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Abstract

The density of mitotic figures within tumor tissue is known to be highly correlated with tumor proliferation and thus is

an important marker in tumor grading. Recognition of mitotic figures by pathologists is known to be subject to a strong

inter-rater bias, which limits the prognostic value. State-of-the-art deep learning methods can support the expert in this

assessment but are known to strongly deteriorate when applied in a different clinical environment than was used for

training. One decisive component in the underlying domain shift has been identified as the variability caused by using

different whole slide scanners. The goal of the MICCAI MIDOG 2021 challenge has been to propose and evaluate

methods that counter this domain shift and derive scanner-agnostic mitosis detection algorithms. The challenge used

a training set of 200 cases, split across four scanning systems. As a test set, an additional 100 cases split across four

scanning systems, including two previously unseen scanners, were given. The best approaches performed on an expert

level, with the winning algorithm yielding an F1 score of 0.748 (CI95: 0.704-0.781). In this paper, we evaluate and

compare the approaches that were submitted to the challenge and identify methodological factors contributing to better

performance.

Preprint submitted to Elsevier March 2022
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1. Introduction

Deep learning has revolutionized the field of digital

histopathology in recent years, as methods continue to

emerge that perform on par or even surpass the perfor-

mance of human experts in specific tasks (Levine et al.,

2019; Karimi et al., 2019; Aubreville et al., 2020b). The

application of Artificial Intelligence (AI) methods in a

computer-aided diagnostic workflow is especially bene-

ficial for quantitative routine tasks, allowing for a faster

diagnostic process, or for tasks with a known high inter-

rater variability to increase diagnostic reproducibility by

reducing diagnostic bias.

One task for which both of these conditions are met

is tumor grading, i.e. the assessment of the malignant

potential of a tumor from histological specimens (Veta

et al., 2015; Balkenhol et al., 2019). Many tumor grad-

ing schemes rely on the identification and the counting

of cells in the process of cell division (mitotic figures).

The density of mitotic figures in an area (mitotic activity)

is known to be highly correlated with proliferation of the

tumor (Baak et al., 2008). Yet, identification of mitotic

figures is known to suffer from a significant inter-rater

variability (Meyer et al., 2005, 2009), which might be the

dominant limiting factor for the prognostic value. Studies

have shown that by using AI-based methods both repro-

ducibility and accuracy can be increased (Bertram et al.,

2021; Balkenhol et al., 2019).

One major limitation of the state-of-the-art deep

learning-based methods is that their performance is

known to significantly deteriorate with a covariate shift

of the images, i.e. a change in visual representation be-

tween images that the model was trained upon and those

that it encounters during inference in a clinical diagnos-

tic workflow. Contrary to machine learning models, hu-

mans can often adapt seamlessly to this shift (Stacke et al.,

2020; Aubreville et al., 2021b). The main causes for such

a domain shift in histopathology are the staining proce-

dure (which can differ over time and/or across laborato-

ries), the acquisition device (whole slide scanner), and the

tumor type itself (different tumor cell morphology and tis-

sue architecture). While a limitation of an algorithmic aid

∗Corresponding author: Email: marc.aubreville@thi.de;
∗∗Authors contributed equally.

Figure 1: Breast cancer tissue, acquired using a Hamamatsu

NanoZoomer XR (left, Scanner A) and a Hamamatsu NanoZoomer

S360 (right, Scanner B). Besides a color shift, the depth of field is also

affected by using a different scanner, caused by different optical proper-

ties of the objective. A mitotic figure in anaphase is indicated by a green

box.

to a specific subclass of tissues may be an acceptable re-

striction, a limitation towards factors that characterize a

laboratory environment (tissue preparation, staining pro-

cedure, scanner) prevents the use of such methods in di-

agnostic practice across labs.

This motivated the design of the MItosis DOmain Gen-

eralization (MIDOG) 2021 challenge. As the Whole Slide

Image (WSI) scanner used for digitization was identified

to cause a strong domain shift (Aubreville et al., 2021b),

presumably even stronger than the domain shift caused

by the tissue preparation and staining procedure (Aubre-

ville et al., 2020a), the challenge focused on the task of

generalizing against scanner-induced domain shift for the

identification of mitotic figures in histopathology images.

Detection of mitotic figures is prone to shifts of color

representation of the digital image, since both color and

structural patterns are required for a proper identification.

Besides color representation, which is influenced by the

light source and sensors of the WSI scanner and propri-

etary color calibration schemes, the optical parameters of

the microscope, such as the numerical aperture, also in-

fluence the representation of mitotic figures in the digital

image (see Fig. 1).

Challenge format and task

The challenge was held in conjunction with the 2021

International Conference on Medical Image Computing
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Scanner A Scanner B Scanner C Scanner D Scanner E Scanner F

Figure 2: Random crops of breast cancer tissue from all six scanners of the training and test set, showing the visual variability between the scanners.

and Computer Assisted Intervention (MICCAI) confer-

ence as a one-time event. The structured challenge de-

scription (Aubreville et al., 2021a) was accepted after a

single-blind peer review process. Participants were able

to register and obtain the training data five months prior to

the challenge submission deadline, allowing for sufficient

time to develop and evaluate their algorithms. After reg-

istration, the participants were provided with the training

set data and a description of the images and annotations,

together with a Jupyter notebook showcasing how to work

with the data and how to train an example object detector

(RetinaNet) with it.

The task of the challenge was the detection of mitotic

figures on regions of interests (ROIs) of a predefined size.

For the training set, 200 cases of breast cancer (represent-

ing 200 patients) were retrieved, the ROI was selected by

a trained pathologist and the WSIs were digitized using

four different WSI scanners (50 cases each). The test set

consisted of 80 cases digitized by four scanners (20 each)

out of which two scanners were part of the training set and

two were unseen. The challenge dataset represents a good

trade-off between capturing the naturally occurring vari-

ability of WSIs and time invested for annotation (Aubre-

ville et al., 2021a). The number of cases per scanner al-

lows for a realistic estimation of the performance. Due

to the task being about generalization, prior knowledge

about the images of the test set needed to be excluded.

