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Abstract
3D point cloud segmentation is a non‐trivial problem due to its irregular, sparse, and
unordered data structure. Existing methods only consider structural relationships of a 3D
point and its spatial neighbours. However, the inner‐point interactions and long‐distance
context of a 3D point cloud have been less investigated. In this study, we propose an
effective plug‐and‐play module called the Long Short‐Distance Topologically Modelled
(LSDTM) Graph Convolutional Neural Network (GCNN) to learn the underlying
structure of 3D point clouds. Specifically, we introduce the concept of subgraph to model
the contextual‐point relationships within a short distance. Then the proposed topology
can be reconstructed by recursive aggregation of subgraphs, and importantly, to propa-
gate the contextual scope to a long range. The proposed LSDTM can parse the point
cloud data with maximisation of preserving the geometric structure and contextual
structure, and the topological graph can be trained end‐to‐end through a seamlessly
integrated GCNN. We provide a case study of triple‐layer ternary topology and experi-
mental results on ShapeNetPart, Stanford 3D Indoor Semantics and ScanNet datasets,
indicating a significant improvement on the task of 3D point cloud segmentation and
validating the effectiveness of our research.

1 | INTRODUCTION

Different from 2D image, 3D data has several popular repre-
sentations, such as polygonal mesh, registration of multiple
images, and point cloud. The most common are polygonal
mesh and point cloud. Polygonal mesh exploits connectivity
information to describe 3D data. Point cloud consists of a set
of points, each of which is composed of 3D coordinates and
possibly attributes, for example, colour and normal. Point
cloud is a generic and most widely used representation of 3D
data that has drawn increasing popularity in a broad range of
applications, for example, robotic mapping, autonomous
vehicle, and navigation [1–3]. With the popularity of the range
sensors, for example, Kinect, Lidar, radar, semantic under-
standing of point cloud is a foundational application for ro-
botics and automotive [4–6]. Unlike 2D image, 3D point cloud
is a set of unstructured and unordered points of non‐unified
numbers, which makes the existing 2D methods less effec-
tive in representation and learning.

Inspired by the success of Convolutional Neural Network
(CNN) on 2D images, the point cloud is transformed into
voxels or multi‐view data for the adaptation of 3D CNN
technology. However, 3D CNNs [7, 8] and 2D multi‐view
CNNs [9–11] have experienced a significant consumption in
term of computation and memory efficiency due to the sparsity
of point cloud. Recently, various encouraging methods directly
parsing the point clouds from 3D raw points have been pro-
posed, such as PointNet [12]. To effectively learn semantically
relevant information, researchers have proposed a series of
methods based on the PointNet algorithm. These methods can
be generally categorised as: (1) neighbouring feature learning
[13–22]; (2) optimising CNN [23–27]; (3) recurrent neural
network (RNN) [28, 29]; (4) attention‐based aggregation [30–
33]; (5) combined instance segmentation [34–38]; (6) graph
convolution [39–48]. Although these methods have achieved
impressive performances for object segmentation and semantic
segmentation, almost all of them are limited to interpret im-
plicit contextual‐point interaction and long‐distance contextual
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relationship using a generic representation. Exploring the long‐

distance dependencies relationships of points in 3D point
cloud is indeed important for understanding 3D scenes [48,
49]. In order to better investigate the complex interactions and
long‐distance contextual relationships of points in 3D point
cloud, we propose an effective plug‐and‐play module called the
Long Short‐Distance Topologically Modelled (LSDTM) Graph
Convolutional Neural Network (GCNN) for 3D point cloud
segmentation, named LSDTM‐GCNN. Inspired by the recent
DS‐CAE network [50], LSDTM‐GCNN also decomposes a
graph into a family of k‐layer expansion graphs rooted at each
vertex, aiming at better capturing the inter‐dependencies of
long‐range vertices. In this paper, we formulate the point cloud
contextual information discovery as a task of modelling inter‐
dependencies of long‐range vertices in a topological graph.
With the consideration of the fact that points in a point cloud
are of a very large number in real‐world applications, learning
the long‐range contextual relationship using a fully connected
graph is NP‐hard and unlikely to be computationally tractable.

To mitigate this issue, we propose a generic multi‐layer
multiple‐arg topological architecture to represent the down‐

sampled points. Our approach focuses on discovering the un-
derlying knowledge to connect the low‐layer geometrical fea-
tures with high‐layer inference. Note, it can be built above the
network architectures that focus on the local feature learning,
for example, PointNet++. Main contributions of our paper are:

1) We propose a generic topological graph for point cloud
representation, that is, LSDTM, to interpret the implicit
long‐distance contextual‐point relationship by discovering
the inner‐dependencies of long‐distance vertices in a graph.

2) Our proposed LSDTM enables GCNN to effectively
propagate through the dedicated designed architecture to
optimise the topological graph and discover the underlying
relationships. The learnt LSDTM representation is geo-
metric and contextual enriched with preservation of spatial
contiguity, which can significantly facilitate the point cloud
segmentation and understanding.

3) Our approach achieves comparable results with fair run‐

time performance in widely cited benchmarks for both
object part segmentation and semantic segmentation.

2 | RELATED WORK

Recently, researchers have proposed a number of methods to
handle semantic segmentation of 3D point clouds. Depending
on the different ways of dealing with point clouds, we generally
classify these methods into two categories: deep learning on
ordered sets and deep learning on raw points sets.

2.1 | Deep learning on ordered sets

Inspired by 2D CNNs, many methods [51–54] apply voxeli-
sation to point cloud segmentation tasks. The volumetric
representation naturally preserves the neighbour structure of

the 3D point cloud. In addition, to further exploit the powerful
representation capabilities of 2D CNNs, [10, 11] capture 2D
images from multiple perspectives and then use a multi‐view
representation and some voting or fusion mechanism to
complete the point cloud segmentation task. Although these
methods have achieved good performance in point cloud se-
mantic segmentation tasks, they are difficult to be applied to
large‐scale 3D point cloud scenes due to the limitation of
computational efficiency.

