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Abstract—Colonoscopy is a gold standard procedure but is
highly operator-dependent. Efforts have been made to automate
the detection and segmentation of polyps, a precancerous precur-
sor, to effectively minimize missed rate. Widely used computer-
aided polyp segmentation systems actuated by encoder-decoder
have achieved high performance in terms of accuracy. However,
polyp segmentation datasets collected from varied centers can
follow different imaging protocols leading to difference in data
distribution. As a result, most methods suffer from performance
drop when trained and tested on different distributions and
therefore, require re-training for each specific dataset. We address
this generalizability issue by proposing a global multi-scale
residual fusion network (GMSRF-Net). Our proposed network
maintains high-resolution representations by performing multi-
scale fusion operations across all resolution scales through dense
connections while preserving low-level information. To further
leverage scale information, we design cross multi-scale attention
(CMSA) module that uses multi-scale features to identify, keep,
and propagate informative features. Additionally, we introduce
multi-scale feature selection (MSFS) modules to perform channel-
wise attention that gates irrelevant features gathered through
global multi-scale fusion within the GMSRF-Net. The repeated
fusion operations gated by CMSA and MSFS demonstrate
improved generalizability of our network.

Experiments conducted on two different polyp segmentation
datasets show that our proposed GMSRF-Net outperforms the
previous top-performing state-of-the-art method by 8.34% and
10.31% on unseen CVC-ClinicDB and on unseen Kvasir-SEG,
in terms of dice coefficient. Additionally, when tested on unseen
CVC-ColonDB, we surpass the state-of-the-art method by 9.38%
and 4.04% in terms of dice coefficient, when source dataset is
Kvasir-SEG and CVC-ClinicDB, respectively.

I. INTRODUCTION

Colorectal cancer (CRC) has been consistently ranked third

in terms of prevalence [1]. The leading cause of CRC is col-

orectal adenomatous polyps, and thus identification and resec-

tion of polyps can reduce the occurrence of CRC. Colonoscopy

serves as a gold standard technique for surveillance and treat-

ment. Studies have shown that timely colonoscopy can reduce

the chances of CRC by 30% [2]. However, the success of

careful identification of malicious polyps and their subsequent

resection depends on the ability and experience of clinicians

which makes it prone to human error. Such factors eventually

lead to a high polyp missed rate [3]. Artificial intelligence (AI)

driven methods can be effective and provide precise detection

and segmentation of polyps.

With the advent of convolution neural networks (CNNs)

research for the polyp segmentation task has been widely

conducted to reduce operator-dependence problems in

colonoscopy. However, the variations in structures and size of

polyps and fluctuation of contrast between polyps and their

immediate surrounding make it a challenging task. Whilst

methods such as U-Net [4], U-Net++ [5], PraNet [6], UACA-

Net [7], MSRF-Net [8] have demonstrated higher metric

performances, however, performance of these methods fall

considerably when the intervention of imaging protocols are

different [9]. This is widely the case in different hospitals

performing colonoscopy. The imaging protocols used to ac-

quire colonoscopy images at most times vary over different

medical institutions, thus performance compromise of most

data driven methods is an major bottleneck as the acquisition

techniques often change within the same hospital as well. Also,

retraining network for each specific center consumes resources

and cannot be used in resource constrained settings such as

community hospitals. It is thus important to develop general-

izable methods that can be used on unseen datasets without

requiring to retrain them. In this work, we have designed

a generalizable CNN architecture for polyp segmentation to

mitigate these issues and demonstrate the effectiveness of our

method on three publicly available datasets.

