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Abstract

Image sensing technologies are rapidly increasing the cost- effectiveness of biodiversity 

monitoring efforts. Species differences in the reflectance of electromagnetic 

radiation can be used as a surrogate estimate plant biodiversity using multispectral 

image data. However, these efforts are often hampered by logistical difficulties in 

broad- scale implementation. Here, we investigate the utility of multispectral imaging 

technology	from	commercially	available	unmanned	aerial	vehicles	(UAVs,	or	drones)	
in estimating biodiversity metrics at a fine spatial resolution (0.1– 0.5 cm pixel 

resolution)	 in	a	 temperate	calcareous	grassland	 in	Oxfordshire,	UK.	We	calculate	a	
suite	of	moments	(coefficient	of	variation,	standard	deviation,	skewness,	and	kurtosis)	
for the distribution of radiance from multispectral images at five wavelength bands 

(Blue	450 ± 16 nm;	Green	560 ± 16 nm;	Red	650 ± 16 nm;	Red	Edge	730 ± 16 nm;	Near	
Infrared	 840 ± 16 nm)	 and	 test	 their	 effectiveness	 at	 estimating	 ground-	truthed	
biodiversity	metrics	from	in	situ	botanical	surveys	for	37–	1 × 1	m	quadrats.	We	find	
positive associations between the average coefficient of variation in spectral radiance 

and	both	the	Shannon–	Weiner	and	Simpson's	biodiversity	indices.	Furthermore,	the	
average coefficient of variation in spectral radiance is consistent and highly repeatable 

across sampling days and recording heights. Positive associations with biodiversity 

indices	 hold	 irrespective	 of	 the	 image	 recording	 height	 (2–	8	 m),	 but	 we	 report	
reductions	in	estimates	of	spectral	diversity	with	increases	to	UAV	recording	height.	
UAV	 imaging	 reduced	 sampling	 time	 by	 a	 factor	 of	 16	 relative	 to	 in	 situ	 botanical	
surveys. We demonstrate the utility of multispectral radiance moments as an indicator 

of biodiversity in this temperate calcareous grassland at a fine spatial resolution using 

a	widely	available	UAV	monitoring	system	with	a	coarse	spectral	resolution.	The	use	
of	UAV	technology	with	multispectral	sensors	has	far-	reaching	potential	to	provide	
cost- effective and high- resolution monitoring of biodiversity.
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1  |  INTRODUC TION

With over one million species expected to go extinct by 2100, 

cost- effectively monitoring biodiversity is a critical task in the 

Anthropocene	 (Díaz	et	al.,	2019; Palmer et al., 2002).	 Image	sens-
ing technologies, which can be used to monitor biological systems 

through the measurement of reflected and emitted radiation, have 

emerged as a critical tool that can increase this cost- effectiveness 

(Cavender- Bares et al., 2022; Turner, 2014).	 The	 characterization	
of floral biodiversity with remote sensing, particularly with satel-

lite imagery, is well- established in biodiversity research (Pettorelli 

et al., 2005).	 Multiple	 efforts	 have	 been	 made	 toward	 using	 re-

mote sensing data, particularly at large spatial scales and in forest 

ecosystems,	 to	 estimate	plant	 diversity	 (Jetz	 et	 al.,	2016; Tuanmu 

&	 Jetz,	2015; Turner et al., 2003).	 However,	 there	 are	 limitations	
in the use of long- range remote sensing, including coarse spatial 

resolution that does not necessarily highlight biodiversity at small 

spatial scales (Gamon et al., 2020; Mairota et al., 2015),	high	sen-

sor costs (e.g., hyperspectral sensor cost of $98,700, Headwall 

Photonics, 2022)	and	monitoring	costs	(e.g.,	flight	cost	of	$60,000,	
Jet Propulsion Laboratory, 2022),	and	reliance	on	publicly	available	
satellite	data	(e.g.,	The	European	Space	Agency,	2022).	Flexible	ap-

plication of remote sensing concepts and technology at a wide range 

of spatial scales, in variable environments, and with increased cost- 

effectiveness, will provide vital resources for monitoring biodiver-

sity (Cavender- Bares et al., 2022; Turner, 2014).
Reflectance	 of	 electromagnetic	 (EM)	 radiation	 both	 includ-

ing	 and	 outside	 the	 visible	 range	 (380–	700 nm)	 has	 recently	 been	
demonstrated as an accurate proxy for biodiversity (Cavender- 

Bares et al., 2020;	 Fassnacht	et	 al.,	2022; Wang & Gamon, 2019).	
Remotely sensed proxies for biological activity and biodiversity have 

been	available	for	decades,	including	the	normalized	difference	veg-
etation	 index	 (NDVI;	Rouse	et	 al.,	1974),	 and	 there	are	now	many	
spectral indices used in monitoring, including variance, entropy, and 

distance measures (Wang & Gamon, 2019).	The	general	concept	of	
“spectral diversity” is founded on the principle that, due to differ-

ences	in	functional	form	(both	growth	form	and	pigmentation),	plant	
species have differential reflectance signals across the electromag-

netic	(EM)	spectrum	(Gamon	et	al.,	1997).	Thus,	for	a	multispectral	
image, the diversity of spectral reflectance can be a proxy for the 

number of different plant species, or species diversity, when applied 

for	an	appropriate	context	and	spatial	scale	(Fassnacht	et	al.,	2022; 

