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Asymptotic Learning Requirements for Stealth

Attacks on Linearized State Estimation
Ke Sun, Iñaki Esnaola, Antonia M. Tulino, and H. Vincent Poor

Abstract—Information-theoretic stealth attacks are data injec-
tion attacks that minimize the amount of information acquired
by the operator about the state variables, while simultaneously
limiting the Kullback-Leibler divergence between the distribution
of the measurements under attack and the distribution under
normal operation with the aim of controling the probability of
attack detection. For Gaussian distributed state variables, attack
construction requires knowledge of the second order statistics
of the state variables, which is estimated from a finite number
of past realizations using a sample covariance matrix. Within
this framework, the attack performance is studied for the attack
construction with the sample covariance matrix. This results
in an analysis of the amount of data required to learn the
covariance matrix of the state variables used on the attack
construction. The ergodic attack performance is characterized
using asymptotic random matrix theory tools, and the variance
of the attack performance is bounded. The ergodic performance
and the variance bounds are assessed with simulations on IEEE
test systems.

Index Terms—Data injection attack, information-theoretic
stealth attacks, statistical learning, random matrix theory, ergodic
performance, variance of performance

I. INTRODUCTION

DATA injection attacks (DIAs) are a type of cyber-security

threat that aim to modify the data exchange between the

components of a power system by exploiting existing vulnera-

bilities of the sensing and communication systems [1]. Specif-

ically, DIAs alter the measurements acquired by monitoring

equipment, such as remote terminal units, to corrupt state

estimates without triggering bad data detection mechanism

used by the operator [2]. Attack construction strategies vary for

different estimation frameworks and abnormal data detection

approaches. For the conventional framework consisting of

least squares estimation and residual-based detection, it is

shown in [2] that attacks that lie in the column space of the

system Jacobian matrix are undetectable. However, the rapid

growth of the cyber layer in the smart grid enables novel

estimation and detection methods that incorporate system

model knowledge and integration of multiple data sources.
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As a result, efficient attack strategies need to adapt in this

changing landscape to multiple estimation paradigms. For

instance, within a Bayesian framework with minimum mean

square error (MMSE) estimation, the attack trades off mean

square error disruption for probability of detection [3], [4]. In

particular, the attack construction leverages the linear MMSE

estimate to identify the signal subspace that is most vulnerable

to additive distortion while minimizing the probability of

detection of a likelihood ratio test.

There are also multiple variants that incorporate different

operational constraints for the attacker. For instance, introduc-

ing the ℓ0 norm of the attack vector as minimization objective

yields sparse attacks that decrease the number of sensors

that need to be compromised by the attacker to decrease the

difficulty of launching the attack [5], [6], [7], [8]. Sparse

attacks are constructed in a distributed settings with multiple

attackers in [9] and [10]. Information-theoretic attack construc-

tions [11], [12] stem from the aspiration of targeting universal

disruption measures that pose a data-integrity threat for the

operator under a wide range of estimation frameworks. In this

setting, the attacker aims to limit the amount of information

acquired by the operator from the grid measurements by

constructing random attacks that minimize the mutual informa-

tion between the measurements and the state variables. These

attack constructions require prior knowledge about the power

system, specifically the Jacobian matrix of the power system

and the distribution of the state variables, to determine the

distribution of the attack vectors. Under a Gaussian assumption

for the state variables [3], [4], [12], the knowledge required

reduces to the second order statistics of the state variables.

Naturally, perfect knowledge of the second order statistics

of the state variables is not attainable in practice, and as a

result, the performance of such attacks degrades as a result of

having imperfect statistics. With that motivation, we study the

performance loss faced by an attacker as a result of having

access to imperfect knowledge about the distribution of the

state variables. Specifically, we study the setting in which the

attacker has access to a finite number of realizations of the

state variables, for instance obtained from historical data, and

learns the distribution of the state variables from them.

Imperfect system knowledge has been studied in different

settings. For example, it is shown in [13] that stealthy at-

tacks can be constructed when the attacker has only partial

information about the grid. Undetectable attack constructions

that rely on imprecise branch parameters are studied in [14].

Historical operation data can also be leveraged to infer the

power system parameters and obtain a statistical description

of the system, which can be capitalized by the attacker. For

instance, historical data is exploited to learn the topology
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of the grid in [15]. Furthermore, different statistical learning

algorithms, such as principal component analysis [16] and

independent component analysis [17], can successfully be used

to infer the statistical distribution of the state variables and the

measurements.

In this paper, we characterize the learning requirements

for the information-theoretic stealth attacks proposed in [11]

and [12] via asymptotic analysis tools from random matrix

theory (RMT). To that end, we adopt a sample covariance

matrix estimation framework as in [18]. In this setting, the

attacker computes the sample covariance matrix from past

realizations of the state variables and uses the estimate of

the covariance matrix to construct the attack vector. Since

the sample covariance estimate is asymptotically unbiased and

the information-theoretic attack construction is linear in the

covariance matrix [11], the attack construction resulting from

using the sample covariance matrix is asymptotically optimal.

Assuming that the historical samples form a sequence of in-

dependent and identically distributed (i.i.d.) random variables,

the sample covariance matrix is a random matrix and the

performance of the attacks is a random variable. The non-

asymptotic performance, i.e. the case with a finite number

of realizations to compute the sample covariance matrix, is

studied in [18] but the study using RMT tools in [18] only

provides bounds on the expected value of the performance. In

this paper, we focus on the asymptotic regime and characterize

analytically the ergodic attack performance and its variance.

In doing so, we establish performance tradeoffs between the

size of the data set used for computing the sample covariance

matrix and the performance of the attacks. We also obtain

variance bounds on the attack performance to characterize the

distribution of the attack performance.