Thus, the participants had no knowledge of the nature of

the test scanners, no access to the test images and had to

submit a Docker container to be evaluated automatically

on the test data. For this, a reference algorithm (Wilm

et al., 2022) embedded into a Docker container1 was made

1https://github.com/DeepPathology/MIDOG_reference_

docker

available to the participants alongside a textual descrip-

tion and video tutorials on how to use it.

All participating teams submitted their fully automatic

algorithm containers on the grand-challenge.org website.

To check container functionality and algorithmic validity,

a preliminary test set (20 cases, 5 per scanner, same scan-

ners as in the test set) was made available for automatic

evaluation on the platform, two weeks prior to the sub-

mission deadline. The evaluation container for the chal-

lenge was also made available on github2. Participants

were not permitted to use other sources of images to train

their models, besides general purpose datasets such as Im-

ageNet. In order to prevent overfitting to the characteris-

tics of the preliminary test seft, the number of submissions

was limited to one per day. After 15 days, the preliminary

test phase was closed and the final test phase was started,

to which the participants were able to only submit once.

Alongside with the submission for evaluation on the final

test set, participating teams had to provide a short paper,

describing their approach and their preliminary results, on

a publicly available pre-print server. Further details about

the challenge, including details about the submission in-

structions, the publication policy and the timetable can be

found in the structured challenge description (Aubreville

et al., 2021a).

Initially, 237 individuals registered on the challenge

website3 and 161 users joined the challenge on the grand-

challenge.org platform. Members of the organizers’ in-

stitutes were not allowed to parcitipate in the challenge.

46 users submitted at least one docker container to the

challenge. At the end, 17 teams made a submission to

2https://github.com/DeepPathology/MIDOG_evaluation_

docker/
3https://imig.science/midog/
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the final test set. Single-blind peer review was carried out

on all submitted short papers. After the peer review, we

invited all teams that passed peer review and where the

approach exceeded a minimum score of F1 ≥ 0.6 to the

workshop (12/17 teams, acceptance rate 70.6%). The ap-

proaches presented in the workshop also are compared in

this paper.

2. Material and methods

The main design principles of the challenge were:

1. To have a generally representative dataset of a rele-

vant disease and an important diagnostic task.

2. To reflect a real clinical use case by ensuring a truly

independent hold out set with unknown characteris-

tics.

3. To achieve high label quality to ensure an accurate

evaluation.

With around 2.3 million cases in 2020, breast cancer is

one of the cancer types with the highest prevalence (Wild

et al., 2020). Patients can benefit from adjuvant therapies

significantly, However, aggressive therapies also carry the

risk of serious side effects and thus should be restricted

to patients with unfavorable prognostic markers, such as

high tumors proliferation (Van Diest et al., 2004). One

marker strongly correlated with proliferation is the mi-

totic count, i.e., the assessment of cells undergoing cell

division (mitosis) in a defined area (commonly 10 high-

power fields, here defined as 2.0mm2) (Elston and El-

lis, 1991). This ROI is selected by an expert pathologist

within the tumor area with the presumed highest mitotic

activity in a hematoxylin and eosin-stained digitized mi-

croscopy slide. Since this task is part of many tumor grad-

ing schemes (e.g., meningioma (Louis et al., 2016) or lung

adenocarcinoma (Moreira et al., 2020)), it is highly rele-

vant for general tumor prognostication and was chosen as

target task for our challenge.

In order to ensure representativeness of the dataset, we

chose a rigorous inclusion scheme for the challenge co-

hort. For the challenge to yield trustworthy results and

especially to avoid a methodological overfitting, the inde-

pendent test set needed to stay a true hold out, i.e. com-

pletely hidden to the participants.

To ensure the quality of our evaluation, the label-

ing quality was improved by using multiple experts and,

additionally, a machine-learning-augmented annotation

pipeline (see below).

2.1. Challenge cohort

The challenge dataset consists of 300 breast cancer

cases and was curated from a retrospective, consecutive

selection taken from the diagnostic archive of the Uni-

versity Medical Center (UMC) Utrecht, The Netherlands.

All samples were resected solely for diagnostic purposes.

Inclusion criteria were the availability of the microscopy

(glass) slide, a confirmed breast cancer excision (as docu-

mented in the patient record), the availability of a pathol-

ogy report with a documented mitotic count and that the

patients did not opt out for the use of their data in research

projects. Prior to handing over to project partners within

the organization committee, all slides and clinical meta

data were anonymized. Additionally, for the use in the

challenge we obtained approval by the institutional review

board of UMC Utrecht (reference: TCBio 20-776). The

specimen was preprocessed according to clinical standard

routine and stained with hematoxylin and eosin (H&E)

dye. Subsequently, the cases were randomly split into the

training set (200 cases) and the preliminary (20 cases) and

final (80 cases) test set. Within each of those sets, we per-

formed another random split, to assign the cases to the

scanners, i.e. we split up the 200 cases of the training

set into 50 cases for each of the four training scanners

(A,B,C,D, see below), and the 80+20 cases of the test sets

into 20+5 for each of the the four test scanners (A,D,E,F,

see below). By this procedure, we can expect no signifi-

cant biases in any of the subsets of the dataset and assume

a high degree of representativeness.

2.2. Image acquisition

We used four different scanners for the digitization of

the training set:

• Scanner A: Hamamatsu NanoZoomer XR (C12000-

22, Hamamatsu, Hamamatsu City, Japan), optical

resolution: 0.23 microns/px at 40x magnification

• Scanner B: Hamamatsu NanoZoomer S360 (Hama-

matsu, Hamamatsu City, Japan), optical resolution:

0.23 microns/px at 40x magnification
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• Scanner C: Aperio Scanscope CS2 (Leica Biosys-

tems, Nussloch, Germany), optical resolution: 0.25

microns/px at 40x magnification

• Scanner D: Leica Aperio GT 450 (Leica Biosystems,

Nussloch, Germany), optical resolution: 0.26 mi-

crons/px at 40x magnification, custom optics by Le-

ica Microsystems for native 40x scanning with 1 mm

field of view (FOV)

Scanner A is the scanner that is used in clinical practice

to digitize all slides at UMC Utrecht. Therefore, all slides

of our dataset are also available scanned by this scanner

and we use this as our reference scanner to counter a pos-

sible scanner-caused bias in the region of interest selec-

tion.

