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Highlights 

1. Laws and regulations often promote the use of species from the local biome for 
Nature-based Solutions (NbS). 

2. They are usually considered the best adapted to regional environmental conditions. 

3. We evaluated the extant conditions of the green infrastructure across São Paulo city. 

4. 47% of São Paulo has conditions similar to the non-local but adjacent woody savannas. 

5. The definition of urban biomes may leverage informed decision-making on urban 
forests. 
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Abstract 

Urbanization is a major driver of environmental change, which calls for multifunctional 
and comprehensive actions such as Nature-based Solutions (NbS). They are “inspired 
and supported by nature… and must benefit biodiversity and support the delivery of a 
range of ecosystem services”. But what nature should one aim for? We tested the 
hypothesis that local vegetation may not always be the best source of inspiration, as 
environmental changes impact both extant conditions and species suitability for 
restored ecosystems. We analysed the megacity of São Paulo, where laws promote the 
use of species from the local Atlantic Forest biome. We trained a Linear Discriminant 
Analysis to classify the Brazilian biomes and predicted the biomes’ correspondence 
considering city’s vegetation cover and climate. With 80% accuracy, the model predicted 
correspondence with the Atlantic Forest in 57% of the city, while 43% is better 
represented by the Cerrado, a dense Tropical Savanna biome. Cerrado species are 
naturally adapted to higher insolation, temperature and more seasonal precipitation, 
and they can parallel the ecosystem services from the Atlantic Forest. To help guide NbS 
implementation, we consider four “urban biomes”: Atlantic Forest, Seasonally Flooded 
Atlantic Forest, Cerrado, and the Seasonally Flooded Cerrado, and discuss possible 
examples of NbS. 
 
Keywords: Green Infrastructure, Blue Infrastructure, Urban forests, Machine Learning, 
NDVI. 
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Introduction 

The world is rapidly urbanizing, with changes in land use and management practices 
altering natural vegetation cover and environmental quality, which affects cities’ 
functioning, the health of citizens and their well-being (Goldstein, 1990; Seto et al., 
2011). Impacts include poor thermal comfort; low air humidity; high air, water, and soil 
pollution; increased noise pollution; high vulnerability to flooding events and drought; 
high cityscape oppressiveness; low biodiversity; to name a few (Lehner et al., 2006; 
Asgarzadeh et al., 2010; Oleson et al., 2015; Elmqvist et al., 2016; Jariwala et al., 2017; 
Liang et al., 2019). Tackling these environmental issues can be challenging, and many 
cutting-edge engineering solutions have been proposed in the past. They are often 
planned and built as monofunctional solutions that frequently lead to other issues 
including landscape degradation (Brink et al., 2016). These limited solutions may 
gradually become unsuitable in modern cities as they grow in complexity, and instead 
multifunctional solutions, policies, and strategies may be required to address current 
environmental, social and economic problems (Ghafouri and Weber, 2020). 

Nature-based Solutions (NBS) - actions “inspired by, supported by, or copied from 
nature” to tackle environmental, social and economic problems - arose as a 
multifunctional approach based on natural mechanisms (ECDG, 2015) that have been 
carefully evolving for thousands to millions of years as a part of Earth’s biodiversity 
evolution (Mace et al., 2012). Biodiversity may provide tools to promote effective green 
and blue infrastructures and nature-based responses promoting benefits to human 
populations and helping them to adapt to ongoing environmental changes (van den 
Bosch and Sang, 2017; Anderson et al., 2019; Wild et al., 2020). However, an outstanding 
question for the implementation of NbS in different urban contexts is around “What 
nature should be used as a source of support and inspiration?”. 

The disputed debate on the use of native and non-native species underlies this question 
(Schlaepfer 2018). Not only because decisions on the urban green infrastructure of cities 
are oftentimes culturally and historically oriented (Whitney and Adams 1980), but also 
because managing urban forests requires pragmatic decisions related to the availability 
of seedlings in local nurseries (Almas and Conway 2016) and how species perform under 
the altered urban environment (Locosselli et al 2019). Native species available for urban 
reforestation may be naturally limited in regions characterized by low biodiversity, and 
non-native species present a renowned potential to add to the urban ecosystem 
development (e.g. Zerbe et al 2003, Schlaepfer et al 2020). Nonetheless, the availability 
of native species and associated environmental conditions exponentially increases 
across the latitudinal biodiversity gradient peaking at the tropics (Pianka 1966, Willig et 
al 2003), where native biodiversity may leverage urban ecosystem’s function. 

