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Abstract: In recent years, non-Hermitian quantum physics has gained a great deal of popularity in
the quantum optics and condensed matter communities in order to model quantum systems with
varying symmetries. In this paper, we identify a non-standard inner product that implies bosonic
commutator relations for local electric and magnetic field observables and leads to a natural local
biorthogonal description of the quantised electromagnetic field. When comparing this description
with an alternative local Hermitian description, in which the states of local photonic particles, i.e., of
so-called bosons localised in position (blips), are orthogonal under the conventional Hermitian inner
product, we find that there is an equivalence between the two approaches. Careful consideration
needs to be given to the physical interpretation of the different descriptions. Whether a Hermitian or
a non-Hermitian approach is more suitable depends on the circumstances that we want to model.

Keywords: quantum electrodynamics; quantum optics; non-Hermitian quantum physics

1. Introduction

In classical electrodynamics, the fundamental equations of motion are Maxwell’s
equations: a set of highly-symmetric differential equations that describe the relationship
between the local electric and magnetic fields defined at each point in space and time. In
contrast to this, in quantum electrodynamics, we routinely decompose the local electromag-
netic (EM) field into objects called photons which have a well-defined momentum that does
not change in time. Due to the Heisenberg uncertainty principle, monochromatic photons
have a maximally undefined location. A key reason for expressing the EM field in this way
is that monochromatic photons are energy eigenstates and thus valuable for modelling
scenarios regarding energy conservation. For example, when an atom absorbs a photon at
its resonance frequency, it will be excited to a higher energy state separated from the initial
state by a well-defined amount of energy.

As recently emphasized, for example in Ref. [1], the symmetries of monochromatic
photons are too restrictive making them insufficient to describe all possible wave packets
allowed by classical electrodynamics. For example, the solutions of Maxwell’s equations
include highly-localised wave packets which propagate at the speed of light without
dispersion. However, when we superpose the monochromatic photon states that are
allowed by standard quantum electrodynamics [2] to form a highly localised wave packet,
dispersion cannot be avoided. Non-local descriptions of light [3–6] therefore make it
challenging, for example, to model the dynamics of electric and magnetic field vectors in
the presence of optical elements, which are highly-localised objects. In the literature, many
authors have therefore discussed possible local quantisations of light and, in particular,
considered how to construct local bosonic excitations of the EM field (see, e.g., Refs. [1,7–13]
and references therein). These local excitations, such as the monochromatic photon states
we are used to, can be created and annihilated by a set of creation and annihilation operators
that commute at all non-zero displacements.

Nevertheless, it is often convenient to work with states of well-defined energy, since
they have a particularly useful property. To see this, let us examine Ehrenfest’s theorem,
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which describes how expectation values evolve in time. When an operator A has no implicit
time dependence, Ehrenfest’s theorem states that the time derivative of the expectation
value of A with respect to a time-dependent state |ψ(t)〉 is simply given by

d
dt
〈ψ(t)| A |ψ(t)〉 = − i

h̄
〈ψ(t)| [A, H] |ψ(t)〉 , (1)

where H is the Hermitian Hamiltonian of the system. This equation shows that the dynam-
ics of expectation values are intimately linked to the commutator between the Hamiltonian
and other operators. When both the operator A and the Hamiltonian H are expressed in
terms of bosonic operators, calculations of time derivatives of expectation values become
very straightforward. Clearly, utilising operators with bosonic commutator relations is
in general highly advantageous. Unfortunately, in the position representation, the local
field observables do not have a simple bosonic commutation relation. For this reason,
it is typically the monochromatic photon operators that are used when constructing EM
field observables.

As mentioned above, monochromatic photons are non-local which makes modelling
interactions between the EM field and local objects very challenging. Ideally, the field exci-
tations would possess a simple bosonic commutation relation, but the underlying theory
must be unchanged. It is a standard result in linear algebra that two operators related by a
similarity transformation have exactly the same eigenvalues, but a different set of eigen-
states. What is less known, however, is that operators related to an Hermitian observable by
a similarity transformation, although not Hermitian themselves, are pseudo-Hermitian [14].
Moreover, it can be shown that the eigenstates of this operator are orthogonal under a
modified inner product (biorthogonal). In the context of quantum field theory, this means
that one may alter the standard inner product of QFT, without changing the underlying
theory. In particular, it is possible, for example see Ref. [15], to construct an inner product
under which the field excitations are orthogonal and will commute simply with the field
Hamiltonian. In this paper, we therefore consider an alternative representation of the EM
field in terms of local Fock-space excitations that belong to a biorthogonal system [16,17].
In contrast, in our previous papers [1,12,13], we quantised the EM field in terms of pairwise
orthogonal local energy quanta, so-called bosons localised in position (blips), which are
well-suited for modelling the dynamics of localised particles.

As was explored in Ref. [1], the exact nature of these blips is determined by the
symmetry group of the space in which they are contained. In particular, in free space, it is
the translation symmetry of the Poincaré group that leads to the simple form of the blips’
equation of motion. If the symmetry group of the considered space is reduced, this has the
effect of altering the equation of motion in some regions of the space [13]. For example,
when considering an optical cavity, the mirrors forming the walls of the cavity break the
full translation invariance, leading to an altered motion for the blips in the location of the
mirror. Similarly, in order to model the interactions of an atom with the EM field, our
space becomes a pointed space, with the location of the atom promoted to a distinguished
position. In this case, we again clearly lose translation invariance but—depending on the
sophistication of the model—potentially retain the rotational symmetries of the Poincaré
group. As with the cavity, it is the particular set of reduced symmetries that determines the
motion of field excitations, and hence the behaviour of the system.

As in Refs. [1,7,11–13], in this paper, we need to make an adjustment to the standard
theory of the quantised EM field. Specifically, we need to extend the Hilbert space of
monochromatic modes to include all modes with a frequency in the range (−∞, ∞). This
means we do not restrict ourselves to positive-frequency photons but allow photon frequen-
cies to be positive and negative. This adjustment ensures that localised excitations in one
dimension that have a clear direction of propagation do not disperse. This is in good agree-
ment with classical electrodynamics, where wave packets with a well-defined direction of
propagation also travel at the speed of light without changing their shape [1,12]. Moreover,
the extension of the frequency range of the photons ensures that our local description of
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light does not violate any no-go theorems concerning the localisability of the photon, which
have been put forward by several authors [18–24].

In the following, we compare the predictions of the local Hermitian description of the
quantised EM field, which we introduced in Refs. [1,12,13], with the non-Hermitian local de-
scription that we introduce here, and highlight the connection between the two approaches.
Systems possessing curious non-Hermitian structures have gained much interest in recent
years [25,26], particularly in quantum optics and condensed matter physics [10,11,27,28].
For example, Hawton’s and Debierre’s approach [11] uses biorthogonal quantum mechan-
ics. However, their approach also uses a time-dependent inner product in an interaction
picture. The inner product we use in this paper is not time-dependent and can be used in
any picture.