2.2 | Deep learning on raw points sets

Charles et al. [12] propose a simple but effective deep learning
model for point clouds, PointNet, and verify that it can be used
for various cognitive tasks with point clouds. However, this
method does not effectively take into account the local struc-
tural features between points in the point cloud. Following
PointNet, many methods [13–16, 19, 20] have been proposed to
explore geometric structure. Qi et al. [13] design a hierarchical
neural network to better explore local structures. Similarly, Li
et al. [14] use hierarchical feature extraction to explicitly model
the spatial distribution of point clouds. Zhao et al. [15] design a
new feature adaptive adjustment (AFA) method for extracting
contextual features from local neighbourhoods. Inspired by 2D
SIFT, Jiang et al. [16] design a PointSIFT module to encode
information from eight different orientations of each point. Hu
et al. [19] use random sampling to process large scale point
clouds, resulting in significant improvements in both memory
and algorithmic efficiency. However, random sampling is prone
to discard critical information, especially for objects with sparse
points. Unlike the above approaches, Fan et al. [20] construct a
spatial representation that is invariant to Z‐axis rotation to
facilitate the learning of spatial features from large‐scale point
clouds. Overall, these methods are similar in that they rely on
neighbours to obtain local features of the point cloud. Although
they all achieve excellent performance, most of them are limited
in revealing the underlying structure of 3D point clouds.

Li et al. [23] explore the idea of using equivariance function
for 3D point clouds. However, it is limited in achieving the
structural relations between local sub‐clouds, which is desired
for point clouds. Subsequently, Yifan et al. [25] design a special
family of convolutional filters that apply different weights to
each neighbour to extract semantic deep features. Komarichev
et al. [26] design annular convolution to better capture the local
neighbourhood geometry information of each point in the 3D
point cloud. Refs. [17, 30, 41, 55–57] define a set of sharing
weights applied to the neighbours of each vertex. Ref. [55] is a
pioneering work of graph convolution in point cloud segmen-
tation, which uses Multi‐Layer Perceptrons (MLPs) to dynami-
cally learn the convolution filters between connected vertices.
Wang et al. [41] extend pointnet by proposing an edge convo-
lution operation (EdgeConv) that captures the local geometric
structure of the point cloud while maintaining permutation
invariance. Subsequently, Wang et al. [17] extend pointnet++ by
enrich each point representation, which can better explore the
enriching neighbourhood of points and global information.

2 - ZHANG ET AL.
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Inspired by graph attention networks, Chen et al. [30] design
GAPNet to capture contextual attention features by dis-
tinguishing the importance of different neighbours to each
point. Xun Xu [56] use a spatial and colour smoothing to
encourage the prediction of points with similar colours. Xu et al.
[57] design a fast sampling method, Coverage Ware Grid Query
(CAGQ), which improves spatial coverage well and then uses
Grid Context Aggregation (GCN) for information fusion. Most
of these methods only construct local graphs based on points
and their neighbours, and do not contribute towards discovering
the underlying relationships and interactions of contextual
points in 3D space. Our approach uses similar techniques to
define convolutions over graph‐structured data, in particular,
our method uses LSDTM to explore the relationships between
the points, and obtain enriched layer feature to preserve spatial
contiguity of 3D point clouds.

3 | METHOD

3.1 | Method overview

Given a 3D point cloud P ¼ p0;…; pi;…; pNf g with pi ∈ R
d

and a candidate label set L¼ l0; l1;…; lmf g. Each point pi
contains ðpix; piy; pizÞ coordinates and additional feature chan-
nels such as colour vectors, normal etc. Although additional
feature channels can significantly improve classification per-
formance, we only use the ðpix; piy; pizÞ coordinate as inputs of
our approach to demonstrate the ability of geometric structure
learning. Firstly, we sample a subset P̂t ¼ pjjj ¼ 0; 1;…

�

; t − 1g for the point cloud P. P̂t contains t points to define the
local regions of centroid by iterative Fastest Point Sampling
(FPS), here 2 < t ≤ N + 1. Secondly, the Ball Query [13] is
used to search for all points that are within a radius R for each
centroid. Next, MLP and Global Pooling Layer are used to
obtain the enriched local features of t centroids respectively.
These local feature vectors encode most of the local infor-
mation and can be expressed as xt ¼ ϕ pj

� �

jj ¼ 0; 1;…
�

; t − 1g. We then propose the LSDTM‐GCNN topological
architecture to learn the deterministic long‐distance geomet-
rical and spatial relations of these centre points. The input to
LSDTM‐GCNN is the original coordinates and the feature
embedding of the centre point. After iteratively applying the
processing of FPS, Ball Query and LSDTM‐GCNN Modules
for multiple times, the centre points are aggregated to a smaller
number but the features are enriched. Through multi‐layer
graph propagation, the obtained features have both represen-
tative geometrical shapes and spatial relationships. Then, the
original point set is obtained using Feature Propagation [13]
method. Finally, a fully connected layer is used to segment the
frames. Details are shown in the Figure 1.

In Figure 1, the top panel gives the illustration of LSDTM‐

GCNN module. In this module, we show the construction
process of the n‐layer m‐ary subgraph for each centre point,
and the channel convolution operation of each subgraph. The
LSDTM‐GCNN module can better capture the inter‐
dependencies of long vertices. The details of this module are

illustrated in Sections 4 and 5. The bottom panel of Figure 1
depicts the overall architecture of our approach for point cloud
part segmentation and semantic segmentation.

3.2 | Long short‐distance topological
modelling

We now explain the details of our approach by a generic graph
representation of 3D point clouds that interprets the implicit
long‐distance contextual‐point relationship. When the t cen-
troids and their local neighbours are obtained, we use them to
learn the enriched local features xt ¼ ϕ pj

� �

jj ¼ 0; 1;…
�

; t − 1g by MLP and Global pooling. Then, the t centroids and
xt are used to construct the LSDTM representation of the
subgraph Gi = (Vi, Ei) composed of the centre point and its
neighbours. We believe that the LSDTM representation of Gi
can help the network learn the long short‐distance interactions
between the contextual points in 3D point clouds. Inspired by
ref. [50], we develop a (n‐layer m‐ary) LSDTM representation
of Gi for each centre point. The vertices in Gi are represented
by the local feature vectors of the centre points. Unlike ref.
[50], firstly, the vertices in our subgraph contain enriched local
features. Secondly, our subgraph considers the edge informa-
tion of the vertices, thereby the topological information of
points in point cloud can be better learnt.