The use of native species finds strong support in the scientific literature, local laws and 
regulations (e.g. Alvey, 2006; Özgüner et al 2007, Ordóñez and Duinker, 2013; Ramage 
et al., 2013; Zhang and Jim, 2014; Almas and Conway, 2016) and in urban environmental 
activism worldwide (e.g. Krasny and Tidball 2012, Silva et al., 2019). The main argument 
holds that native species are better adapted to local environmental conditions, offering 
improved prospects for their deployment, development and growth to leverage 
ecosystem services (McPherson et al., 1994; Sydnor and Subburayalu, 2011; Mullaney 
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et al., 2015). The addition of the clause to the European Commission’s original definition 
of NBS that they “must benefit biodiversity and support the delivery of a range of 

ecosystem services” (Wild et al., 2020) may be viewed as underlining this point, if one 
subscribes to the view that biodiversity and native species are inextricably linked. 
Nonetheless, environmental change impacts from urbanization are now affecting these 
prospects and perspectives in most cities.  

In addition to habitats’ fragmentation and degradation during urbanization (Seto et al., 
2011), climate has significantly changed in the cities largely affecting the potential use 
of some species in urban forests (Esperon-Rodriguez et al 2019). Heat islands are an 
emblematic issue in the cities worldwide (Manoli et al 2019). The replacement of green 
cover with grey infrastructure causes significant reduction in the turbulent convection, 
evaporative cooling, and albedo while enhancing heat retention and emissions (Oke 
1982, Arnfield 2003). Such changes in the energy balance in the cities further affect the 
convective activities that shift precipitation regimes across cities (Marengo et al., 2020). 
Thus, both changes in vegetation and climate lead to altered extant local conditions 
found within cities.  

Because substantial variations in vegetation and climate conditions define biomes 
(Conradi et al., 2020), cities are now considered as a new unique world biome (Pincetl, 
2015). But classifying an entire city as the unique urban biome (Pincetl, 2015) is limiting 
and does not aid NbS decision-making or action because cities are heterogeneous. Such 
heterogeneity of urban environments has long been studied and debated (e.g. Grimm 
et al., 2000) and classification systems have been proposed to aid integrated urban 
planning and governance in relation to ecosystem restoration. For instance, biotopes 
have been long used to characterize the heterogeneity of urban vegetation for green 
infrastructure plans and implementations, attesting the importance of the clear 
understanding of vegetation structure across the city (e.g. Sukkop and Weiler, 1988; 
Stewart et al., 2009; Yilmaz et al., 2010). But this approach fails to account for the broad 
variability in climate conditions within the city (Steenberg et al., 2015) and new 
classification systems are needed that account for intra-urban variation of both 
vegetation structure and climatic conditions. If carefully analysed, vegetation and 
climate conditions may vary within cities perimeter in a similar magnitude to that 
observed among natural biomes.  

While local native species may still fully grow and provide optimum ecosystem services 
in many urban settings, unfavourable conditions to the development, growth and 
longevity of local native species may jeopardize their potential role as a solution for local 
environmental problems (Kendal et al., 2018; Burley et al., 2019; Gesualdo et al., 2019; 
Locosselli et al., 2020; Marengo et al., 2020; Hanley et al., 2021). We propose that the 
urban environment should not be considered as single biome (Pincetl, 2015), rather, the 
variability of the urban conditions may be evaluated in terms of regional biomes, to 
define corresponding “urban biomes” and associated habitat types as a source of 
support and inspiration for the implementation of urban NbS. Towards that goal, we 
analysed the current climate and vegetation cover of the megacity of São Paulo as a case 
study to test the following hypotheses: I) there is a significant variation in vegetation 
cover, precipitation, and temperature in the city; II) the variation of vegetation and 
climate is similar to that observed among natural surrounding biomes; III) the current 
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distribution of vegetation cover and climate values give support to the use of natural 
elements from biomes other than the one found before urbanization. Here we refer to 
plant species including herbs, shrubs, and trees, their associations, and how they related 
to the physical environment, as “elements of nature” that can be used in NbS. 

Material and Methods 

The city of São Paulo 

The city of São Paulo is one of the largest megacities in the world (United Nations, 2018), 
with more than 11.25 million people and a demographic density of 7398.26 people per 
square kilometre (IBGE, 2010). This population faces an urban territory with highly 
unequal environmental conditions ranging from districts with no street trees or green 
spaces to large protected urban forest patches (Silva et al., 2019). Overall, 75% of the 
residences are on roads that hold street trees whose density increases towards the city 
centre (Silva et al., 2019). In addition, the city of São Paulo has large private green areas 
such as education centres, sports centres, cemeteries, to name but a few, plus 107 parks 
under the responsibility of the municipality, and some larger State parks, including one 
of the largest urban rainforests in the world (Negreiros et al., 1974). 