Asymptotic RMT tools are well suited for modeling power

systems with incomplete state information and provide good

performance evaluations of finite dimensional systems given

their rapid convergence properties [19]. RMT tools have

been successfully used in the analysis of power systems

before, for instance in [20], [21], [22], and [23] for the

measurements from the IEEE test systems. Specifically, [20]

and [21] show that the distribution of the singular values or

eigenvalues of voltage data from IEEE test systems satisfies

the Marc̆enko–Pastur law and the circular law, which are

used in [22] to detect abnormal events and in [23] for data

visualization. In a cybersecurity context, RMT tools are used

in [24] to characterize the tradeoff between the sparsity of the

attacks and the probability of passing the detection mechanism

when a limited number of measurements are available for the

attacker.

The rest of the paper is organized as follows: In Sec-

tion II, a Bayesian framework with linearized dynamics for

DIAs is presented. The learning scenario and some auxiliary

asymptotic RMT results are presented in Section III. Using

these results, a closed-form expression for the ergodic attack

performance and bounds for the variance of the performance

are proposed in Section IV and Section V, respectively, for

the attack constructed using imperfect information. Section VI

numerically evaluates the results in Section IV and Section V

on IEEE test systems. The paper ends with conclusions in

Section VII.

II. SYSTEM MODEL

A. Bayesian Framework with Linearized Dynamics

The measurement model for state estimation with linearized

dynamics is given by

Y m = HXn + Zm, (1)

where Y m ∈ R
m is a vector of random variables describing

the measurements; Xn ∈ R
n is a vector of random variables

describing the state variables; H ∈ R
m×n is the linearized

Jacobian measurement matrix that is given by

H =
∂H(Xn)

∂Xn

∣

∣

∣

Xn=x0

, (2)

in which H : R
n → R

m models the nonlinear dynamics

between the state variables and the measurements and x0 is the

operating point; and Zm ∈ R
m is the additive white Gaussian

noise (AWGN) with distribution N (0, σ2I) that is introduced

by the sensors as a result of the thermal noise, in which I

denotes the identity matrix of proper dimension and σ2 is the

variance of the noise [25], [26] 1.

In the remaining of the paper, we assume that the vector

of state variables follows a zero-mean multivariate Gaussian

distribution given by

Xn ∼ N (0,ΣXX), (3)

where ΣXX ∈ Sn
+ is the covariance matrix of the distribution

of the state variables and Sn
+ denotes the set of positive

semidefinite matrices of size n×n. As a result of the linearized

model in (1), the vector of measurements also follows a

multivariate Gaussian distribution denoted by

Y m ∼ N (0,ΣYY ), (4)

where ΣYY = HΣXXHT + σ2I is the relative covariance

matrix.

The formulation of the problem in a Bayesian setting

demands the introduction of a modeling assumption on the

distribution of the state variables. The rationale for adopting

a Gaussian distribution over the state variables in this paper

stems from a maximum entropy [27] approach. Indeed, the

distribution that maximizes the entropy for given second

order moments is the Gaussian distribution [28]. As a result,

by adopting a Gaussian model, we introduce the minimum

amount of bias into our modeling, i.e. we adopt the distribution

that is maximally non-committal over the state variables. From

a modeling perspective, this is the distribution that assumes the

least amount of prior over the problem formulation given that

we only have information about the second order statistics.

Gaussian models have been previously used in power flow

problems [29], [30] and DIAs [3], [4], [12]. Interestingly,

Gaussian distributions have also been observed in some of

1Note that the linearized model is not limited to the direct current (DC)
model in the power system state estimation. This model allows the operator
to include both bus voltage magnitudes and angles as state variables, such
as PMU-based state estimation case, in the linearized model, see [26, Table
15.4, Table 15.5].
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the smart grid processes. For instance, real data suggests that

distribution networks are well described by Gaussian models

for both state variables [31] and consumption measurements

[32]. This suggests that nodal active power injections can be

modeled as Gaussian but the fitness of the model to other

state variables, such as reactive power or PMU measurements,

requires further study. It is worth noting, therefore, that the

insight provided by the analytical results in this paper is more

reliable the closer the state variables are to following a Gaus-

sian distribution. In any case, the linear observation model in

(1) gives rise to Gaussian distributions over the state variables

whenever the observations follow a Gaussian distribution or

when the deviations with respect to the operation point of the

state variables can be modeled by Gaussian distributions.

Under our setting, DIAs corrupt the measurements available

to the operator by adding an attack vector of random variables

to the measurements. The resulting vector of compromised

measurements is given by

Y m
A = HXn + Zm +Am, (5)

where Am ∈ R
m is the attack vector and Y m

A ∈ R
m is

the vector containing the compromised measurements [2].

Following the setting of [11] and [12], an attack vector which

is independent of the state variables is constructed under

the assumption that the attack vector follows a multivariate

Gaussian distribution denoted by

Am ∼ N (0,ΣAA), (6)

where ΣAA ∈ Sm
+ is the associated covariance matrix. Because

of the Gaussianity of the attack distribution, the vector of

compromised measurements is distributed as

Y m
A ∼ N (0,ΣYAYA

), (7)

where ΣYAYA
= HΣXXHT + σ2I+ΣAA.

The operator of the power system makes use of the acquired

measurements to detect the attack. The detection problem is

cast as a hypothesis testing problem with hypotheses

H0 : Y m ∼ N (0,ΣYY ), versus (8)

H1 : Y m ∼ N (0,ΣYAYA
). (9)

The null hypothesis H0 describes the case in which the power

system is not compromised, while the alternative hypothesis

H1 describes the case in which the power system is under

attack. Note that by assuming that the operator knows the

distribution of the attack vector, the attacker aims to induce a

probability of detection that is close to the probability of false

alarm. When the probability of false alarm is comparable to

the probability of attack detection, the operator is unable to

distinguish between bad data events during normal operation

and bad data resulting from DIAs.

For the binary hypothesis testing problem in (8) and (9),

Neyman-Pearson lemma states that likelihood ratio test (LRT)

is the most powerful test under a prefixed significance level α,

i.e. LRT achieves the maximum probability of detection among

all the tests with probability of false alarm smaller that α [33,

Proposition II.D.1]. As a result, the LRT is used to decide

between H0 and H1 based on the available measurements.