We can observe various reincarnations of the U-Net devel-

oped for polyp segmentation task in [5], [10], [11]. Similarly,

PraNet [6] aggregated deep features in their parallel partial

decoder to form initial guidance area maps. ColonSegNet [12]

used only two encoder and two decoder layers that made their

network parameters relatively smaller enabling a faster infer-

ence time. UACA-Net [7] used a saliency map for each level in

the decoder to calculate foreground, background, and uncertain



Figure 1: The proposed global multi-scale residual fusion network (GMSRF-Net) architecture: (On left) Overview of a

complete GMSRF-Net (left). Here, images are encoded using a pre-trained ResNet50 and different scaled features are fused

using two GMSRF-modules before being used by the decoder for constructing the mask. (On right) The GMSRF module that

indicates the feature fusion at multiple cross-scales (colored lines). Also, feature fusion within the same layers at the output is

shown by dark black lines.

area maps. However, a major drawback with encoder-decoder

architectures like U-Net is that shallow features from the

encoder and deep features from the decoder suffer from

semantic gap [13]. Deeplabv3+ [14] introduced atrous spatial

pyramid pooling with skip connections to aggregate global

multi-scale context. Wang et al. [15] designed a network where

spatial precision is not compromised by maintaining high-

resolution representations throughout the process. Here, multi-

scale fusion is performed by repeated cross-scale fusion of

features for all resolution scales. Inspired by deep fusion [16],

[17], MSRF-Net [8] increased the number of fusion operations

by introducing dual-scale dense fusion blocks, which allowed

the preservation of both high- and low-level features for all

resolution scales demonstrating the superior generalizability

of MSRF-Net on polyp segmentation task. Building upon

these concepts we aim to further improve generalizability

of polyp segmentation task for different clinical settings.

For this, we introduce a global multi-scale residual fusion

network “GMSRF-Net”. Our main contributions include: 1)

a densely connected multi-scale fusion mechanism that fuses

features from all resolution scales at once, 2) increase of the

frequency of fusion operations while maintaining global multi-

scale context, and 3) integration of global multi-scale fusion

operations and dense connections to preserve spatially relevant

low-level features while generating high-level features capable

of capturing global context. We have designed a novel cross

multi-scale attention (CMSA) mechanism. These attention

maps formed by the aggregation of multi-scale context boost

the feature map representations in all resolution scales. Our

multi-scale feature selection (MSFS) module, applies channel-

wise attention on the features fused from all scales to further

amplify the relevant features. Further, we demonstrate the

improved generalizability of the proposed approach compared

to former state-of-the-art (SOTA) methods.

II. MATERIALS AND METHOD

A. Materials

We have used three publicly available polyp segmenta-

tion datasets: Kvasir-SEG [18], CVC-ClinicDB [19], CVC-

ColonDB [20]. Kvasir-SEG was acquired in Vestre Viken

Health Trust in Norway, CVC-ClinicDB was obtained in Hos-

pital Clinic in Barcelona, and CVC-ColonDB was procured by

Computer Vision Center and Computer Science Department,

Universitat Autonoma de Barcelona. The dataset acquisition

protocols used in the three distinct centres differed in terms

of resolution, type of scope, and frame rejection criterion.

To demonstrate the effectiveness of our technique, we per-

form six experiments with different setups. Two experiments

were carried out when the training and testing datasets were

the same (i.e., same center data). Additionally, to establish the

generalization capacity of our network, we trained and tested

our model on different datasets (referred to as “unseen” in this

paper). We trained our proposed approach on Kvasir-SEG and

tested it on CVC-ClinicDB and CVC-ColonDB. Additionally,

we used CVC-ClinicDB as the training dataset and tested our

model on Kvasir-SEG and CVC-ColonDB datasets.

B. Method

In this section, we present the architecture of our GMSRF-

Net (see Fig. 1). GMSRF-Net uses global multi-scale feature

fusion mechanism which incorporates attention across multi-

scales and subsequent multi-scale feature selection module

for accurate and generalizable segmentation of polyps. The

encoder, two GMSRF modules, and decoder are detailed in the

following subsections. Unlike MSRF-Net [8], our GMSRF-Net

is capable of fusing features across all scales, increasing the



available pathways for a feature set to propagate before being

used for forming the final segmentation map.

1) Encoder block: The colonoscopy images are first pro-

cessed by ResNet50 [21] backbone pre-trained on ImageNet.

