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1. Introduction

Graph matching aims to establish the correspondence between two or more

graphs based on their structural information [1]. It is widely used in combi-

natorial optimization, machine learning and computer vision due to its natural

representation and convenient coding of the relationship between abstract data.5

Specifically, many applications can be implemented using the graph matching

technique, such as image registration in medical image analysis [2], linking user

accounts in social network analysis [3], image extrapolation in computer vi-

sion [4], finding coherent motions and semantic regions in crowd scenes [5].

There are many methods and matching solvers developed for addressing the10

graph matching problem [6, 7]. These can be divided into different categories

depending on the specific perspectives adopted. For example, based on the

number of graphs included, there are graph-to-graph matching and multi-graph

matching methods [8]. Since graph-to-graph matching is the basis of multi-

graph matching, improving the matching ability between two graphs can also15

be extended to improve multi-graph matching. Therefore, this paper focuses

on the matching of pairs of graphs. Based on matching content, they can be

divided into a) structure information based graph matching and b) semantic

information based graph matching [9]. Note that in graph matching, especially

for image-generated graphs, semantic features based on structural information20

have been proved to be important for classifying nodes [10]. In this way, the

graph matching problems studied in this paper are based on both node feature

information and structural information from the graphs. On the other hand,

graph matching methods can also be divided into a) learning-based methods

and b) learning-free methods [11]. Notably, learning-free methods generally25

seek approximate solutions for a given fixed affinity model, which is usually

cast in the form of simple parameters and is approximately solved by the joint

similarity of individual entities together with their mutual relationships [12].

However, their time complexity is often too high to satisfy and solve large-scale
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real-world problems.30

In the case of deep learning-based graph matching solvers, the common fea-

ture of most methods is that they compromise in their evidence combining strat-

egy in the sense that the resulting unclear combinatorial element would not be

competitive in a purely combinatorial setup [13]. However, these methods can

only calculate the similarity score of the entire graph, and heavily rely on in-35

efficient global matching procedures [14]. Additionally, they only consider the

embedding of local information for nodes in the graph, which tend to ambigu-

ously match similar nodes in different regions of the graph in an inconsistent

manner [15]. Fig. 1 illustrates an example of the main idea of our relative

position-aware information embedding strategy. Here it is shown that it fails40

to match the cats ear positions correctly, since the node embedding informa-

tion usually relies only on node semantic information, and the local structure

information lacks effective discrimination ability. Therefore it is difficult to un-

ambiguously distinguish the left and right ears of a cat. In this example, the

relative position information is critical to graph matching, especially when both45

the semantic and structural information are very similar in the two regions of

the graphs.

Figure 1: An exemplar failure case to establish the correct match of cat ears between two

images, which are selected from the Pascal VOC dataset [16].

To address the above-mentioned challenges, here we propose a novel ap-
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proach to solve the graph matching problem. We commence by utilizing node

features extracted from the images to attribute the nodes, and design a position-50

aware node embedding algorithm to capture the relative position information of

nodes in the graph. We further enhance the representation of local information

of the nodes by merging a structural arrangement information representation of

the subgraph in which the node is located. With the graph node-wise embedding

to hand, we aim to obtain the required graph node permutations for node-to-55

node correspondence from raw pixel inputs. To our best knowledge, there are

no methods that consider embedding both position and structural information

for the graph matching problem.

The main contributions of our works are as follows:

1. Relative position information has not been considered in the existing pro-60

cess of graph matching, which hampers their applications in terms of reducing

the ambiguity of matching accuracy. We propose to construct an anchor set

for small graphs extracted from images, and fully consider the relative position

information related to the matching of key points, which is also proved to be

effective in experiments.65

2. We propose a novel subgraph detection and graph representation method,

and extract subgraph structural arrangement information for improved node

embedding. Previous graph matching studies only match using node level and

edge level information, but ignore the higher-order neighborhood structure in-

formation. Here we introduce subgraph arrangement structure information into70

the graph matching task, by capturing it using the subgraph structure. This

arrangement procedure combines node and edge level information with rela-

tive position information. We can therefore implement a hierarchical and com-

prehensive extraction of image features, which further improves the matching

accuracy.75

3. We demonstrate in our experiments that our method outperforms al-

ternative work on several widely-studied real-world datasets. In the ablation

study, we also show the effectiveness of the introduced components of our new

method of graph matching on these datasets. We show that our position-aware
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node embedding module and subgraph-based structural embedding module can80

be added to existing deep learning graph matching methods, to further boost

their classification performance.