The LRT between H0 and H1 takes following form:

L(y)
∆
=

fY m

A
(y)

fY m(y)

H1

≷
H0

τ, (10)

where y ∈ R
m is a realization of the vector of random

variables modeling the measurements; fY m

A
and fY m denote

the probability density functions of Y m
A and Y m, respectively;

and τ is the decision threshold set by the operator to meet a

given false alarm constraint.

B. Information-Theoretic Stealth Attacks

The probabilistic modeling of the system variables enables

an information-theoretic analysis of the DIAs [11], [12]. The

measurement model in (1) characterizes an information acqui-

sition procedure, in which the operator acquires the informa-

tion about the state variables from the gathered measurements.

To that end, the attacker disrupts the information acquisition

procedure by minimizing the amount of information acquired

by the operator, or mathematically, by minimizing the mu-

tual information between the vector of state variables and

the vector of compromised measurements, i.e. minimizing

I(Xn;Y m
A ) in (5), where I(· ; ·) denotes the mutual informa-

tion. Given that the smart grid paradigm envisions a large

array of data-driven processes taking place in the system, the

use of mutual information as the measure of the utility of

the data is reasonable given the fundamental character of the

mutual information. Indeed, the links of mutual information to

detection [34], estimation theory [35], and machine learning

[36] problems facilitate results in an attack disruption metric

with operational meaning on a wider range of applications.

From the perspective of the attacker, the attacker also needs

to guarantee the attacks to be stealthy under the detection

approach, which requires the minimization of the probabil-

ity of detection under the detection approach. In particular,

minimizing the probability of detection under the LRT in

(10) is achieved by minimizing the asymptotic value of the

probability, and as a result of the Chernoff-Stein lemma [28,

Theorem 11.7.3] [12, (10)], it is equivalent to minimizing

D(PY m

A
‖PY m), where PY m

A
and PY m denote the probability

distributions of Y m
A and Y m, respectively, and D(·‖·) denotes

the Kullback-Leibler (KL) divergence.

The stealth attacks minimize the amount of information

acquired by the operator and the probability of attack detection

simultaneously by minimizing the data integrity cost function

given by

min
Am

I (Xn;Y m
A ) +D

(

PY m

A
‖PY m

)

, (11)

which is equivalent to

min
Am

D(PXnY m

A
‖PXnPY m) (12)

after some algebraic operations [37], where PXnY m

A
is the

joint distribution of (Xn, Y m
A ). The unweighted sum in (11)

is generalized into a weighted sum in [12]. Under the Gaussian

assumption for the state variables and the attack, it is shown

in [11] that the data integrity cost function in (12) is a convex
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function of the attack covariance matrix ΣAA with optimal

solution

Σ⋆
AA = HΣXXHT. (13)

A detailed account of information-theoretic stealth attacks

and the tradeoff between disruption and probability of detec-

tion are provided in [11], [12], and [38].

III. LEARNING SCENARIO FOR STEALTH ATTACKS

A. Learning Scenario Setting

As shown in (13), the attacker needs to get access to the

system Jacobian matrix H and the covariance matrix of the

state variables ΣXX . Note that the setting in this paper differs

from the setting in [2] in that the attacker exploits knowledge

of the second order statistics of the state variables. To that end,

the attacker estimates the covariance matrix ΣXX based on the

available training data. The amount of training data governs

the accuracy of the covariance matrix estimate, and therefore,

in practical settings in which the attacker has access to a finite

number of historical data samples, the attack is constructed

with partial knowledge of the covariance matrix.

In the following, we study the performance of the attack

when the covariance matrix is not perfectly known by the

attacker but the linearized Jacobian measurement matrix is

known. We model the partial knowledge by assuming that the

attacker has access to a sample covariance matrix of the state

variables. Specifically, a training dataset consisting of an i.i.d.

sequence of k samples of the state variables, i.e. of {Xn
i }

k
i=1,

is available to the attacker. This assumes that the attacker has

access to noiseless realizations of the state variables that can be

used to estimate the state variables without any error. While in

practical settings access to noiseless realizations is not feasible,

this assumption aims to model the worst-case scenario attack

for the operators, i.e. the case in which the attacker has access

to perfect historical data of the state variables.

That being the case, the attacker computes the unbiased

estimate of the mean and the covariance matrix of the state

variables via

kX̄n =

k
∑

i=1

Xn
i , (14)

(k−1)SXX=

k
∑

i=1

Xn
i (X

n
i )

T−kX̄n(X̄n)T, (15)

where X̄n is the sample mean and SXX is the sample

covariance matrix. Given that the vector of the state variables

follows a multivariate normal distribution, it is shown in [39,

Proposition 7.1] that the sample covariance matrix in (15) is

a random matrix with a central Wishart distribution given by

(k − 1)SXX ∼ Wn(k − 1,ΣXX), (16)

where Wn(k − 1,ΣXX) denotes the central Wishart distri-

bution with k − 1 degrees of freedom and covariance matrix

ΣXX .

Given the optimal stealth attacks expression in (13), the

stealth attacks constructed using the sample covariance matrix

follow a multivariate Gaussian distribution conditioned on the

sample covariance matrix SXX , which is given by

Ãm ∼ N (0,ΣÃÃ) (17)

with ΣÃÃ = HSXXHT; and as a result of (16) and [39,

Proposition 7.4], it holds that

(k−1)ΣÃÃ=(k−1)HSXXH
T∼Wm(k−1,HΣXXH

T). (18)

To that end, the measurements that are under attack are given

by

Y m

Ã
= HXn + Zm + Ãm, (19)

in which Y m

Ã
∈ R

m is the vector containing the measurements

that are compromised by the attacks in (17). As a result, the

compromised measurements follow a multivariate Gaussian

distribution conditioned on the sample covariance matrix SXX ,

i.e.