For the test set, we used a mix of known and unknown

scanners to test simultaneously for performance on in-

domain scanners and for generalization to out-of-domain

scanners. In addition to the scanners A and D, the test set

was scanned with:

• Scanner E: 3DHISTECH Panoramic 1000 (3DHIS-

TECH, Budapest, Hungary), optical resolution: 0.24

microns/px at 20x magnification, Plan-Apochromat

objective, numerical aperture of lens: 0.8

• Scanner F: Hamamatsu NanoZoomer 2.0RS

(C10730-12, Hamamatsu, Hamamatsu City, Japan),

optical resolution: 0.23 microns/px at 40x magnifi-

cation, numerical aperture of lens: 0.75

For scanner D, which was part of the training and the

test set, no labels were provided as part of the training set.

Hence, this scanner was included for the sole purpose of

providing data for approaches performing unsupervised

domain adaptation.

Each of the slides was scanned by the assigned WSI

scanner as well as by the clinical reference scanner (Scan-

ner A). To reduce bias which might be caused by dif-

ferent tissue representation on other scanners, a trained

pathologist (C.B.) selected a region of interest spanning

2.0 mm2 on the reference scans. For streamlined dataset

creation, all WSIs were uploaded to a central server run-

ning a collaborative annotation software (Marzahl et al.,

2021a). There, the reference scans were registered to

the respective image acquired by different scanners us-

ing a quadtree-based WSI registration method by Marzahl

Figure 3: Image from Scanner D in the original (left) scanner color space

and in the standard RGB color space (right).

et al.(Marzahl et al., 2021b). The registration was manu-

ally fine-tuned and quality checked subsequently. Finally,

the defined ROIs were extracted from the images acquired

by all scanners.

For the Leica and Aperio scanner, the scanners color

profile was available from the WSIs, which enabled the

organizers to convert those images into the standard RGB

color space. Regardless of this step, significant differ-

ences in color can be observed (see Fig. 3).

2.3. Labeling

In the process of labeling, three expert pathologists

(C.B., R.K., T.D.) were involved. All experts work at

different institutions (in different countries) and have 6+

years of professional experience and a demonstrably high

level of expertise in mitotic figure recognition. Addition-

ally, all experts agreed on common criteria for mitotic fig-

ure identification (Donovan et al., 2021).

The inter-rater variability of mitosis identification can

be attributed to two main factors: Most notably, experts

disagree on individual mitotic figures (object-level dis-

agreement) due to morphological overlap with imposters

(Veta et al., 2016). For this reason, most mitotic fig-

ures datasets were annotated as consensus voting be-

tween multiple experts (Veta et al., 2015, 2019; Roux

et al., 2014; Bertram et al., 2019, 2020b; Aubreville et al.,

2020a). Additionally, as mitotic figures can be considered

sparse events in most WSIs and sometimes faint struc-

tures, experts tend to miss especially less recognizable

objects when screening the image (Bertram et al., 2021,

2019).
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dataset (blue).

To account for both effects and create a high-quality

dataset, we employed a machine learning-aided strategy

(Bertram et al., 2020b): Initially, a single experienced

expert (C.B.) screened all ROIs for mitotic figures and

for a roughly equal number of imposters / hard negatives

(non-mitotic cells with morphological similarity to mi-

totic figures). We trained a customized (Marzahl et al.,

2020) RetinaNet (Lin et al., 2017) to identify cells that

were missed in this initial labeling (mitotic figure candi-

dates). Using a very low detection threshold on the model

output, we ensured that this approach yielded high sensi-

tivity (and low specificity). All mitotic figure candidates

were then handed to the primary expert, again, to sort into

missed mitotic figures and non-mitotic structures (which

comprised the vast majority).

To reduce bias in the labeling process introduced by

the first expert, all manual cell labels and detections from

the algorithmic augmentation step were class-blinded and

handed to a secondary expert (R.K.). The secondary ex-

pert then sorted all cells into mitotic figures and non-

mitotic cells. In the case of agreement, the label was

accepted as ground truth. In case of disagreement, the

cells were again class-blinded and given to a third expert

(T.D.), who then made the final decision.

In the dataset, the challenge organizers provided

squared approximated bounding boxes of equal size

(50px) to the participants. The non-mitotic cells (hard

negatives) were provided alongside the true mitotic fig-

ures to enable the use within sampling schemes.

2.4. Dataset statistics

As Fig. 4 shows, the mitotic count (MC) (i.e., the num-

ber of mitoses per 2.0 mm2) follows a similar distribu-

tion over all scanners in the original pathology report and

the MIDOG dataset. Differences between the MC of the

pathology report and the MIDOG dataset were not signif-

icant (two-sided paired t-test: p-value: 1.000, scipy stats

package version 1.7.3). The intraclass correlation (ICC,

two-way, single measurements, random raters) of the MC

ratings indicate a substantial agreement (ICC2=0.684,

pingouin package version 0.5.1) as of the definition by

Hallgren (Hallgren, 2012), which can be attributed to dif-

ferent reasons. Firstly, it cannot be guaranteed that the

slides that were included in this dataset were the same

that were used for clinical MC assessment, as oftentimes

multiple slides per case exist. Secondly, the annotation

methodology used here differs substantially from how the

MC is determined in a clinical setting. Lastly, even if the

same slides were used, the MC is known to be highly area-

dependent, which might further contribute to the discor-

dance (Bertram et al., 2020a).

As depicted in Fig. 4, there is a high number of po-

tentially low-grade tumors within the dataset, which is,

however, reflective of the general population of cases at a

tertiary hospital.