The number of feature maps for all scales is reduced by Recep-

tive Field Blocks (RFBs) [22] to reduce the computational cost

incurred by the following global multi-scale residual fusion

(GMSRF) module and the decoder network (see Fig. 1(a)).

Here, the features generated by the RFB module be denoted as

Xi where i ∈ {1, 2, 3, 4} denote scales. The GMSRF module,

the parallel cross multi-scale attention, and the multi-scale

feature selection module entailed within it are described in

the following subsection.

2) Global Multi-Scale Residual Fusion block: Let

[X1, X2, X3, X4] denote features of distinct spatial resolutions

(see Fig. 1(b)). In the initial layer l = 1, where l represents

the layer number in GMSRF module, each set of feature

maps undergoes a convolution operation with output number

of feature maps set as k. Here, k is the growth factor [23] and

controls the amount of features generated by each convolution

operation in the entire densely connected multi-scale fusion

mechanism. We use two GMSRF modules consecutively in

our network (see Fig. 1(a)).

a) Cross multi-scale attention maps (CMSA): are calcu-

lated for each scale concurrently. Eq. 1 represents how the l′th

CMSA is calculated for the i′th scale. {Xw, Xy, Xz} ≠ Xi

are first transformed to the spatial resolution size of the i′th

scale by suitable convolution or transposed convolution oper-

ations (see Fig. 2). They are concatenated and then processed

by a 3×3 convolution operation, to effectively fuse the features

of selected scales.

Xatt,̂i,l = Conv1×1(Conv3×3(Xw,l−1 ⊕Xy,l−1

⊕Xz,l−1)), {w, y, z} ≠ i, {i, w, y, z} ∈ {1, 2, 3, 4}
(1)

Here, Xatt,̂i,l represents the CMSA map for the i′th scale

of the l′th layer and ⊕ represents concatenation operation.

Attention maps are then generated to identify spatial locations

based on the fused multi-scale features of parallel resolu-

tion streams. The information conveyed from low-resolution

streams helps to boost the feature maps in the high-resolution

stream and vice versa. The subsequent combination with the

CMSA module allows the selection of features that are relevant

towards identifying the region-of-interest.

b) Global multi-scale residual fusion (GMSRF): is per-

formed as described in Eq. (2). The l′th convolutional layer in

the i′th resolution stream receives concatenated feature maps

from l−1′th convolutional layer from all resolution scales and

previous convolutional layers for the same resolution stream

(see Fig. 1(b)). This global multi-scale fusion with densely

connected blocks increases the number of paths through which

feature maps can propagate and undergoes varying operations

before contributing to the final segmentation map prediction.

Xi,l = Conv3×3(Xi,0 · · ·Xi,l−1 ⊕Xw,l−1 ⊕Xy,l−1

⊕Xz,l−1), {w, y, z} ≠ i, {i, w, y, z} ∈ {1, 2, 3, 4}
(2)

The feature maps can capture the global multi-scale context

at each layer of the densely connected mechanism. Eq. (3)

describes how CMSA maps are used to identify and propagate

relevant features of the i′th scale stream forward.

Xi,l = Xi,l ⊗X
att,î,l

(3)

c) Multi-scale feature selection (MSFS): module, is the

next step where channel-wise attention is applied on the

fused features using squeeze and excitation (S&E) block [24]

(refer to Fig. 2). This enables the amplification of salient

channels transmitted by various scale streams. The suppression

of irrelevant channels by this module is also conducive to a

higher level of accuracy. Residual connection from the input

of the GMSRF module is added to improve gradient flow. For

simplification purposes, we use the i′th scale while describing

this mechanism.

3) Decoder: To fully establish the contribution of our

GMSRF-Net, we choose to use a vanilla decoder (see

Fig. 1(a)). Xi is the output of the GMSRF module for the

i′th scale. Each decoder block upscales the output from the

previous decoder block and concatenates the resultant feature

maps from the same scale output of the GMSRF module (see

Equation 4).