Y m

Ã
∼ N (0,ΣY

Ã
Y
Ã
) (20)

with ΣY
Ã
Y
Ã
= HΣXXHT + σ2I + ΣÃÃ. Similarly, the cost

function in (12) is described in this case as

D
(

PXnY m

Ã

‖PXnPY m

)

, (21)

where PXnY m

Ã

is the joint distribution of (Xn, Y m

Ã
). Under the

Gaussianity assumption, (21) is equivalent to [12, Proposition

1]

F (ΣÃÃ)
∆
=

1

2

(

tr(Σ−1
YYΣÃÃ)−log|ΣÃÃ+σ2I|+log|ΣYY |

)

. (22)

Given the Wishart distribution of the attack covariance

matrix in (18), the KL divergence objective in (21) and the

cost functions in (22) are both random variables. Following on

the same steps as in [18], we defined the ergodic performance

of the attack as the performance obtained by averaging over

all realizations of the training data set, i.e. as E[F (ΣÃÃ)].
The characterization of the objective and the cost function

using RMT can be conducted in the non-asymptotic scenario

and the asymptotic scenario. Note that under both scenarios

the characterization that uses the distribution of the Wishart

random matrices directly is not manageable, so we turn to the

distribution of the eigenvalues of Wishart random matrices2,

which is more tractable. The non-asymptotic scenario focuses

on the case when the dimensions of the random matrices

are finite value, i.e. k − 1 and n are finite integers. Under

this scenario, only probabilistic bounds are available for the

eigenvalues of random matrices. To that end, we can only

provide upper and lower bounds on the non-asymptotic ergodic

performance [18].

Unlike the non-asymptotic scenario, the asymptotic scenario

focuses on the case when the dimension of the random matri-

ces goes to infinite, i.e. when k − 1 → ∞ and n → ∞. The

rapid convergence of the non-asymtotic results to the asymp-

totic results guarantees that the asymptotic results approximate

the non-asymptotic results well even for small values of k−1
and n, which will be shown later by the numerical simulation

2The expression in right-hand side of (22) can be rewritten as a function
of the eigenvalues of Σ

ÃÃ
. We will show this later in Theorem 5.
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result in Fig. 1. The eigenvalue distributions that arise for

these types of matrices in the asymptotic case are simpler to

describe, and therefore, amenable to be studied analytically.

In fact for this case, we are able to obtain a closed-form

expression for the ergodic performance, rather than bounds

as in the non-asymptotic case [18]. Also the variance of the

performance, i.e. var [F (ΣÃÃ)], can also be characterized by

the corresponding bounds.

In the following, we analyze the performance of the at-

tack constructed using the sample covariance matrix for the

asymptotic scenario. Before that, we introduce some auxiliary

asymptotic results from RMT to aid the analysis.

B. Auxiliary Results from RMT

Asymptotic RMT mainly investigates the spectral properties

of random matrices when the dimension tends to infinity [40].

As the dimension increases to infinity, the distribution of

the eigenvalues of random matrices converges to the fixed

distributions, such as the Marc̆enko–Pastur law for Wishart

random matrices. We first introduce some definitions from

RMT.

Definition 1. [41] The η-transform of a nonnegative random

variable X is

ηX(γ) = E

[

1

1 + γX

]

, (23)

where γ ≥ 0 and thus 1 ≥ ηX(γ) > 0.

Definition 2. [41] The Shannon transform of a nonnegative

random variable X is defined as

VX(γ) = E [log(1 + γX)] . (24)

Definition 3. [41] The asymptotic eigenvalue distribution

(AED), FA(·), of an n × n Hermitian random matrix A is

defined as

FA(x) = lim
n→∞

1

n

n
∑

i=1

✶{λi(A)≤x}, (25)

where ✶{·} is the indicator function and λ1(A), . . . , λn(A)
are the eigenvalues3 of A.

The following theorems characterize the Shannon transform

of the spectral distribution of a certain type of random matrices

and the variance of the logarithm of the spectral distribution.

These results enable us to characterize the asymptotic case

better.

Theorem 1. [41, Theorem 2.39] Let L be an n × (k − 1)
matrix whose entries are zero-mean i.i.d. random variables

with variance 1
k−1 . Let T be an n×n symmetric nonnegative

random matrix, independent of L, whose AED converges

almost surely to a nonrandom limit. The AED of LTTL

converges almost surely, as k − 1, n → ∞ with k−1
n

→ β,

to a distribution whose η-transform satisfies

1

β
=

1− η

1− ηT(γη)
, (26)

3The eigenvalues λ1, . . . , λn are unordered eigenvalues.

where for notational simplicity we have abbreviated

ηLTTL(γ) = η. The corresponding Shannon transform satisfies

VLTTL(γ) =
VT(γη)

β
+ log

1

η
+ (η − 1) log e. (27)

Note that the definition of β here is the reciprocal of the

definition in [41].

Theorem 2. [42, Theorem 4] Let L be an n× (k− 1) matrix

defined as in Theorem 1. Let T be an n×n matrix defined as in

Theorem 1 whose the spectral norm is bounded. As k−1, n →
∞ with k−1

n
→ β, the random variable

∆k−1 = log |I+ γLTTL| − (k − 1)VLTTL(γ) (28)

is asymptotically zero-mean Gaussian with variance

E
[

∆2
]

= − log

(

1−
1

β
E

[(

TγηLTTL(γ)

1 + TγηLTTL(γ)

)])

, (29)

where the expectation is over the nonnegative random variable

T , whose distribution is the AED of T.

To obtain the result in Theorem 2, a central limit theorem

result is needed for the linear spectral statistics of random

matrices. We introduce it in the following theorem.

Theorem 3. [42], [43] Let L be an n × (k − 1) matrix

defined as in Theorem 1. Let T be an n × n matrix defined

as in Theorem 1 whose the spectral norm is bounded. Let g(·)
be a continuous function on the real line with bounded and

continuous derivatives, analytic on an open set containing the

interval
[

lim inf
n

φnmax
{

0,1−
√

1/β
}2

, lim sup
n

φ1(1+
√

1/β)2
]

(30)

where φ1 ≥ · · · ≥ φn are the eigenvalues of T. Denoting the

i-th eigenvalue and asymptotic AED of LTTL by λi(L
TTL)

and FLTTL(·), the random variable

∆k−1 =
k−1
∑

i=1

g
(

λi(L
TTL)

)

− (k − 1)

∫

g(x)dFLTTL (31)

converges, as k − 1, n → ∞ with k−1
n

→ β, to a zero-mean

Gaussian random variable with variance

E
[

∆2
]

= −
1

2π2

∮ ∮

ġ(Z(u1))g(Z(u2))

u2 − u1
du1du2 (32)

or

E
[

∆2
]

= −
1

2π2

∮ ∮

g(Z(u1))g(Z(u2))

(u2 − u1)2
du1du2, (33)

where ġ(x) = d
dx
g(x) while

Z(u) = −
1

u

(

1−
1− ηT(u)

β

)

. (34)

In (32) and (33), the integration variables u1 and u2 follow

closed contours, which we may take to be non-overlapping and

conterclockwise, such that the corresponding contours mapped

through Z(u) enclose the support of FLTTL(·).