Gholizadeh	et	al.,	2019; Laliberté et al., 2020).	 Spatial	 scale,	vary-
ing through the pixel resolution of multispectral image data, is cen-

tral to spectral diversity's role as a proxy for biodiversity (Gamon 

et al., 2020; Wang et al., 2018).	 In	 prairie	 grassland	 ecosystems,	
associations between spectral coefficient of variation and biodi-

versity were only consistent for pixel resolutions below 5 cm, but 

this	association	varies	depending	on	study	site	and	the	size	of	study	
organisms (Gamon et al., 2020).	The	spectral	diversity	concept	was	
recently	applied	 in	the	hyper-	diverse	Cape	Floristic	Region,	where	
destructively sampled leaf reflectance spectra were used to obtain 

a robust proxy (R2 > .9)	 of	 species	 diversity	 across	 1267–	10 × 5	 m	
quadrats	(Frye	et	al.,	2021).	Therefore,	integrating	sensing	data	at	a	
range of spatial scales (Laliberté et al., 2020; Turner, 2014)	and	the	
use of spectral surrogates for biodiversity for an appropriate biolog-

ical	context	(Fassnacht	et	al.,	2022)	can	rapidly	improve	biodiversity	
monitoring.

Recently, there have been several applications of spectral 

diversity from high- resolution imaging data in grasslands (Conti 

et al., 2021;	Gholizadeh	et	al.,	2019; Lopatin et al., 2017).	In	prai-
rie grassland ecosystems, close associations have been found 

between species diversity and spectral diversity, captured using 

aircraft- mounted hyperspectral sensors and images at a spatial 

resolution	 of	 1 × 1	 m	 (pixel	 resolution;	 Gholizadeh	 et	 al.,	 2018, 

2019, 2020).	Gholizadeh	et	al.	(2019)	primarily	use	the	average	co-

efficient of variation across pixels and spectral bands as the metric 

of spectral diversity, which we also adopt here as a spectral dis-

tribution metric that is not dependent on mean reflectance. The 

association between spectral diversity and biodiversity has also 

since	been	demonstrated	at	a	 spatial	 resolution	of	10 × 10	cm	 in	
coastal meadow habitats, but in a temperate meadow at a resolu-

tion of 3 cm a negative association with biodiversity was mediated 

by vertical complexity (Conti et al., 2021; Villoslada et al., 2020).	
Furthermore,	at	a	fine	resolution	of	<0.5 × 0.5	cm,	static	monitor-
ing	 (i.e.	 sensor	mounted	 to	 a	 fixed	 structure)	 of	 grassland	 plots	
has been used to estimate not only biodiversity metrics (Imran 

et al., 2021; Wang et al., 2018),	 but	 to	 reconstruct	 species	 per-
centage cover and extract detailed features of community dy-

namics (Lopatin et al., 2017).	However,	 a	 key	 limitation	of	 these	
close- range imaging approaches is their reliance on expensive hy-

perspectral sensors (>$50,000	 sensors;	Gholizadeh	 et	 al.,	2019; 

Imran et al., 2021; Lopatin et al., 2017)	and	monitoring	($1200	per	
hour	using	the	CALMIT	aerial	sensor	from	Gholizadeh	et	al.,	2019).	
Furthermore,	previous	studies	have	been	focused	in	highly	acces-
sible, well- studied areas for which precise image calibration (e.g., 

against	solar	interference)	is	more	feasible,	but	image	calibration	
may not be feasible in many field systems. Overcoming these cost 

and practical limitations will facilitate further use of spectral imag-

ing in grassland biodiversity research.

K E Y W O R D S
autonomous	monitoring,	biodiversity	drone,	remote	sensing,	unmanned	aerial	vehicle	(UAV)

T A X O N O M Y  C L A S S I F I C A T I O N
Biodiversity ecology, Community ecology
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Despite advances in image sensing, there is a need for cost- 

effective and user- friendly monitoring systems that are deploy-

able at a fine spatial resolution. One potential solution is the use of 

commercial	unmanned	aerial	vehicles	(UAVs	or	drones),	which	have	
rapidly increased in popularity and off- the- counter availability 

over the last decade (Colomina & Molina, 2014).	Here,	we	investi-
gate	the	efficacy	of	coarse	multispectral	imaging	from	UAV	tech-

nology in the estimation of biodiversity at a fine spatial resolution 

(0.1–	0.5	cm	pixel	resolution)	in	a	temperate	calcareous	grassland.	
We	 use	 a	 commercially	 available	 UAV	 system	 with	 a	 five-	band	
multispectral	 sensor	 (Blue	 450 ± 16 nm;	 Green	 560 ± 16 nm;	 Red	
650 ± 16 nm;	 Red	 Edge	 730 ± 16 nm;	 Near	 Infrared	 840 ± 16 nm)	
to	 image	37–	1 × 1	m	quadrats	 that	were	also	characterized	using	
in situ biodiversity assessments from botanical surveys. Then, we 

use an analytical approach for which we do not calibrate raw at- 

sensor radiance values to reflectance, which is not always prac-

tical or possible in field settings. Instead, we extract distribution 

metrics, which capture relative differences in at- sensor radiance 

values within an image and estimate the repeatability of distribu-

tion	metrics	 across	 the	 sampling	 period.	 Finally,	we	 explore	 the	
association between these proxies of spectral diversity and biodi-

versity in this grassland community.