2.5. Reference approach

As a starting point, and to familiarize the participants

with the submission process, the organizers provided a

repository including an exemplary Docker container to

all participants. The container provided a trained model

6



including model weights and all scripts to run inference

with it in the test environment. Alongside, the organiz-

ers made a description of the reference approach avail-

able to all participants during the challenge. The ap-

proach (Wilm et al., 2022) was based upon a customized

(Marzahl et al., 2020) RetinaNet (Lin et al., 2017) imple-

mentation, where object classification and bounding box

regression are solely performed at the highest resolution

of the feature pyramid network. At the end of the en-

coder, a domain classification head was attached to the

network. The task of the domain classification head is

the discrimination of the four scanners of the training set.

In between both, a gradient reversal layer (Ganin et al.,

2016) was attached. This layer acts as a unity transform

in the forward pass of the network, but inverts the net-

works’ gradients, weighted by a constant, in the backward

pass. This has the effect of adversarial training, i.e. of

making the features less discriminative for the domain,

and effectively reducing the domain covariate shift in fea-

ture space (Lafarge et al., 2019). The model uses a com-

bined loss with terms for domain discrimination, object

classification, and bounding box regression, using focal

loss (Lin et al., 2017) for both classification tasks and a

smooth L1 loss for the regression task. For scanner D

(i.e., the scanner without annotations), only the domain-

adversarial part of the loss is active. Besides this domain

adaptation technique, the model only uses standard image

augmentation techniques (affine transforms, flipping, con-

trast and brightness adjustments). For model selection,

the area under the precision recall curve (AUPRC) was

calculated for a validation set, consisting of a selection of

ten cases of the scanners from the training set where an-

notation data was available (scanners A,B, and C). The

model with the highest average AUPRC value was se-

lected to be run on the test set. There was no access to

any of the test sets during the development of the refer-

ence approach and no knowledge of the scanners selected

for testing.

Additionally, Wilm et al. (2022) provide a baseline just

using standard augmentation, which we will refer to as

CNN baseline in the following. This model is using the

same network topology and training scheme as the Ref-

erence model, but missing domain-augmentation tech-

niques besides standard image augmentation (brightness,

contrast, random zoom, flipping and rotation).

2.6. Evaluation methods

All participants were required to submit their approach

as a docker container to the grand-challenge.org platform.

There, the containers were automatically evaluated for

each image of the test set independently. The participants

had no access to any of the test images during the chal-

lenge and detailed detection results were also not avail-

able to them. This was done in order to ensure a fair com-

parison of the approaches and to discourage overfitting or

manual fine-tuning towards the test set.

To ensure proper functionality of the automatically

evaluated container images, we provided evaluation re-

sults on the preliminary test set. The main metrics (F1

score, precision and recall) of submitted approaches were

made available on a public leaderboard.

For the overall rating, the F1 score was the primary

metric. We calculated the F1 score over all N processed

slides as

F1 =
2
∑N

k TPk

2
∑N

k TPk +
∑N

k FNk +
∑N

k FPk

where TPk, FNk, and FPk are the number of true posi-

tive, false negative and false positive detections on slide k

and N is the total number of slides (N = 80 for the final

test set and N = 20 for the preliminary test set).

The F1 score was chosen as the main evaluation metric

because it is defined as harmonic mean of precision and

recall, and both underestimation as well as overestimation

of the MC are equally severe for the diagnostic process.

We did opt to calculate the overall F1 instead of the mean

F1 of all slides, since slides with a low prevalence of mi-

totic figures would be overrepresented in this average.

We defined a detection to be a true positive whenever

the Euclidean distance between a mitotic figure annota-

tion and the detection was less than 7.5 µm. This value

corresponds to the average size of mitotic figures in our

dataset and provides a reasonable tolerance for misalign-

ment of detection and ground truth labels. All detections

not within 7.5 µm of a ground truth mitotic figure annota-

tion were considered false positives. Multiple detections

of an already detected object were also counted as false

positives, since they would introduce a positive bias to the

MC. All ground truth mitotic figures without a detection

within a proximity of 7.5 µm are considered false nega-

tives.
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Table 1: Overview of methods submitted to the MIDOG challenge.
Team name Core method/architecture Multi-

stage

Ensemble

or TTA

Data augmentation Domain adaptation Used

unlabelled

domain

Used additional

labels

Color Staining Brightness Contrast Synthesis Staining normal-

ization

Other

Reference

method

(Wilm et al.,

2022)

RetinaNet Lin et al. (2017) with

ResNet-18 He et al. (2016) encoder

✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ Domain-

adversarial train-

ing Pasqualino

et al. (2021)

✓ ✗

CNN baseline

(Wilm et al.,

2022)

RetinaNet Lin et al. (2017) with

ResNet-18 He et al. (2016) encoder

✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

AI medical

(Yang et al.,

2022)

SK-UNet Wang et al. (2021) ✗ ✗ ✓ ✗ ✓ ✗ Fourier domain mix-

ing Yang and Soatto

(2020)

✗ ✗ ✓ Mitosis

segmentations

TIA Centre

(Jahanifar

et al., 2022)

Efficient-UNet Jahanifar et al. (2021)

(candidate segmentation),

Efficient-Net-B7 Tan and Le (2019)

(candidate classification)

✗ ✓ ✓ ✗ ✓ ✓ ✗ Vahadane et al.

Vahadane et al.

(2016)

✗ ✗ Mitosis

segmentations

Tribun

Health-

care (Fick

et al., 2022)

Mask-RCNN He et al. (2017) (candidate

detection), ResNet-50 He et al. (2016) and

DenseNet-201 Huang et al. (2017)

(candidate classification)

✓ ✓ ✗ ✗ ✗ ✗ CycleGAN de Bel

et al. (2021)

✗ ✗ ✓ Mitosis

segmentations

CGV (Chung

et al., 2022)

RetinaNet Lin et al. (2017) with

ResNet-101 He et al. (2016) encoder

✗ ✗ ✗ ✗ ✗ ✗ StarGAN Choi et al.