Here (32) follows from [42, Theorem 3] and (33) follows

from [43, Theorem 1.1]. These two expressions are equivalent.

The difference is that (32) is suitable for some logarithm
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functions, such as g(x) = log(1+γx) that is used for Theorem

2 and (33) is suitable for some linear functions, such as

g(x) = x that we will discuss later in Theorem 4.

It is worth mentioning that the results in Theorem 1, 2, and

3, including Theorem 4 in the following section, are general

results, in which the distribution of entries in L is not specified.

The only requirement is that the matrix L is composed of zero-

mean i.i.d. entries with normalized variance.

C. Asymptotic Results for Trace Terms

Using the result in Theorem 3, we introduce an analytical

expression for the variance of tr
(

LTTL
)

, which we use later

in the performance analysis.

Theorem 4. Let L be an n × (k − 1) matrix defined as

in Theorem 1. Let T be a symmetric nonnegative definite

random matrix independent of Z with bounded spectral norm

and whose asymptotic AED converges almost surely to a

nonrandom limit. As k−1, n → ∞ with k−1
n

→ β, the random

variable

∆k−1 = tr
(

LTTL
)

− (k − 1)
E [T ]

β
(35)

is asymptotically zero-mean Gaussian with variance

E
[

∆2
]

=
2

β
E
[

T 2
]

, (36)

where the distribution of T is the AED of T.

Proof. Firstly, we note that the mean of tr
(

LTTL
)

is given

by

E
[

tr
(

LTTL
)]

=E
[

tr
(

TLLT
)]

=E[tr(T)]→nE[T ], (37)

where the first equality follows from the cyclic permutation

property of the trace operator; the second equality follows

from the fact that T is independent of L, the trace is a linear

operator, and E[LLT] = I.

Secondly, we turn to obtain the variance. Taking g(x) = x
into (33) yields

E
[

∆2
]

= −
1

2π2

∮ ∮

Z(u1)Z(u2)

(u2 − u1)2
du1du2 (38)

with Z(u) in (34). Without loss of generality, we assume that,

besides satisfying the condition of Theorem 3, the u1 and u2

contours do not overlap and that the u2 contour encloses the

u1 contour. Consequently, E
[

∆2
]

is rewritten as

E
[

∆2
]

= −
1

2π2

∮

Z(u2)

[
∮

Z(u1)

(u2 − u1)2
du1

]

du2. (39)

To calculate the inner integral, we need to use Cauchy’s

residue theorem. The first step is to find the zeros and poles

of Z(u1). Finding the zeros of Z(u1) is equivalent to solving

−
1

u

(

1−
1− ηT(u)

β

)

= 0. (40)

Note that, for the case γ = 1, (26) can be rewritten as

1−
1− ηT(u)

β
= η. (41)

Given the fact that η ∈ (0, 1], as Definition 1, so Z(u1) has no

zeros. Without lost of generality, the u1 contour can be chosen

such that only the simple pole at u1 = 0 is enclosed. As a

result, the inner integral is calculated using Cauchy’s residue

theorem and is given by

∮

Z(u1)

(u2 − u1)2
du1 = 2πi

−1

u2
2

. (42)

Taking the value of the inner integral into (39) yields

E
[

∆2
]

= −
1

πi

∮
(

−
1

u2

(

1−
1− ηT(u2)

β

))

1

u2
2

du2. (43)

The proof is completed by applying Cauchy’s residue theorem

again for (43), in which u2 = 0 is a pole of order 3.

IV. EXPLICIT EXPRESSION FOR THE ASYMPTOTIC

ERGODIC DATA INTEGRITY

As shown in (22), the objective function of the stealth

attacks constructed using the sample covariance matrix is given

by

F
∆
=F(ΣÃÃ)=

1

2

(

tr(Σ−1
YYΣÃÃ)−log|ΣÃÃ+σ2I|+log|ΣYY |

)

, (44)

where

(k−1)ΣÃÃ=(k−1)HSXXH
T∼Wm(k−1,HΣXXH

T). (45)

Note that the objective given in (44) is a random variable.

Here without loss of generality, we assume that the rank

of matrix HΣXXHT is equal to n, which implies that ΣXX

is full rank. The rationale for this assumption comes from

the observability check set by the operator, which guarantees

that H is a full column rank matrix with m ≥ n for

the state estimation procedure. As a result, it holds that

rank(HΣXXHT) = rank(ΣXX).

A. Distribution of the Data Integrity

To characterize the performance of the attacks, we obtain an

equivalent expression for the performance in (44) that shares

the same distribution.