Di = Conv3×3(TransConv(Di−1)⊕Xi) (4)

Here, TransConv is strided transposed convolutional layer and

initially D4 = X4. The output of all decoder blocks, i.e

D4, D3, D2, are upscaled to the size of ground truth maps

for improved gradient flow and regularization.

4) Loss Function: We use a dual loss function LDUAL =
λ1LBCE +λ2LIoU, where LDUAL is a combination of weighted

intersection over union loss (LIoU) and binary cross entropy

(LBCE). Each of the loss components are equally weighted i.e.

λ1 = λ2 = 1. For all supervise segmentation maps generated

by all decoder levels, the total loss function is given by:

LGMSRF =
∑i=4

i=1
LDUAL(Di), where i is the number of decoder

layers.

III. EXPERIMENTS

A. Experimental setup

We evaluate our proposed GMSRF-Net on Kvasir-SEG,

CVC-ClinicDB, and CVC-ColonDB. All images are resized to

256× 256 as a pre-processing step. We reserve 80% data for

training, 10% for validation, and 10% for testing. The entire

CVC-ColonDB dataset is used for testing. The training set is

augmented using techniques like random flipping, cropping,

color jittering etc. The growth factor k used in the GMSRF

module is set to 0.4. We train the network for 50 epochs

using Adam optimizer with initial learning rate of 1e − 4
and batch size of 8. ResNet-50 pre-trained on ImageNet is

used as as backbone, where we do not freeze the weights. We

use the author released source code for all baselines. Each

method used for comparison follow the same training, testing

and validation split. All experiments were performed on an

NVIDIA DGX-2 machine using NVIDIA V100.



Figure 2: Computation of (CMSA) and (MSFS) for all scales: Illustration of how the feature fusion across multiple scales

is carried out in our CMSA and MSFS blocks. CMSA maps are computed for each scale in parallel for a particular layer,

The bold arrows elucidate the selection and flow of different scale features. These features are then used for the generation of

CMSA maps that are then multiplied with the fused multi-scale features. Finally, the MSFS module is used for further gating

irrelevant channels.

Table I: Result comparison on seen and unseen dataset. Here we have used Kvasir-SEG as seen (source) dataset while CVC-

ClinicDB and CVC-ColonDB have been used as unseen datasets to assess generalizability of our proposed approach.

Method
Source data “Kvasir-SEG” Unseen dataset “CVC-ClinicDB” Unseen dataset “CVC-ColonDB”

DSC mIoU Recall Precision DSC mIoU Recall Precision DSC mIoU Recall Precision

U-Net [4] 0.8629 0.8176 0.9094 0.8901 0.7172 0.6133 0.7255 0.7986 0.5106 0.3848 0.4497 0.7273

U-Net++ [5] 0.7475 0.6313 0.6865 0.8871 0.4265 0.3345 0.3939 0.6894 0.3126 0.2532 0.3053 0.5973
Deeplabv3+
(Xception) [14]

0.8965 0.8575 0.8984 0.9496 0.6509 0.5385 0.6251 0.7947 0.5197 0.4296 0.5047 0.7429

Deeplabv3+
(Mobilenet) [14]

0.8656 0.8186 0.8808 0.9205 0.6303 0.4825 0.5957 0.7173 0.4318 0.3503 0.4756 0.5708

HRNetV2-W18
-Smallv2 [25]

0.8179 0.7470 0.8016 0.8696 0.6428 0.5513 0.6811 0.7253 0.3597 0.2925 0.4382 0.4099