There are five sections in this paper. In Section 2, we shall cover some requisite
background material on the quantised EM field and biorthogonal quantum mechanics.
In Section 3, we shall model the EM field using biorthogonal quantum mechanics, and
in Section 4 we shall describe how this biorthogonal approach connects to our earlier
Hermitian approach. Finally, we present our conclusions in Section 5. Some mathematical
details have been placed in Appendices A–C to simplify the reading of the manuscript.

2. Theoretical Background

In this section, we introduce the theoretical background and concepts used throughout
the rest of the paper. Before examining biorthogonal quantum mechanics and pseudo-
Hermitian physics, we first review the standard description of the quantised EM field,
which can be found in many quantum optics textbooks (see, e.g., Ref. [2] and refer-
ences therein).

2.1. The Quantised EM Field

The classical theory of electromagnetism describes the evolution of two fundamental
quantities: the electric field and the magnetic field, E(x, t) and B(x, t). The dynamics of
these fields is governed by Maxwell’s equations, which take the form

∇ · E(x, t) = 0 , ∇× E(x, t) = − ∂
∂t B(x, t) ,

∇ · B(x, t) = 0 , ∇× B(x, t) = 1
c2

∂
∂t E(x, t)

(2)

in the absence of any charges or source currents. The classical Hamiltonian Heng of the
free-space EM field is

Heng =
∫

V
dV
(

ε0E(x, t)2 +
1

µ0
B(x, t)2

)
(3)

where V denotes the volume enclosing the EM field, while c is the speed of light and ε0
and µ0 are the permittivity and the permeability of free space.

One way of quantising the EM field created by light travelling along the x-axis is
to assume that its basic building blocks are monochromatic photons [2]. Adopting the
notation which we employ also later in this paper, we can model these monochromatic
photons by using the bosonic Fock ladder operators, asλ(k) and a†

sλ(k), where s = ±1
denotes the direction of propagation along the x-axis, λ = 1, 2 denotes their polarisation
and ω = ck denotes their frequency, with k ∈ (0, ∞). These operators satisfy the bosonic
commutation relations

[asλ(k), as′λ′(k′)] =
[
a†

sλ(k), a†
s′λ′(k

′)
]
= 0 ,[

asλ(k), a†
s′λ′(k

′)
]
= δss′δλλ′δ(k− k′) .

(4)

Using these operators we can create a single-photon state by acting a creation operator on
the vacuum state |0〉,

|1sλ(k)〉 = a†
sλ(k) |0〉 (5)
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where the vacuum state satisfies 〈0|0〉 = 1 and asλ(k) |0〉 = 0 for all s, k and λ. Clearly,
monochromatic single-photon states are pairwise orthogonal, since

〈1sλ(k)|1s′λ′(k
′〉 =

[
asλ(k), a†

s′λ′(k
′)
]
= δss′δλλ′δ(k− k′) . (6)

We can construct further states of the quantised EM field by acting on |0〉 with multiple
creation operators.

For light propagating only along the x-axis, the field observables for the quantised EM
field at a point x can be written as [2]

E(x) = ∑
s,λ

√
h̄c

4πεA
∫ ∞

0 dk
√

k eiskx asλ(k) eλ + H.c. ,

B(x) = ∑
s,λ

s
c

√
h̄c

4πεA
∫ ∞

0 dk
√

k eiskx asλ(k) ex × eλ + H.c. ,
(7)

where H.c. denotes the Hermitian conjugate and where the eλ are unit vectors oriented in
the y and z directions. The Hamiltonian that generates the free-space dynamics of light is
given by

Heng = ∑
s,λ

∫ ∞

0
dk h̄ck a†

sλ(k)asλ(k) (8)

up to a constant term—the zero point energy—which does not contribute to the dynamics.
Under this Hamiltonian, field expectation values evolve as predicted by Maxwell’s equa-
tions. However, as mentioned above, the asλ(k) operators correspond to non-local photons
and therefore do not always provide an intuitive description.

2.2. Biorthogonal Quantum Mechanics

Let us now review some relevant properties of biorthogonal quantum mechanics. A
defining feature of a Hilbert space is its inner product. Since this paper uses different inner
products, we denote the inner product between two states on different Hilbert spaces in
the following by 〈|ψ〉 , |φ〉〉ss, with the superscript labelling the particular inner product.
For simplicity, the conventional inner product will be denoted with no superscript. The
expectation value of an operator A with respect to a state |ψ〉 under the conventional inner
product is

〈A |ψ〉 , |ψ〉〉 = 〈ψ| A |ψ〉 . (9)

In the following, we use the term “non-Hermitian operators” to refer to operators that
are non-Hermitian with respect to the conventional inner product. However, note that
this does not necessarily mean they are non-Hermitian with respect to a different inner
product. We reserve the dagger notation † to denote the Hermitian adjoint of an operator
with respect to the conventional inner product.

Suppose a set of N linearly independent states {|αn〉} for n ∈ {1, . . . , N} spans
an N-dimensional Hilbert space, but is not necessarily orthonormal with respect to the
conventional inner product. Then it is possible to obtain a set of N states {|βn〉} such
that 〈βi|αj〉 = δij. To see this, for a given |αm〉 one can select a state |βm〉 from the one-
dimensional subspace of the Hilbert space orthogonal to the span of {|αn〉}n 6=m such that
〈βm|αm〉 = 1. If we continue this process for all |αn〉, we can construct the set {|βn〉} [17].
The set {|βn〉}N

n=1 is called the biorthonormal basis associated with {|αn〉}N
n=1. Given a state

|ψ〉 = ∑
n

an |αn〉 , (10)

we define an associated state
|ψ̃〉 = ∑

n
an |βn〉 . (11)
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The biorthonormal quantum mechanical (BQM) inner product can then be defined on this
Hilbert space as

〈|ψ1〉 , |ψ2〉〉BQM = 〈ψ̃2|ψ1〉 . (12)

Under this inner product, the set {|αn〉}N
n=1 forms an orthonormal basis. Furthermore,

operators of the form
A = ∑

n,m
anm |αn〉 〈βm| (13)

for real anm are Hermitian with respect to the BQM inner product and are therefore known
as biorthogonally Hermitian operators.