Theorem 5. The data integrity performance of the attack

constructed using the sample covariance matrix is equivalent

in distribution to the random variable given by

F
d
= tr

(

ZT

(

Λ̃+I
)−1

Λ̃Z

)

− log
∣

∣

∣
ZTΛ̃Z+I

∣

∣

∣
+log

∣

∣

∣
Λ̃+I

∣

∣

∣
, (46)

where
d
= denotes equivalence in distribution; Z is an n×(k−1)

matrix whose entries are zero-mean i.i.d. Gaussian random

variables with variance 1
k−1 ; Λ̃

∆
= 1

σ2Λ ∈ R
n×n, in which Λ

is the diagonal matrix formed with the non-zero eigenvalues

of HΣXXHT.
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Proof. Note that

F
d
= tr

(

Σ−1
YY VΛ

1

2

s ZmZT

mΛ
1

2

s V
T

)

+ log |ΣYY |

−log
∣

∣

∣
VΛ

1

2

s ZmZT

mΛ
1

2

s V
T+σ2I

∣

∣

∣
(47)

d
= tr

(

(

Λs+σ2I
)−1

ΛsZmZT

m

)

+log

∣

∣

∣

∣

Λs

σ2
+I

∣

∣

∣

∣

−log

∣

∣

∣

∣

Λs

σ2
ZmZT

m+I

∣

∣

∣

∣

(48)

d
= tr

(

ZT

(

Λ̃+I
)−1

Λ̃Z

)

−log
∣

∣

∣
ZTΛ̃Z+I

∣

∣

∣
+log

∣

∣

∣
Λ̃+I

∣

∣

∣
, (49)

where (47) follows from the fact that (k − 1)ΣÃÃ = (k −
1)HSXXHT∼Wm(k − 1,HΣXXHT), so it holds that

HSXXHT d
= VΛ

1

2

s ZmZT

mΛ
1

2

s V
T, (50)

in which Λs and V are the matrix of eigenvalues and

the unitary matrix of corresponding eigenvectors, respec-

tively, of HΣXXHT, and Zm is a matrix of dimension

m × (k − 1) whose entries are zero-mean i.i.d. Gaussian

random variables with variance 1
k−1 ; Given the fact that

ΣYY = HΣXXHT + σ2I shares the same eigenvectors as

HΣXXHT and log |ΣYY | = log |Λs+σ2I|, (48) follows from

applying the cyclic permutation to the trace term in (47) and

applying the Sylvester’s determinant identity for the logarithm

of the determinant term in (47); (49) follows from the fact Λs

is a rank deficient matrix with rank n and applying the cyclic

permutation for the trace term and the logarithm determinant

term. This completes the proof.

B. Asymptotic Behaviors of Matrices

To obtain the asymptotic performance, the asymptotic be-

havior of diagonal matrix Λ̃ ∈ R
n×n needs to be defined.

Given the definition of Λ̃ in Theorem 5, the asymptotic

behavior of Λ̃ can be obtained by defining the asymptotic

behavior of H and ΣXX . Increasing the number of buses and

transmission lines in the power system leads to the increase in

the dimensions of H and ΣXX , but the values of the additive

entries in H and ΣXX are determined by the arrangement and

the admittance of the transmission lines that connect the added

bus with the existing buses. To that end, there is no general

model to characterize the behavior of H and ΣXX when the

dimensions increase. That being the case, we choose to define

the asymptotic behavior of Λ̃ directly.

Let n0 denote the number of state variables within the prac-

tical power system that we are analysing and Λ̃n0
∈ R

n0×n0

denote the corresponding Λ̃ in this system. For example, when

the voltage angles of the buses are chosen to be the state

variables, there are 29 state variables for the IEEE 30-Bus

test system, which implies that n0 = 29. As a result, there are

29 positive eigenvalues of the matrix HΣXXHT and Λ̃n0
is

of dimension 29 × 29. The empirical cumulative distribution

function (c.d.f.) of the diagonal elements of Λ̃n0
is given by

F
n0

Λ̃n0

(x) =

∑n0

i=1 ✶{λi(Λ̃n0
)≤x)}

n0
, (51)

which is obtained from the parameters of the power system.

For the asymptotic scenario, we define

Λ̃ = Λ̃n0
⊗ I, (52)

where ⊗ is the Kronecker product. Under this setting, the

dimension of Λ̃ is n × n with n = ln0, in which l is the

dimension of the identity matrix I. As a result, when l → ∞
in (52), the AED of Λ̃, i.e. F

Λ̃
(x), is given by

F
Λ̃
(x)= lim

n→∞

∑n

i=1✶{λi(Λ̃)≤x}

n
=

∑n0

i=1✶{λi(Λ̃n0
)≤x}

n0
, (53)

which states that the AED of Λ̃ is the same as the empirical

c.d.f. of the eigenvalues of Λ̃n0
.

Under the asymptotic setting in (52), we also have that

log |Λ̃+ I| =
n

n0
log |Λ̃n0

+ I| = n∆c, (54)

where

∆c =
log |Λ̃n0

+ I|

n0
. (55)

Given the fact that Λ̃n0
and n0 are determined by the power

system, ∆c is a constant for the asymptotic scenario.

C. Asymptotic Ergodic Data Integrity

The following theorem provides the asymptotic characteri-

zation of the ergodic performance of the attacks constructed

using the sample covariance matrix.

Theorem 6. Let k → ∞ with n
m

→ α and k−1
n

→ β, then

the ergodic data integrity of the stealth attacks given by

F̄n
∆
=

1

n
F (56)

converges almost surely to

F̄∞
∆
=

1

2

(

λ
ZT(Λ̃+I)

−1
Λ̃Z

− log (1 + λ
ZTΛ̃Z

) + ∆c

)

(57)

with

E
[

F̄∞

]

=
1

2

(

Θ+∆c

)

−
1

2
(V

Λ̃
(η)−βlogη+β(η−1)loge), (58)

where λA is the unordered eigenvalue of A, ∆c is defined in

(55),

Θ
∆
= lim

n→∞

1

n
tr

(

(

Λ̃+ I
)−1

Λ̃

)

= E

[

Λ̃

Λ̃ + 1

]

(59)

with Λ̃ denoting a random variable distributed as the AED of

Λ̃ in (53), and η is the abbreviation for the η-transform of

ZTΛ̃Z that is solved from (26) for γ = 1.