HRNetV2-W48 [25] 0.8896 0.8262 0.8973 0.9056 0.7901 0.6953 0.8796 0.7694 0.5180 0.4462 0.6159 0.5393
ColonSegNet [12] 0.8203 0.7435 0.8124 0.8832 0.6895 0.5813 0.7862 0.7177 0.3936 0.3005 0.4597 0.4884
PraNet [6] 0.9078 0.8561 0.9034 0.9352 0.7225 0.6328 0.7531 0.7888 0.4859 0.4220 0.5059 0.5380
UACANet-S [7] 0.8800 0.8250 0.8701 0.9229 0.5683 0.4907 0.5792 0.7095 0.2890 0.2400 0.2869 0.4156
UACANet-L [7] 0.9014 0.8555 0.8897 0.9381 0.5589 0.4849 0.5800 0.6775 0.2973 0.2545 0.2923 0.4166
MSRF-Net [8] 0.9217 0.8914 0.9198 0.9666 0.7921 0.6498 0.9001 0.7000 0.5391 0.4017 0.8372 0.4357
GMSRF-Net 0.9263 0.8843 0.9402 0.9310 0.8755 0.8091 0.9106 0.8588 0.6329 0.5611 0.6895 0.6513

B. Evaluation metrics

For the evaluation of our model, we have chosen

Sørensen–dice coefficient (DSC), mean intersection over union

(mIoU), precision, and recall.

DSC =
2× TP

2× TP + FP + FN
(5)

IoU =
TP

TP + FP + FN
(6)

Recall (Rec.) =
TP

TP + FN
(7)

Precision (Prec.) =
TP

TP + FP
(8)

In the equations (5)-(8), TP, FP, TN, FN represents true

positives, false positives, true negatives, and false negatives,

respectively, for the classification outputs.

C. Results and discussion

We provide quantitative results to demonstrate competitive-

ness of our approach and improved generalizability against

SOTA methods. For this algorithms are evaluated on both test

split from source data and unseen test dataset (unseen, not used

during training). Additionally, we provide visual comparisons

and network ablation to demonstrate the effectiveness of our

approach.

1) Quantitative results and generalizability assessment:

From Table I, it can be observed that our GMSRF-Net is com-

petitive to MSRF-Net on the Kvasir-SEG for the same source



Table II: Result comparison on seen and unseen dataset. Here, we have used CVC-ClinicDB as seen (source) dataset while

Kvasir-SEG and CVC-ColonDB has been used as unseen datasets to assess generalizability of our proposed approach.

Method
Source data “CVC-ClinicDB” Unseen dataset “Kvasir-SEG” Unseen dataset “CVC-ColonDB”

DSC mIoU Recall Precision DSC mIoU Recall Precision DSC mIoU Recall Precision

U-Net [4] 0.9145 0.8654 0.9178 0.9381 0.6222 0.4588 0.5129 0.8133 0.5334 0.3745 0.5685 0.5232
U-Net++ [5] 0.8453 0.7559 0.8917 0.8323 0.5926 0.4564 0.7352 0.5462 0.3702 0.2372 0.4465 0.3360
Deeplabv3+
(Xception) [14]

0.8897 0.8706 0.9251 0.9366 0.6746 0.5327 0.7757 0.6296 0.4834 0.3657 0.5021 0.5739

Deeplabv3+
(Mobilenet) [14]

0.8985 0.8588 0.9160 0.9287 0.6474 0.5098 0.6632 0.6878 0.5070 0.3749 0.5305 0.5612

HRNetV2-W18
-Smallv2 [25]

0.9073 0.8457 0.9137 0.9191 0.7012 0.6009 0.7184 0.7666 0.5749 0.4937 0.6010 0.6237

HRNetV2-W48 [25] 0.9244 0.8747 0.9234 0.9296 0.7404 0.6233 0.7293 0.8511 0.6294 0.5571 0.6620 0.6715
ColonSegNet [12] 0.9132 0.8600 0.9072 0.9292 0.6324 0.5183 0.6112 0.7897 0.4797 0.3822 0.5356 0.5616
PraNet [6] 0.9072 0.8575 0.9227 0.9134 0.7293 0.6262 0.8007 0.7623 0.5875 0.5186 0.6451 0.6334
UACANet-S [7] 0.9190 0.8700 0.9285 0.9201 0.6945 0.5894 0.7692 0.7377 0.5491 0.4669 0.6229 0.5880
UACANet-L [7] 0.9098 0.8649 0.9174 0.9114 0.7312 0.6383 0.7417 0.8314 0.5448 0.4803 0.5591 0.6121
MSRF-Net [8] 0.9420 0.9043 0.9567 0.9427 0.7575 0.6337 0.7197 0.8414 0.6308 0.4310 0.5228 0.7106

GMSRF-Net 0.9326 0.8882 0.9376 0.9307 0.8606 0.7877 0.8641 0.9056 0.6712 0.6018 0.7121 0.6849

Figure 3: Qualitative comparison of GMSRF-Net with other state-of-the-art methods

data while outperforming on unseen data (CVC-ClinicDB).