The city of São Paulo is located within a Tropical/Subtropical Moist Broadleaf Forest 
biome, according to Olson’s classification (Figure 1, Olson et al., 2001), or Atlantic Forest 
according to the official Brazilian biome classification (IBGE, 2004). This vegetation is 
associated with the subtropical humid / temperate summer climate, according to 
Köppen’s classification (Alvares et al., 2014), with a strong influence from the Southern 
Atlantic Ocean. The Atlantic Forest domain is considered a “hotspot” of biodiversity 
(Myers et al., 2000), with more than 3,000 tree species (Zappi et al., 2015), of which 577 
may still be found in the city of São Paulo (Biodiversity Inventory of the City of São Paulo, 
2016). These native species belong to the “Serra do Mar Coastal Forest” ecoregion 
(Olson et al., 2001) that used to represent most of the vegetation before the 
urbanization (Figure S1). This ecoregion borders the “Alto do Paraná Atlantic 
Rainforests” that are the semi-deciduous forest formations of the plateau, and the 
“Cerrado” that corresponds to the Tropical/Subtropical Grasslands, Savannas, and 
Shrublands biome (Olson et al., 2001), another world “hotspot” of biodiversity (Myers 
et al., 2000). Studies from the early 20th century reported patches of Cerrado in the city, 
mostly grasslands and shrublands, immersed in the matrix of the Atlantic Forest. The 
genesis of these grasslands, however, is still debated and may be less natural, but related 
to past anthropogenic fires that changed soils’ compositions (Usteri, 1911; Joly, 1950; 
Garcia and Pirani, 2003). 

Because the city lies in the domain of the Atlantic Forest, municipal laws and strategic 
plans regarding street trees, green spaces, and protected areas promote (to some 
extent) the restoration of ecosystems based on the structure and composition of this 
specific biome. For instance, the municipal laws 15.428/2011 and 16.050/2014 promote 
urban reforestation with native species that contribute to a better environmental 
quality and chosen based on scientific and technical studies (see Silva et al., 2019 for 
further details). Activists working in the city largely agree with the current municipal 
regulation, by promoting urban reforestation mainly using species from the previously 



 6 

found forest biome, based on the argument that such species are the best adapted to 
the local conditions (Silva et al., 2019). 

Vegetation data 

Since vegetation structure (such as leaf structure and deciduousness) is a key factor to 
characterize biomes (Woodward et al., 2004), the vegetation found in the Brazilian 
biomes and across the city of São Paulo was characterized using the Normalized 
Difference Vegetation Index (NDVI) products from MODIS, with 250 meters spatial 
resolution (MYD13Q1v006 product, United States Geological Service, Earth Explorer 
platform). Although NDVI is a measure of greenness (Tucker 1979), it is largely 
dependent on leaf status and biomass, and thus can be used as an indirect measure of 
vegetation structure related to crown closure and leaf area index (Ren et al 2017), and 
thus it has been long used for monitoring vegetation across different environments, 
cities included (e.g. Gallo et al 1993, Yuan F, Bauer ME 2006 Bilgili et al 2013, Wong et 
al 2019 Aabeyir et al 2022). MODIS images have been used before for the evaluation of 
the cities’ heterogeneities with great success (e.g. Engel-Cox et al., 2004; Tomlinson et 
al., 2010; Ferreira and Duarte, 2019; Mishara et al., 2019), and this spatial resolution 
represents about 4 blocks in the city which is sufficiently fine-grained for the large-scale 
biome approach used in this study. The use of the same MODIS products to characterize 
the natural Biomes of Brazil and the “urban biomes” of São Paulo greatly reduced any 
bias related to mixing imaging periods and potentially different satellite sources, 
atmospheric corrections for different areas of the country and the city, and further data 
corrections and analyses.  

We obtained NDVI images for all of Brazil to characterize vegetation during wet and dry 
seasons from 2013 to 2019. We then calculated the mean NDVI value for the entire 
period to characterize the vegetation structure, the maximum NDVI, and the mean ratio 
of the NDVI (max NDVI / min NDVI) to characterize vegetation seasonality (Figures S2 
and S3). For the city of São Paulo, we only used the images from 2013 and 2017, because 
other years were strongly influenced by clouds during the wet season (Figure S3). Finally, 
we compared the distribution of the values of NDVI variables from São Paulo and the 
Brazilian biomes using density plots. 

Climate data 

To characterize the climate, we used spatially interpolated bioclimatic variables at 30” 
spatial resolution from WorldClim V2 (Fick and Hijmans, 2017), which are based on local 
records of temperature and precipitation. We selected bioclimatic variables over regular 
climate variables for having more biological and ecological meaning. The spatial 
coherence of the interpolated data was calibrated using local observations of 
precipitation and temperature obtained from 28 climate stations from the Emergency 
Management Centre of São Paulo (CGE-SP, Figure 1). Ten-minute frequency 
measurements were obtained from automatic stations covering the period between 
2013 to 2019. We calculated the monthly values of temperature and precipitation to 
then estimate the 19 bioclimatic variables for each climate station using the ‘Dismo’ 
package in R (Booth et al., 2014). The distribution of the values of precipitation and 
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temperature variables were then compared for the São Paulo and Brazil-wide biomes, 
using density plots. 