Specifically, given a centre point pi ∈ P̂t, the construction
of subgraph Gi(Vi, Ei) for a vertex pi consists of two steps:

1) finding m neighbours in Rf as m leaf vertices for the root
vertex pi using knn. The m neighbours of pi is defined by
pim. It can be indicated as:

pim ¼ p0im j dist pi; p0im
� �

< d
� �

ð1Þ

where p0im ∈ P̂t, m < t and d ∈ R is the chosen radius.
2) each leaf vertex of pim becomes the new root vertex, and

then we further find their own m leaf vertices as the root
vertices of the next layer of the subgraph Gi(Vi, Ei). Here,
the m neighbours of the hth leaf vertex of pim is defined as
pihm, which can be formulated as:

pihm ¼ p0ihm j dist pih; p0ihm
� �

< d
� �

ð2Þ

where h = {1, 2, …,m}. Similarly, them neighbours of the hth
leaf vertices for the root vertex pihm can be expressed as:

pihhm ¼ p0ihhm j dist pihh; p0ihhm
� �

< d
� �

ð3Þ

Via repeating this operation, the (n‐layer m‐ary) subgraph
Gi can be recursively constructed for pi. Then, the corre-
sponding local feature vectors of the vertices are selected in Gi
as the vertices Vi of subgraph. In this way, the (n‐layer m‐ary)
LSDTM representation ofGi is constructed. The vertices Vi of
Gi can be formulated as:

Vi ¼ ϕ pið Þ; ϕ pihmð Þ; ϕ pihhmð Þ;…; ϕ pih…hmð Þf g ð4Þ
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The directed edge Ei consist of the root vertices to their
leaf vertices. For example, Ei(ϕ( pi), ϕ(pim)) is defined as:

Ei ϕ pið Þ; ϕ pimð Þð Þ ¼H ϕ pið Þ; ϕ pið Þ − ϕ pimð Þð Þ ð5Þ

The crucial part in Equation (5) is the definition of directed
edge function H, which concatenates both the global shape
structure (captured by the local feature of the centre points pi)
and local structure information (captured by ϕ( pi) − ϕ(pim)).
In each level of Gi, the connection between the roots and their
leaf vertices maintain the initial short‐distance spatial structure
of the point cloud. The key to our LSDTM‐GCNN is to define
a GCNN to propagate the connections of the short‐distance
spatial structure to the long‐distance. The details will be
described in the Section 5. Algorithm 1 shows pseudo‐code for
the LSDTM representation of the subgraph for the point in
3D point cloud.

Algorithm 1 LSDTM representation for the point in
3D point cloud
Input: A point cloud P with N + 1 points,

(n-layer m-ary)
Output: Gt subgraphs with (n-layer m-ary)

LSDTM

1: initialisation;
2: Downsample P̂t ¼ pjjj¼ 0;…;t − 1� � from P

using FPS;
3: for i = 0; i <= t − 1; i++ do
4: Compute the enriched local feature

vector xi ¼ ϕ P̂ið Þ;
5: Construct an m-ary tree of P̂i according

to knn;
6: Select xi of the corresponding

vertices in m-ary tree as the vertices;
7: Compute the edge features for root

vertex xi and its m-ary vertices;
8: for h = n − 1, h > = 2 do
9: The leaf vertices of the (n-layer

m-ary) LSDTM are further replaced
by their own m-ary vertices;

10: Compute the edge feature of leaf
vertices and their own m-ary
vertices;

11: end for
12: end for
13: return Gt subgraphs and each subgraph
with (n-layer m-ary) LSDTM;

F I GURE 1 The top panel shows the LSDTM‐GCNN module. In this module, we show a generic (n‐layer m‐ary) subgraph for each centre point pti , ti ∈ t
(Note a triple‐layer trinary graph is used in our approach). Here, t ∈ N. Then, for each point pti , its (n‐layer m‐ary) subgraph is convolved with the number of fi
filters with m‐ary layer by layer. Finally, the long‐distance contextual information of the points can be captured. The bottom panel shows the architecture of our
method for point cloud part segmentation and semantic segmentation. Firstly, the enriched local features are obtained by FPS and Ball Query. Then, we use our
LSDTM‐GCNN to capture the long‐distance contextual relationship of the points. After several steps of processing by FPS, Ball Query and LSDTM‐GCNN
modules alternately, point feature are aggregated by max‐pooling. Then, we use FP method to obtain the original set of points. Finally, FC and softmax layers are
used to obtain the output. FC, fully connected; FP, feature propagation; FPS, fastest point sampling; GCNN, graph convolutional neural network; LSDTM, long
short‐distance topologically modelled; MLP, multi‐layer perceptron
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3.3 | LSDTM‐GCNN

Figure 2 shows an illustration of our subgraph convolutional
network for the triple‐layer ternary LSDTM. Taking the
centre point pi as an example, Figure 2a gives the triple‐layer
ternary Gi for pi. Here, pi−3 is 3th layer vertice of the triple‐
layer ternary for Gi. pi−2;jjj ¼ 1; 2; 3

� �

represents 2th layer jth
vertices of the triple‐layer ternary for Gi. Similarly,
pi−1;jjj ¼ 1; 2; 3;…; 9
� �

is 1th layer jth vertices of the triple‐
layer ternary for Gi. After obtaining Gi of pi, we select the
feature vector x of the corresponding vertex in the (3‐layer 3‐

ary) subgraph as the vertex of Gi. Next, we compute the direct
feature edges of Gi. Thus, the (3‐layer 3‐ary) LSDTM for Gi
can be obtained as shown in Figure 2b left. Here, xi−j;m is the
mth leaf vertex of jth‐layer for the ith input root vertex and
Ei−j;m;i−ðj−1Þ;m represent the direct features edges of the mth
leaf vertex of the jth‐layer for xi to its mth leaf vertex of the
(j − 1)th‐layer for xi. Subsequently, the GCNN is applied layer
by layer on the (3‐layer 3‐ary) LSDTM Gi for pi to extract the
hidden feature information. As shown in Figure 2b,c, convo-
lution filter fn1 slides over each root vertice and its leaf vertices
of subgraph Gi to obtain the hidden feature information of
each root vertice, as shown in Figure 2d left. Where, Xi−3 is the
hidden feature information of the root vertice xi−3 and Xi−2;j is
the hidden feature information of the root vertice xi−2;j. Then,
the convolution filter fn2 is used to slide over the root vertice
and its leaf vertices composed by hidden features, as shown in
Figure 2d,e. Finally, we can obtain the hidden feature ~X i−3, as
shown in Figure 2f.

X fi−ðn−1Þ;m ¼ ξ
X

fn−2

k¼1

X

mþ1

s¼1
W n−1;f

k;s ⊙Qn−2
i−ðn−1Þ;m;s;k

 !