Collectively the set of states {|αn〉 , |βn〉}N
n=1 constitutes a biorthogonal system. In the

literature on biorthogonal quantum mechanics, it is shown that if a state |ψ〉 belongs to a
Hilbert spaceH, its associated state |ψ̃〉 is said to belong to the dual Hilbert spaceH∗. To
avoid confusion with other definitions of a dual space, we refer toH∗ in this paper as the
bio-conjugate Hilbert space. Hence, for every state |ψ〉 in Hilbert space, there exists a state
|ψ̃〉 in the bio-conjugate space. In the case that {|αn〉}N

n=1 already forms an orthonormal
basis, selecting |βn〉 = |αn〉 reduces the BQM inner product to the standard inner product,
and the Hilbert space and bio-conjugate space become the same.

2.3. Pseudo-Hermitian Physics

Biorthogonal quantum physics is closely related to pseudo-Hermitian physics. To see
that this is so, suppose that we have a Hamiltonian H acting on an N-dimensional Hilbert
spaceH. This Hamiltonian is said to be pseudo-Hermitian if it satisfies the relation

H† = ηHη−1 (14)

for some invertible operator η satisfying η = η† also acting onH. If one defines an inner
product 〈·|·〉η such that

〈|ψ1〉 , |ψ2〉〉η = 〈ψ2| η |ψ1〉 (15)

then by using Equation (14) one may show that

〈H |ψ1〉 , |ψ2〉〉η = 〈|ψ1〉 , H |ψ2〉〉η . (16)

Because this is the definition of Hermiticity, it follows that a pseudo-Hermitian Hamiltonian
H satisfying Equation (14) is Hermitian in the proper sense with respect to the η-inner
product given in Equation (15).

It is well known that the eigenstates of a Hermitian operator are orthogonal and that
their eigenvalues are real. Because H is Hermitian with respect to the η-inner product, the
eigenstates of H can also be shown to be orthogonal to one another under the same inner
product. Assuming H to be non-degenerate, let us denote the set of N normalised and
orthogonal eigenstates of H by {|αn〉}N

n=1. If we define the states

|βn〉 = η |αn〉 (17)

then we can see by taking the η-inner product between αn states, and by using the orthogo-
nality of such states that

〈αn|η|αm〉 = 〈βn|αm〉 = δnm . (18)

Hence, {|αn〉 , |βn〉}N
n=1 describes a biorthonormal system just as was discussed previously.

Moreover,

Id =
N

∑
n
|αn〉 〈βn| (19)

represents the identity operator for such a system.
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Using the definition in Equation (17) one can further show that, whereas the |αn〉 states
are orthonormal with respect to the η-inner product, the |βn〉 states are orthonormal with
respect to the η−1 inner product,

〈|ψ1〉 , |ψ2〉〉η
−1

= 〈ψ2| η−1 |ψ1〉 . (20)

So, if {|αn〉 , |βn〉}N
n=1 is a biorthonormal system equipped with the η-inner product, then

{|βn〉 , |αn〉}N
n=1 is a biorthonormal system equipped with the η−1-inner product. Note that

this means these sets of states, while belonging to the same vector space, do not belong to
the same Hilbert space. Since a defining feature of a Hilbert space is its inner product, if we
define the inner product between the |αn〉 states to be the η inner product, and the inner
product between the |βn〉 states to be the η−1 inner product, then the two Hilbert spaces
are distinct. Unlike the |αn〉 states, the |βn〉 states are not in general also orthonormal with
respect to the η-inner product. To see this simply compute

〈|βn〉 , |βm〉〉η = 〈αm| η3 |αn〉 6≡ δnm . (21)

Note that, if η is the identity operator onH, Equation (15) reduces to the conventional inner
product of quantum mechanics.

Equation (21) is not a problem if the only states of concern are those normalised with
respect to the η-inner product, and if the only observables of concern are of the form given
in Equation (13). In this case, one can select the η-inner product for the Hilbert space and
will find that pseudo-Hermitian quantum mechanics is indistinguishable from conventional
Hermitian quantum mechanics [17]. Likewise, if all states of concern are those normalised
with respect to the η−1-inner product and all observables are Hermitian with respect to this
inner product, one can simply select the η−1-inner product for their Hilbert space.

2.4. Time-Evolution

The time dependence of states that belong to the Hilbert space H can be calculated
using the time-dependent Schrödinger equation, which implies that

|ψ(t)〉 = e−
i
h̄ Ht|ψ(0)〉 (22)

for a given initial state |ψ(0)〉. However, the associated states |ψ̃〉, which are shown in
Figure 1 and belong to the Hilbert space H∗, evolve with the Hermitian conjugate of H
such that

|ψ̃(t)〉 = e−
i
h̄ H†t|ψ̃(0)〉 (23)

for a given initial associated state |ψ̃(0)〉. In contrast to conventional Hermitian quantum
physics, states do not all evolve according to the same Hamiltonian. Again, the two
Hilbert spacesH andH∗ differ solely by their inner products since both contain the same
vector space.

Figure 1. A schematic diagram of a biorthogonal system. If a state |ψ〉 ∈ H then it evolves with H
and its associated state |ψ̃〉 ∈ H∗ evolves with H†.

Looking at the basis states, the initial state |ψ(0)〉 = |αn〉 evolves into the state

|ψ(t)〉 = e−
i
h̄ Ent|αn〉 (24)
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because the states |αn〉 are eigenstates of H with eigenvalues En. Using Equations (14)
and (17) one can show that the state |βn〉 is an eigenstate of H† with the same eigenvalue,
En, as its orthogonal partner |αn〉. Therefore, the initial state |ψ̃(0)〉 = |βn〉 evolves into

|ψ̃(t)〉 = e−
i
h̄ Ent|βn〉 . (25)

Thus, |αn〉 and |βn〉 evolve identically. Nevertheless, orthogonal states under the inner
product ofH are, in general, not orthogonal under the inner product ofH∗ and vice versa.
Hence, evolving states unitarily requires that the states inH and inH∗ experience different
Hamiltonians.

3. A Local Non-Hermitian Description of the Quantised EM Field

Writing the electric and magnetic field observables in terms of local (x-dependent)
ladder operators as

E(x) = ∑
s,λ

√
h̄c

2εA Asλ(x) eλ + H.c. ,

B(x) = ∑
s,λ

s
c

√
h̄c

2εA Asλ(x) ex × eλ + H.c. ,
(26)

the above expressions are consistent with the standard momentum-space field observables
given in Equation (7) when the annihilation operators Asλ(x) are given by

Asλ(x) =
∫ ∞

0
dk

√
k

2π
eiskx asλ(k) . (27)

Using Equation (4), we find that the above annihilation operator commutes with itself
for any s, λ and x, as does its Hermitian conjugate. However, the commutator between
annihilation and creation operators is non-zero and equals[

Asλ(x), A†
s′λ′(x′)

]
= δss′δλλ′

1
2π

∫ ∞

0
dk k eisk(x−x′) . (28)

This commutator is not locally bosonic; that is, it is not proportional to δ(x− x′). As such,
the argument in Equation (6) does not apply, and the single-excitation states A†

sλ(x)|0〉 and
A†

sλ(x′)|0〉 are not pairwise orthogonal. This means that we cannot interpret A†
sλ(x) as the

creation operator for a single excitation localised at x.