Proof. Starting from (46) and (56), we have that

F̄∞= lim
n→∞

1

n
F (60)

=
1

2n

(

tr

(

ZT

(

Λ̃+I
)−1

Λ̃Z

)

−log
∣

∣

∣
ZTΛ̃Z+I

∣

∣

∣
+log

∣

∣

∣
Λ̃+I

∣

∣

∣

)

(61)

→
1

2

(

λ
ZT(Λ̃+I)

−1
Λ̃Z

− log (1 + λ
ZTΛ̃Z

) + ∆c

)

. (62)
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We now characterize the ergodic performance, i.e. the

expected value of (62). Following the same procedure as in

(37), we have

E

[

λ
ZT(Λ̃+I)

−1
Λ̃Z

]

= lim
n→∞

1

n
E

[

tr

(

(

Λ̃+I
)−1

Λ̃ZZT

)]

=Θ. (63)

Note that E [log(1 + λ
ZTΛ̃Z

]) is the Shannon transform of the

AED of ZTΛ̃Z, which is characterized in Theorem 1. The

proof is completed by taking (27) and (63) into (62).

It follows from Theorem 6 that we need to obtain the

η-transform of ZTΛ̃Z from (26) to finalize the asymptotic

characterization of the ergodic performance. The following

proposition shows that (26) has a unique solution of η.

Proposition 1. As a function of η, (26) in Theorem 1 has a

unique solution.

Proof. Note that in (26) we have

ηT(γη) = E

[

1

1 + γηT

]

, (64)

where ηLTTL(γ) is abbreviated as η and the expectation is

over random variable T whose distribution is the AED of T.

After some algebraic manipulation, (26) can be expressed as

βη − E

[

1

1 + γηT

]

= β − 1. (65)

Note that γ > 0, T ∈ R
+, and the range of η is within the

interval (0, 1], see Definition 1, the left-hand term of (65) is a

monotonically increasing function of η ∈ (0, 1] and its range

contains the value β − 1. This completes the proof.

V. VARIANCE BOUNDS OF THE ASYMPTOTIC DATA

INTEGRITY

In the previous section, Theorem 6 characterizes the er-

godic performance of the attack, which is described via the

equivalent distribution obtained in Theorem 5. However, the

ergodic performance defined there only yields the average

performance of the attacks. The variance of the performance

provides insight into the probability that the performance con-

centrates around the averaged performance. In the following,

we propose the lower and upper bounds for the variance of

the asymptotic performance of attack.

Note that it would be ideal to characterize the distribution

of F in (44) in a closed-form manner via Theorem 3. How-

ever, the diagonal matrix within the trace term in (46), i.e.

(Λ̃+ I)−1Λ̃, is different from the one within the logarithm

of the determinant term, i.e. from Λ̃. So here we choose to

bound the variance of the performance.

Given the fact that ∆c defined in (54) and (55) is a constant

term, we only need to characterize the variance introduced by

the first two terms on the left-hand side of (46). Using the

equivalent distribution in Theorem 5 and further denoting

Fa
∆
= tr

(

ZT

(

Λ̃+ I
)−1

Λ̃Z

)

(66)

Fb
∆
= log

∣

∣

∣
ZTΛ̃Z+I

∣

∣

∣
, (67)

the variance of F in (44) is given by

var[F ]=var[Fa]+var[Fb]−2ρ(Fa,Fb)
√

var[Fa]
√

var[Fb], (68)

where ρ (·, ·) denotes the Pearson correlation.

We proceed by proving that ρ (Fa, Fb) ∈ [0, 1].

Lemma 1. Let Z is an n × (k − 1) matrix whose entries

are zero-mean i.i.d. Gaussian random variables with variance
1

k−1 . Let Λ̃ be an n × n diagonal and nonnegative random

matrix, which is independent of Z. Then it holds that

0 ≤ ρ (Fa, Fb) ≤ 1, (69)

where Fa and Fb are defined in (66) and (67), respectively.

Proof. Note that

Fa= tr

(

(

Λ̃+I
)−1

Λ̃
1

2Z

(

Λ̃
1

2Z

)T
)

=
n
∑

i=1

1

1+λ
σ(i)(Λ̃+I)

λ̄i, (70)

where the first equality follows from the fact that Λ̃ is a

diagonal matrix and from applying cyclical permutation to the

trace term; the second equality follows from [44, 6.57], in

which σ ∈ N
n is a permutation of [1, 2, . . . , n]T, and λ̄i is

the i-th eigenvalue of Λ̃
1

2Z(Λ̃
1

2Z)T.

Furthermore, we have

Fb = log

∣

∣

∣

∣

Λ̃
1

2Z(Λ̃
1

2Z)T + I

∣

∣

∣

∣

=

n
∑

i=1

log(1 + λ̄i), (71)

where (71) follows from Sylvester’s determinant identity.

From (70) and (71), it is easy to show that both Fa and

Fb are coordinatewise monotonically increasing functions of

the vector Λ̄ =
[

λ̄1, . . . , λ̄n

]T

. Note that Λ̄ is the vector

of eigenvalues of a Wishart random matrix distributed as

Wn(k − 1, Λ̃). It is proved in [45, Theorem 3] that the

distribution of the eigenvalues of a Wishart random matrix

is multivariate totally positive of order 2 (MTP2). Adding

the fact that two coordinatewise monotonically increasing

or decreasing functions of a vector whose distribution is

MTP2 are positively correlated [46, (1.9)], the conclusion that

0 ≤ ρ (Fa, Fb) ≤ 1 holds for any realizations of Λ̃. The

theorem follows from the independence between Λ̃ and Z.

Using the result in Lemma 1, the upper bound in (68) is

transformed into
(

√

var[Fa]−
√

var[F b]

)2

≤ var[F ]≤ var[Fa]+var[Fb], (72)

where the upper bound is achieved when ρ (Fa, Fb) = 0, and

the lower bound is achieved when ρ (Fa, Fb) = 1.

The following theorem provides a lower bound and an upper

bound for the variance of the performance.

Theorem 7. The variance of the data integrity of the attacks

constructed using sample covariance matrix, i.e. var [F ] with

F defined in (44), is bound by

1

4

(

√

var[Fa]−
√

var[Fb]
)2

≤var[F ]≤
1

4
(var[Fa]+var[Fb]) (73)
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Fig. 1. Performance of the asymptotic ergodic data integrity

in Theorem 6 for r = 0.1 and r = 0.8 when SNR = 30dB on

IEEE 30-Bus test system.

with

var [Fa]=
2

β
E





(

Λ̃

Λ̃ + 1

)2


 (74)

var [Fb]= − log

(

1−
1

β
E

[(

Λ̃η
ZTΛ̃Z

(1)

1 + Λ̃η
ZTΛ̃Z

(1)

)])

, (75)

where the expectation is over the nonnegative random variable

Λ̃, whose distribution is the AED of Λ̃ defined in (53); and

the value of η
ZTΛ̃Z

(1) is solved from (26), which is proved to

be always solvable in Proposition 1.