An increase of 8.34%, 15.93%, 1.05%, 15.88% in dice coef-

ficient (DSC), mIoU, recall and precision, respectively, can

be seen when compared with the best performing SOTA

method MSRF-Net. Moreover, when tested on CVC-ColonDB

as an unseen dataset, GMSRF-Net achieves 9.31% increase

DSC as compared to MSRF-Net, and an 11.49% increase in

mIoU as compared to HRNetV2-W48. A similar trend can be

noted in Table II where our proposed method outperformed

SOTA methods on unseen Kvasir-SEG by large margins on

all metrics, i.e., an improvement of 10.31%, 15.40%, 14.44%

and 6.42% on DSC, mIoU, recall and precision, respectively.

Furthermore, when tested on unseen CVC-ColonDB, we ob-

served an improvement of 4.04%, 4.47%, 5.01% on DSC,

mIoU, recall and precision, respectively, over SOTA methods.

Moreover, we can observe that GMSRF-Net achieves a DSC of

0.8606 when trained on CVC-ClinicDB and tested on Kvasir-

SEG (see Table II). However, some networks such as U-Net++,

ColonSegNet, and HRNetV2-W18-Smallv2 reports relatively

lower performance even when they are trained and tested on

Kvasir-SEG (see Table I).

2) Qualitative results: Figure 3 (top) illustrates the qual-

itative superiority achieved by the GMSRF-Net over other

SOTA methods when trained on Kvasir-SEG and tested on

Kvasir-SEG (same as training), CVC-ClinicDB (unseen) and

CVC-ColonDB (unseen). It can be observed that when tested

on Kvasir-SEG, GMSRF-Net achieved improvement over the

most accurate SOTA MSRF-Net. When tested on unseen

datasets, GMSRF-Net is capable of accurately segmenting

polyps, whereas multiple methods failed to even locate polyp

in some samples. Figure 3 (bottom) also demonstrates the

qualitative comparison of GMSRF-Net with other baselines



Table III: Ablation study of GMSRF-Net using Kvasir-SEG as the source dataset while CVC-ClinicDB and CVC-ColonDB

has been used as unseen datasets to assess generalizability of the ablated networks.

Ablation design
Source data “Kvasir-SEG” Unseen dataset “CVC-ClinicDB” Unseen dataset “CVC-ColonDB”

DSC mIoU Recall Precision DSC mIoU Recall Precision DSC mIoU Recall Precision

1 x GMSRF module 0.9218 0.8769 0.9334 0.9307 0.8322 0.7623 0.8668 0.8371 0.6258 0.5520 0.6545 0.6673

3 x GMSRF module 0.9162 0.8696 0.9353 0.9199 0.8650 0.7944 0.9103 0.8419 0.5859 0.5226 0.6211 0.5916
w/o CMSA in Scale 1 0.9119 0.8638 0.9217 0.9280 0.8540 0.7750 0.8893 0.8607 0.5978 0.5331 0.6558 0.6139
w/o CMSA in Scale 2 0.9242 0.8794 0.9410 0.9233 0.8735 0.8036 0.9041 0.8597 0.5745 0.5101 0.6002 0.6135
w/o CMSA in Scale 3 0.9188 0.8716 0.9339 0.9219 0.8464 0.7773 0.8720 0.8565 0.5922 0.5232 0.6126 0.6310
w/o CMSA in Scale 4 0.9058 0.8514 0.9106 0.9246 0.8333 0.7578 0.8538 0.8633 0.6005 0.5259 0.6344 0.6396
w/o CMSA 0.8993 0.8424 0.9319 0.8897 0.8362 0.7579 0.8981 0.8229 0.5328 0.4627 0.5705 0.5776
w/o MSFS 0.9227 0.8743 0.9426 0.9266 0.8496 0.7719 0.8900 0.8414 0.6204 0.5414 0.6707 0.6424
w/o Deep Supervision 0.9237 0.8803 0.9323 0.9329 0.8700 0.7987 0.8958 0.8603 0.5656 0.5044 0.6130 0.5755
GMSRF-Net 0.9263 0.8843 0.9402 0.9310 0.8755 0.8091 0.9106 0.8588 0.6329 0.5611 0.6895 0.6513