(2018)

✗ ✗ ✓ ✗

XidianU-

OUC (Liang

et al., 2022)

DetectorRS Qiao et al. (2021) (candidate

detection), ensemble of 5 models for

candidate classification

✓ ✓ ✗ ✗ ✓ ✓ ✗ Macenko et al.

Macenko et al.

(2009)

✗ ✗ ✗

IAMLAB

(Razavi et al.,

2022)

Cascade R-CNN Cai and Vasconcelos

(2018) with ResNet-101 He et al. (2016)

encoder

✓ ✗ ✓ ✗ ✗ ✓ ✗ Macenko et al.

Macenko et al.

(2009)

✗ ✗ ✗

No.0 (Long

et al., 2022)

Cascade R-CNN Cai and Vasconcelos

(2018) with ResNet-50 He et al. (2016)

encoder

✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ Domain-

adversarial

training with

PatchGAN Isola

et al. (2017)

✓ ✗

jdex (Dexl

et al., 2022)

RetinaNet Lin et al. (2017) with

Efficient-Net-B0 Tan and Le (2019)

encoder

✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Leeds (Breen

et al., 2022)

UNet with ResNet-152 He et al. (2016)

encoder

✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

PixelPath-AI

(Nateghi and

Pourakpour,

2022)

Faster-RCNN Ren et al. (2015) (candidate

detection), Efficient-Net-B0 Tan and Le

(2019) (candidate classification)

✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

SK (Kondo,

2022)

Thresholding of the blue ratio image

(candidate detection) Chang et al. (2012),

ResNet He et al. (2016) (candidate

classification)

✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ Domain-

adversarial

training Ganin

et al. (2016)

✓ ✗

ML (Lafarge

and Koelzer,

2022)

Rotation-invariant CNN Lafarge et al.

(2021) with 7 trainable layers

✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

For the evaluation in this paper, we also calculated the

F1 metric for each scanner. Further, we performed boot-

strapping process (Hall, 1994) where we randomly se-

lected M cases with replacement (where M is the number

of images available per scanner or overall). This process

was repeated 10,000 times to be able to derive a statisti-

cal distribution for the F1 metric. This was also used to

estimate the 5% and 95% confidence intervals for the F1

score.

2.7. Post-challenge ensembling of approaches

We were also interested in discriminating parts of the

dataset that were particularly easy or difficult to detect. In

the same way, we wanted to see if there were hard nega-

tive candidates that confused a significant portion of the

models.

For this, in a first step the detection results of ap-

proaches were matched against the ground truth, to yield

the list of positives (false negatives and true positives) and

false positives. For the matching we used a KDTree-based

approach (Marzahl et al., 2020), where the detection and

ground truth centroids were not allowed to exceed an eu-

clidean distance of 7.5 µm.

The list of false positives was then, again, grouped us-

ing the same proximity criterion using a KD-tree. This

was done in order to avoid counting false positives with

slightly differing centroid coordinates multiple times,

since the false positives can’t be assigned to ground truth

reference coordinates. We then assigned to each unique

false positive (i.e., set of false detections within the dis-

tance of 7.5µm) the number of models that opted in favor

of this detection. Using this methodology, we were able

to calculate the number of votes for each detected cell in

the set of detections from all models, and thus judge hard

examples from easy ones for the ensemble of all models.

Additionally, we wanted to evaluate this for the best
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methods in the field. If we can assume the error to be in-

dependent between models, we can hypothesize that the

ensemble of the top methods (all performing similarly)

could outperform the individual methods. This is also in-

teresting to investigate for ceiling effects in the evaluation

caused by label noise in the test set: If the model signifi-

cantly outperforms the individual models, we can assume

that the performance evaluation is currently not limited

by such labeling inconsistencies. For this reason, we also

constructed an ensemble consisting of all approaches ex-

ceeding the baseline, and the baseline. This ensemble of

models represents the top five of approaches in the chal-

lenge and is denoted as top5 ensemble in the remainder

of this work. Since model scores of the individual ap-

proaches were unavailable, the ensemble was a simple

majority vote.

3. Overview of the submitted methods

All submitted methods used convolutional neural net-

works (CNNs) for the task. Table 1 gives an overview

of the network architectures, augmentation, and normal-

ization strategies that were employed. The remainder of

this chapter discusses several aspects of the strategies that

were employed.

The detailed descriptions of all methods are published

in the proceedings (Aubreville et al., 2022). Here, we

want to report on common trends, interesting differences

and strategies across the methods to provide readers with

an insight on how the task of mitosis detection under do-

main shift can be tackled. Except for the aspect of trans-

lating the task into an (instance) segmentation approach

with pixel-level masks, we did not see clear “winning”

strategies. Instead, we believe that each approach found a

strategy that put together matching operators, with some

more interchangeable than others.

3.1. Single-stage and multi-stage detection approaches

Five out of the twelve teams submitted a multi-stage

approach for detecting mitotic figures with the first stage

generating a list of candidates (targeting a high recall with

all mitotic figures included). The second stage then clas-

sified whether the extracted patches contained a mitotic

figure or not. The first stage was either based on im-

age features (Kondo, 2022), or used an object detection

network (Faster R-CNN (Nateghi and Pourakpour, 2022),

Mask-R-CNN (Fick et al., 2022), U-Net (Jahanifar et al.,

2021), DetectorRS (Liang et al., 2022))). To refine these

candidates, ResNet (ResNet50 or larger) or EfficientNet

architectures (B0 / B7) were used. Two approaches used

Cascade-R-CNN architectures (Long et al., 2022; Razavi

et al., 2022), which are inherently multi-stage with se-

quentially trained detectors and which may therefore be

seen as a way to automate the multi-staging. The remain-

ing five teams used a RetinaNet architecture like the ref-

erence approach (Chung et al., 2022; Dexl et al., 2022),

the predictions of a U-Net directly (Yang et al., 2022;

Breen et al., 2022) or a rotation-invariant CNN (Lafarge

and Koelzer, 2022).