The remainder of the paper is organized as follows: Section 2 provides a

brief review of the related work on image feature extraction, graph embedding,

and combinatorial optimization. Section 3 defines the specific graph matching85

problem that we intend to resolve in this work. Section 4 provides the details of

our method, and the corresponding experiments to validate our new method are

presented in Section 5. Finally, we conclude the paper and provide an extended

discussion of potential future work in Section 6.

2. Related Work90

In this section, we review existing deep learning solvers in dealing with graph

matching problems.

2.1. Image Feature Extraction

Feature extraction refers to the computation of higher-level features from

the original pixels in an image. It can capture the differences between pixels of95

various object classes. Conventional feature extraction usually proceeds in an

unsupervised manner, and no image category labels are used when extracting

information from the pixels. Commonly used traditional features include GIST

(Generalized Search Trees) [17], SIFT (Scale-Invariant Feature Transform) [18],

and LBP (Local Binary Patterns) [19].100

However, these hand-crafted feature extraction methods can not be opti-

mized according to the training from images and their labels. However, they

fail to provide more comprehensive feature information to better represent im-

portant image information. The method based on deep learning overcomes this

shortcoming using a soft-coded feature extractor [20]. Recently, the CNN model105

has been developed and enhanced in detail. For example, Szegedy et al. [21]

significantly increase the depth of the CNN in their GoogleNet with three dif-

ferent types of the convolution operation. He et al. [22] have proposed the
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residual neural network (ResNet) which includes a cross-layer connection that

passes information from the input across deeper layers. It also adds to the re-110

sult of convolution by introducing shortcut connections to solve the problem of

vanishing loss gradient.

In this paper, we use VGG16 [23] to extract the image features as graph

nodes, which is also presently the most widely-used CNN model. It can adapt

to different sizes of the convolutional kernel to capture more discriminative115

decision functions and with fewer parameters. It has been proved effective in

deep visual feature extraction.

2.2. Graph Embedding

At present, most studies related to graph embedding focus on static graphs,

which can be divided into (a) spectral-based and (b) spatially-based methods.120

The earliest graph embedding method provides local convolutions of graph

structure data in the spectral frequency domain. The Fourier transform of the

graph is used to transform the time domain data into a frequency domain signal.

Then the frequency domain signal is convolved with local features. Finally,

the frequency domain signal is transformed back into the time domain [24].125

However, spectral methods can only solve the problem for undirected graphs.

This means it is limited to satisfy the constraint of a symmetric transformation

matrix.

Spatial approaches have an advantage over spectral approaches in that they

can operate on problems where the graph structure varies significantly in the130

dataset being studied [25]. However, they generally require sophisticated data

transformations to enable effective learning. For example, given the strong hy-

pothesis that the existence of node-connected edges are based on sometimes

ad-hoc and contrived or artificial settings, Zhang et al. [26] extracted local sub-

graphs around each target link. They use this to learn the functional mapping135

of subgraph patterns to infer the existence of links, and to automatically learn

heuristic algorithms.
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In this paper, we develop a novel graph embedding method to extract high-

level information combined with the relative position of nodes, which can greatly

assist graph matching.140

2.3. Combinatorial Optimization

Mathematically, the graph matching problem can be considered a combina-

torial optimization problem, which is also an NP-Hard problem. Using mathe-

matical methods to solve graph matching problems can be divided into relax-

ation optimization and matrix decomposition methods [27]. For the spectral145

relaxation optimization method, the computation speed is relatively fast, but

the constraints on the obtained solution are often over relaxed.