Characterization of the Brazilian biomes 

We trained a classification algorithm based on the values of the bioclimatic and NDVI 
variables from protected areas with distinct levels of disturbance in Brazil. This step 
allowed us to characterize the natural vegetation of each biome other than the 
surrounding matrix of vegetation cover mostly related to different crops like soybean, 
sugarcane, cotton, and pastures that cover most of the former natural areas. We 
calculated the centroid for the polygon of 550 protected areas (Figure S4), including 303 
protected areas in the Atlantic Forest (Tropical Moist Broadleaf Forest biome), 130 in 
the Cerrado (Tropical Grasslands and Savannas biome, considering both Cerrado and 
Pantanal as Savanna biomes, Olson et al., 2001), 79 in the Amazon Forest (Tropical Moist 
Broadleaf Forest biome) and 79 in the Caatinga (Tropical Desert and Xeric Shrublands 
biome), using QGIS software. We used the coordinates of the centroids of the protected 
areas to obtain the values of bioclimate variables and NDVI variables.  

We then used these variables to train a Linear Discriminant Analysis (LDA, Venables and 
Ripley, 2002) that is a learning method (Araújo et al 2021) to classify the Brazilian 
biomes. We used the following three steps for the variables’ selection. Firstly, we 
selected the least collinear variables based on a Hierarchical Clustering Analysis that 
group the variables according to their linear association (Figure S5, Chavent et al., 2017). 
In this step, we selected variables that represent annual and seasonal values of NDVI, 
temperature, and precipitation. Secondly, we validated the spatial variation of the 
chosen interpolated bioclimatic data using the data from the 28 climate stations in São 
Paulo (Figure 1, two climate stations were removed for presenting unusual behaviour 
for temperature, Figure S6). Thirdly, we looked for the combination of vegetation and 
climate variables that resulted in the highest model accuracy. We then calculated the 
Kappa coefficient for that model using the package ‘e1071’ (Meyer et al., 2019) in R. For 
the Linear Discriminant Analysis, we standardized the data using z-scores and then used 
80% of the data of the protected area to calibrate the discriminant model and the 
remaining 20% to validate it in R. 

Characterization of the urban biomes of São Paulo 

Once we established appropriate variables to classify the Brazilian biomes, the same 
variables were sampled across the city of São Paulo. A grid with 30,426 points across the 
city was built, excluding areas covered by two large water reservoirs, with an 
approximate spatial resolution of 250 m, to match the spatial resolution of the climate 
and NDVI data. For each point, NDVI and climatic values were obtained. We then used 
the dataset obtained with the grid of points to predict each corresponding urban biome 
in the city using the previously trained Linear Discriminant model. We used the same 
standardization parameters used in the model training to predict the corresponding 
“urban biomes”. A raster file was built in QGIS (V.3.12) with the spatial distribution of 
the corresponding “urban biomes” of São Paulo. We further validated the application of 
the trained linear discriminant model in the city by testing the accuracy in the biome 
classification of São Paulo’s Atlantic Rainforest remnants (GEOSAMPA). 
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We also investigated the role of green cover across the whole city in the classification of 
the urban biomes. We first focused on the green spaces (GEOSAMPA) of the city larger 
than 62,500 m2, which is equivalent to the spatial resolution of the urban biome analysis. 
These spaces include public parks, sports centres, education centres, cemeteries, large 
extension private lands, restored landfills. We then focus on characterizing four 
summarized green cover types (GEOSAMPA) – including grass and shrubs, low tree 
density, medium tree density, and forest patches. We also characterized the 
composition of the green cover outside the largest green areas but across the urban 
fabric using the same grid of points used for the urban biome classification to 
understand how green cover types influenced the classification of the urban Cerrado 
and Mata Atlântica. Principal component analyses were used to evaluate the 
composition of green cover of the different urban biomes at both spatial scales. 

In addition, to gain further insights into aquatic and wetland ecosystem types, flood 
extents were mapped, corresponding with each urban biome. A raster file was 
generated using flooding datasets from GEOSAMPA to infer the locations of the 
seasonally flooded sites in the city, and thereby to infer terrestrial c.f. aquatic and 
riparian ecosystems. Main flood areas were checked using city flood events datasets 
(Fundação Centro Tecnológico de Hidráulica - FCTH - Poli-USP). 