3.2. Sampling strategies, loss functions and training

mechanisms

Mitotic figure detection is a highly imbalanced prob-

lem and the ROIs provided in the MIDOG dataset are no

exceptions. Most ROIs contained only 20 or fewer mi-

totic figures (see Fig. 4) and large areas of highly variable

background. Additionally, nuclei, debris or necrotic cells

may look extremely similar to mitotic cells (imposters)

and therefore pose a considerable challenge whereas other

regions can be easily disregarded. This typically prohibits

random sampling of the input data and instead requires

strategies to deal with this imbalance. Within the sub-

mitted approaches, different methods were employed for

this, including a focal loss (Lin et al., 2017) which ad-

justs the loss for easy samples and was used by Yang et al.

(2022); Fick et al. (2022); Breen et al. (2022), and Dexl

et al. (2022). For segmentation-based approaches, typi-

cally a Dice loss or a Jaccard loss was used. Alternatively

or additionally, most teams opted for targeted data sam-

pling to ensure sufficient coverage of mitotic figures in

each batch, e.g., by randomly undersampling non-mitotic

regions (Jahanifar et al., 2022), excluding regions with-

out mitotic figures (Fick et al., 2022), or filtering out easy

patches directly (Lafarge and Koelzer, 2022).

In addition to approaching the task differently (i.e., de-

tection vs. segmentation vs. classification), some teams

opted to enrich the task with a domain-adversarial training

mechanism (Long et al., 2022; Kondo, 2022) similar to

the reference approach to encourage domain-independent

feature extraction. This was also one of two strategies of

using the unlabeled scanner provided in the training set,
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Team overall Scanner A Scanner D Scanner E Scanner F

Reference 0.718 [0.665,0.762] 0.791 [0.673,0.818] 0.708 [0.620,0.766] 0.718 [0.631,0.811] 0.593 [0.551,0.719]

CNN baseline 0.698 [0.639,0.745] 0.687 [0.650,0.812] 0.700 [0.621,0.770] 0.657 [0.519,0.747] 0.606 [0.521,0.717]

Top5 ensemble 0.773 [0.722,0.813] 0.796 [0.748,0.874] 0.745 [0.667,0.780] 0.787 [0.744,0.861] 0.642 [0.581,0.761]

AI medical 0.748 [0.704,0.781] 0.793 [0.729,0.830] 0.728 [0.643,0.780] 0.781 [0.708,0.843] 0.634 [0.583,0.732]

TIA Centre 0.747 [0.693,0.790] 0.837 [0.692,0.857] 0.677 [0.625,0.759] 0.808 [0.683,0.837] 0.667 [0.578,0.768]

Tribvn Healthcare 0.736 [0.670,0.792] 0.848 [0.731,0.875] 0.631 [0.608,0.768] 0.795 [0.633,0.848] 0.557 [0.498,0.712]

CGV 0.724 [0.657,0.779] 0.829 [0.750,0.867] 0.643 [0.547,0.728] 0.675 [0.639,0.836] 0.557 [0.521,0.697]

XidianU-OUC 0.707 [0.633,0.768] 0.800 [0.703,0.863] 0.655 [0.528,0.696] 0.795 [0.586,0.814] 0.673 [0.487,0.696]

IAMLAB 0.706 [0.650,0.748] 0.695 [0.646,0.809] 0.721 [0.642,0.757] 0.710 [0.496,0.824] 0.690 [0.493,0.681]

No.0 0.701 [0.637,0.752] 0.826 [0.652,0.837] 0.698 [0.562,0.718] 0.757 [0.571,0.777] 0.632 [0.553,0.696]

jdex 0.696 [0.639,0.739] 0.782 [0.737,0.820] 0.682 [0.575,0.751] 0.667 [0.542,0.741] 0.430 [0.459,0.688]

Leeds 0.686 [0.620,0.737] 0.774 [0.624,0.795] 0.549 [0.503,0.699] 0.696 [0.594,0.786] 0.632 [0.547,0.742]

PixelPath-AI 0.676 [0.615,0.723] 0.620 [0.636,0.788] 0.610 [0.542,0.721] 0.751 [0.607,0.816] 0.576 [0.453,0.667]

SK 0.671 [0.607,0.716] 0.630 [0.636,0.783] 0.644 [0.563,0.730] 0.582 [0.519,0.714] 0.637 [0.464,0.693]

ML 0.632 [0.536,0.713] 0.738 [0.586,0.821] 0.375 [0.267,0.592] 0.755 [0.482,0.820] 0.514 [0.459,0.674]

Table 2: F1 score for all participating approaches. Numbers in square brackets indicate 95% confidence interval as determined by bootstrapping.

u

Figure 5: F1, precision and recall scores of all participants across scanners (bootstrapping result, 20 random case draws with replacement, 10,000

repetitions).
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as alternative to using it for data augmentation via image

synthesis.

3.3. Instance label generation

The task of the challenge was to find the centroid coor-

dinates of all mitotic figures, which was solved using ob-

ject detection networks as well as semantic segmentation

approaches by most participants. However, three teams

(Jahanifar et al., 2022; Fick et al., 2022; Yang et al., 2022)

chose to enhance the given set of labels (consisting only

of approximate bounding boxes of the mitotic figures) by

providing segmentation masks on pixel level for each mi-

totic figure instance to the training process.

The approach by Jahanifar et al. (2022) used an CNN-

based interactive segmentation model (Koohbanani et al.,

2020) that is targeted at generating segmentation masks

from cell centroid coordinates. The tool is available as

an open source tool on GitHub, was trained on publicly

available data, and was only used to define segmentation

masks for the labels given by the ground truth.

In a similar way, Yang et al. (2022) used another

publicly available approach (Hover-Net, Graham et al.

(2019)) that is aimed at nuclei instance segmentation on

the dataset. From the output of this tool, they filtered out

the segmentation masks of mitoses by thresholding the in-

tersection over union between nuclei detected and ground

truth mitotic figure bounding boxes. These segmentation

masks were subsequently used as ground truth in a modi-

fied U-Net (SK-Unet, Wang et al. (2021)).