2  |  METHODS

2.1  |  Study site and in situ biodiversity data

Data collection took place at the two- hectare section of the Upper 

Seeds	field	site	(51°46′16.8″N	1°19′59.1″W;	165 m	a.s.l)	in	Wytham	
woods, Oxfordshire, UK between 16th June and 14th July 2021, 

which is the peak of the growing season. The Upper Seeds site is a 

recovering and managed calcareous grassland, which was used for 

agriculture in the 1950s, before encroaching scrub vegetation was 

removed and the site was managed as a grassland beginning in 1978 

(Gibson, 1986).	Management	on	Upper	Seeds	 is	 implemented	with	
mowing of the site in mid- July at the peak of the growing season, and 

again in early October, coinciding with the end of the growing sea-

son.	The	site	has	a	low	average	soil	depth	(300–	500 mm),	generally	
alkaline soils (Gibson & Brown, 1991),	a	daily	average	temperature	
range	of	−5	to	26°C	(2016–	2020),	a	daily	total	precipitation	range	of	
0–	40 mm	(2016–	2020),	and	high	general	biodiversity,	in	which	grami-
noids	are	the	dominant	functional	group	(59.1%	by	biomass).	A	total	
of	37	1 × 1	m	experimental	quadrats	were	used	in	the	current	study,	
which displays a large degree of variation in species composition 

and biomass. There were between 16 and 33 vascular plant species 

per m2, with a mean richness of 25.77 species and a median richness 

of	26	species.	Total	above-	ground	dry	biomass	across		quadrats	var-
ied between 166.8 and 931.5 g/m2, with a mean of 397.9 g/m2 and 

median of 327.2 g/m2.	For	 the	same	sampling	period,	 the	commu-

nity	average	(community	weighted	mean	for	most	abundant	species)	
plant height in control plots was 43.3 cm, and the community aver-

age	specific	leaf	area	(per	mg	of	dry	mass)	was	0.23 cm2/mg.

We explored biodiversity and spectral diversity associations 

in the context of two long- term experiments that aim to explore 

the response of grasslands to environmental change (full site 

map	 in	 Figure	S1).	 These	 experiments	 are	 the	Disturbance	 and	
Resources	 Across	 Global	 Grasslands	 (DRAGNet,	 n =	 20	 plots)	
coordinated research network (https://nutnet.org/dragnet)	 and	
the	 global	 drought	 network	 (DroughtNet,	n =	 17	 plots)	 coordi-
nated research network (https://droug ht- net.colos tate.edu/).	All	
DRAGNet	 plots	 (5 × 5	 m	 plots)	 were	 ambient	 controls,	 with	 no	
experimental treatments applied prior to the collection of the 

data	reported	here.	Each	5 × 5	m	plot	from	DroughtNet	was	one	
of four experimental treatments: ambient control plots (n =	 5),	
−50%	rainfall	shelters	to	simulate	drought	(n =	5),	+50% irrigated 

plots to simulate increased rainfall (n =	5),	and	procedural	con-

trols (rainfall shelter with no change to rainfall; n = 2; three plots 

were	inaccessible	for	the	UAV	as	the	rainfall	shelters	were	fixed).	
For	analyses,	ambient	control	treatments	(n =	25)	across	the	two	
research networks were pooled as we did not observe substantial 

differences	between	biodiversity	metrics	(Figure	S2).	To	account	
for	 replicated	 observations	 of	 the	 same	 quadrats	 and	 estimate	
the consistency of spectral diversity measures, we explored 

quadrat-	level	variance	using	mixed-	effects	models	with	random	
effects	for	the	quadrat	ID.

To estimate the efficacy of multispectral sensors in predict-

ing biodiversity, we collected data from two sources, in situ bio-

diversity	assessments	and	UAV-	derived	multi-	spectral	 image	data	
(Figure 1).	For	 the	 in	situ	assessments,	we	quantified	biodiversity	
metrics using species- level percentage cover and dry above- ground 

biomass data. We estimated percentage cover data for all vascular 

plant	species	in	a	plot	using	a	1 × 1	m	gridded	quadrat	(10	cm	grid),	
focusing on four broad functional groups: graminoids, legumes, 

forbs, and woody species (Figure 1).	 Because	 species	 overlapped	
spatially, percentage cover estimates could exceed 100%. Using 

relative proportions, p, calculated from percentage cover estimates, 

we	calculated	three	biodiversity	metrics:	 (i)	vascular	plant	species	
richness,	 (ii)	 the	 Shannon–	Weiner	 diversity	 index,	H (Equation 1; 

Shannon & Weaver, 1963),	and	(iii)	the	Simpson's	diversity	index,	D 

(Equation 2; Simpson, 1949):

We	 estimated	 above-	ground	 biomass	 after	 UAV	 image/per-
centage cover data collection, using a clip strip of all vascular 

plant material in 1 × 0.2	m	 (DRAGNet;	collected	from	standard-

ized	 locations	 in	 the	 plot)	 or	 1	× 0.25 m	 (DroughtNet;	 collected	
from	the	centre	of	each	quadrat).	Clip	strips	were	gathered	using	
hand trimmers at a height of 1- 2 cm above the soil surface. Within 

1 day of collection, we sorted clip strips in to five functional 

groups: graminoids, legumes, forbs, woody species, and bryo-

phytes	(not	included	in	species-	level	percentage	cover	estimates)	

(1)H = −

∑

p ln p,

(2)D =

∑

p2
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and	dried	them	at	70°C	for	48 h,	before	weighing	the	dry	biomass	
at an accuracy of ±0.1 g. The estimates of biomass were scaled to 

g/m2 for analyses.