Results 

A wide variety of vegetation structure and climate conditions were observed in the city 
of São Paulo (Figure 2, S6). Vegetation structure varied considerably in the city, from 
highly vegetated areas in the south and north, represented by mean NDVI values higher 
than 0.7, to areas almost entirely lacking vegetation cover, represented by mean NDVI 
values lower than 0.25. Climate also varies consistently across the city. Current annual 
mean temperature varies between 16.46˚C and 21.69˚C across the city, while the mean 
temperature of the warmest quarter varies between 19.28 and 24.64˚C. Precipitation 
presented a two-fold variation both in terms of total annual precipitation volume (1366 
to 2724 mm / year), precipitation of the driest month (53 to 112 mm / month), and 
three-fold variation during the coldest quarter (118 to 368 mm / month). These 
interpolated values showed consistent spatial variability with the calculated values 
based on the data from the local climate stations. Correlation between interpolated and 
observed annual values are statistically significant for temperature (r = 0.75, p < 0.05, 
Figure S7), as well as for the selected precipitation variables (r = 0.41 to 0.80, p < 0.05, 
Figure S7). 

The spatial variability of the vegetation structure and climate conditions across the city 
of São Paulo (Figure 2) paralleled that of the Brazilian biomes (Figure 3). Overall, the 
vegetation density as measured by the NDVI across the city of São Paulo ranges from 
that observed in the dense Atlantic Forest and Amazon, to that observed in the Cerrado 
and Caatinga, to the complete absence of vegetation. On the other hand, the 
distribution of temperature and precipitation within the city of São Paulo falls mainly 
within the climate envelope of the Atlantic Rain Forest and the Cerrado. 

Because of these similarities in the vegetation structure and climate conditions between 
the city of São Paulo and some of the Brazilian biomes, we trained a Linear Discriminant 
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Analysis to classify the four main Official Brazilian biomes in terms of natural coverage. 
According to the criteria of variables selection for this model described in section 2.4 
(Figure 4) the most accurate model incorporated the following variables: mean NDVI; 
the ratio of summer NDVI: winter NDVI; annual mean temperature (Bioclim 1); mean 
temperature of the warmest quarter (Bioclim 10); annual precipitation (Bioclim 12); 
precipitation of the driest month (Bioclim 14); and precipitation of the coldest quarter 
(Bioclim 19). This model showed 80% accuracy (95% confidence interval) in predicting 
official Brazilian biomes according to the mentioned variables, with a Kappa coefficient 
of 0.66. The misclassified biomes coincided with protected areas in the transition 
between different biomes, especially between Cerrado and Atlantic Forest (Table S2). 
The mean temperature of the warmest quarter, annual precipitation, and annual mean 
temperature are the main variables in the first linear discriminant (LD1) that comprises 
62% of the data variability (Table 1). Mean temperature of the warmest quarter, annual 
precipitation, and mean NDVI are the main variables in the second linear discriminant 
(LD2) that comprises 30% of the data variability. Annual precipitation, precipitation of 
the driest month, and annual temperature are the main variables in the third linear 
discriminant (LD3) that comprises 8% of the data variability. In a second round of the 
model validation, this model accurately classified 99.92% of the area of São Paulo’s 
Atlantic Rainforest remnants (Figure S8). 

According to this Linear Discriminant Model, 57% of the city has vegetation structure 
and climate conditions that correspond to the Atlantic Forest biome according to the 
classification model (Figure 5). It is continuously distributed in the north and south, with 
a fragmented distribution in the west and at the extreme east. The other 43% of the city 
has vegetation structure and climate conditions that were classified as Cerrado. These 
conditions are mainly found in the central and eastern areas of São Paulo, whilst the 
Cerrado biome type is highly fragmented in the west.  

Out of São Paulo’s 165 green spaces with more than 62,500 m2, 48 were classified as 
Cerrado and 117 were classified as Mata Atlântica regardless of the land use (Figure 5A, 
B and C). According to the PCA, the main difference between the classification of the 
green spaces classified is the higher proportion of forest cover in those classified as Mata 
Atlantica, with almost any influence from other vegetation cover types (Figure 5E). This 
pattern is still consistent when vegetation cover is evaluated outside the largest green 
spaces where the presence of even small forest patches across the urban fabric results 
in the Mata Atlântica category (Figure 5F). Overall, green cover is consistently lower in 
the areas classified as Cerrado, and 9.36% of the city of São Paulo has less than 5% of 
green cover (Figure 6).  

In addition, about 5% of the city is under the influence of seasonal floods (Figure S9). 
These aquatic and riparian habitats were thus classified as Seasonally Flooded Atlantic 
Forest (1%) and Seasonally Flooded Cerrado (4%), thus resulting in a total of four urban 
biomes in the city of São Paulo (Figure 6).  