With the rise of deep learning, the use of reinforcement learning and neural

networks to solve combinatorial optimization problems has become a topical

trend. The Sinkhorn network [28] can solve the linear assignment problem, by150

performing the doubly stochastic normalization operations of row normalization

and column normalization on all non-negative matrices to minimize the cost.

Furthermore, it is an approximate Hungarian algorithm [29] that can optimize

polynomial complexity. Recently, Patrini et al. [30] proposed a Sinkhorn autoen-

coder to achieve the target of minimizing distance, and utilizing reinforcement155

learning to solve the combinatorial optimization problem. Furthermore, a novel

and simple end-to-end training framework was proposed by Roĺınek et al. [13],

which incorporates the most advanced graph matching combinatorial solver.

In this paper, we develop a novel deep learning method to solve the com-

binatorial optimization problem. It can effectively reduce the dimensionality160

of the quadratic assignment problem for combinatorial optimization to a linear

assignment problem.

3. Problem Definition and Notations

In this paper, we consider the graph G = (V,A,X) which is consist of a finite

set of nodes V , an adjacency matrix A, and a set of attributes X for the nodes,165
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which originate from images using various CNN models [23, 31]. The goal of

graph matching is to establish a correspondence between two attributed graphs,

which minimizes the sum of local and geometric costs of assignment between

the vertices of the two graphs.

Let Gs = (Vs, As, Xs) be a source graph, with |Vs| = n, As ∈ {0, 1}n×n,170

and feature matrix Xs ∈ R
n×F , where F represents the F -dimensional feature

vector of nodes in graph stacked to columns. The target graph to be matched

is Gt = (Vt, At, Xt), with |Vt| = m, At ∈ {0, 1}m×m, and feature matrix Xt ∈

R
m×F , whose w.l.o.g. n ≤ m. We also construct a vector of length nm. The

element v ∈ {0, 1}nm×1 indicates the match of vertices in two graphs, where175

vi,j = 1 if vertex i ∈ Vs is matched to vertex j ∈ Vt and vi,j = 0 if otherwise.

It is worth noting that all the vertex matches are subject to the one-to-one

mapping constraints, i.e.
∑

j∈Vt
vi,j = 1 ∀i ∈ Vs and

∑

i∈Vs
vi,j ≤ 1 ∀j ∈ Vt.

Furthermore, we construct a square symmetric positive matrixM ∈ R
nm×nm

referred to as the affinity matrix, to encode the edge-to-edge affinity between180

two graphs by their off-diagonal elements. Specifically, Mip;jq measures how

well edge (i, j) in graph Gs matches with edge (p, q) in graph Gt with {i! =

p} ∪ {j! = q}. The diagonal entries of the affinity matrix can also indicate

the node-to-node affinity between two graphs. Therefore, the pairwise graph

matching between Gs and Gt can be formulated as the edge-preserving, quadratic185

assignment programming (QAP) [27] problem:

argmax
v

v⊤Mv

s.t.
∑

j∈Vt

vi,j = 1 ∀i ∈ Vs,
∑

i∈Vs

vi,j ≤ 1 ∀j ∈ Vt,
(1)

where v ∈ {0, 1}nm×1 and M ∈ R
nm×nm. In this work, we intend to resolve

the graph matching problem based on the supervised matching of graphs, and

we aim to learn an end-to-end model which can effectively extract graph infor-

mation and match through given pair-wise ground-truth correspondences for a190

set of graphs, and generalize to unseen graph pairs.
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4. Methods

In this section, we provide the details of the proposed end-to-end position-

aware and structure-based graph matching model, with the overall pipeline

shown in Fig. 2. Note that the deep feature extractor of the proposed method195

can be any CNN model, such as VGG16 [23], which is adapted to convert im-

ages into graphs with features. These graphs are the source and target graphs,

which are the paired input of our model.
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Figure 2: Overview of the end-to-end position and structure embedding networks for deep

graph matching. The blue source graph Gs and the green target graph Gt are extracted

with the node-wise graph feature representation at high-level through the two frameworks

of position-aware node embedding and subgraph based structure embedding, which can be

added to the existing deep learning graph matching methods. The graph feature is matched

through matrix product and Sinkhorn function and is compared with the ground truth. The

final output of the model is the matching accuracy of the pair of nodes between the source

graph and the target graph.
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Figure 3: Procedure of Position Embedding.