A third strategy was employed in the approach by Fick

et al. (2022): They generated the segmentation masks

for the instances by manually annotating approximately

100 mitoses across the dataset, and then fine-tuned a pre-

trained Mask R-CNN on this small dataset to run infer-

ence on the remaining annotations and hence derive a seg-

mentation mask for each mitotic figure. The generated

instance masks were subsequently used to train another

Mask-RCNN model with subsequent secondary classifi-

cation stage.

3.4. Data augmentation

All participants employed some sort of data augmen-

tation or domain adaptation technique during training

and/or at test time in order to increase the robustness of

their model against the unseen scanner within the final

test set. These techniques where divided in roughly three

type of groups:

• Standard data augmentation such as: Color, contrast,

brightness, geometric

• Stain normalization techniques

• Generative adversarial networks

The standard approach was to apply color, geomet-

ric, contrast augmentation during training which should

guarantee some level of robustness against unseen data.

Groups such as Dexl et al. (2022); Breen et al. (2022); La-

farge and Koelzer (2022) relied solely on these methods.

Some approaches used stain normalization techniques ei-

ther as data augmentation during training or as a way to

normalize all of the dataset according to some common

stain and then apply data augmentation. Groups such as

Jahanifar et al. (2022); Liang et al. (2022); Razavi et al.

(2022) applied stain normalization to the entire dataset

and then proceeded to apply standard data augmentation

during training.

Another approach encountered was using generative

adversarial networks (GANs) to generate images that sim-

ulated different scanners and different styles. Groups like

Chung et al. (2022) and Fick et al. (2022) used a Star-

GAN and a Residual CycleGAN, respectively, as a data

augmentation technique. The benefit of generative ad-

versarial techniques is that they are configurable to simu-

late a multitude of potential scanner styles, however, the

complexity and the hyperparameter search space are in-

creased.

Even though all approaches shared some common char-

acteristics, there was one implementation that stood out in

its approach and was, at the end, quite successful in terms

of performance: The group Yang et al. (2022) used, apart

from standard color and geometric transformations of data

augmentation, a Fourier-domain transform adaptation ap-

proach that separated high-frequent (i.e., structural) from

low-frequent (i.e., color) components to transfer the stain

information between images, acting as a stain normaliza-

tion technique without relying on a specific stain matrix

transformation.

3.5. Ensembling and test-time augmentation

Ensembling combines the outputs of multiple models,

either with the same structure or even different model ar-
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chitectures, and is known to improve model robustness

as well as overall performance. At the same time, us-

ing multiple large parallel models increases the compute

time (and also the carbon footprint) at times significantly.

While ensembling is common amongst the participants of

competitions, we noted much less use of the technique in

the MIDOG 2021 challenge.

Still, five teams employed (moderate) ensembling,

mostly using a multi-fold or cross-validation setup on

the provided training data and ensembling the result-

ing models, with different fusion strategies, e.g., simply

setting a threshold of necessary detections (Lafarge and

Koelzer, 2022), averaging of classifier predictions (Ja-

hanifar et al., 2022), or weighted boxes fusion for the

detection stage (Nateghi and Pourakpour, 2022). One

team (Fick et al., 2022) assembled two models for the

final classification stage (ResNet50 and DenseNet201)

whereas another (Liang et al., 2022) put an ensemble of

five different models in the center of their classification

model. Test time augmentation was less frequently used,

but for example by Jahanifar et al. (2022) for improving

classifier performance and by Fick et al. (2022) for im-

proving the results of the mask generation during model

development.

4. Results

The majority of approaches were able to provide better

results than the CNN baseline. The domain-adversarial

reference method (Wilm et al., 2022) yielded a compet-

itive F1 score of 0.718 on the test set and was outper-

formed by only four approaches (see Table 2). With an F1

score of 0.748, the overall best performance was reached

by Yang et al., utilizing segmentation and Fourier-domain

mixing as augmentation (Yang et al., 2022). It is worth

noting that this approach was amongst the only ap-

proaches which was able to achieve good performance on

Scanner D (together with the approach by Razavi et al.

(2022)), while other approaches performed better on other

scanners. Even though the approach did not have the best

performance on each individual scanner, it was the most

consistently well-performing approach across all scan-

ners, and thus the most generalizing solution. The runner-

up approach (Jahanifar et al., 2022) had an almost iden-

tical F1 score compared to the best approach, supported

also by a good overall performance across all scanners,
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Figure 6: Histogram of false positives across scanners. Note that at least

one false detection is necessary for an object to count as false positive.
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Figure 7: Histogram of detection of ground truth mitotic figures (true

positives + false negatives) across scanners, showing how many mitoses

have been detected by how many approaches.
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with some minor weaknesses on scanner D, but it was

the best performing algorithm on Scanner E. On Scan-

ner F, the best performing approach was the multi-stage

cascaded RCNN approach by Razavi et al. (2022), and on

the scanner A, which was part of the training set, the best

solution came from Fick et al. (2022).

4.1. Post-Challenge Ensembling

The top5 ensemble outperformed the leading ap-

proaches by Yang et al. (2022) and Jahanifar et al. (2022)

in terms of overall F1 score considerably. As Table 2

shows, this can be mainly attributed to a boost in perfor-

mance for Scanner D, where the margin to the runner-up

approach is the largest. For the other scanners, the top5

ensemble is on par with the respectively best approach for

the scanner (especially when the 95% confidence intervals

are considered). This ensembling method also yielded the

overall highest precision (see Fig. 5) on all scanners.

