circ x_{n}\right\rfloor$. As we remarked in Section 1, graph products of semigroups do not possess the complexities existing for monoid (or, indeed, group) graph products. Essentially, this is because (with obvious notation), for words $x, y \in X^{+}$we have $s(x) \subseteq$ $s(w)$ for any word w such that $\lfloor w\rfloor=\lfloor x y\rfloor$ or $\lfloor y x\rfloor$. Moreover, if x is of minimal length in its $\left(R^{s}\right)^{\sharp}$-class, then $|x| \leq|w|$. Details will appear in [1]. However, the following result will enable us to use results for graph products of monoids to deduce corresponding results for semigroups.

Proposition 7.3. Let $\mathscr{G} \mathscr{P} \mathscr{S}$ be the graph product of semigroups $\mathcal{S}=\left\{S_{\alpha}: \alpha \in V\right\}$ with respect to $\Gamma=\Gamma(V, E)$. For each $\alpha \in V$ let M_{α} be the semigroup S_{α} with an identity $\underline{1}_{\alpha}$ adjoined whether or not S_{α} is a monoid and put $\mathcal{M}=\left\{M_{\alpha}: \alpha \in V\right\}$.

Let $\mathscr{G} \mathscr{P}$ be the graph product of monoids \mathcal{M} with respect to Γ. Then the map

$$
\theta: \mathscr{G} \mathscr{P} \mathscr{S} \longrightarrow \mathscr{G} \mathscr{P}:\left\lfloor x_{1} \circ \ldots x_{n}\right\rfloor \mapsto\left[x_{1} \circ \ldots \circ x_{n}\right]
$$

is a (semigroup) embedding.
Proof. For clarity here we take $Y=\bigcup_{v \in V} S_{v}$ and $X=\bigcup_{v \in V} M_{v}$. Let a semigroup morphism

$$
\kappa: Y^{+} \rightarrow \mathscr{G} \mathscr{P}
$$

be defined by its action on generators as $y \kappa=[y]$ for all $y \in Y$. We have (with slight abuse of notation) $R^{s} \subseteq R$, and it follows that κ induces the semigroup morphism θ as given.

We now show that θ is one-one. Let $\mathscr{G} \mathscr{P} \mathscr{S}^{1}$ be the monoid obtained from $\mathscr{G} \mathscr{P} \mathscr{S}$ by adjoining an identity 1 . We define a monoid morphism

$$
\xi: X^{*} \longrightarrow \mathscr{G} \mathscr{P} \mathscr{S}^{1}
$$

by its action on generators as

$$
x \xi= \begin{cases}\lfloor x\rfloor & x \in Y \\ 1 & x=\underline{1}_{\alpha} \text { for some } \alpha \in V .\end{cases}
$$

We claim that $R^{\sharp} \subseteq \operatorname{ker} \xi$.
Let $u, v \in M_{\alpha}$ for some $\alpha \in V$. If $u, v \in S_{\alpha}$, then

$$
(u \circ v) \xi=(u \xi)(v \xi)=\lfloor u\rfloor\lfloor v\rfloor=\lfloor u \circ v\rfloor=\lfloor u v\rfloor=(u v) \xi
$$

If $u=\underline{1}_{\alpha}$ and $v \in S_{\alpha}$, then

$$
(u \circ v) \xi=(u \xi)(v \xi)=1\lfloor v\rfloor=\lfloor v\rfloor=v \xi=(u v) \xi
$$

and dually if $u \in S_{\alpha}$ and $v=\underline{1}_{\alpha}$. If $u=v=\underline{1}_{\alpha}$, then

$$
(u \circ v) \xi=(u \xi)(v \xi)=11=1=(u v) \xi
$$

Now consider $u \in M_{\alpha}, v \in M_{\beta}$ with $(\alpha, \beta) \in E$. If $u=\underline{1}_{\alpha}$ and $v=\underline{1}_{\beta}$, then

$$
(u \circ v) \xi=\left(\underline{1}_{\alpha} \circ \underline{1}_{\beta}\right) \xi=\left(\underline{1}_{\alpha} \xi\right)\left(\underline{1}_{\beta} \xi\right)=11=\left(\underline{1}_{\beta} \xi\right)\left(\underline{1}_{\alpha} \xi\right)=\left(\underline{1}_{\beta} \circ \underline{1}_{\alpha}\right) \xi=(v \circ u) \xi
$$