3.1. Orthogonal Local Field Excitation States

At this point, we will deviate from the standard description of quantum electrody-
namics [2] in order to produce annihilation operators for field excitations that are locally
bosonic. As in our earlier papers [1,12,13], we suppose that the allowed range of frequen-
cies k is extended to include all real values encompassing the negative frequencies as well
as the positive ones, while Equations (26)–(28) remain valid up to a change of the lower
integral limit in Equations (27) and (28) to negative infinity. In addition, we replace k in
Equations (27) and (28) by |k|. In other words, we replace the operators Asλ(x) in
Equation (27) by two new operators, namely

Asλ(x) =
∫ ∞
−∞ dk

√
|k|
2π eiskx asλ(k) ,

Abio
sλ (x) =

∫ ∞
−∞ dk

√
1

2π|k| eiskx asλ(k) .
(29)

When we calculate the commutator relations for these operators, with the help of
Equation (4), we now find that[

Abio
sλ (x), A†

s′λ′(x′)
]
= δss′δλλ′δ(x− x′) , (30)
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which is different from Equation (28). Therefore, A†
sλ(x) can be considered to be a bosonic

creation operator while Abio
sλ (x) is the corresponding annihilation operator. Clearly Abio

sλ (x)
is not the Hermitian conjugate of A†

sλ(x). Usually, this would be a problem; however, if the
single-photon state Abio †

sλ (x)|0〉 is the associated state of A†
sλ(x)|0〉, we obtain a biorthogonal

system in which the A†
sλ(x) states are locally bosonic.

In other words, we need to alter the conventional inner product of quantum physics.
In the following, we therefore identify an inner product such that the annihilation operator
corresponding to the creation operator A†

sλ(x) is indeed Abio
sλ (x). However, before proceed-

ing, there are a couple of points that we must be aware of. Firstly, by taking the Hermitian
conjugate of Equation (30) we find that[

Asλ(x), Abio †
s′λ′ (x′)

]
= δss′δλλ′δ(x− x′) . (31)

Therefore the states generated by Abio †
sλ (x) are locally bosonic when their annihilation

operators are given by the Asλ(x) operators. This means that we now have two distinct
pairs of locally commuting Fock operators: we have the {Abio †

sλ (x), Asλ(x)} pair, and we
also have the {A†

sλ(x), Abio
sλ (x)} pair. Because the EM field observables in Equation (26) are

a linear sum of Asλ(x) and A†
sλ(x), the field observables are expressed in terms of creation

and annihilation operators that do not belong to the same pair of Fock operators. This must
be taken into account when we construct the corresponding Hamiltonians H and H† of the
quantised EM field in the position representation.

Secondly, we need an inner product under which the field excitations are locally
bosonic. It is important that the introduction of such an inner product does not spoil
the orthogonality of the monochromatic photons, thereby causing previously normalised
states to be non-normalisable. Taking care that this is not the case and preserving the
orthogonality of the monochromatic states is important because it allows us, for example,
to construct coherent states of the EM field that oscillate like classical sinusoidal waves. In
the following, we therefore adjust the standard inner product accordingly. To proceed we
define a single local and a single bio-local excitation state, respectively, as

|1sλ(x)〉 = A†
sλ(x) |0〉 ,

|1sλ(x)〉bio = Abio †
sλ (x) |0〉 .

(32)

In order to utilise the bosonic commutation relations in Equations (30) and (31), when
analysing the dynamics of expectation values we require that the above states be pairwise
orthonormal. However, under the standard inner product

〈|1sλ(x)〉 , |1sλ(x′)〉〉 6= δ(x− x′) ,

〈|1sλ(x)〉bio , |1sλ(x′)〉bio〉 6= δ(x− x′) .
(33)

To address this, using the commutator in Equation (30) one can show that for every state
|1sλ(x)〉 there is a state |1sλ(x′)〉bio such that

〈|1sλ(x′)〉bio , |1sλ(x)〉〉 = δ(x− x′) . (34)

Therefore, it would be useful to identify the EM field in the following with a biorthogonal
system where |1sλ(x)〉bio is the associated state of |1sλ(x)〉. Likewise, for every |1sλ(x)〉bio

there is a state |1sλ(x′)〉 such that

〈|1sλ(x′)〉 , |1sλ(x)〉bio〉 = δ(x− x′) . (35)

To provide a connection with the previous section, we may initially try to define
appropriate η and η−1 operators. As shown in Appendix A, these are given by [26]
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η = ∑
s,λ

∫ ∞
−∞ dx |1sλ(x)〉bio 〈1sλ(x)|bio ,

η−1 = ∑
s,λ

∫ ∞
−∞ dx |1sλ(x)〉 〈1sλ(x)| .

(36)

With these operators, we can define an η and an η−1 inner product by

〈|ψ〉 , |φ〉〉η = 〈φ| η |ψ〉 ,

〈|ψ〉 , |φ〉〉η
−1

= 〈φ| η−1 |ψ〉
(37)

from which it follows that

〈|1sλ(x′)〉 , |1sλ(x)〉〉η = 〈|1sλ(x′)〉bio , |1sλ(x)〉bio〉
η−1

= δ(x− x′) . (38)

Now, the local and bio-local states are pairwise orthonormal with respect to the η and
the η−1 inner product respectively. Unfortunately, neither of the above inner products is
satisfactory for our purposes because if we, for example, apply them to photon states and
bio-local states we find that

〈|1sλ(k′)〉 , |1sλ(k)〉〉η
−1
6= δ(k− k′) ,

〈|1sλ(x′)〉bio , |1sλ(x)〉bio〉
η
6= δ(x− x′) .

(39)

3.2. A Generalised Inner Product

What we want is an inner product where the local, bio-local and monochromatic
photon states are all pairwise orthonormal. Therefore, we shall next describe a more
suitable and general way of defining the biorthogonal conjugate of a given state vector. To
achieve this, we first replace

√
|k| in Equation (29) with a general (real) function f (k). This

means we replace Asλ(x) and Abio
sλ (x) by the two operators

Asλ(x) =
∫ ∞
−∞ dk f (k)√

2π
eiskx asλ(k) ,

Abio
sλ (x) =

∫ ∞
−∞ dk 1

f (k)
√

2π
eiskx asλ(k) .