The model consists of three main components, namely a) a position-aware

node embedding module, b) a subgraph-based structure embedding module,200

and c) a graph feature matching module. The aim of the position-aware node

embedding step, as described in Section 4.1, is to consider the information

available from the relative structure. The second step is to iteratively combine

the subgraph structure information described in Section 4.2, and the final part

is the matching of two graphs with extracted graph representation described in205

Section 4.3.

4.1. Position-aware Node Embedding

We establish our position-aware node embedding procedure with two key

components: First, before the node embedding process, we propose a simple

but effective strategy to construct an anchor-set for each graph which is used210

throughout the entire learning process. Here, we refer to the nodes used as

reference position coordinates as anchors, and the set of these nodes as the

Anchor-set. We aggregate the information of the node and each anchor in the

anchor-set, in this way we replace the original graph embedding method that

relies on message passing between local network neighborhoods. Second, we215

design an information aggregation mechanism for message aggregation between

nodes and anchors in the anchor-set. With the addition of the position-aware

node embedding, we can effectively eliminate the ambiguity-prone mismatching

of similar nodes in different positions.

10



4.1.1. Anchor-set Construction for Small Graph220

The position anchor framework is motivated by PGNN [32] which emphasizes

large graphs (i.e. those consisting of at least thousands of nodes). However, in

this paper, we further study the anchor mechanism and focus on small graphs

constructed from images. Specifically, the anchor-sets first proposed for large

graphs are completely randomly chosen subsets of all nodes from the graph.225

They are intended to sample multiple anchor-sets P = {Pi,j}, where the number

of anchor-sets |P | = log2 |V |, i = 1, 2, ..., log |V |, j = 1, 2, ...c log |V |. Here, |V |

is the number of nodes in the graph and c is a hyper-parameter. Each node

is sampled independently and randomly with a probability of 1/2i. The idea

central to our method is that the anchor-sets can include each node or any of230

its one-hop neighbors. Large anchor sets have low position information with

a large sampling probability. Small anchor sets have high position information

with low sampling probability. The balance of these different sizes of anchor-sets

may lead to efficient embeddings. However, this random sampling operation can

result in the final anchor sets sampling almost all nodes in the graph. The proof235

is as follows:

The sampling probability for each node in the anchor-set Pi,j is 1/2i, and

the number of anchors in each anchor-set Pi,j is

pi =
|V |

2i
∀i ∈ [1, log |V |], (2)

where |V | is the number of nodes in the graph.

Since the number of anchor points pi in the anchor-set Pi,j is only related240

to element i, the construction of anchor-sets P = {Pi,j |(i ∈ [1, log |V |], j ∈

[1, c log |V |])} is actually the repeated construction of anchor-sets P = {Pi,j |(i ∈

[1, log |V |], j = 1)} for c log |V | multiplied by the uniform sampling probabil-

ity for each anchor in each anchor set construction step. Hence, we con-

sider each anchor in a non-repetitive operation, i.e. the anchors in anchor-sets245

P = {Pi|(i ∈ [1, log |V |])}. Therefore, the number of anchors p in the entire set

of anchor-sets P = {Pi|(i ∈ [1, log |V |])} is given by:

11



p =

log|V |
∑

i=1

pi = |V | − 1. (3)

The anchor sets obtained through fair non-repetitive sampling operation con-

tain |V | − 1 anchors for a |V | node graph and the sampling probability for each

anchor is (|V | − 1)/|V |, which tends to unity for large graphs.250

Based on the derivation above, we propose an effective strategy to construct

an anchor set P consisting of all nodes in the graph, denoted by P = V , and

serving as a stable reference for all nodes. According to our central idea in

this paper, when all nodes in a graph become an anchor in an anchor-set, each

node aggregates information with anchors based on a relative position relation.255

This is equivalent to each target node being subject to a relative position-based

attention mechanism based on the global arrangement of nodes in the graph.