2.2  |  UAV image data collection

To obtain spectral diversity data, we collected image data using 

manual	 flights	of	 the	DJI	Phantom	4	multispectral	UAV	 (https://

www.dji.com/p4- multi spectral).	 The	 sensor	 payload	 of	 the	 DJI	
Phantom	 4	multispectral	 consists	 of	 six	 4.96 × 3.72 mm	 comple-

mentary	metal–	oxide–	semiconductor	 (CMOS)	 sensors:	 one	RGB	
sensor for visible range color images, and five monochrome sen-

sors for multispectral imaging. The five multispectral sensors are 

sensitive at the following electromagnetic wavelengths: Blue –  

450 ± 16 nm,	Green	–		560 ± 16 nm,	Red	–		650 ± 16 nm,	Red	edge	
–		730 ± 16 nm,	 and	Near-	infrared	–		840 ± 26 nm	 (Figure 1).	 Each	
sensor	has	an	effective	resolution	of	2.08	MP.	All	six	image	sen-

sors are triggered simultaneously when capturing data, with negli-

gible	(but	non-	0)	positional	differences	between	sensors.	A	dorsal	
spectral sunlight sensor on the P4 multispectral sensor provides 

image exposure compensation of multispectral image data, par-

tially accounting for differences in solar radiation between images 

and ensuring radiance values were more comparable between 

images.

To obtain spectral diversity metrics, we collected multispec-

tral	 images	 for	 each	 quadrat	 over	 several	 flights	 across	 the	 sam-

pling	 period,	 capturing	 quadrat-	level	 variability	with	weather/light	
conditions.	However,	 to	minimize	visual	 interference	 (from	 rain	or	
low	 sun),	 all	 images	were	 taken	 during	 dry	weather	 and	 between	

10:30	and	15:30	(BST).	The	corners	of	each	DRAGNet	quadrat	were	
marked	with	flags	(Figure	S1b).	For	DroughtNet,	the	quadrat	was	ap-

proximated	using	the	outer	edges	of	the	5 × 5	m	plot.	All	images	were	
collected facing the western edge of each plot. We collected images 

at increasing approximate image recording heights of 2, 4, 6, and 

8 m above the ground to capture changes in image resolution and 

consequences	for	estimating	biodiversity	(Figure 1).	Flying	height	is	
recorded	relative	to	the	UAV's	take-	off	 location,	and	although	the	
topographical variation at the site is <5 m, image record heights 

were approximated using structures of known height (i.e., rainfall 

shelters,	see	Figure	S5).	Therefore,	using	these	approximate	image	
recording	heights	and	sampling	quadrats,	the	approximate	pixel	res-
olution of multispectral images was between 0.1 and 0.5 cm. Given 

community averaged heights of <50 cm	 and	 specific	 leaf	 area	 of	
0.23 cm2/mg,	pixel	 sizes	of	0.1–	0.5	cm	were	appropriate	 to	distin-

guish	between	plant	structures	both	within	and	between	species.	A	
total	of	1878	individual	 images	were	collected	for	the	37	quadrats	
over seven sampling days.

2.3  |  Image processing

To extract spectral reflectance metrics from the raw image data, 

we	 standardized	 raw	 images	 across	 quadrats	 for	 each	 sample.	
The raw images encompassed the full field of view of the sen-

sors,	and	we	first	batch-	cropped	images	with	Adobe	Lightroom	v.	
5	(Adobe,	2021)	to	include	only	data	for	the	desired	1	m2	quadrats	
using	flags	as	identification	tools	(where	possible).	Images	were	ex-
ported as .tif files maintaining at- sensor radiance values with mini-

mal post- processing.

F I G U R E  1 Schematic	for	assessing	the	efficacy	of	spectral	distribution	moments	for	capturing	biodiversity	in	a	temperate	calcareous	
grassland.	For	each	1 × 1	m	observation	quadrat,	we	collected	both	UAV	image	data	(top)	and	in	situ	biodiversity	data	(bottom).	In	situ	
biodiversity	data	were	collected	by	botanical	surveys	for	vascular	plant	percentage	cover	across	the	quadrat	(from	which	richness,	Shannon–	
Weiner,	and	Simpson's	indices	were	calculated)	and	using	dry	above-	ground	biomass	for	clip	strips	(area	determined	by	the	coordinated	
research	networks	DRAGNet	and	DroughtNet;	see	2.1),	after	UAV	images	were	taken.	UAV	images	were	collected	for	each	plot	at	four	
recording	heights	(2,	4,	6,	and	8	m)	across	five	multispectral	bands	for	which	at-	sensor	radiance	digital	number	(DN)	value	distributions	
were	summarized	using	four	moments.	Finally,	in	situ	biodiversity	data	were	compared	with	spectral	distribution	moments	to	examine	their	
potential relationships using a Bayesian linear regression framework.
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In contrast to other studies, we did not perform post- processing 

to account for additional interference from solar radiation by nor-

malizing	 at-	sensor	 radiance	Digital	Number	 (DN)	 values	 to	 reflec-
tance values (Conti et al., 2021;	Gholizadeh	et	al.,	2019; Schläpfer 

et al., 2020).	Solar	radiation,	which	varies	across	the	day	and	with	
weather conditions, influences radiance detected by image sensors. 