(40)

Here, f (k) should be chosen such that

a†
sλ(k) =

∫ ∞

−∞
dx

1
f (k)
√

2π
e−iskx A†

sλ(x) , (41)

since this gives the correct commutation relation, leading to Equation (35). In the following
we refer to f (k), similarly to Ref. [10], as the Fourier weight function and demand that the
A†

sλ(x) operators generate local excitations.
Consider now a state |ψ〉 where

|ψ〉 = ∑s,λ
∫ ∞
−∞ dx ψsλ(x)A†

sλ(x)|0〉 ,

|ψ〉bio = ∑s,λ
∫ ∞
−∞ dx ψsλ(x)Abio †

sλ (x)|0〉 .
(42)

Here, |ψ〉bio is the associated state of |ψ〉. Let S be an operator that inverts any Fourier
weight terms contained within any state it acts upon. One can then see that S maps |ψ〉 to
an associated state |ψ〉bio = S(|ψ〉). S is also its own inverse since S(|ψ〉bio) = |ψ〉. For a
momentum state, i.e., a state with

|ψ〉 = ∑
s,λ

∫ ∞

−∞
dk ψsλ(k)a†

sλ(k)|0〉 (43)
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we have S(|ψ〉) = |ψ〉, since

S
(
a†

sλ(k) |0〉
)

= S
(∫ ∞
−∞ dx f (k)√

2π
eiskx A† bio

sλ (x) |0〉
)

=
∫ ∞
−∞ dx 1

f (k)
√

2π
eiskx A†

sλ(x) |0〉
= a†

sλ(k) |0〉 .

(44)

In momentum space, all states are equal to their associated states. We therefore refer to
them as photonic states.

For a given f (k), let us define an inner product such that

〈|ψ〉 , |φ〉〉bio = S(〈φ|) |ψ〉 . (45)

Under this inner product,

〈|1sλ(k′)〉 , |1sλ(k)〉〉bio = δ(k− k′) ,

〈A†
sλ(x) |0〉 , A†

sλ(x) |0〉〉bio
= δ(x− x′)

〈A† bio
sλ (x) |0〉 , A† bio

sλ (x) |0〉〉bio
= δ(x− x′) .

(46)

Using the above generalised inner product, the photon as well as the local and the bio-
local states all form pairwise orthogonal sets. We therefore use this generalised inner
product in the following to model the quantised EM field. The biorthogonal conjugate, or
bio-conjugate, Obio of an operator O can now be defined as the operator that satisfies

〈|ψ〉, Obio †|φ〉〉bio = 〈O|ψ〉, |φ〉〉bio . (47)

To calculate the biorthogonal conjugate Obio of an operator O that depends on f (k), we
must replace f (k) with its reciprocal, 1/ f (k).

If we are aiming for a description of the quantised EM field in which the local electric
and magnetic field operators E(x) and B(x) each obey bosonic commutator relations,
the Fourier weight function of the operators Asλ(x) and Abio

sλ (x) in Equation (40) of field
excitations needs to be

f (k) =
√
|k| (48)

which again turns these operators into the Asλ(x) and Abio
sλ (x) operators in Equation (29).

However, how we use these operators has now changed. States with the above weight
function are localised in the sense that the corresponding field excitations generate local
electric and magnetic field expectation values. Later on in Section 4, we will have a closer
look at alternative definitions of local EM field annihilation and creation operators which
are bosonic with respect to the conventional inner product of quantum physics and will
pay more attention to the physical interpretations of the above operators.

3.3. Time Evolution in the Biorthogonal Representation of the EM Field

As shown in our earlier work [1,12,13], in this new biorthogonal description of the EM
field, the free-space Hamiltonian H that generates the dynamics of light is

H = ∑
s,λ

∫ ∞

−∞
dk h̄ck a†

sλ(k)asλ(k) . (49)

Notice that this Hamiltonian no longer coincides with the energy observable Heng of the
EM field. For example, despite the a†

sλ(−k) |0〉 being a negative-frequency state, i.e., an
eigenstate of the Hamiltonian H with a negative eigenvalue, it still has a well-defined
positive energy expectation value. This is so because when we substitute the EM field
observables into the classical energy observable in Equation (3), we obtain the positive
operator [1,12]
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Heng = ∑
s,λ

∫ ∞

−∞
dk

h̄c|k|
2

(asλ(k) + H.c.)2 . (50)

When we restrict the Hilbert space of the EM field again to positive-frequency states, H
and Heng coincide perfectly, as they do in the standard description of the EM field [2]. Here
the negative-frequency photons have been added, since they ensure for example that wave
packets of any shape can travel at the speed of light in one direction, i.e., without dispersion.

However, before we can study the dynamics of electric and magnetic field expecta-
tion values, we must first examine how the dynamics of this system differs from both
a conventional quantum system and a typical biorthogonal system. To ensure that our
time-evolution operators U(t) are unitary under the generalised inner product, we require
the inner product between states in the Schrödinger picture to be constant in time. Given
two states |ψ0〉 and |φ0〉 at a time t = 0, we require that

〈U(t) |ψ0〉 , U(t) |φ0〉〉bio = 〈|ψ0〉 , |φ0〉〉bio (51)

which implies that Ubio †(t)U(t) = I d and is true when

Hbio † = H . (52)

In the following, we only consider Hamiltonians that satisfy this relation and refer to them
as bio-Hermitian. Taking the Hermitian conjugate of each side of the above equation gives
us Hbio = H†. Hence the bio-conjugate of a bio-Hermitian Hamiltonian is equal to its
Hermitian conjugate and Hbio and H† can be used interchangeably.

Fortunately, the condition in Equation (52) holds for the field Hamiltonian H in
Equation (49) which generates the dynamics of free photons. This is not surprising, since
local and non-local photons all propagate alike. Because wave packets of any shape all
propagate at the same speed c, the Hamiltonian does not depend on the particular choice
of f (k) that defines a local excitation. For a proof that H equals its biorthogonal conjugate,
see Appendix B.

3.3.1. The Dynamics of States

According to biorthogonal quantum physics, the EM field states inH evolve with H
and states inH∗ evolve with H† = Hbio [16]. The general solutions of the corresponding
Schrödinger equations can be found in Equations (22) and (23). Next we therefore need to
decide whether a state belongs toH or toH∗. Before we do, however, we point out thatH
andH∗ are both equipped with the same inner product and so can be thought of as part of
a larger Hilbert space H∪H∗. The key distinction between the two Hilbert space is the
dynamics of their states.