4.1.2. Aggregation of Node Embedding

With the anchor-set selected, we continue to compute the position-aware

node embedding through the information aggregation between the nodes, in260

which each anchor cooperates with its relative position attributes. Here, we

first compute the relative position coefficient qv,u between a pair of nodes v and

u as:

qv,u =
e−dv,u

∑

i∈V e−dv,i
, (4)

where dv,u is the shortest path distance between the two nodes. Considering the

time complexity of calculating the shortest path, we stipulate that the maximum265

shortest path distance is not more than r, otherwise, the value is infinite. In

this way, we can effectively eliminate the interference of anchors that are too

far away from the node when the coefficient qv,u equals zero. We define the

information aggregation function I(v, u)(k) for k-th layer between nodes v and

u as:270

I(v, u)(k) = qv,uCONCAT(h(k−1)
v , h(k−1)

u ), (5)

12



where qv,u is the relative position coefficient between node u and v, h
(k−1)
v and

h
(k−1)
u are hidden representations containing the position information in (k−1)-

th layer. The message aggregation function CONCAT concatenates the hidden

representations h
(k−1)
v and h

(k−1)
u .

We further aggregate the information of each pair of nodes and the anchor275

with a non-linear transformation applied after the aggregation to achieve higher

expressive power. The hidden representation passed to the next layer is:

h(k)
v = σ(AGG(I(v, u)(k)| ∀u ∈ V )W (k)), (6)

where AGG is a permutation-invariant function (e.g., the sum), and W (k) is a

learnable weight vector for the k-th layer.

The general position-aware node embedding framework is summarized in280

Algorithm 1.

Algorithm 1: Position-aware node embedding framework.

Input: input original graph G = (V,A,X), anchor-set:S = V , relative

position coefficient q, trainable weight in k-th layer W (k),

network layer k ∈ [1,K]

Output: Position-aware node embedding hp

1 hv = Xv

2 for k ∈ [1,K] do

3 for v ∈ V do

4 I(v, u)(k) = qv,uCONCAT(h
(k−1)
v , h

(k−1)
u )

5 h
(k)
v = σ(AGG(I(v, u)(k))W (k)), ∀u ∈ V

6 end

7 end

8 return h
(K)
v
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4.2. Subgraph-based Structure Embedding

In addition to the relative structural information, we further introduce sub-

graph structure embedding during the feature extraction and the information

aggregation for each node. The subgraph-based structure embedding can be285

split into two steps: a) We first divide the original graph into different sub-

graphs according to the pre-defined structure. Each subgraph can be regarded

as a new supernode, and the edges between new nodes are determined by the

relationships between the nodes in each subgraph, thus we can construct a so-

called subgraph relation graph. b) In the second step, we aggregate the290

structural arrangement information of the subgraphs in the subgraph relation

graph and merge them with the relevant nodes in the original graph while con-

currently aggregating the local information at the node level of the original

graph.

4.2.1. Subgraph Construction295

Here we retain the global structural arrangement information from the orig-

inal graph to the greatest extent, and extract the key representative structural

features for the subgraphs. Note that it is particularly important to select the

nodes of the subgraph relation graph, i.e. pre-defined subgraphs in original

graphs. In this paper, we define three different types of subgraph structures,300

namely a) paths, b) trees, and c) circuits. Combinations of these three basic

subgraph types can be used to construct any required graph structure.

Since the search for all subgraphs in a graph is NP-hard, we propose a novel

searching method to detect the t-hop neighbors of nodes to find subgraphs,

and then save the search path in real-time to reduce the time complexity. The305

corresponding detection Algorithm 2 is designed to handle how to find the three

different types of subgraph structures.

For tree structure detection, we first initialize two sets: N t(v) to store the

t-hop neighbor of node v, where t ∈ [1, D] and D is the maximum neighbor

depth of the graph, and Pv(u) stores the path from node v to node u. We310

traverse the adjacency matrix to find all edges, and store the 1-hop neighbor
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Algorithm 2: The searching algorithm for the three different types of

subgraph structure.