If $u=\underline{1}_{\alpha}$ and $v \in S_{\beta}$, then

$$
(u \circ v) \xi=1\lfloor v\rfloor=\lfloor v\rfloor 1=(v \circ u) \xi
$$

and dually if $u \in S_{\alpha}$ and $v=\underline{1}_{\beta}$. If $u \in S_{\alpha}$ and $v \in S_{\beta}$, then

$$
(u \circ v) \xi=\lfloor u\rfloor\lfloor v\rfloor=\lfloor u \circ v\rfloor=\lfloor v \circ u\rfloor=\lfloor v\rfloor\lfloor u\rfloor=\lfloor v \circ u\rfloor \xi .
$$

Finally, for $\alpha \in V$, we have $\underline{1}_{\alpha} \xi=1=\epsilon \xi$.
We have shown that $R \subseteq \operatorname{ker} \xi$. It follows that $R^{\sharp} \subseteq \operatorname{ker} \xi$ and hence

$$
\bar{\xi}: \mathscr{G} \mathscr{P} \longrightarrow \mathscr{G} \mathscr{P} \mathscr{S}^{1},[w] \mapsto w \xi
$$

is a well defined morphism. Further, for any $\lfloor w\rfloor \in \mathscr{G} \mathscr{P} \mathscr{S}$, we have

$$
\lfloor w\rfloor \theta \bar{\xi}=[w] \bar{\xi}=w \xi=\lfloor w\rfloor
$$

so that $\theta \bar{\xi}=1_{\mathscr{G} \mathscr{P} \mathscr{S}}$, and hence θ is an embedding.
The result below will appear in [1].
Corollary 7.4. The graph product $\mathscr{G} \mathscr{P} \mathscr{S}$ of left abundant semigroups $\mathcal{S}=\left\{S_{\alpha}: \alpha \in V\right\}$ with respect to Γ is left abundant.

Proof. Let $Y=\bigcup_{\alpha \in V} S_{\alpha}$ and $X=\bigcup_{\alpha \in V} M_{\alpha}$, where $M_{\alpha}=S_{\alpha} \cup\left\{\underline{1}_{\alpha}\right\}$ as in Proposition 7.3. Since each S_{α} is left abundant, it is easy to check that the same is true of each M_{α}, and, moreover, if $u, v \in S_{\alpha}$ then $u \mathcal{R}^{*} v$ in S_{α} if and only if $u \mathcal{R}^{*} v$ in M_{α}.

It follows from Proposition 7.3 that $\mathscr{G} \mathscr{P} \mathscr{S}$ is isomorphic to a subsemigroup \mathscr{N} of $\mathscr{G} \mathscr{P}$, where

$$
\mathscr{N}=\left\{\left[x_{1} \circ \cdots \circ x_{n}\right]: x_{i} \in Y, 1 \leq i \leq n\right\}
$$

and

$$
\varphi: \mathscr{G} \mathscr{P} \mathscr{S} \longrightarrow \mathscr{N},\left\lfloor x_{1} \circ \cdots \circ x_{n}\right\rfloor \mapsto\left[x_{1} \circ \cdots \circ x_{n}\right]
$$

is an isomorphism.
Let $x=x_{1} \circ \cdots \circ x_{n} \in Y^{+}$and let $v=v_{1} \circ \cdots \circ v_{m} \in X^{*}$ be a left Foata normal form of x with blocks $v_{i}, 1 \leq i \leq m$. Since the only left or right invertible element of any vertex monoid M_{α} is $\underline{1}_{\alpha}$, we have that $v \in Y^{+}$and v contains no left invertible letters. Choosing $v_{1}^{+} \in Y^{+}$as in Proposition 5.21 and noticing that $a=\epsilon$ in that result, we have that $[x]=[v] \mathcal{R}^{*}\left[v_{1}^{+}\right]$in $\mathscr{G} \mathscr{P}$ and hence in \mathscr{N}. It follows that $\lfloor x\rfloor \mathcal{R}^{*}\left\lfloor v_{1}^{+}\right\rfloor$in $\mathscr{G} \mathscr{P} \mathscr{S}$.

The proof of the following result is similar to that of Corollary 7.4.

Corollary 7.5. The graph product $\mathscr{G} \mathscr{P} \mathscr{S}$ of left Fountain semigroups $\mathcal{S}=\left\{S_{\alpha}: \alpha \in V\right\}$ is a left Fountain semigroup.