þ Bn−1;f

" #

ð6Þ

Qn−2
i−ðn−1Þ;m;k ¼

n

En−1
i−ðn−1Þ;m;k;E

n−2
i−ðn−2Þ;ðm−1Þmþ1;k;

En−2
i−ðn−2Þ;ðm−1Þmþ2;k;…;En−2

i−ðn−2Þ;mm;k

o ð7Þ

En−1
i−ðn−1Þ;m;k ¼H Xn−1

i−ðn−1Þ;m;k;X
n−1
i−ðn−1Þ;m;k

� �

ð8Þ

En−2
i−ðn−2Þ;ðm−1Þmþ1;k ¼H

�

Xn−1
i−ðn−1Þ;m;k;X

n−1
i−ðn−1Þ;m;k

− Xn−2
i−ðn−2Þ;ðm−1Þmþ1;k

� ð9Þ

En−2
i−ðn−2Þ;ðm−1Þmþ2;k ¼H

�

Xn−1
i−ðn−1Þ;m;k;X

n−1
i−ðn−1Þ;m;k

− Xn−2
i−ðn−2Þ;ðm−1Þmþ2;k

� ð10Þ

⋮

En−2
i−ðn−2Þ;mm;k ¼H Xn−1

i−ðn−1Þ;m;k;X
n−1
i−ðn−1Þ;m;k − Xn−2

i−ðn−2Þ;mm;k

� �

ð11Þ

X fi−n ¼ ξ
X

fn−2

k¼1

W n;f
k ⊙Qn−1

i−n;k

� �

þ Bn;f

" #

ð12Þ

In order to model long‐range structural relationships of the
point in the 3D point cloud, we analyse the structural features
of the hidden layers along the (n‐layer m‐ary) LSDTM for Gi
obtained in the previous step of graph normalisation. For
the input point pi, we construct the (n‐layerm‐ary) LSDTM Gi
for it. Then, the GCNN is applied to extract the hidden feature
information. Equation (6) defines the hidden representation
X fi−ðn−1Þ;m. X

f
i−ðn−1Þ;m is the fth feature of the receptive field

constructed by the vertice xi−ðn−1Þ;m and its leaf vertices

F I GURE 2 The framework of the subgraph convolution process for triple‐layer ternary (3‐layer 3‐ary) long short‐distance topologically modelled (LSDTM)
is shown in detail. Here, we present an example of (3‐layer 3‐ary) subgraph Gi for centre point pi, and construct the (3‐layer 3‐ary) LSDTM for subgraph Gi.
Then, we design the number of fn1 and fn2 filters with 3‐ary. From left to right, firstly, we construct (3‐layer 3‐ary) subgraph for centre point pi as shown in (a).
Secondly, we select the descriptive feature vector x of corresponding vertices in (3‐layer 3‐ary) subgraph as the vertices for Gi, and compute the direct features
edges for Gi. The (3‐layer 3‐ary) LSDTM for subgraph Gi is shown in (b) left. Subsequently, (b), (c), (d), and (e) show the (3‐layer 3‐ary) LSDTM for subgraph
Gi is convolved with the number of fn filters with 3‐ary layer by layer. Finally, (f) the enriched global geometric structure and contextual features of the pi vertices
can be obtained.
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xi−ðn−2Þ;ðm−1Þmþ1;…; xi−ðn−2Þ;ðm−1Þmm
� �

. Here, ξ means the
activation function, and Q represents the edge function, which
obtains both the global shape structure and local structure in-
formation. Where, ⊙ is the element‐wise multiplication. fn−2

gives the number of filters in the layer n − 2.W n−1;f
k is the filter

mapping from the kth to the fth in layer n− 1. m + 1 represents
the length of filter. Bn−1, f is the fth bias of the layer n − 1. Here,
Qn−2
i−ðn−1Þ;m;k is the set of directed edge functions of themth point

in the (n− 1)th‐layer within the receptive field of (n− 2)th‐layer.
Equation (7) gives the set of directed edge functions
Qn−2
i−ðn−1Þ;m;k. Here, En−1

i−ðn−1Þ;m;k shows the direct edge feature for
mth point of the (n − 1)th‐layer. The specific representation for
En−1
i−ðn−1Þ;m;k is as Equation (8). Similarly, Equations (9)–(11) show

the representation of the En−2
i−ðn−2Þ;ðm−1Þmþ1;k, E

n−2
i−ðn−2Þ;ðm−1Þmþ2;k,

En−2
i−ðn−2Þ;ðm−1Þmþ2;k, and E

n−2
i−ðn−2Þ;ðmmÞ;k edge functions respec-

tively. In these edge functions,H concatenates the vertex feature
and the relative features between the vertex and its neighbour.
The X fi−ðn−1Þ;m contains the enriched short‐distance spatial
structure of the mth vertice in (n − 1)‐layer. Then, these
enriched short‐distance spatial structure information is propa-
gated to long‐distance by the deep GCNN along the (n‐layerm‐

ary) LSDTM for Gi.
As a result, the hidden representation X fi−n can be

expressed by Equation (12). It gives the fth feature channel in
layer n. When X fi−n is obtained, the convolution filter fn−1 is
used to slide over the root vertice and its leaf vertices

composed by hidden features to obtain the hidden feature ~X
f
i−n

for pi, as shown in Equation (13). ~X
f
i−n contains the enriched

long‐distance connections propagated by the deep GCNN.
These long‐distance connections contains the global spatial
contiguity for pi.

~X
f
i−n ¼ ξ

X

fn−1

k¼1

~W
n;f
k ⊙ ~Q

n−1
i−n;k þ

~B
n;f

" #

ð13Þ

Next, we exploit our GCNN to compute the output ~Oi−n.
Finally, the feature vector of each point is transformed into the
probability of each label through the softmax layer. The
learning target of LSDTM‐GCNN is to minimise the recon-
struction error for the input label Oi for the vertex i and
maximise the likelihood ~Oi for i. Here, cross‐entropy is chosen
as the loss function, which can be expressed as:

HO
�

~O
�

¼ −

X

N

i−n¼1
Oi−nlog ~Oi−n

� �

ð14Þ

In this way, the LSDTM‐GCNN of each central point can
be learnt. In our work, we focus on applying convolution filters
which slide over each root vertice and its leaf vertices of
subgraph Gi to propagate the short‐distance spatial structure
to the long‐distance connections within the subgraph Gi in a
manner analogous to the standard convolution operation on

grid 2D image. These long‐distance connections maintain the
initial spatial contiguity, which is able to understanding
enriched geometric and contextual features for the subsequent
task of point clouds segmentation.