Input: input original graph G = (V,A,X), max neighbor depth D, min

node leaf δ

Output: output subgraph set S

1 initialize subgraph set S = {Si}, neighbor set {N
t(v)}, path set

{Pv(u)}, subgraph relation graph Ĝ with |V̂ | vertices

2 for t ∈ [1, D] do

3 for v ∈ V do

4 if t == 1 then

5 for u ∈ V do

6 Add u, v into N1(v), N1(u)

7 Add v, u into Pv(u), Pu(v)

8 if |N1(v)| ≥ δ then

9 add (N1(v) + [v]) as Tree Subgraph into S

10 end

11 end

12 else

13 for u ∈ N i(v)|2i < t ≤ 2i+1 do

14 for r ∈ N t−2i do

15 if Pv(r) ∈ {Pv(u)}and r /∈ Pv(u) then

16 Add Pv(u) as Circuit Subgraph into S

17 else

18 Add r, v into N t(v), Pv(r)

19 Add {Pv(u), Pu(r)} to Pv(r)

20 Add Pv(r) to Pr(v)

21 end

22 end

23 end

24 end

25 end

26 end

27 Add Pv(u) as Path Subgraph into S

28 return S
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set of each node. The tree-structural subgraph is selected for further processing

if the number of leaf nodes exceeds the preset threshold δ. For the path and

circuit subgraphs, we continue the search for the t-hop neighbors of each node

through the combination of several existing t-hop neighbors. If a path from315

node v to node u already exists in the set Pv(u) and there is no repeating node

in the path, we identify the path as a circuit subgraph. The searching progress

for the three different types of subgraph structure is shown in Fig. 4.
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Figure 4: The searching progress for three different types of subgraph structure. We first

record the 1-hop neighbor sets and select the tree structure if the number of leaf nodes exceeds

the threshold. We find the t-hop neighbors of each node by searching the (t−2i)-hop neighbor

of 2i-hop neighbor, where t ∈ [1, D] and i = 0, 1, 2, ... If there are several paths to the same

target node, the path is identified as a circuit subgraph, and the remaining paths in the path

set are identified as path subgraphs.

After obtaining these three different types of different subgraphs, we con-

struct the so-called subgraph relation graph to capture the internal relation-320

ship between different subgraph types. This process is shown in Fig. 5:

Definition 1: Subgraph Relation Graph. Let an undirected graph

Ĝ = (V̂ , Â, T ) constructed from the original graph G, in which the node set

V̂ contains |V̂ | nodes, each denoting a different subgraph identified in the origi-
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Figure 5: An example of the Subgraph Relation Graph.

nal graph. The adjacency matrix element of Â equals to one if two nodes share325

the same node in the original graph. The transformation matrix T ∈ R
|V |∗|V̂ |

represents the matrix that transforms the original graph into the subgraph re-

lation graph.

Let node vi belong to node-set V of the source graph, and node v̂j belong

to node-set V̂ in the target graph corresponding to subgraph Sj in the source330

graph. In this way, the transformation matrix T has the element:

Tij =







1 vi ∈ Sj ,

0 else .
(7)

Algorithm 3 gives an overview of the subgraph relation graph construction

procedure.

4.2.2. Merged Structure Embedding

We augment the graph affinity embedding to better fuse the high-order in-335

formation from the nodes by developing a merged structure message-passing

scheme. We commence by aggregating the structural arrangement information

of the subgraph relation graph at the subgraph-level with the classical embed-

ding procedure:
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Algorithm 3: Construction of the subgraph relation graph.

Input: input subgraph set S

Output: output subgraph relation graph Ĝ = (V̂ , Â, T )

1 Create a new subgraph set Ŝ by combining one of the longest path

subgraphs, one of the tree subgraphs, and the circuit subgraphs from

subgraph set S.