Therefore, typically objects with known reflectance are used as 

a reference to calibrate multispectral images from at- sensor radi-

ance to reflectance values using linear transformations (e.g., Conti 

et al., 2021).	Therefore,	 the	noise	 introduced	 from	solar	 radiation	
means	that	DN	values	are	not	directly	comparable	between	images.	
However, many instances may arise where calibration with known 

reflectance is not practical or possible in synchrony with image re-

cording. These instances include the inaccessibility of sampling sites 

from	 the	 landing/calibration	 area	 (with	 differing	 light	 conditions)	
and changes in weather and radiation within a flight. Therefore, 

we opted to use an alternate approach that does not use calibrated 

reflectance	values.	First,	we	used	only	distribution	metrics	of	 the	
at-	sensor	radiance	values	(Gholizadeh	et	al.,	2019),	particularly	the	
spectral coefficient of variation, a variance metric that is corrected 

by	the	mean	in	each	sample.	Although	mean	radiance	values	are	not	
directly comparable between images, relative differences between 

radiance values, that is, their distributions, are consistent. Second, 

we	collected	several	repeated	images	of	each	quadrat	across	sam-

pling days, which varied in weather conditions and levels of solar ra-

diation. Then, we explicitly modeled the additional noise introduced 

by	solar	radiation	using	mixed-	effects	models,	with	quadrat	as	a	ran-

dom	effect	and	the	quadrat-	level	variance	captured	with	repeatabil-
ity analyses. Therefore, distribution metrics from radiance values 

repeated over sampling events should capture overall patterns in 

spectral diversity. Multispectral .tif images were treated as rasters 

for	further	 image	processing,	and	all	subsequent	analysis	was	car-
ried out using R version 4.0.5 (R Core Team, 2021).

We calculated moments of spectral radiance for each image 

using the raster package (Hijmans, 2020).	 Following	 Gholizadeh	
et al. (2019),	we	calculated	 the	coefficient	of	variation,	 standard	
deviation, skewness, and kurtosis across raster pixels to capture 

the	shape	of	the	at-	sensor	radiance	DN	distribution	(Figure 1).	We	
averaged	moment	values	of	radiance	DNs	across	all	multispectral	
bands	for	a	single	observation	(a	given	quadrat	at	a	given	recording	
height	 in	 each	 sampling	event)	 to	 calculate	overall	 distributional	
moments. Thus, here we define the spectral coefficient of varia-

tion as the mean coefficient of variation in the spectral radiance 

across raster pixels and multispectral bands for a single image. 

Observations were discarded if the image recording height was 

>8	m	and	replicate	images	were	not	obtained	for	all	quadrats	at	all	
image	recording	heights.	Therefore,	 the	 final	 sample	size	 for	 the	
averaged spectral moment data was 193. In addition, to identify 

the spectral bands that were most sensitive to biodiversity met-

rics, we also tested band- level associations, where radiance distri-

butions were not averaged across spectral bands for the same raw 

data, and in this case, spectral radiance distributions of each band 

were related to biodiversity indices.

2.4  |  Statistical analyses

We explored the efficacy of spectral radiance distribution 

moments in describing in situ biodiversity indices using a Bayesian 

hierarchical linear regression model selection framework in the 

brms package (Bürkner, 2017; Figure 1).	 All	 variables	 were	 z-	
scored	 (mean	 and	 variance	 centered	 on	 0)	 for	 analysis	 to	 meet	
the distributional assumptions of linear regressions. The key 

response variable was the spectral coefficient of variation 

(Gholizadeh	 et	 al.,	 2019),	 and	 the	 key	 predictor	 variables	 were	
the in situ biodiversity indices. However, we also tested other 

spectral moment- biodiversity associations, namely, the skewness 

of spectral radiance and biomass.

We then estimated the out- of- sample predictive performance 

of models including biodiversity indices relative to base models. 

For	 each	 explored	 pair-	wise	 combination	 of	 spectral	 distribution	
moment and biodiversity indices, we performed leave- one- out 

cross- validation with the loo criterion and the expected log- wise 

predictive density (elpd, where Δelpd gives the change in elpd rel-

ative to another explanatory model; Vehtari et al., 2017).	 Base	
models did not include any predictor variables, including only an 

intercept-	only	random	effect	for	quadrat.	We	also	investigated	the	
performance of models including image recording height, and two- 

way interaction terms between biodiversity indices and height to 

explore how image resolution change influenced the efficacy of 

spectral diversity indices.

In addition to models on averaged spectral moments, we also 

used band- level moments to investigate the relationship between 

biodiversity indices and the spectral coefficient of variation for each 

individual EM band. We included univariate and two- way interac-

tion terms between the EM band and biodiversity indices variables. 

Finally,	 because	 a	 small	 number	 of	 quadrats	 used	 in	 the	 current	
study were also exposed to long- term drought/irrigation/control 

treatments, we explored whether there were differences in average 

spectral moments between ambient (n =	25	plots),	control	 (n =	2),	
irrigated (n =	5)	and	drought	(n =	5)	using	a	categorical	predictor	for	
treatment.

To	 account	 for	 repeated	 observations	 from	 the	 same	 quadrat	
at different heights or across sampling events, all models included 

an	 intercept-	only	 random	effect	 for	 the	quadrat	�quadrat.	From	this	
random	 effect,	 we	 also	 estimated	 the	 intraclass	 correlation	 (ICC)	
or repeatability (R).	This	 term	 indicates	 the	proportion	of	quadrat-	
level variance �quadrat with respect to the population- level variance � 

(Nakagawa	&	Schielzeth,	2010).	We	used	this	estimate	of	repeatabil-
ity to assess the consistency of spectral radiance distributions across 

observations	of	the	same	quadrat.
In analyses with average spectral distribution moments, we used 

weakly informed normal priors for the population- level intercept 

and coefficient terms of N(0, 1). The �quadrat term was fit using an 

exponential	prior	with	a	rate	of	two.	For	band-	level	analyses	(with	a	
greater	number	of	parameters),	models	were	fit	using	N(0, 0.7) inter-

cept/coefficient priors and exponential �quadrat priors with a rate of 

four. Models were run across four serial chains for 2000 iterations 
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with 1000 warmup iterations, and the model's convergence across 

chains was assessed by inspecting R̂ values (Bürkner, 2017).