Of course, the right (two-sided) versions of Corollaries 7.4 and 7.5 also hold.
We remarked in Section 2 that free products and restricted direct products of monoids can be regarded as special cases of graph products of monoids. We therefore have the following result.

Corollary 7.6. The free product $\mathscr{F} \mathscr{P} \mathscr{M}$ and the restricted direct product $\oplus_{\alpha \in V} M_{\alpha}$ of left abundant monoids (resp. left Fountain monoids) $\mathcal{M}=\left\{M_{\alpha}: \alpha \in V\right\}$ are left abundant (resp. left Fountain).

Remark 7.7. The corresponding statement to that of Corollary 7.6 is true for semigroups and in the right/two-sided case for both monoids and semigroups.

We finish this paper by posing the following open problems. Let M be a monoid. We have commented that the relations \mathcal{R} and \mathcal{R}^{*} are left congruences on M but, in general, this need not be true of $\widetilde{\mathcal{R}}$. Since $\widetilde{\mathcal{R}}$ being a left congruence is an important property in many structural results for left Fountain monoids and semigroups we first pose:

Question 7.8. Let $\mathscr{G} \mathscr{P}=\mathscr{G} \mathscr{P}(\Gamma, \mathcal{M})$ be a graph product of monoids $\mathcal{M}=\left\{M_{\alpha}: \alpha \in V\right\}$ with respect to Γ, where $\widetilde{\mathcal{R}}$ is a left congruence on each M_{α}. Is $\widetilde{\mathcal{R}}$ a left congruence on $\mathscr{G} \mathscr{P}$?

The above could first be asked in the corresponding case for semigroups, and starting with the vertex semigroup being left Fountain.

A monoid is inverse if it is regular and its idempotents commute. Inverse monoids form a variety not of monoids but of unary monoids, that is, monoids equipped with an additional unary operation. In this case the unary operation is given by $a \mapsto a^{-1}$, where a^{-1} is the unique element such that $a=a a^{-1} a$ and $a^{-1}=a^{-1} a a^{-1}$. The notion of a graph product of inverse monoids (see [10,14], at least for the case where the vertex monoids are free) is analogous to that for monoids and semigroups, and is obtained as a quotient of a free inverse monoid, by relations given as for R; from its very construction, it is inverse. A monoid is left adequate if it is left abundant and its idempotents commute. These are the first non-regular analogues of inverse monoids, and form quasivarieties of unary monoids. Here the unary operation is $a \mapsto a^{+}$where a^{+}is the unique idempotent in the \mathcal{R}^{*}-class of a. We therefore ask the following question, which can be interpreted in more than one way. Of course, one could also begin with the semigroup case.

Question 7.9. Is the graph product of left adequate monoids left adequate?
Finally, we would hope that using left Foata normal forms and other reduction techniques developed in this article we could both find new approaches to old results (such as
calculating centralizers in graph products of groups [3]) and extend these to the monoid case. For example, we pose:

Question 7.10. Determine centralisers in graph products of monoids.

Data availability

No data was used for the research described in the article.

Acknowledgment

The authors are grateful to a careful referee for providing some very useful remarks which have improved the readability of the final version.