2 for all Si in subgraph set Ŝ do

3 Assign Si to each node v̂i

4 if ∃v ∈ Si ∩ Sj then

5 Add edge Âij between node v̂i and v̂j

6 end

7 if vi ∈ Sj then

8 Tij = 1

9 else

10 Tij = 0

11 end

12 end

13 return Ĝ

h
(k)
v̂i

= COMBINE(h
(k−1)
v̂i

,AGG{h
(k−1)
v̂j

|v̂j ∈ N(v̂i)})), (8)

where N(v̂i) denotes the set of neighbors of node v̂i (i.e. which corresponds to340

subgraph Si in the original graph) in the subgraph relation graph. Here, the

functions AGG and COMBINE are sometimes folded into a single aggregation

update. Specifically, AGG is a function that aggregates all neighbor features of

the node Si, and COMBINE updates the representation of node Si according

to the output of AGG. We perform information aggregation and combination at345

the structural level. We then further merge them with the position-aware node

embedding extracted from the original graph using the following procedure:
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h(k)
v = COMBINEM(h(k)

v ,AGGM(h
(k)
v̂i

|∀v ∈ Si)), (9)

where h
(k)
v̂i

denotes the hidden representation of subgraph node Si extracted

using Eq. 8, h
(k)
v represents the hidden node embedding combined with struc-

ture and position in the k-th layer. The function is the sum over all subgraph350

embeddings that contain the node v and is computed as AGGM (hS) = T ∗ hS .

We define as COMBINEM(hv, hs) = αhs + βhv where α and β are two hyper-

parameters that can be used to balance the weight of position relationships and

structural arrangement information.

The position-aware node embedding algorithm is summarized in Algorithm355

4.

Algorithm 4: Merge structure embedding framework.

Input: input original graph G = (V,A,X), subgraph relation graph

Ĝ = (V̂ , Â, T ), position-aware node embedding hp, trainable

weight W , network layer k ∈ [1,K]

Output: Subgraph-based Structure embedding hs

1 hv = Xv

2 for k ∈ [1,K] do

3 for v ∈ V do

4 h
(k)
v̂i

= COMBINE(h
(k−1)
v̂i

,AGG{h
(k−1)
v̂j

|v̂j ∈ N(v̂i)}))

5 h
(k)
v = COMBINEM(h

(k)
v ,AGGM(h

(k)
v̂i

|∀Si ⊃ v))

6 end

7 end

8 return h
(K)
v

4.3. Graph Feature Matching

With the proposed position-aware node embedding framework and subgraph-

based structural embedding framework to hand, we encode each node with high-

order graph structure information and position information and construct a360
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high-level embedding space. Such an embedding scheme allows us to simplify

the second-order affinity matrix to a linear one.

With the final hidden representation of the source graph Hs ∈ R
n∗F ′

and the

target graph Ht ∈ R
m∗F ′

to hand, we can obtain a soft correspondence between

these graphs using the corresponding affinity matrix Haffinity = exp (HsΓH
T
t ).

Each element in the affinity matrix Haffinity ∈ R
n∗m represents the affinity be-

tween a pair of nodes in two graphs considering node features, position-aware

information, and high-order subgraph information in the graph, with Γ as a

learnable weight matrix. We further apply the Sinkhorn normalization [33] to

obtain a rectangular doubly-stochastic correspondence matrix to fulfill the con-

straints on injectivity from the original graph Gs to the target graph Gt. Here,

the Sinkhorn operation works iteratively by iterative row-wise and column-wise

normalization,

Hr
affinity = Hc

affinity ⊘ (Hc
affinity1m1m

T )

Hc
affinity = Hr

affinity ⊘ (1n1n
THr

affinity)
(10)

where ⊘ indicates element-wise division, and 1m ∈ R
m∗1, 1n ∈ R

n∗1 are column

vectors whose elements are all ones, Hr
affinity and Hc

affinity are the intermediate

results of row normalization and column normalization respectively. We simplify365

these two iterative processes giving a continuous relaxation of the permutation

matrix:

S = Sinkhorn(Haffinity) (11)

We further employ the cross-entropy loss function as the permutation loss

between the predicted permutation matrix and the ground truth:

L =−
∑

i∈Vs,j∈Vt

(

Sgt
i,j logSi,j +

(

1− Sgt
i,j

)

log (1− Si,j)
)

, (12)

where Sgt is the ground truth permutation matrix with each element as the370

ground truth node-to-node correspondence, and S is the predicted permutation

matrix given by Eq. 11. In this way, our cross-entropy loss can directly learn
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the permutation loss based on linear allocation cost in an end-to-end fashion,

no matter how the number of nodes and edges in the graph change.