3  |  RESULTS

We found consistent positive associations between the aver-

age coefficient of variation in spectral radiance and biodiversity, 

namely, the Shannon– Weiner and Simpson's indices (Figure 2).	
The model including the Shannon– Weiner index and image record-

ing height as univariate terms outperformed the base model, with 

Δelpd = 123.6 (Table S1).	 Increases	 in	 the	 Shannon–	Weiner	 index	

were associated with increases in the average spectral coefficient 

of variation (�Shannon =	 0.19	 [−0.04,	 0.43],	 95%	 credible	 intervals;	
Figure 2a).	Furthermore,	as	expected,	 there	was	a	strong	negative	
association between image recording height and the average spec-

tral coefficient of variation (�height =	−0.28	[−0.31,	−0.26];	Figure 2a).	
This negative association suggests that the resolution of spec-

tral diversity decreases rapidly with recording height at this spa-

tial resolution (~30% decrease in scaled spectral variation per 1 m 

height	 increase).	The	positive	association	with	 the	 spectral	 coeffi-
cient of variation was stronger for the Simpson's biodiversity index 

(Figure 2b).	 Although	 the	 full	 model	 including	 a	 two-	way	 interac-
tion between recording height and Simpson's index was the best 

F I G U R E  2 Consistent	positive	associations	between	biodiversity	indices	and	the	average	spectral	coefficient	of	variation.	The	positive	
association	between	(a)	Shannon–	Weiner	biodiversity	index	and	(b)	Simpsons	index,	and	the	average	spectral	coefficient	of	variation	
(averaged	across	five	spectral	bands)	for	different	image	recording	heights:	2,	4,	6,	and	8	m	(panels).	Points	are	observations	from	a	single	
quadrat	at	a	given	height.	Both	biodiversity	indices	and	spectral	coefficient	of	variation	are	z-	scored.	Lines	are	the	posterior	prediction	mean	
over	4000	simulations	averaged	over	all	quadrats,	with	the	90%	credible	intervals.	Insets	showcase	density	distributions	of	the	posterior	
estimates for the image recording height (�height)	and	biodiversity	indices	(�Shannon and �height).
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predictive model, we selected the model including only univariate 

effects (Δelpd = 125.0 ),	because	of	a	lack	of	a	clear	interaction	effect	
(Table S2).	Here,	a	 similar	patten	with	 image	 recording	height	was	
accompanied by a stronger positive association between Simpson's 

index and spectral coefficient of variation (�Simpsons = 0.33 [0.12, 

0.54];	Figure 2b).
Generally, we did not observe associations between the skew-

ness and kurtosis in spectral radiance distributions and biodiver-

sity	 indices	 (Figure	S3).	 Furthermore,	 there	was	no	clear	evidence	
for a relationship between total above- ground biomass and any of 

the	spectral	distribution	moments	(Figure	S3).	Specifically,	although	
there was increased model predictive performance from models in-

cluding biomass, there was no clear relationship between the skew-

ness of spectral radiance distribution and biomass (�biomass = 0.08 

[−0.19,	0.35];	Figure	S3; Table S5).
In addition to overall effects, in band- level analyses where raw 

data were not averaged across bands, there was evidence for an in-

teraction effect between the spectral band and both the Shannon– 

Weiner (Δelpd = 772.0)	 and	 Simpson's	 indices	 (Δelpd = 771.5 ; 

Tables S3 and S4,	 respectively).	Generally,	 the	green	 (560 ± 16 nm)	
and	red	(650 ± 16 nm)	spectral	bands	displayed	higher	variability	 in	
the	 coefficient	of	 variation	 across	quadrats,	 and	 stronger	 associa-
tions with the Shannon– Weiner and Simpson's indices (Figure 3).	
The	Red	Edge	(730 ± 16 nm)	and	Near	Infrared	(840 ± 16 nm)	bands	
exhibited weaker associations with biodiversity indices (Figure 3).

When assessing the influence of treatment on spectral radiance, 

we also observed reductions in the average spectral coefficient of 

variation	 in	both	drought	and	procedural	control	quadrats	 in	com-

parison	 to	 ambient	 or	 irrigated	 treatments	 (Figure	 S4).	 However,	
given the congruence of procedural control and drought treatments 

in	 DroughtNet,	 both	 of	 which	 are	 characterized	 by	 metal	 rainfall	
shelters, we conclude that the reduction in spectral coefficient of 

variation in drought and procedural treatments is likely a result of 

structural	interference	from	the	rain	shelter	structures	(Figure	S5).
Finally,	we	tested	the	consistency	of	the	spectral	coefficient	of	

variation	 across	observation	days	 and	heights	 for	 each	quadrat	 in	
the best predictive Shannon– Weiner and Simpson's index models 

(Tables S1 and S2,	 respectively).	 The	 average	 coefficient	 of	 varia-
tion	was	highly	consistent	for	each	quadrat	when	images	at	different	
heights	or	across	sampling	events	were	compared	(Figure	S6).	Both	
the Shannon– Weiner and Simpson's models with the average coef-

ficient	of	 variation	exhibited	quadrat-	level	 variance	 that	 exceeded	
the population- level variance and a high degree of repeatability 

(Figure	S6;	0.76	[0.65,	0.85]	and	0.72	[0.60,	0.82],	respectively).