References

[1] N. Alqahtani, Abundant semigroups and constructions, PhD Thesis, University of York, 2021.
[2] Y. Antolín, A. Minasyan, Tits alternatives for graph products, J. Reine Angew. Math. 704 (2015) 55-83.
[3] D.A. Barkauskas, Centralizers in graph products of groups, J. Algebra 312 (2007) 9-32.
[4] A. Baudisch, Subgroups of semifree groups, Acta Math. Acad. Sci. Hung. 38 (1981) 19-28.
[5] M. Branco, G.M.S. Gomes, V. Gould, Ehresmann monoids, J. Algebra 443 (2015) 349-382.
[6] P. Cartier, D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Mathematics, vol. 85, Springer, 1969.
[7] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, vol. II, Amer. Math. Soc., 1967.
[8] A. Veloso da Costa, Graph products of monoids, Semigroup Forum 63 (2001) 247-277.
[9] A. Veloso da Costa, On graph products of automatic monoids, RAIRO Theor. Inform. Appl. 35 (2001) 403-417.
[10] A. Veloso da Costa, Γ-produtos de monóides e semigrupos, PhD Thesis, Universidade do Porto, Faculdade de Ciências, 2003.
[11] C.M. de Barros, Sur les catégories ordonées régulières, Cah. Topol. Géom. Différ. 11 (1969) 23-55.
[12] V. Diekert, Combinatorics on Traces, Lecture Notes in Computer Science, vol. 454, Springer, 1990.
[13] V. Diekert, G. Rozenberg, The Book of Traces, World Scientific Publishing, 1995.
[14] V. Diekert, M. Lohrey, A. Miller, Partially commutative inverse monoids, Semigroup Forum 77 (2008) 196-226.
[15] V. Diekert, M. Lohrey, Word equations over graph groups, Int. J. Algebra Comput. 3 (2008) 493-533.
[16] A.J. Duncan, V.N. Remeslennikov, A.V. Treier, A survey of free partially commutative groups, Inst. Phys. Conf. Ser. 1441 (2020) 012136.
[17] C. Ehresmann, Oevres complètes et commentées, in: A.C. Ehresmann (Ed.), Suppl. Cahiers Top. Géom. Diff. Amiens, 1980-1984.
[18] A. El Qallali, Structure theory for abundant and related semigroups, PhD Thesis, University of York, 1980.
[19] E. Fohry, D. Kuske, On graph products of automatic and biautomatic monoids, Semigroup Forum 72 (2006) 337-352.
[20] J. Fountain, Right PP monoids with central idempotents, Semigroup Forum 13 (1977) 229-237.
[21] J. Fountain, Abundant semigroups, Proc. Lond. Math. Soc. 22 (1982) 103-129.
[22] J. Fountain, Products of idempotent integer matrices, Math. Proc. Camb. Philos. Soc. 110 (1991) 431-441.
[23] J. Fountain, G.M.S. Gomes, V. Gould, Free ample monoids, Int. J. Algebra Comput. 19 (2009) 527-554.
[24] J. Fountain, M. Kambites, Graph products of right cancellative monoids, J. Aust. Math. Soc. 87 (2009) 227-252.
[25] E.R. Green, Graph products of groups, PhD Thesis, University of Leeds, 1990.
[26] X.J. Guo, K.P. Shum, L. Zhang, Regular F-abundant semigroups, Commun. Algebra 33 (2005) 4383-4401.
[27] V. Gould, M. Johnson, M. Naz, Matrix semigroups over semirings, Int. J. Algebra Comput. 30 (2020) 267-337.
[28] S. Hermiller, J. Meier, Algorithms and geometry for graph products of groups, J. Algebra 171 (1995) 230-257.
[29] C. Hollings, From right pp monoids to restriction semigroups: a survey, Eur. J. Pure Appl. Math. 2 (1) (2009) 21-57.
[30] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, 1995.
[31] M. Kambites, Retracts of trees and free left adequate semigroups, Proc. Edinb. Math. Soc. 54 (2011) 731-747.
[32] E.G. Karpuz, F. Atez, I.N. Cangul, A.S. Cevik, Finite derivation type for graph products of monoids, Filomat 30 (2016) 1987-1995.
[33] M.V. Lawson, Semigroups and ordered categories I. The reduced case, J. Algebra 141 (1991) 422-462.
[34] S. Margolis, B. Steinberg, Projective indecomposable modules and quivers for monoid algebras, arXiv:1706.05425.
[35] D.B. McAlister, One-to-one partial right translations of a right cancellative semigroup, J. Algebra 43 (1976) 231-251.
[36] F. Pastijn, A representation of a semigroup by a semigroup of matrices over a group with zero, Semigroup Forum 10 (1975) 238-249.
[37] Y. Wang, Beyond regular semigroups, Semigroup Forum 92 (2016) 414-448.

[^0]: 4t The research was supported by Grant No. 12171380 of the National Natural Science Foundation of China, by Grant No. QTZX2182 of the Fundamental Research Funds for the Central Universities and by Grant No. 2023-JC-JQ-04 of the Natural Science Basic Research Program of Shaanxi.

 * Corresponding author.

 E-mail addresses: ddyang@xidian.edu.cn (Y. Dandan), victoria.gould@york.ac.uk (V. Gould).

[^1]: 1 The existing terminology is a little unfortunate. Graph monoids are a strict subclass of the class of graph products of monoids. Note also that graph groups should not be confused with the fundamental groups of graphs of groups.