 

Discussion 
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Nature-based Solutions are planned to tackle environmental, social, and economic 
challenges through actions supported by nature (van den Bosch and Sang, 2017). But 
what nature should be used as a source of support and inspiration? Municipal laws, 
regulations, and activists of São Paulo prioritize the use of tree species from the local 
Atlantic Forest (Silva et al., 2019). The main argument is built around the long adaptation 
of this vegetation to the local environmental conditions (Silva et al., 2019). However, the 
local conditions that used to support this vegetation may no longer be found across the 
entire city, because land-use change resulted in a significant increase in mean 
temperature (Silva et al., 2019), and changes in convective activities and precipitation 
patterns (Marengo et al., 2020). 

To evaluate if such environmental changes have the potential to affect the source of 
inspiration of NbS, we trained a Linear Discriminant model to classify the Brazilian 
Biomes. The final model showed an 80% accuracy, equivalent to other classification 
models for the Brazilian biomes (Miranda et al., 2018), and a moderate to substantial 
Kappa coefficient (McHugh, 2012). The biomes’ discrimination depends mostly on the 
local climate conditions and to a certain extent on the vegetation cover as assessed using 
NDVI, which is an expected result given the importance of climate and vegetation in this 
broad classification system (Conradi et al., 2020). When validated at the city level, the 
discriminant model yielded an accuracy of 99.92% in the classification of the Atlantic 
Rainforest remnants pointing to its reliable use in the city despite potential reflectance 
noise from atmospheric pollution and deposition of particulate matter on the surface of 
leaves. Despite the evidence of model robustness, a careful evaluation must be taken in 
areas with extremely low vegetation cover where the model may fail to properly find a 
meaningful correspondence with the natural biomes based on greenness derived from 
NDVI values (dashed areas of Figure 6). Significant uncertainties where also found in the 
transitions between Atlantic Forest and Cerrado, so that it may not be as accurate in the 
limits of these two biomes either in the natural or urban environments. 

According to this model, 57% of the city may be classified as Atlantic Rainforest. It 
corresponds to the actual large patches of Atlantic Forest in northern and southern São 
Paulo and adjacent districts, and the so-called green districts characterized by a dense 
vegetation cover. The model results also point to 43% of the city with a better 
correspondence to the Cerrado, a Tropical Grassland, Savanna, and Shrublands biome 
(Olson et al., 2001) that is characterized by the combination of grasses, shrubs, and 
relatively dense tree cover (Coutinho, 1978). The predicted Cerrado areas in the city 
correspond to large green spaces with lower proportion of forest cover, and densely 
urbanized but still sparsely vegetated parts of São Paulo. Interestingly, they include 
former areas of anthropogenic savannas long described by Usteri (1911) at the early 20th 
century at the city centre, where most of the early urbanization took place. Thus, we 
propose the classification of the city of São Paulo in two main “urban biomes” according 
to its current environmental conditions, the Urban Atlantic Forest and the Urban 
Cerrado, or the Urban Moist Broadleaf Forest and Urban Savanna for international use, 
respectively.  

We then characterized the urban biomes according to the occurrence of floods given 
their significant geographical extension in the city and overall severity of impacts (Gu et 
al., 2015; Haddad and Teixeira, 2015). Seasonally flooded areas require interventions 



 11 

based on elements from nature that are adapted to a humid phase (Scharenbroch et al., 
2016; Yuan et al., 2017) a fact that led us to define the seasonally flooded urban biomes. 
The urban seasonally flooded Atlantic Forest would require elements from the swamp 
forests locally known as “Florestas Paludosas”, which are characterized by various plant 
species adapted to seasonal flood (Figure 7, Teixeira and Assis, 2005, 2009; Reis et al., 
2009). Whereas the seasonally flooded Cerrado requires elements from the wet 
grasslands locally known as “Campos Húmidos” (Figure 6, Ruggiero et al., 2006; Tannus 
et al., 2006; Rossato et al., 2008), or riparian forests for larger watercourses. These are 
likely the best sources for suitable species to the specific conditions found in rain 
gardens, detention / retention basins, wetlands, and bioswales, to name few devices 
related to Green and Blue Infrastructure. These sustainable drainage systems are 
needed in at about 5% of the entire city of São Paulo to make room for water storage 
and regeneration, and in the rest of the watersheds for control and treatment of the 
runoff.  

Two questions remain to be answered. Does the Cerrado truly holds more resilient 
species? Can it equal or surpass the ecosystem services provided by the species from 
the Atlantic Forest? Based on studies currently limited to natural areas, trees from the 
Cerrado are naturally adapted to high temperatures and seasonally restricting 
precipitation conditions (Cabral et al., 2015, Loram-Lourenço, 2020), similar to that 
found in parts of São Paulo. Because the dry season length is expected to increase by 
two or three months in the upcoming decades (Gesualdo, 2019), Cerrado’ species may 
also be considered future proof in terms of environmental changes increasing the 
resilience of the green infrastructure. Their deep root systems (Coutinho, 1978, 2016; 
Oliveira et al., 2005) may also represent an adaptation advantage useful to cope with 
the lowering of water tables resulting from climate extremes, construction work, 
extensive soil impermeabilization, excessive water pumping, and reduction in the 
vegetation cover (e.g. Hirata and Conicelli, 2012; Mohanavelu et al., 2020; Yadav et al., 
2020; Nath, 2021). Their adaptation to the high metal concentrations in the soil 
(Coutinho, 1978, 2016) likely make them also adapted to the diffuse urban metal 
pollution (Moreira et al., 2018) that severely restricts tree growth and development 
(Locosselli et al., 2019). Thus, these species have advantages in terms of growth that 
may increase the prospects for long-term of ecosystem services delivery urban 
environment. 