In the following, H \H∗ denotes the space spanned by the Fock states that are gen-
erated by acting the local creation operators A†

sλ(x) in Equation (29) on the vacuum state.
Similarly,H∗ \ H is spanned by the Fock states that are generated by acting the bio-local
creation operators A† bio

sλ (x) in Equation (29) on the vacuum state. Clearly, for every state in
H its bio-conjugate state is in H∗ and vice versa. Lastly, H∩H∗ contains the Fock space
spanned by the Fock states that are generated by acting monochromatic photon creation
operators, a†

sλ(k), on the vacuum state, since any monochromatic photon Fock state is its
own bio-conjugate (see Figure 2). An immediate question that arises, then, is whether it
matters if a photonic state is evolved using H or Hbio. The answer is yes, but to understand
why this is the case, we need to look at how operators evolve in time.
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Figure 2. A schematic diagram of our EM system. In contrast to the previous figure, the intersection
between the Hilbert space of states and its bio-conjugate space is non-empty. Shown above are the
number states ofH∗,H∩H∗ andH. Those states contained inH∩H∗ are normalisable under either
inner product.

3.3.2. The Dynamics of Operators

To identify if a state evolves according to H or Hbio in the Schrödinger picture, we look
at whether the state is contained inH orH∗. Similarly, to identify if an operator evolves
using H or Hbio in the Heisenberg picture, we look at whether it acts on H or H∗. This
identification is perhaps easier to see in our system where we use Fock state operators to
construct our operators and states. For example, because A†

sλ(x) |0〉 evolves using H in the
Schrödinger picture, both it and its corresponding annihilation operator, Abio

sλ (x), should
evolve with respect to H in the Heisenberg picture. Likewise, because A†bio

sλ (x) |0〉 evolves
using Hbio in the Schrödinger picture, then both it and its corresponding annihilation
operator should evolve with respect to Hbio in the Heisenberg picture.

For example, suppose an operator B is of the form B = ∑i Bi, where for each i, Bi is a
map from either H → H or from H∗ → H∗. If Bi maps states from H to H, we use H to
generate its dynamics in the Heisenberg equation and

d
dt

Bi(t) = −
i
h̄
[Bi(t), H] (53)

with Bi(t) = U†bio(t)BiU(t). Conversely, if it maps states from H∗ to H∗ we use Hbio to
generate its dynamics in the Heisenberg equation

d
dt

Bi(t) = −
i
h̄

[
Bi(t), Hbio

]
(54)

with Bi(t) = U†(t)BiUbio(t). This means that the local Fock operators, Abio
sλ (x) and A†

sλ(x),
evolve according to Equation (53), and the bio local Fock operators, Asλ(x) and A†bio

sλ (x),
evolve according to Equation (54). If Bi = Bbio

i , such as is the case with the asλ(k) and a†
sλ(k)

operators, then either H or Hbio can be used to generate their dynamics.

3.3.3. The Dynamics of Expectation Values

When calculating the time-dependent expectation values of an operator, it should not
matter whether the expectation value is calculated in the Schrödinger picture or in the
Heisenberg picture. The same applies to the biorthogonal system that we consider here. For
example, if we have an operator B : H → H and a state |ψ〉 ∈ H then the corresponding
expectation value is

〈B |ψ(t)〉 , |ψ(t)〉〉bio = bio〈ψ(t)|B|ψ(t)〉

= bio〈ψ|U†bio(t)BU(t)|ψ〉

= bio〈ψ|B(t)|ψ〉

= 〈B(t) |ψ〉 , |ψ〉〉bio

(55)
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where B(t) satisfies Equation (53). Similarly one can show that if we have an operator
B : H∗ → H∗ and a state |φ〉 ∈ H∗ then

〈B |φ(t)〉 , |φ(t)〉〉bio = bio〈φ(t)|B|φ(t)〉

= bio〈φ|U†(t)BUbio(t)|φ〉

= bio〈φ|B(t)|φ〉

= 〈B(t) |φ〉 , |φ〉〉bio

(56)

where B(t) satisfies Equation (54). Therefore, expectation values can only be valid if the
Schrödinger and Heisenberg pictures agree.

If we have an operator that satisfies B = Bbio and a photonic state with |ψ〉bio = |ψ〉,
using either H or Hbio leads to the same real expectation value with respect to the gener-
alised inner product so long as B is bio-Hermitian. This is so because

〈BU(t) |ψ〉 , U(t) |ψ〉〉bio = 〈ψ|U† bio(t)BU(t) |ψ〉

= (〈ψ|U† bio(t)BU(t) |ψ〉)∗

= 〈ψ|U†(t)BUbio(t) |ψ〉

= 〈BUbio(t) |ψ〉, Ubio(t) |ψ〉〉bio
.

(57)

In the second line we have used the property that the expectation value is real and is
therefore equal to its complex conjugate, which is denoted by the asterisk. In the third line
we have used the property that B is Hermitian, since it is both bio-Hermitian and its own
bio-conjugate.

There are certain operators, however, such as the electric and magnetic field observables,
that contain operators acting on bothH andH∗. As can be seen from Equations (26) and (29),
we need to use both H and Hbio to determine the time evolution of the expectation value of
such an operator. As an example, suppose we have the Hermitian, but not bio-Hermitian,
operator A = Asλ(x) + A†

sλ(x). This operator evolves in the Heisenberg picture as

A(t) = U†(t)Asλ(x)Ubio(t) + U†bio(t)A†
sλ(x)U(t) (58)

and so remains Hermitian as time passes, since A(t) = A†(t). The corresponding expecta-
tion value of this operator with respect to a photonic state |ψ〉 = |ψ〉bio is the real quantity

〈A(t) |ψ〉 , |ψ〉〉bio = 〈Asλ(x)Ubio(t) |ψ〉 , Ubio(t) |ψ〉〉bio
+ 〈A†

sλ(x)U(t) |ψ〉 , U(t) |ψ〉〉bio

= 〈ψ|A(t)|ψ〉
(59)

and is a valid expectation value because photonic states evolve in the same way when
using either H or Hbio. The last line is simply the expectation value of a Hermitian operator
in the standard inner product, which is real. However, within this expectation value in the
Schrödinger picture, the photonic state still has to evolve with the form of the Hamiltonian
such that the expectation value agrees with the Heisenberg-picture expectation value. This
is why the states in the first line above evolve with Hbio but the states in the second line
evolve with H. Again, just because a photonic state can evolve with either H or Hbio when
considered by itself, it does not mean that within an expectation value it can evolve with
either. It has to evolve such that it agrees with the Heisenberg picture; otherwise, the
expectation value is not valid.