Proof. Note that Fa − Fb is the only term that introduces

the randomness into the objective, as described in (68). As a

result, the theorem follows directly from combining the results

in Theorem 2 and Theorem 4 with (72).

For the variance bounds in Theorem 7, the difference

between the upper bound and lower bound is further upper

bounded by 1
2

√

2
β

√

− log(1− 1
β
), regardless of the distribu-

tion of Λ̃. In particular, the difference between the bounds is

smaller than 0.0726 when β = 10 and is smaller than 0.0071
when β = 100 for the natural logarithm case.

VI. NUMERICAL SIMULATION

In this section, we present simulations to evaluate the perfor-

mance of the attacks constructed using the sample covariance

matrix in practical state estimation settings. In particular,

we use the IEEE 30-Bus and 118-Bus test systems, whose

parameters and topology are obtained from MATPOWER [47].

We assume a DC state estimation scenario [25], [26], for which

the bus voltage angle is chosen to be the state variables.

It is worth mentioning that our results in this paper hold for

any covariance matrix of the state variable and for any β > 0,

regardless of the structure of the matrix. In the simulations,

the covariance matrix of the state variables is assumed to be
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Fig. 2. Performance of the asymptotic ergodic data integrity

in Theorem 6 for r = 0.1 and r = 0.8 when SNR = 30dB on

IEEE 118-Bus test system.

a Toeplitz matrix with exponential decay parameter r ∈ [0, 1],
i.e. ΣXX = [sij = r|i−j|; i, j = 1, 2, . . . , n], where the

exponential decay parameter r determines the correlation

strength between different entries of the state variable vector.

And for β, we assume that the number of samples available to

the attacker is larger than the dimension of the state variables,

i.e. k − 1 ≥ n or β ≥ 1. This guarantees that the objective

function in (22) is always computable for the nonasymptotic

case, i.e. for the practical IEEE test systems. The Signal-to-

Noise Ratio (SNR) of the power system is defined as

SNR
∆
= 10 log10

(

tr(HΣXXHT)

mσ2

)

. (76)

Fig. 1 depicts the performance of the asymptotic ergodic

data integrity in Theorem 6 on IEEE 30-Bus test system for

r = 0.1 and r = 0.8 when SNR = 30dB, in which the Monte

Carlo performance value is the averaged performance through

one thousand realizations, and the optimal utility function

value is the utility function value when the attacker has

perfect knowledge about the system. It is found that when the

number of samples increases, the performance of the attacks

constructed with the sample covariance matrix converges to

the optimal value. More importantly, the asymptotic charac-

terization approximates the non-asymptotic case described by

the real power system well. It is worth to mentioning that

the superb approximation still holds when the SNR changes.

The same phenomenon is observed for the simulation on IEEE

118-Bus test system, which is shown in Fig. 2.

Fig. 3 depicts the performance of the bounds that are

proposed in Theorem 7 for the IEEE 30-Bus test system when

r = 0.1 and r = 0.8 with SNR = 30dB. Compared with

the case when SNR = 10dB, it is found that the bounds,

especially the lower bound, is tighter when the SNR value is

high. Furthermore, the variance obtained by the Monte Carlo

approach is closer to the upper bound when the number of

samples is small compared with the dimension of the system,

i.e. β is small, and when SNR is high. The same phenomenon
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Fig. 3. Performance of the asymptotic ergodic data integrity

in Theorem 7 for r = 0.1 and r = 0.8 when SNR = 30dB on

IEEE 30-Bus test system.
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Fig. 4. Performance of the asymptotic ergodic data integrity

in Theorem 7 for r = 0.1 and r = 0.8 when SNR = 30dB on

IEEE 118-Bus test system.

is observed for the simulation on IEEE 118-Bus test system,

which is shown in Fig. 4. Interestingly, the variance and the

upper and lower bounds are comparable for both the IEEE

30-Bus test system and the IEEE 118-Bus test system. This

suggests that the tightness of the bounds does not change with

the size of the system.

It is worth mentioning that the conclusions in the preceding

context also hold for the linearized AC model in (2). From

a practical point of view, the results indicate that when the

number of samples in the training set is at least 10 times

larger than the dimension of the vector of state variables,

the performance of the stealth attacks is close to that of

the attack construction with perfect knowledge. Moreover, for

that case the variance is smaller than 0.1, which suggests

that the attack performance is close to the optimal case for

most training data set realizations. This insight provides a

guideline for operators on how much historical data is safe

to share between different stakeholders in the power system.

For instance, the historical data, such as voltage angle and

magnitude, owned by Transmission System Operators or by

Distribution System Operators might pose a risk depending

on the size of the data set determined by β. Our analytical

results provide a quantitative framework to assess the risk of

sharing historical data in platforms such as the data exchange

hubs of the National Regulatory Authority [48].

VII. CONCLUSION

In this paper, the learning requirements for information-

theoretic DIAs have been analyzed using asymptotic RMT

tools. Specifically, in this framework the attacker learns the

second-order statistics of the state variables from a limited

number of past realizations of the state variables and constructs

the attacks using the estimated statistics. Since the sample

covariance matrix is a random matrix, the performance of

the attacks using the estimated statistics is a random variable.

The ergodic performance of the attacks using the estimated

statistics has been characterized in closed-form and the vari-

ance of the performance is bounded to obtain insight into

the distribution of the performance. It is observed from the

numerical simulations that the non-asymptotic ergodic perfor-

mance exhibits an exponential convergence to the asymptotic

case, and therefore, the asymptotic characterization provides

practical insight into the performance of stealth attacks even

with small datasets.
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