In terms of ecosystem services quality, again based on the current literature limited to 
the natural environment, Atlantic Forest species have a greater potential to control 
temperature since taller and densely arranged trees may provide better thermal 
comfort (Abreu-Harbich et al., 2015) but only if the natural structure and conditions of 
the Atlantic Forest can be replicated along the urban infrastructure. For the most 
compact urban areas, the often-shorter Cerrado species will still promote thermal 
comfort through shading (Bowler et al., 2010; Abreu-Harbich et al., 2015) and 
evaporative cooling (Bowler et al., 2010, Moss et al., 2019) sustained by their deep root 
systems (Coutinho, 1978, 2016; Oliveira et al., 2005). Likewise, the carbon sink potential 
of the Atlantic Forest can be higher than in the Cerrado if the vegetation structure, 
longevity and recruitment of trees are replicated in the city (David et al., 2017). 
Otherwise, Cerrado trees often present higher growth rate at early stages of life 
(Locosselli et al., 2017) favouring the establishment of young trees especially in open 
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spaces, and higher investment of carbon in below ground organs (Castro and Kauffman, 
1998; Ribeiro et al., 2011) and overall wood density (Chave et al., 2009). The thick and 
rough barks of the Cerrado trees (Loram-Lourenço, 2020) may represent an additional 
advantage in terms of adsorption of particulate air pollution (Moreira et al., 2018) and 
rainfall interception (Oliveira et al., 2015; Tonello et al., 2021), that is on par or even 
higher to that observed in the mature Atlantic Forest (Junior et al., 2019). Although 
restricted to natural areas, these observations could inform their potential roles in the 
deployment of ecosystem services in urban areas. 

The implementation of Cerrado inspired NbS would further benefit from the often-
neglected ecosystem services provided by grasses and shrubs (Deletic et al 2006, Ryan 
et al 2016). Consideration of other vegetation assemblages (and supporting substrates) 
is required if cities are to make use of all the tools in the toolkit of NbS to become more 
resilient to climate change, and to address other urgent challenges such as wellbeing, 
pollution, biodiversity, and inclusion. When integrated into NbS, grasslands and 
shrublands can provide improvements in thermal comfort (vaz Monteiro et al., 2016), 
rainfall-runoff response (Davis et al., 2021) and air quality (Escobedo et al., 2008), water 
pollution remediation (e.g. Urbonas et al., 1989; Clary et al., 2017), and biodiversity 
support (Sala and Maestre, 2014).  

Both the natural Atlantic Forest and the Cerrado have a long and dynamic history of 
contraction and expansion, and they often co-exist as mosaics in the ecotones 
nowadays. Such dynamics are naturally controlled by changes in the climate conditions 
and by major disturbance forces like fire (Silva and Bates, 2002). The natural co-
existence of these two biomes in the ecotones evidence a potential balanced co-
existence in the cities, where their dynamics will likely be controlled by changes in the 
climate condition from climate change, urbanization, and implementation of NbS, and 
by major disturbance forces such as the anthropogenic activities undertaken in the 
cities. The urban ecosystem restoration could benefit from such natural and dynamic 
processes in which the Cerrado could act as a transient urban biome in the way of 
restoring the urban forests through soil horizon development and species succession 
followed by the densification of the vegetation whenever this planting scheme is 
possible. The urban Cerrado could also act as a permanent urban biome in appropriate 
areas of the city where dense vegetation cover is not possible, likely without 
compromising the ecosystem services delivery including biodiversity support. 