This paper implements LSDTM‐GCNN for two common
tasks of point cloud:

1) Object part segmentation. The input is a raw single object,
and the output is a part category label for each point.

2) Semantic segmentation. The input is a 3D scan model rep-
resented by point clouds, and the output is a point‐wise se-
mantic map. Experimental results on ShapeNetPart [58],
Stanford 3D Indoor Semantics (S3DIS) [59] and ScanNet
[60] datasets show substantial improvements with the 3D
point cloud segmentation tasks compared to the state‐of‐
the‐art.

3.4 | Analysis on differences with other
methods

In the recent years, several methods [17, 18, 21, 22, 30, 33, 40,
48, 61, 62] have proposed to model the structural information
between point and its contextual points. Klokov and Lempit-
sky [40] design kd‐trees to construct graphs to extract features
from point clouds, however the construction of the graphs
relies heavily on the randomised construction of trees.
Different from ref. [40], the vertices of the graph in our
method consider deterministically deep structured geometric
relationships. Li et al. [61] propose a more generalised and
flexible spectral graph convolution network, which can take
raw data of different graph structures as input. It mainly
transforms the graphic data in the time domain into signals in
frequency domain by Fourier transform of the graph, and then
performs convolution operation on the signals in the frequency
domain. However, the signal transformation from spatial to
spectral domains and vice‐versa results in computational
complexity O(n2).

Wang et al. [17] exploit the local relationships between
points in a point cloud via the graph pointnet module. And
Zhang et al. [18] delicately design local k‐NNs patterns to
capture both global and local spatial layout of point clouds.
Chen et al. [30] learn local geometric representations by
embedding graph attention mechanisms in the MLP layer.
Hegde and Gangisetty [21] propose to use the Inception
module to replace the mlp module in pointnet to extract local
features to capture fine‐grained details, and then utilises GAP
for aggregation to obtain global features. Compared to the max
pooling layer, the GAP layer not only acquires global features,
but also provides a more native way for the convolutional
structure to enforce the correspondence between features and
point cloud parts. Refs. [17, 18, 21, 30] focus on exploring local
feature relationships of point clouds, and then merely use local
aggregation to obtain global features. A common limitation of
these methods is that they do not simultaneously take into
account fine local details and long‐range contextual informa-
tion. Engel et al. [33] design a self‐attention network to
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aggregate local features, and subtraction relation to generate
the attention weights for 3D point cloud. However, it is still
limited in directly acquiring long‐range contexts. In addition,
when self‐attention is used to acquire deeper local neigh-
bourhoods, its computational complexity will be greatly
increased. Similar to ref. [33], Wu et al. [48] propose to utilise
Transformer‐based self‐attention to learn long‐range pairwise
relationships. In GraphTrans, the input information is first
input to MPNNs for processing, and then input to Trans-
former, but MPNNs are limited by problems of over‐
smoothing, over‐squashing, and low expressivity against the
WL test [63]. Therefore, some early information may not be
well preserved, resulting in the loss of important information.
Qian et al. [22] design residual connections, inverse bottle-
neck design and separable MLP to effectively extend the
pointnet++ model. PointNeXt XL achieves state‐of‐the‐art
performance in 3D point cloud semantic segmentation.
However, it is more computationally expensive in terms of
triggers, and moreover, it contains more than twice the number
of parametric layers compared to our model. Wijaya et al. [62]
utilise multiple residual blocks and multiple learnable pooling
to learn high‐semantic and high‐resolution features of point
clouds. But PointStack suffers from similar failures as Point-
NeXt XL, that is, it contains more training parameters and
requires expensive computation. Besides, when the number of
training samples is insufficient, its performance drops drasti-
cally. Unlike these methods, in order to capture structural re-
lationships over long distances, our subgraphs can build the
short‐distance structural relationship between a point and its
contextual points and propagate to the long range through the
deep GCNN. With the exploitation of deeply discovered inter‐
dependencies relations, our approach is able to understand 3D
scene more comprehensively.

4 | EXPERIMENTS

4.1 | Datasets and evaluation metrics

Our experiments are mainly conducted on three widely used
datasets: ShapeNetPart, Stanford 3D Indoor Semantics Data-
set (S3DIS), and ScanNet. ShapeNetPart contains 16,881 3D
shapes from 16 categories, annotated with 50 parts in total.
Each point sampled from shapes is assigned with one of the 50
different parts. The S3DIS dataset covers six large‐scale indoor
areas from three different buildings for a total of 271 scenes
captured from three different buildings. Each point cloud is a
medium‐sized single room (20 � 15 � 5 m) with dense 3D
points. The input is a complete scene point cloud generated
using dense RGB‐D mapping. Each point in the scene point
cloud is associated with an instance label and a semantic label
from 13 categories. To prepare the training data, following ref.
[13] where the points are uniformly sampled into blocks of
area size 1 � 1 m. During the training, we randomly sample
4096 points from each block on‐the‐fly. In our research, to
evaluate overall segmentation accuracy, we utilise the standard

6‐fold cross validation in our experiment. ScanNet dataset
contains richly annotated RGB‐D scans of real‐world envi-
ronments containing 2.5M RGB‐D images in 1513 scans ac-
quired in 707 distinct spaces.

For the evaluation metrics, we employ mean of class‐wise
intersection over union (mIoU) and overall accuracy (OA)
following ref. [12].

4.2 | Object part segmentation on
ShapeNetPart

Following the setting in ref. [13], point clouds are generated by
uniformly sampling shapes from ShapeNet. Taken shapes
represented by point clouds as input, the task is to predict a
part label for each point. We employ the official train test split
following ref. [58]. This experiment is conducted as a toy
example to demonstrate the effectiveness of our approach on
semantic part segmentation for point clouds.