where all networks are trained on CVC-ClinicDB (seen) and

tested on Kvasir-SEG (unseen), CVC-ClinicDB (seen), and

CVC-ColonDB (unseen). Under this scenario, we can observe

that our GMSRF-Net again generates predicted masks more

visually similar to the ground truth than other SOTA methods

for most samples. Our experiments demonstrate that the multi-

scale fusion technique that combines features from all resolu-

tion scales yields better generalization performances (also see

Table I-II). The reason behind this improved generalization

ability of GMSRF-Net can be due to use of global multi-scale

residual fusion in our network that increases the number of

fusion operations together with attention modules (CMSA and

MSFS).

3) Ablation study: We perform an ablation study (see

Table III) to demonstrate the significance of each component

used in our GMSRF-Net. From Table III we can observe

the impact of increasing/decreasing the number of GMSRF

modules used in the GMSRF-Net. When we reduce the

number of GMSRF modules to 1x, we observe a 0.45%,

4.43%, and 0.71% decrease in DSC in Kvasir-SEG, CVC-

ClinicDB and CVC-ColonDB, respectively. Whereas, when we

increase the number of GMSRF modules to 3x, we observe

a 1.01%, 1.05%, and 4.7% decrease in DSC in Kvasir-SEG,

CVC-ClinicDB and CVC-ColonDB, respectively. Hence, the

experiments mentioned above validate the choice to use 2x

GMSRF module in the GMSRF-Net. To determine the con-

tribution of the CMSA module in enhancing the performance

gain by progressively gating irrelevant features and amplifying

informative features, we ablate the mechanism by removing

the multi-scale mechanism in each scale and then by disabling

it entirely. In Table III, we can observe that when multi-

scale attention is removed in scale 1, scale 2, scale 3, scale

4 we observe a 1.44%, 0.21%, 0.75%, 2.05% decrease in

DSC respectively when tested on Kvasir-SEG. A similar trend

is observed when the ablated networks are tested on unseen

CVC-ClinicDB and CVC-ColonDB. When CMSA is ablated

across all scales, we observe a significant drop of 2.70%,

3.93%, 10.01% when tested on Kvasir-SEG, CVC-ClinicDB,

and CVC-ColonDB respectively (see Table III). The boost in

performance achieved by the MSFS mechanism can be noticed

in Table III, where GMSRF-Net without MSFS mechanism

suffers from a drop of 0.36%, 2.59%, 1.25% in DSC when

tested on Kvasir-SEG, CVC-ClinicDB and CVC-ColonDB.

IV. CONCLUSION

In this paper, we have proposed a global multi-scale feature

fusion technique that incorporates together with attention and

gating mechanisms (i.e., CMSA and MSFS modules) that

allow reliable and robust global feature aggregation. Feature

profiling and pruning at each step makes the network capable

of addressing variability in samples in varied datasets. Our

proposed network maintains high resolution representations

and enriches high-resolution features by fusion with low-

resolution feature streams and vice versa. The proposed tech-

nique achieved significant performance gain on segmentation

tasks where the training and testing datasets are from different

distributions. The generalization performance of our GMSRF-

Net is thus an important step towards improving the gener-

alizability of supervised learning methods. In future, we will

extend our work towards quantifying the generalizability of

the proposed model on other biomedical imaging datasets.
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