The diversity of challenges faced by cities in becoming more resilient can therefore be 
considered as being addressed by a range of different interventions drawing on the 
diverse, valuable properties of natural processes, such as infiltration, 
evapotranspiration, pollination, and so on. Our findings present an important piece of 
the jigsaw puzzle, by providing a more nuanced and fine-grained appreciation of extant 
environmental conditions and appropriate ecologies from which to draw inspiration for 
the retrofitting of green elements back into the urban fabric. If NbS are to be successful 
in how they are ‘locally adapted, resource-efficient and systemic’ (EC, 2021), cities 
urgently need to know which types and combinations of vegetation may thrive when 
planted. They also need better spatial data on the supporting environmental conditions 
that will enable that flourishing of vegetation, so that these locally ‘attuned’ NbS may 
effectively deliver their intended ecosystem services. 
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Conclusions 

We show that the use of elements of nature inspired by the local biome to improve the 
quality of the urban environment, as supported by laws and regulations, may not always 
be the best practice in the entire city. Because of changes in vegetation structure and 
climate conditions, 47% of the city of São Paulo has conditions that may better support 
elements inspired in the Cerrado, a Tropical Grassland, Savanna, and Shrubland biome, 
instead of the Atlantic Forest, a Tropical Moist Broadleaf Forest biome originally found 
there. This shift towards low vegetation coverage, high temperature, and changes in 
precipitation regime are expected outcomes of urbanization in many cities of the world, 
and thus, the use of elements from adjacent biomes may bring resilience to the urban 
green infrastructure, while also acting as transition steps. These transitions among 
urban biomes may occur as local conditions change with the implementation of NbS, 
and the results point to the effectiveness of increasing the vegetation density wherever 
possible. The implementation of NbS inspired by different natural biomes such as 
proposed here may leverage the biodiversity in cities and its benefits to the population. 
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Figure 1: The left panel shows the Official Brazilian Biomes and the location of the city 
of São Paulo in the Atlantic Forest biomes, a Tropical Moist Broadleaf Forest according 
to the international biome’s classification (Olson et al., 2001). The right panel shows a 
detail of the city of São Paulo (white outline) on a panchromatic satellite imagery 
(Landsat 8) with the 28 climate stations of the Emergency Management Centre of the 
City of São Paulo used in the validation of the spatially interpolated climate variables. 
 

 

Figure 2: Spatial distribution of variables related to the vegetation structure and climate 
in the city of São Paulo (black outline). Vegetation structure is represented by the mean 
NDVI ratio, while the seasonality of the vegetation structure is represented by the ratio 
of the NDVI values between the summer (wet season) and the winter (dry season). 
Climate spatial variability is represented here by the annual mean temperature and the 
total annual precipitation values. For the seasonal NDVI, precipitation and temperature, 
refer to Figure S6). The circles represent the climate stations from the Centre of 
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Emergency Management of São Paulo (CGE). Shades of grey indicate the values of the 
respective climate variables in each of the stations (refer to Figure S7 for the linear 
association between the interpolated data and the data from the CGE stations).  
 

 

Figure 3: Density plots showing the distribution of the vegetation and climate variables 
used the Linear Discriminant Analysis. Distribution of the values are show for the main 
Official Brazilian Biomes (AM: Amazon Forest – Tropical Moist Broadleaf Forest, CA: 
Caatinga - Tropical Deserts and Xeric Shrublands, CE: Cerrado – Tropical Grassland and 
Savanna, and MA: Atlantic Forest – Tropical Moist Broadleaf Forest) and the city of São 
Paulo. 
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Figure 4: Scatterplot of the Linear Discriminant Analysis used to classify the main 
Brazilian biomes. Proportion of the explained variability is given for each Linear 
Discriminant axes (LD). This discriminant model has an accuracy of 80%. 
 

 

Figure 5: Detailed evaluation of the green spaces from the city of São Paulo, A) with two 
examples of Public Parks classified as Cerrado (brown outline) and Mata Atlantica (green 
outline). B) The distribution of green spaces extent is displayed in the density plot, C) 
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whose land use are described for areas larger than 62.500 m2. D) An example of the 
distribution of four types of green cover in two Public Parks, E) and the Principal 
Component Analyses of the proportion of green cover in green spaces with more than 
62,500 m2 (ellipses indicate 95% confidence interval), and F) of the proportion of green 
cover outside the green spaces but across the urban fabric (ellipses indicate 95% 
confidence interval). 
 

 

 

Figure 6: Classification of the city of São Paulo in the Urban Biomes (refer to Figure 1), 
according to the extant climate conditions and vegetation structure. Seasonally flooded 
areas in each biome are based on the overlaying naturally flooding areas of the main 
rivers in the city (Flood Areas map from GeoSampa). 
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Figure 7: Examples of possible interventions of green infrastructure according to the 
four Urban Biomes in the city of São Paulo. 
 

Table 1: Coefficients of Linear Discriminant Analysis used to classify Official Brazilian Biomes. 

Variables LD1 LD2 LD3 

Mean NDVI -0.13 0.48 0.38 

Ratio NDVI (max NDVI / min NDVI) -0.09 -0.24 0.25 

Annual mean temperature 0.92 0.42 -0.84 

Mean temp. of the warmest quarter 1.58 2.13 -0.83 

Annual precipitation -1.20 0.80 -1.16 

Precipitation of the driest month 0.26 -0.37 0.84 

Precipitation of the coldest quarter 0.01 0.42 0.75 

 
 
 
 