Table 1 shows the results of different methods evaluated
regarding mIoU in each category. For fair comparison, the
input of these methods removes the normal information. We
only use the coordinate information as input. In this highly
competitive dataset, our LSDTM‐GCNN achieves on par
performance with most methods in the metric mIoU. There is
still a small gap between our LSDTM‐GCNN and refs. [21, 23,
27, 33, 62]. Li et al. [23] utilise x‐transformation from the input
points to permute unordered local points into a latent poten-
tially canonical order. Thomas et al. [27] design an MLP or
discrete kernel points to simulate a local continuous convolu-
tion kernel of the centre points. Refs. [23, 27] can capture more
details of a 3D point cloud, but they both require more than
twice the number of parametric layers and times as required by
our LSDTM‐GCNN to achieve the reported performance.
Although Engel et al. [33]achieve competitive results with the
state‐of‐the‐art, it adopts an attention mechanism to aggregate
local features, which greatly increases the computational
complexity. Wijaya et al. [62] attempt to use multiple residual
blocks and multiple learnable pooling to obtain high‐semantic
information. Similar to ref. [33], PointStack also needs more
training parameters and expensive computation. Hegde and
Gangisetty [21] propose to use GAP instead of maxpooling to
obtain global features. Most of the above methods do not
directly take into account long‐range relationships of 3D point
clouds, limiting their ability to understand 3D scene more
comprehensively. Compared to maxpooling, GAP [68] can
better preserve the spatial location information and make it
have a global receptive field. When we use GAP to obtain
global features of short‐distance subgraph, the more effective
short‐range spatial structure is propagated to longer distances
through GCNN to discover the underlying relationships.
Experimental results show that our LSDTM‐GCNN (GAP)
achieves the same excellent mIoU with ref. [33]. This phe-
nomenon indicates that long short‐distance topology structure
information of the points in the 3D point cloud is essential for
understanding the semantics of a point cloud.
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4.3 | S3DIS semantic segmentation

In this section, we perform experiments on S3DIS dataset to
evaluate our performance on large real scene scans. Following
experimental settings in RandLA‐Net [19], we split the dataset
into training and testing sets. We report the result on six‐fold
cross‐validation calculating the metrics with results from
different folds merged. For the evaluation metrics, we utilise
mIoU and OA. Each point is represented by 9D vector (XYZ,
RGB and normalised location as to the room). In each block,
we uniformly sample 4096 � 3 points as input. Here, in order
to reflect the long short‐distance contextual information of the
point cloud, we only utilise 3D coordinates of points. At test
time, we test on all the points.

As shown in Table 2, our LSDTM‐GCNN achieves better
performance than [20, 22, 27, 33] results of other studies. For
fair comparison, these methods all take coordinate points as

input. It is worth noting that, most methods are limited to
exploring the underlying relationships and interactions of
contextual points in 3D space. By contrast, our LSDTM‐

GCNN interpret implicit contextual‐point interaction and
long‐distance contextual relationship using a general repre-
sentation. Although ref. [33] performs slightly better than our
model, it is limited in its ability to directly capture long‐range
features. In additional, we present the methods using the po-
sitions (X, Y, Z) and RGB as additional features input in Ta-
ble 3. Our LSDTM‐GCNN significantly outperforms most
other methods in OA. This indicates that the proposed
LSDTM‐GCNN is significant and effective for improving the
semantic segmentation performance. Compared to ref. [22],
our model is slightly worse in mIoU. This is due to the fact that
an inverted residual bottleneck separable MLPs extracting
enriched features. However, it contains more parameters and
requires higher computational cost.

TABLE 1 Object part segmentation results on ShapeNetPart

Methods mIoU Aero Bag Cap Car Chair
Ear
phone Guitar Knife Lamp Laptop Motor Mug Pistol Rocket

Skate
board Table

3DCNN [12] 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1

O‐CNN [64] 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3

Kd‐network [40] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

PointNet [12] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

Syncspeccnn [39] 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1

Kc‐Net [65] 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3

So‐Net [14] 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0

PointNet++ [13] 84.9 82.9 81.3 85.3 78.5 90.6 73.3 91.2 86.9 82.5 95.3 71.8 95.0 82.1 57.7 75.4 81.6

ASIS [34] 85.0 81.4 81.2 86.1 72.3 90.4 74.1 91.7 85.6 83.0 95.7 70.4 94.6 81.4 53.2 78.1 82.0

Weak.Sup [56] 85.0 83.1 82.6 80.8 77.7 90.4 77.3 90.9 87.6 82.9 95.8 64.7 93.9 79.8 61.9 74.9 82.9

SK‐Net [66] 85.0 82.9 80.7 87.6 77.8 90.5 79.9 91.0 88.1 84.0 95.7 69.9 94.0 81.1 60.8 76.4 81.9

SpiderCNN [25] 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

SRN [67] 85.3 82.4 79.8 88.1 77.9 90.7 69.6 90.9 86.3 84.0 95.4 72.2 94.9 81.3 62.1 75.9 83.2

LKPO‐GNN [18]
(k = 8)

85.3 82.5 81.8 87.7 78.8 90.7 75.4 90.8 87.1 83.5 95.6 72.0 95.6 81.7 55.9 75.8 82.8

LKPO‐GNN [18]
(k = 32)

85.6 82.6 80.8 86.9 78.6 90.9 77.7 90.8 86.9 84.9 95.8 71.7 94.6 82.4 56.1 76.0 82.8

PIG‐Net [21] 85.9 84.2 83.1 88.9 78.6 91.7 78.2 94.4 89.5 94.2 96.3 66.2 91.6 85.1 64.8 93.5 94.2

PointCNN [23] 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 95.1 77.2 95.3 84.2 64.2 80.0 83.0

KPConv [27] 86.2 83.6 86.7 87.2 79.1 89.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

PointStack [62] 86.4 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

Point transformer
[33]

86.6 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

LSDTM‐GCNN 85.8 82.2 81.2 90.3 72.8 91.4 78.6 89.3 87.9 79.8 96.4 62.6 94.7 79.6 60.6 75.1 86.9

LSDTM‐GCNN
(GAP)

86.6 84.4 86.6 90.2 79.9 91.9 80.6 95.3 90.0 83.2 96.1 71.7 95.2 80.3 68.1 79.3 97.2

Note: Bold values represent the best results.
Abbreviations: CNN, convolutional neural network; GCNN, graph convolutional neural network; LSDTM, long short‐distance topologically modelled; mIOU, intersection over union.
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From top to bottom, Figure 3 shows visualisation examples
of five typical indoor scenes, including conference room,
openspace, lounge, office and copyRoom. We compare our
method with the RandLA‐Net, SCF‐Net and AF‐Net methods,
and the predictions of our LSDTM‐GCNN are closer to the

ground truth in conference room, lounge, office and copyRoom
scenes. We can see that the LSDTM‐GCNN captures certain
detailed structures in the point clouds well. As shown in the
Figure 3, inconspicuous object parts, like legs of chair and table,
can be distinguished and recognised correctly. Nevertheless, the

TABLE 2 Segmentation results on S3DIS with (X,Y,Z) (6‐fold cross validation)

Methods OA mIoU Ceiling Floor Wall Beam Column Window Door Chair Table Bookcase Sofa Board Clutter