4.2. Object-level agreement

To investigate the diversity in detections on object level,

we assessed the agreement between the approaches on

false positives (non-mitotic figure objects found by one or

multiple approaches) and on the ground truth mitotic fig-

ures. The histogram of false positives is given in Fig. 6. It

shows that the vast majority of unique false detections was

only detected by a small number of approaches. There is

little difference in this behavior across scanners. Look-

ing at the histogram of false negatives in Fig. 7, we see a

different behavior for missed detections: While most out

of the total set of mitoses were only missed by a small

number of methods for the seen scanner A (as visible in

the high counts for mitoses that were found by >10 mod-

els), the number of mitotic figures that were missed by

the majority or even the totality of detectors increased for

the unlabeled/unseen scanners D and F, and also for scan-

ner E (note that this scanner had a lower overall MC as

of the ground truth labels). This is also underlined by the

generally lower recall for those scanners compared to the

seen scanner A (see Fig. 5 and Table 2). The total num-

ber of mitoses detected by all of the approaches was 25,

i.e. the vast majority of mitoses was missed by at least

one approach. In Fig. 8 and Fig. 9, we give examples for

false positives and ground truth mitosis (true positives and

false negatives), stratified by the number of models that

A A A A A A

D D D D D D

E E E E E E

F F F F F F

Figure 8: Examples of ground truth mitotic figures (true positives and

false negatives), ordered by the count of models voting for it. The num-

bers (x/13) indicate, how many models voted for this cell to be a mitotic

figure. The rows are stratified by the number of models to give examples

for the complete distribution in Fig. 7.

detected those. It becomes obvious that some of those

might be borderline mitotic figures and might even have a

different label when re-evaluated by the same or a differ-

ent set of experts (e.g., examples A1, D1, E3, or even F5

in Fig. 8). On the other hand, the low contrast of scanner

D seemed to be a major obstacle for many approaches,

even though sample images (without labels) of the scan-

ner were available within the training set. Also atypical

visual representations of clear mitoses, such as the exam-

ples D3 (atypical) or F3 (late telophase) were apparently

hard to detect, as well as cells with unclear cell boundaries

(A1, A2, D2).

Looking at some of the examples of false positives in

Fig. 9, we see that especially the cells detected by most

models (e.g., A3, A4, A6, D6, E6, F6) can be considered

missed annotations of the dataset. Cellular objects incor-

porating bar-like structures, such as in the examples E5,

F4) can be considered hard negatives for most of the ap-

proaches.

As depicted in Fig. 5, the top performing models ex-

celled at finding a good compromise between precision

and recall across all scanners. The unknown color distri-
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Figure 9: Examples of false positives, ordered by the count of models

voting for it. The numbers (x/13) indicate, how many models voted for

this cell to be a true mitotic figure.

bution of the unseen scanners can be particularly expected

to have an influence on the calibration of the model output

and thus result in underestimated or overestimated model

scores, an effect which can be observed especially for the

results on scanner D for the approaches by Liang et al.

(2022), Razavi et al. (2022), Long et al. (2022), Kondo

(2022), and Lafarge and Koelzer (2022).

It is worth noting that all three best performing ap-

proaches included an auxiliary task for mitosis segmen-

tation, which apparently increased general performance.

From the results, it can, however, not be determined if

the auxiliary task also helped in domain generalization.

Five out of the seven top performing approaches were uti-

lizing methods of ensembling or test-time augmentation.

Further, we see a slight trend that the better performing

methods had larger classification networks.

5. Discussion

The results of the MIDOG 2021 challenge indicate that,

using proper augmentation strategies and deep learning

architectures, domain shift between whole slide imaging

scanners can be compensated for to a high degree. The re-

sults by the best approaches in the field were in the range

of well-performing human experts on the same task (see

Bertram et al. (2021)). It must be noted, however, that

the mitosis detection task was only performed on selected

ROIs. In contrast, WSIs will have a much higher variabil-

ity in tissue quality, including out-of-focus areas, and ar-

eas with necrosis, and thus have a variety of hard negative

examples for the algorithms that have not been evaluated

in this challenge.

All three expert pathologists were highly familiar with

mitotic figure identification, however, a bias in annota-

tion can not be excluded completely. Ultimately, a pre-

diction of outcome, such as survival or recurrence, based

on mitotic figure detection on WSIs, complemented with

other morphological factors, would be the clinical target

for an automated tumor grading. Yet, since this was not

the scope of the MIDOG challenge, this evaluation is con-

sidered future work.

The best achieved F1 score on Scanners A (fully su-

pervised) and E (unknown) was in the order of state-

of-the-art approaches trained fully supervised in-domain

Aubreville et al. (2020a); Bertram et al. (2019). In con-

trast, the best results on Scanner D (image only, no labels

provided) and Scanner F (unknown) were considerably

weaker. While the good performance on Scanner A under-

lines the high consistency of labels due to the computer-

aided approach and high level of expertise of our patholo-

gists, the weak performance on scanners D and F might be

related to the domain shift not being covered completely

by the algorithms. On the other hand, it might be influ-

enced by the image quality of the scanners (which might

make mitosis detection in general more challenging for

humans and algorithms alike) or even non-familiarity of

the experts with the color and structural patterns repre-

senting mitoses within tissue imaged by those scanners.

Thus, while this challenge evaluated mitosis detection on

the largest set of scanners with controlled staining condi-

tions, the evaluation on this subset of scanners might still

have its limitations and not generalize to other, yet unseen

scanners.

Even though most of the higher ranked approaches

used ensembling or test-time augmentation, it is unclear

if those methods were a success factor in our challenge

setup or if there is a mere interrelation between partici-

pants utilizing ensembling / TTA and a higher algorithmic

development effort, reflected in a higher score. However,

the superior performance of the top5 ensemble (as an en-
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semble of approaches) points into the direction that, in

general, ensembling techniques are a success factor for

these kind of tasks.

The MIDOG challenge was the first in the field of gen-

eralization of mitosis detection to unseen domains, and

thus an important step towards clinical applications. And

yet, we can observe, that there are many challenges ahead

on route to a clinical application: While, as mentioned,

application on WSIs is a very different challenge, required

for clinical application, so is the generalization to further

tissue and cancer types, where mitosis detection plays an

equally important role in the respective grading system.

In fact, we can expect a substantial domain shift between

tumor types, which is why this task will be the focus of

the successor event of this challenge.
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