However, we cannot calculate the time-dependent expectation value of A with respect
to non-photonic states, because these states evolve using only H or only Hbio. The corre-
sponding expectation values in the Heisenberg and Schrödinger pictures would therefore
not be in agreement.
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4. The Connection With Hermitian Descriptions
4.1. Local Bosonic Excitations

The standard approach to EM field quantisation is to work with the momentum
eigenstates. Due to the uncertainty principle, these states are necessarily completely
delocalised and can be thought of as waves that fill the volume under consideration, as in
Figure 3a. Attempts to define a local excitation in this approach run into problems. While
it is possible to produce an instantaneously localised field configuration with a suitable
Fourier sum at a time t = 0, this configuration spreads infinitely quickly for all times t 6= 0.
That is, attempts to produce local excitations in the standard approach lead to apparent
superluminal propagation. However, in a recent paper [1], we showed that it is possible to
introduce local excitations by allowing for both positive-frequency and negative-frequency
states, with

asλ(x) =
1√
2π

∫ ∞

−∞
dk eiskx asλ(k) . (60)

These asλ(x) operators satisfy the commutation relation

[asλ(x), a†
s′λ′(x′)] = δss′δλλ′δ(x− x′) (61)

meaning they are locally bosonic under the conventional inner product. For this reason,
we named these excitations blips (boson localised in position). The defining equation of
motion for these blip operators guarantees propagation at the speed of light.

We have successfully utilised these blips to quantise the EM field in position space [1]
and construct locally acting mirror Hamiltonians [12]. For the latter, we showed that it is
possible to construct a mirror Hamiltonian that reproduces the classical mirror image effect
for the local operators asλ(x). This Hamiltonian was a significant find because, until that
point, no locally acting mirror Hamiltonian for the EM field had been derived, and there
is much interest in this topic in the literature [29–33]. Thus, there are certain situations
in which blips provide a more physically intuitive description for modelling light-matter
interactions compared to monochromatic photons.

Blips act on a Hilbert space of the same dimensions as that on which the operators
Asλ(x) act. In both cases, creation operators generate excitations that are characterised by
a position x, a direction of propagation s and a polarisation λ. Furthermore, because the
pairs of Fock operators {Abio

sλ (x), A†
sλ(x)} and {asλ(x), a†

sλ(x)} have the same commutation
relations there is a one-to-one correspondence between the two. Therefore, either can be
used as a representation of the local excitations of the EM field.

In the context of the generalised inner product we have utilised so far, this corre-
spondence can be emphasised by pointing out that the conventional inner product can be
thought of as a specific example of the generalised inner product in which blips are the
bio-conjugate of themselves. As a consequence of this, for any operator O we find that
Obio = O in both the position and momentum representations. Furthermore, this means
that all states evolve alike according to a single time-evolution operator U(t) = Ubio(t).
This implies, therefore, that if we view the A†

sλ(x) states as being localised and evolving ac-
cording to a bio-Hermitian Hamiltonian, then we can also view an a†

sλ(x) as being localised
and reproduce the exact same dynamics using a Hermitian rather than bio-Hermitian
Hamiltonian. Since only a subset of Hermitian operators are also bio-Hermitian, however,
these two Hamiltonians are in general not the same.

In Section 3.2, we noted that the dynamical Hamiltonian is both Hermitian and bio-
Hermitian, even when using the generalised inner product. That is to say that Hbio † =
H = H†; see Appendix B for more information. Such a Hamiltonian generates unitary
dynamics under the conventional and generalised inner products, and imparts the exact
same dynamics on both the A†

sλ(x) and a†
sλ(x) operators:

U†(t)asλ(x)U(t) = asλ(x− sct) ,

U† bio(t)Asλ(x)U(t) = Asλ(x− sct) .
(62)
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Of course here U† bio(t) = U†(t), but for a more general Hamiltonian this may not be true,
and we would no longer see an equivalence in the dynamics of the fields and the blips when
we have only a single Hamiltonian as we do above. For more information, see Appendix C.
From the above equations, both the blips and local field modes therefore propagate at the
speed of light along the x-axis in the direction specified by the parameter s.

Although both of these excitations can be interpreted as local excitations under a
suitable inner product, and identical unitary dynamics can be generated for both states,
there are pros and cons to both descriptions. In the blip description, because all states are
the bio-conjugate of themselves there is only one pair of locally bosonic Fock operators,
as opposed to two pairs in the generalised scheme. This is because there is a single
representation for a localised state. Furthermore, again because all states are equal to their
bio-conjugate states, all states evolve according to the same Hamiltonian, meaning that the
Schrödinger and Heisenberg pictures are always in agreement.

(a) (b)

(c) (d)

Figure 3. Comparing the locality of different descriptions. In (a), momentum states are completely
delocalised, with local excitations leading to superluminal propagation. In (b), a single blip allows
for a local excitation that travels at c. However, if we choose the excitation to be local, then the fields
associated with the excitation are not completely localised. In order to localise the field, we must
superpose a non-local set of blips, as in (c). Since each blip travels at c, the resulting field configuration
also travels travels at c. In (d), we localise both the excitation and the field by introducing a non-
standard scalar product. This requires us to keep track of both the state and the conjugate state, since
these in principle now evolve differently.

4.2. Field Observables

Using the blip operators as defined above, we previously showed in [1] that the EM
field observables, Equation (7), can be expressed in the form

E(x) = ∑
s,λ

√
h̄c

2εA R(asλ(x)) eλ + H.c. ,

B(x) = ∑
s,λ

s
c

√
h̄c

2εA R(asλ(x)) ex × eλ + H.c.
(63)

whereR is a superoperator such that

R(asλ(k)) =
√
|k| asλ(k) . (64)
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The nature of the superoperatorR is to smear out the field around the blip. That is, while
the blip exists at a single point in space, the field associated with that blip is spread out,
with a maximum expectation value at the location of the blip, as in Figure 3b. As a result,
the commutation relations for the fields are not standard bosonic relations and have a
non-zero overlap at non-zero displacements. We can interpret this in one of two ways.
Firstly, we can consider the field fundamental, and think of the blips as the mean position of
field excitations. Alternatively, we can consider the blips the fundamental entities and think
of them as “carrying” around a non-local field. It is possible to localise the fields in the
blip approach, but this requires the introduction of a non-local set of blips, as in Figure 3c.
If we were to insist that both the excitations and their associated fields simultaneously
obey bosonic relations, we require that the field observables are directly proportional to the
ladder operators. This can only be achieved with a non-standard scalar product. Here we
see the difference in approach. The standard approach would be to attempt to localise the
fields, which leads to problems. The blip approach localises the underlying “field carriers”,
which requires that the fields themselves become delocalised. Finally, the non-Hermitian
approach localises both the fields and the underlying excitations, at the expense of the
standard inner product. In this approach, we must consider both the state and the conjugate
state, as in Figure 3d, since their evolution is distinct.