RSNet [28] ‐ 51.9 93.3 98.3 79.1 0.00 15.7 45.4 50.1 65.5 67.9 22.5 52.5 41.0 43.6

PointNet [12] 80.6 54.8 87.9 97.1 65.1 50.0 41.1 63.9 47.4 63.9 65.4 29.9 44.8 9.6 46.4

DGCNN [41] 83.9 55.8 87.5 91.3 61.9 1.0 19.3 55.4 31.3 68.6 71.9 19.1 48.7 38.9 51.3

ASIS [34] 86.2 59.3 91.3 89.7 69.8 45.8 27.0 51.9 55.1 61.0 49.3 9.1 40.2 33.5 40.7

SPG [42] 85.5 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN [23] ‐ 62.7 85.6 85.2 77.1 63.8 34.8 56.1 69.3 60.8 71.2 64.3 43.2 47.9 56.3

PointSIFT [16] 83.6 63.8 86.5 86.3 71.9 54.5 30.0 65.4 66.3 64.6 77.9 52.1 53.7 58.8 61.6

RandLA‐Net [19] 84.2 63.2 91.5 96.4 72.9 61.4 46.3 49.7 58.9 69.7 58.8 66.6 62.4 36.4 50.0

LKPO‐GNN [18] 85.8 64.6 83.4 85.6 73.1 63.3 36.7 64.4 70.5 65.9 79.1 46.3 54.5 55.9 61.7

KPConv [27] ‐ 65.3 91.7 93.9 80.8 63.4 49.7 60.4 70.9 68.1 69.6 53.4 58.6 51.1 58.3

SCF‐Net [20] 86.1 65.8 91.9 94.6 75.6 65.6 45.2 50.9 59.0 69.4 79.3 60.6 61.7 39.2 53.8

PointNeXt‐XL [22] 86.0 66.1 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

Point transformer [33] 90.2 73.5 94.3 97.5 84.7 55.6 58.1 66.1 78.2 77.6 74.1 67.3 71.2 65.7 64.8

LSDTM‐GCNN 86.6 66.5 92.9 95.7 74.0 61.4 54.3 67.8 66.1 68.7 74.5 49.0 57.0 41.2 61.0

LSDTM‐GCNN (GAP) 88.1 71.6 93.7 95.9 85.2 60.9 61.3 66.9 72.4 72.5 78.0 52.7 64.3 62.2 65.3

Note: Bold values represent the best results.
Abbreviations: LSDTM, long short‐distance topologically modelled; mIOU, intersection over union; OA, overall accuracy; S3DIS, Stanford 3D indoor semantics.

TABLE 3 Segmentation results on S3DIS with (X,Y,Z,R,G,B) (6‐fold cross validation)

Methods OA mIoU Ceiling Floor Wall Beam Column Window Door Chair Table Bookcase Sofa Board Clutter

PointNet [12] 78.6 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

RSNet [28] ‐ 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0

DGCNN [41] 83.9 55.8 87.5 91.3 61.9 1.0 19.3 55.4 31.3 68.6 71.9 19.1 48.7 38.9 51.3

SPG [42] 86.4 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN [23] 88.1 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6

ELGS [17] 87.6 66.3 93.7 95.6 76.9 42.6 46.7 63.9 69.0 70.1 76.0 52.8 57.2 54.8 62.5

PointWeb [15] 87.3 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5

ShellNet [69] 87.1 66.8 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4

RandLA‐Net [19] 88.0 70.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.0

KPConv [27] ‐ 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3

SCF‐Net [20] 88.4 71.6 93.3 96.4 80.9 64.9 47.4 64.5 70.1 71.4 81.6 67.2 64.4 67.5 60.9

AF‐Net [70] 88.9 72.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

PointNeXt‐XL [22] 90.3 74.9 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

LSDTM‐GCNN 89.3 72.4 94.8 97.5 79.8 60.6 54.0 80.4 78.4 75.0 77.0 50.8 58.8 68.7 65.8

LSDTM‐GCNN (GAP) 90.5 74.6 95.3 95.7 81.6 63.3 55.1 69.4 80.1 76.5 78.2 70.3 62.5 71.7 69.6

Note: Bold values represent the best results.
Abbreviations: LSDTM, long short‐distance topologically modelled; mIOU, intersection over union; OA, overall accuracy; S3DIS, Stanford 3D indoor semantics.
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misclassification is inevitable. As shown in the copyRoom of
Figure 3, the clutter (part of the area) is misclassified to
bookcase.

4.4 | Scannet semantic segmentation

Following experimental settings in Grid‐GCN [57], we split the
ScanNet dataset into 1201 training scenes and 312 testing
scenes sets. For semantic segmentation in ScanNet dataset,
each shape is represented by a 3D point cloud with 8192
points, as in ref. [52]. In this section, the experiment is
implemented using Tensorflow toolbox and models are trained
on four GeForce RTX 3090.

In Table 4, we present the OA (%) and mIoU (%) scores.
This experiment demonstrates the effectiveness of our
approach on semantic segmentation for 3D point cloud. We
compare our method with previous state‐of‐the‐art method
[57] in Table 4. Ref. [57] consumes CAGQ to achieve efficient
data structuring and computation, and achieved better per-
formance on point cloud segmentation. However, it only
constructs local graphs based on points and their neighbours.

The way of constructing graphs is limited to discover the
underlying relation‐ships between the points in point cloud.

4.5 | Ablation study

The goal of our ablation study is to evaluate the effectiveness
of each component of our LSDTM‐GCNN module.

All ablated networks are trained with the same network
settings and test on S3DIS dataset. We report the result using
six‐fold cross‐validation. The OA and mIoU are exploited as
the evaluation metrics.

1) Remove LSDTM‐GCNN module. This baseline disables
the discovery of the long‐distance structural interactions
between a point and its contextual points. After removing
LSDTM‐GCNN, the point features are directly fed into the
subsequent max‐pooling.

2) Replace Ei( fi, knn( pi)) with Ei( fi). In this baseline, the edge
function Ei( fi) only considers the global information and
ignores the local contextual relationship between points
and its neighbours.

F I GURE 3 Visualisation of semantic segmentation results on S3DIS dataset. GCNN, graph convolutional neural network; LSDTM, long short‐distance
topologically modelled
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3) Replace Ei( fi, knn( pi)) with Ei(knn( pi)). Note such a
choice only encodes the local shape information and ig-
nores the global shape information. Similar to baseline 2),
we utilise local features to replace the coordinates of the
points for global feature learning.