4  |  DISCUSSION

Despite rapid technological advancements in image sensing over 

the last four decades, biodiversity monitoring is not currently able 

to track the full extent of human impacts on the biosphere (Wang 

& Gamon, 2019; Wilson, 2017).	 We	 urgently	 need	 more	 cost-	
effective and widely available systems to monitor detailed changes 

in biodiversity (Cavender- Bares et al., 2022; Turner, 2014; Turner 

et al., 2003).	 Here,	 using	 a	 commercially	 available	 short-	range	
Unmanned	Aerial	 Vehicle	 (UAV,	 drone)	 at	 a	 fine	 spatial	 resolution	
but a coarse spectral resolution, we find a consistent association 

between variation in spectral radiance and species diversity in a 

temperate calcareous grassland. The coefficient of variation in 

spectral radiance was positively associated with the Shannon– 

Weiner and Simpsons indices, and in particular, the green and red 

bands	of	 the	electromagnetic	 (EM)	spectrum	were	most	 indicative	
of grassland biodiversity. Our results build on extensive work in 

grassland ecosystems exploring the use of spectral diversity as 

a surrogate for biodiversity (Conti et al., 2021;	 Frye	 et	 al.,	 2021; 

Gholizadeh	 et	 al.,	 2019; Villoslada et al., 2020)	 and	 species	
composition (Lopatin et al., 2017).	However,	our	research	in	a	diverse	
temperate grassland community contrast with previous findings that 

highlighted	limitations	to	the	characterization	of	biodiversity	using	
spectral	imaging	in	species-	rich	environments	(Fassnacht	et	al.,	2022; 

Imran et al., 2021).	 We	 highlight	 the	 importance	 of	 close-	range	
remote sensing for biodiversity monitoring (Turner, 2014; Turner 

et al., 2003; Wang & Gamon, 2019).	Crucially,	we	demonstrate	the	
feasibility of the spectral diversity concept in grasslands using a 

commercially	available	UAV	with	a	coarse	spectral	resolution	sensor,	
which has far- reaching potential as a tool to explore biodiversity 

change at high spatio- temporal resolution.

The	key	advantage	of	using	commercially	available	UAV	tech-

nology is its cost- effectiveness relative to reliance on in situ moni-

toring or the use of long- range or high spectral resolution sensors. 

In	 the	 current	 study,	where	we	 collected	 data	 from	 37	 quadrats	
at four different image recording heights, the total flight time was 

134 min.	 If	we	 reasonably	allocate	one	 researcher	60 min	 to	do	a	
full botanical survey (species percentage cover and biomass clip— 

ignoring	biomass	processing	of	30 min	per	sample),	the	full	 in	situ	
sampling	time	is	37 h.	Thus,	remote	monitoring	would	have	saved	on	
sampling time by a factor of 16. In the current study, the reduction 

in sampling time is of course limited to proxies of broad biodiversity 

metrics. However, with increases to sensor resolution and decreas-

ing costs, reconstructing species- level biodiversity data with flex-

ible remote monitoring may also be possible (Lopatin et al., 2017).	
Increases in cost- effectiveness may also be increased by automated 

flight paths over survey locations, for which unsupervised spectral 

reflectance	data	could	be	collected.	Furthermore,	while	rapid	ad-

vancements have been made on spectral diversity, previous stud-

ies	have	utilized	high-	resolution	multi/hyperspectral	 sensors	 that	
are	 either	 immobile,	 destructive,	 or	 high-	cost	 (Frye	 et	 al.,	 2021; 

Gholizadeh	 et	 al.,	2019; Imran et al., 2021; Lopatin et al., 2017).	
The current complete monitoring system is available for purchase 

for <10,000 USD, relative to >50,000 USD for many hyperspec-

tral sensors. Interestingly, variance in the radiance of the green 

(560 nm)	and	 red	 (650 nm)	bands	 in	 the	visible	portion	of	 the	EM	
spectrum was most associated with biodiversity in this study. The 

red	and	green	bands	typically	characterize	photosynthetic	pigment	
responses (Gamon et al., 1992).	 Therefore,	 differences	 between	
photosynthetic pigments between species may be appropriate for 
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8 of 11  |     JACKSON et al.

characterizing	biodiversity	in	calcareous	grasslands,	which	is	possi-
ble	with	low-	cost	visible	range	sensors.	Nevertheless,	the	present	
study	provides	a	low-	cost	solution	that	successfully	characterizes	
biodiversity in a calcareous grassland using coarse multispectral 

data.

The rapid increase in the availability and public use of drone 

technology provides an opportunity for the expansion of de-

tailed biodiversity monitoring at flexible spatio- temporal scales 

(Colomina & Molina, 2014).	 Integrating	 spatial	 scales	 has	 long	
been a central issue in remote sensing applications (Gamon 

et al., 2020; Turner, 2014).	In	the	current	study,	images	were	taken	
with pixel resolutions between 0.1 and 0.5 cm, which lies within 

the range of pixel resolutions that give strong spectral diversity- 

biodiversity	 relationships	 in	 North	 American	 prairie	 grasslands	
(Gamon et al., 2020; Wang et al., 2018).	However,	we	still	 found	
evidence of smoothing effects (reduction in spectral diversity with 

coarse	pixel	 resolutions),	where	the	mean	spectral	coefficient	of	
variation reduced between 2 and 10 m image recording height. 