On first inspection, this seems to suggest that the non-Hermitian formalism is superior.
However, it should be noted that each approach introduces additional subtleties, and that
both contain aspects of non-locality. For example, in the case of an optical cavity, the
non-local field associated with a blip has a non-trivial interaction with the cavity walls
even when the blip is not at the boundary. Indeed, we have shown in Ref. [13] that it is this
non-local interaction that leads to the Casimir effect in this formalism. If we were to use
the non-Hermitian formalism to model the same optical cavity, we would first need to find
the appropriate scalar product for the cavity. In general, the appropriate scalar product
would be dependent on the boundary conditions of the system under consideration. That
is, while individual calculations in the non-Hermitian approach may appear truly localised,
non-local effects have already been introduced in modelling the particular situation.

The reality is that the two approaches are equivalent, with each a re-framing of the
other. Since only matrix elements are measurable, we can use the differing inner products
to transform from one formalism to the other, as we saw in Equation (59). Thus, we really
have two parametrisations of the same formalism. In one, we can simplify calculations by
using the fact that all commutation relations are bosonic, and in the other we can simplify
calculations by using the fact that the scalar product is the standard product and states
are their own conjugates. Which approach works best will undoubtedly depend on the
particular scenario to be modelled.

5. Conclusions

This paper has shown how to model the EM field using a non-Hermitian approach
that utilises biorthogonal physics and negative wavenumbers. A key finding was that we
represented the EM field as a biorthogonal system with a non-zero intersection between
its Hilbert space and bio-conjugate Hilbert space. Consequently, the EM field observables
at a point x were a linear sum of a Fock bosonic creation operator, A†

sλ(x), and a Fock
bosonic annihilation operator, Asλ(x), that did not belong to the same creation-annihilation
pair. This had implications for calculations; for example, A†

sλ(x) evolved using H in the
Heisenberg equation whereas Asλ(x) evolved using H†, where H need not be equal to
H†. In contrast, for an expectation value with a photonic operator and with a photonic
state, either H or H† can generate dynamics because they lead to the same expectation
value. Within this system, we used an inner product under which the EM field observables
were not Hermitian. However, for this inner product, we showed how these observables
still gave real expectation values for certain states, including photon coherent states and
normalised monochromatic photon states.
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To the best of our knowledge, there is nothing in the literature concerning mathematical
structures of the form in Figure 2, where we have a biorthogonal system with a non-zero
intersection between its Hilbert space and bio-conjugate Hilbert space. In this paper, we
showed how to use such a biorthogonal system to model the EM field. This paper is
not, however, a paper on the general properties of a biorthogonal system with a non-
zero intersection between its Hilbert and bio-conjugate Hilbert spaces. We leave this to
the mathematical physicists to explore. Nevertheless, we expect authors to find interest
in our work: for example, in the quantum optics community where spatial properties
of light are concerned [34–36], as this will help aid our understanding in light-matter
interactions [37,38]; in quantum information, where researchers are increasingly utilising
various modes of the EM field [39–41]; in the non-Hermitian community, where researchers
are applying non-Hermitian and, in particular, biorthogonal quantum mechanics to physical
systems [11,16,27,28,42].
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Appendix A. Calculation of ηη−1

By using the definitions of η and η−1 given in Equation (36) we can calculate

ηη−1 = ∑
s,λ

∫ ∞
−∞ dx |1sλ(x)〉bio 〈1sλ(x)|bio ∑

s′ ,λ′

∫ ∞
−∞ dx′ |1s′λ′(x′)〉 〈1s′λ′(x′)|

= ∑
s,λ

∑
s′ ,λ′

∫ ∞
−∞ dx

∫ ∞
−∞ dx′δss′δλλ′δ(x− x′) |1sλ(x)〉bio 〈1s′λ′(x′)|

= ∑
s,λ

∫ ∞
−∞ dx A† bio

sλ (x) |0〉 〈0| Asλ(x)

= ∑
s,λ

∫ ∞
−∞ dk

∫ ∞
−∞ dk′

√
|k′ |
|k|

(
1

2π

∫ ∞
−∞ dx e−isx(k−k′)

)
a†

sλ(k) |0〉 〈0| asλ(k′)

= ∑
s,λ

∫ ∞
−∞ dk

∫ ∞
−∞ dk′

√
|k′ |
|k| δ(k− k′) |1sλ(k)〉 〈1sλ(k′)|

= ∑
s,λ

∫ ∞
−∞ dk |1sλ(k)〉 〈1sλ(k)| .

(A1)

Therefore, ηη−1 behaves as an identity operator for single excitation states.

Appendix B. Different Representations of the Free Space Hamiltonian

Using Equation (29), the monochromatic photon operators can be represented in terms
of the local and bio-local operators as follows

a†
sλ(k) =

∫ ∞

−∞
dx

√
|k|
2π

eiskx A† bio
sλ (x) =

∫ ∞

−∞
dx

√
1

2π|k| eiskx A†
sλ(x) . (A2)
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We can therefore write the free space Hamiltonian in the following representations

H f ree = ∑
s,λ

∫ ∞
−∞ dk h̄ck a†

sλ(k)asλ(k)

= ∑
s,λ

h̄c
∫ ∞
−∞ dx

∫ ∞
−∞ dx′ G(x− x′)A† bio

sλ (x)Asλ(x′)

= ∑
s,λ

h̄c
∫ ∞
−∞ dx

∫ ∞
−∞ dx′ G(x− x′)A†

sλ(x)Abio
sλ (x′)

(A3)

where
G(y) =

1
2π

∫ ∞

−∞
dk keisky = −is

d
dy

δ(y) (A4)

which is independent of f (k) =
√

k. Therefore, the free-space Hamiltonian is both bio-
Hermitian and Hermitian, i.e., H† bio = H† = H.

Appendix C. Equation (62) Is Not True in General

To see why Equation (62) is not true in general, we choose an H1 such that at some
time t1

U†
1 (t1) a†

sλ(x)U1(t1) = b1 a†
sλ(x, t1) + b2 asλ(x, t1) (A5)

where b1 and b2 are chosen such that b1, b2 > 0 and |b1|2 − |b2|2 = 1. Taking the one-to-one
correspondence a†

sλ(x)→ A†
sλ(x) and asλ(x)→ Abio

sλ (x) in the above equation we have

U†bio
2 (t1) A†

sλ(x)U2(t1) = b1 A†
sλ(x, t1) + b2 Abio

sλ (x, t1) . (A6)

We therefore have

R
(
U†

1 (t1) a†
sλ(x)U1(t1)

)
= b1 A†

sλ(x, t1) + b2 Asλ(x, t1)

6= U†bio
2 (t1) A†

sλ(x)U2(t1) .
(A7)
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