4) Replace 3‐level 3‐ary with 2‐level 3‐ary. For better under-
standing of effect of LSDTM‐GCNN architectures for
smaller depth, we conducted the experiment corresponding
to 2‐level 3‐ary subgraph.

5) Replace 3‐level 3‐ary with 3‐level 2‐ary. For better under-
standing of effect of LSDTM‐GCNN architectures for
smaller width, we conducted the experiment corresponding
to 3‐level 2‐ary subgraph.

6) Randomised construction 3‐level 3‐ary. To demonstrate the
validity of deterministic construction of subgraph, we
construct the 3‐level 3‐ary subgraph with random sampling.

Table 5 shows the OA and mIoU scores of all ablated
baselines. From this ablation study, we can see our proposed
LSDTM‐GNN modules are complementary with each other to
obtain the state‐of‐the‐art performance. In addition, we also
observed that the removal of LSDTM‐GNN module causes
the second jump in term of performance.

The case study of this module is highlighted in Figure 2,
which shows the effectiveness of the triple‐layer ternary to-
pology to obtain enriched contextual information of points
with spatial contiguity achieved crossover the 3D space.
These short and long range contextual information plays
crucial roles in 3D point cloud segmentation and semantic
understanding. In the second experiment, we remove local
contextual relationship knn( pi), but keep global geometric
shape structure fi, in the edge function Ei. Our experimental
results show that removing the knn( pi) module diminishes
performance due to the negligence in local contextual infor-
mation modelling. In the third experiment, the removal of the

global shape structure fi unit diminishes performance by not
being able to effectively retain the spatial contiguity. In the
fourth experiment, in order to explore the effect of the
smaller depth on the LSDTM‐GCNN architectures, we
replace 3‐level 3‐ary with 2‐level 3‐ary. Replacing 3‐level 3‐ary
with 2‐level 3‐ary unit shows the third greatest impact on
performance, demonstrating the effectiveness of smaller
depth in preservation of the long rang contextual informa-
tion. In a fifth experiment, we replace 3‐level 3‐ary with 3‐

level 2‐ary unit. The results show the fourth greatest impact
on performance, illustrating the effectiveness of smaller width
in obtaining the short‐distance contextual information.
Finally, to verify the effectiveness of deterministic structural
subgraph, we replace 3‐level 3‐ary LSDTM subgraph with
randomised construction 3‐level 3‐ary subgraph. Randomised
construction 3‐level 3‐ary subgraph discards the initial spatial
contiguity, which makes its experimental results the worst
than 3‐level 3‐ary LSDTM subgraph. This ablation study
shows LSDTM units complement each other to achieve the
state‐of‐the‐art performance.

4.6 | Time and space complexity

Table 6 summarises time (float‐point operations) and space
(number of parameters in the work) complexity of our object
part segmentation on ShapeNetPart. We record the inference
times with a batch size of 1 using TensorFlow on a single
GeForce RTX 3090. We also compare LSDTM‐GCNN with
previous research. In terms of space complexity, ref. [13] has
smallest model size, but it did not consider the structural in-
teractions between contextual points in 3D point cloud.
Compared with refs. [14, 18, 21, 23, 27, 62, 65], which mostly
consider the structure information, our model achieved
acceptable model size. In terms of time complexity, LSDTM‐

GCNN (GAP) shows the fastest forward time. Although
Ref. [18] (k = 8) achieves faster inference time than our
LSDTM‐GCNN, our LSDTM‐GCNN and LSDTM‐GCNN
(GAP) outperform [18] by 0.5 and 1.3 in mIoU metric
respectively. Zhang et al. [18] are unable to simultaneously take
into account fine local details and long‐range contextual

TABLE 4 Semantic segmentation on ScanNet

Methods OA mIoU

3DCNN [71] 73.0 ‐

PointNet [12] 73.9 ‐

SK‐Net [66] 81.4 ‐

PointNet++ [13] 84.0 56.9

PointCNN [23] 84.8 ‐

PointSIFT [16] 85.1 54.5

ELGS [17] 85.3 40.6

LKPO‐GNN [18] 85.3 58.4

Grid‐GCN [57] 85.4 ‐

SegGCN [46] ‐ 58.9

LSDTM‐GCNN 85.4 59.1

LSDTM‐GCNN (GAP) 86.1 59.7

Note: Bold values represent the best results.
Abbreviations: GCNN, graph convolutional neural network; LSDTM, long short‐
distance topologically modelled; mIOU, intersection over union; OA, overall accuracy.

TABLE 5 The mIoU scores of all ablated networks based on full
LSDTM‐GCNN with (X,Y,Z)

Baselines OA mIoU

1) Remove LSDTM‐GCNN module 85.3 59.6

2) Replace Ei( fi, knn( pi)) with Ei( fi) 85.9 66.2

3) Replace Ei( fi, knn(pi)) with Ei(knn( pi)) 85.7 65.2

4) Replace 3‐level 3‐ary with 2‐level 3‐ary 85.7 63.7

5) Replace 3‐level 3‐ary with 3‐level 2‐ary 85.8 64.9

6) Randomised construction 3‐level 3‐ary 84.6 57.1

7) The full framework (LSDTM‐GCNN) 86.6 66.5

Note: Bold values represent the best results.
Abbreviations: GCNN, graph convolutional neural network; LSDTM, long short‐
distance topologically modelled; mIOU, intersection over union; OA, overall accuracy.
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information, which is desired for point clouds. This phe-
nomenon shows that our model has great potential for real‐
time applications.

5 | CONCLUSION

This paper presents an effective plug‐and‐play module called
LSDTM‐GCNN for point cloud segmentation and under-
standing. LSDTM‐GCNN is a deterministic graph‐like topol-
ogy that formulates the inner‐points interactions and semantic
contexts by building short‐distance connected subgraphs and
propagating the connections to long‐distance over the deep
GCNN. Our proposed method achieves enriched structural
and contextual feature representation with the global spatial
contiguity for 3D point cloud. Experiments show that our
algorithm achieves promising performance on 3D point cloud
segmentation, which can be a new baseline for point cloud
segmentation and semantic understanding benchmarks.

Our method is an intuitive, simple yet flexible framework
for 3D point cloud representation and parsing. As the first trial
of using subgraph for point clouds, there are still rooms for
improvement. The future work will investigate: (1) accelerating
graph construction by reducing the query scope of nearest
neighbour. (2) exploring more advanced sampling strategy of
centre points to improve coverage.
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