Nevertheless,	 this	smoothing	did	not	 influence	associations	with	
biodiversity in the current study, although this is likely due to the 

narrow range of pixel resolutions. While this pixel resolution is 

generally appropriate for grassland flora, other habitats with or-

ganisms	of	different	sizes,	functions,	or	differing	community	com-

plexity will influence the appropriateness of the spatial resolution 

F I G U R E  3 Green	and	red	spectral	bands	are	the	most	sensitive	to	biodiversity	indices.	Posterior	predictions	for	the	band-	level	spectral	
coefficient	of	variation	with	the	Shannon–	Weiner	(a)	and	Simpson's	(b)	biodiversity	indices	at	an	image	recording	height	of	2	m.	here,	
raw spectral moments were not averaged across spectral bands (as in Figure 2).	Points	are	raw	observations	from	a	single	plot,	and	the	
color denotes the spectral band (B = blue, G = green, R = red, RE =	red	edge,	NIR	=	near	infrared).	Both	biodiversity	indices	and	spectral	
coefficient	of	variation	are	z-	scored.	Lines	are	the	posterior	prediction	mean	over	4000	simulations	averaged	over	plots,	with	the	90%	
credible intervals.
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(Wang et al., 2018).	Novel	dissimilarity	approaches	have	been	ap-

plied to satellite imaging data at a range of spatial scales (Rossi 

et al., 2021),	 but	 ultimately	 there	 is	 a	 need	 for	 specific	 image	
sensor tools that are able to monitor spectral diversity for varied 

habitats.	We	propose	that	commercially	available	UAV	technology,	
which can span a range of flying heights and thus spatial resolu-

tions, can be a valuable biodiversity monitoring tool when paired 

with	appropriate	image	sensors.	Future	application	of	UAV	imag-

ing to a diverse range of habitats and spatial scales is needed to 

fully	test	the	utility	of	UAVs	in	biodiversity	monitoring.
Temporal resolution is also a key factor when assessing 

spectral-	species	 diversity	 associations	 (Fassnacht	 et	 al.,	 2022).	
Despite	 the	use	of	 repeated	 images	 from	 the	 same	quadrat,	 the	
data used in the current study represent a “static” measure of bio-

diversity at the peak of the growing season. However, grassland 

communities exhibit a high degree of temporal variability, partic-

ularly in response to environmental drivers (Harrison et al., 2015; 

Thorhallsdottir, 1990).	Fassnacht	et	al.	(2022)	found	that	spectral	
diversity- biodiversity links in plant communities were highly de-

pendent on temporal context including phenology and seasonal-

ity. Thus, when implementing unmanned biodiversity monitoring, 

understanding temporal variability in spectral diversity will be crit-

ical	for	future	research.	As	well	as	spatial	integration,	the	solution	
developed by Rossi et al. (2021)	successfully	applied	dissimilarity	
indices between pairs of spectral images over the same region to 

disentangle temporal components of community change linked to 

management and phenology. However, as with spatial resolution, 

a finer temporal resolution of data is needed to disentangle these 

features in plant communities (Rossi et al., 2021).	Cost-	effective	
UAV	 technology	 has	 the	 potential	 to	 gather	 fine-	scale	 temporal	
data effectively.

Drone technology also has the potential to be deployed in a 

wide	range	of	habitats,	and	to	answer	an	array	of	ecological	ques-
tions when combined with novel analytical tools. Indeed, there 

have been several recent applications of image- sensing concepts 

to other habitats and in conjunction with machine learning tools 

to further understand community dynamics (Heim et al., 2019; 

Lopatin et al., 2017; Tait et al., 2019).	 For	 example,	 UAVs	 with	
multispectral imaging sensors have recently been applied to char-

acterize	 fungal	disease	 in	 lemon	myrtle	 trees	 (Heim	et	al.,	2019)	
and macroalgal community structure in intertidal habitats (Tait 

et al., 2019).	The	ultimate	goal	for	biodiversity	is	to	recreate	spe-

cies lists using classification algorithms. Currently, machine learn-

ing has been applied to agricultural imaging challenges (Heim 

et al., 2019)	 and	 in	 static	 species-	cover	 assessments	 (Lopatin	
et al., 2017).	 We	 argue	 that	 the	 applicability	 of	 cost-	effective	
UAV	 technology	 to	biodiversity	will	 be	 greatest	when	 increased	
volumes of image data are combined with machine learning algo-

rithms to identify single species or high- resolution community dy-

namics. However, biodiversity metrics are not the only ecological 

indicators, and functional traits are also widely used as ecological 

indicators of environmental change (e.g., Bjorkman et al., 2018).	
Because spectral reflectance is related to functional form (Gamon 

et al., 1997),	the	applicability	of	sensing	technology	is	not	limited	
to biodiversity, and can also act as a proxy for functional diver-

sity (Cavender- Bares et al., 2022;	Frye	et	al.,	2021).	In	the	current	
study	 site,	 incorporating	 UAV	 monitoring	 to	 long-	term	 experi-
mental manipulations at high spatio- temporal resolution will en-

able the investigation of how environmental disturbances such as 

drought and nutrient addition influence biodiversity, functional 

diversity and community structure.

5  |  CONCLUSIONS

Taking advantage of technological advancements in unmanned 

sensing will greatly improve the cost- effectiveness of biodiversity 

monitoring.	 UAVs	 have	 the	 potential	 to	 span	 spatial	 scales,	
repeatedly and cheaply access a range of environments, and 

provide high- resolution data on the impact of environmental change 

on ecosystems. Our study adds to a growing body of literature 

highlighting links between spectral and species diversity. Integrating 

these patterns at varying spatio- temporal scales and in novel 

habitats will provide vital insights to aid in documenting changes in 

the biosphere.
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