5. Experiments375

In this section, we verify our method in three different tasks: We first perform

our experiments in real-world tasks of supervised keypoint matching in four

different kinds of natural images. Then, we further demonstrate the effectiveness

of each procedure in our framework in an ablation study. Finally, we conduct

the experiment on transfer learning across different categories, to evaluate the380

robustness and generalization capability of our methods.

5.1. Datasets

Willow ObjectClass. The Willow Object Class dataset [34] contains five

object categories including faces, cars, ducks, motorbikes, and wine bottles. This

dataset is a benchmark used to measure the ability of image classification and385

recognition. There are 9963 images in total, including 24640 labeled objects. In

the experiment, we select a small subset for each category for training and use

the remainder for testing. Each category has at least 40 images.

Pascal VOC 2011. The Pascal Visual Object Classes (VOC) 2011 dataset [16]

contains 20 object sub-categories and four major categories in total, which are390

vehicles, indoors, animals, and people. Each image in the dataset has three an-

notations including category labels, attributes, locations, and bounding boxes.

Note that most images in this dataset contain complicated component scenes.

CUB-200-2011. The Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset [35]

contains 11788 images with 200 categories of birds. Each image has clear anno-395

tations containing 1 subcategory label, 15 part locations, 312 binary attributes,

and 1 bounding box.

IMC-PT-SparseGM. The IMC-PT-SparseGM dataset [36] contains 16

categories and about 25061 images. This dataset gathers its data from 16 tourist

attractions around the world. Compared with the datasets mentioned above,400

the number of images in this dataset is the largest.
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5.2. Alternative for Comparison

The state-of-art benchmark methods used for comparison experiments are:

GMN. (Graph Matching Network, GMN) Zanfir et al. [37] developed the

deep graph matching method employing an end-to-end deep learning frame-405

work. To extract image features, this framework adopts VGG16 [23] networks,

with first-order and second-order features extracted from the shallower layer

(relu4 2) and deeper layer (relu5 1) of VGG16, respectively. It also uses Delau-

nay triangulation to build graphs. Factorized Graph Matching (FGM) has been

used to construct the affinity matrix efficiently. The method is based on super-410

vised learning using a loss function on the offset loss. Although this method is

relatively simple, it pioneered the use of deep learning to solve graph matching

problems.

PIA-GM/PCA-GM. Permutation loss and intra-graph affinity-based graph

matching (PIA-GM) and permutation loss and cross-graph affinity-based graph415

matching (PCA-GM) [38] replace the offset loss on GMN with the permuta-

tion loss. This can improve the learning process. The image preprocessing of

PIA-GM is the same as GMN. It employs 3 GNN layers to perform intra-graph

convolution. The feature dimension of the GNN layer is 2048. The main differ-

ence between PIA-GM and the original GMN architecture is that it introduces420

graph neural networks to learn the node embedding of the graph. The differ-

ence between PCA-GM and PIA-GM is that the former changes the method

of graph convolution, from intra-graph convolution to cross-graph convolution.

The aim is to achieve better extraction of information for similar nodes between

two input graphs and better generation of the node embedding.425

IPCA-GM. (Iterative Permutation loss and cross-graph affinity-based graph

matching, IPCA-GM [39]). To better combine combinatorial optimization with

a deep learning solution, IPCA-GM considers the iterative interaction between

the Sinkhorn layer and the GCN layer to learn a better feature embedding. This

approach fully considers the embedding information for nodes, and reduces the430

original two-dimensional QAP problem to a one-dimensional one, thus reducing

the complexity and improving the learning efficiency.
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CIE-H. (Channel-Independent Embedding and Hungarian attention, CIE-

H [40]). This follows the CNN-GNN-metric-Sinkhorn pipeline proposed by

PCA-GM and improves PCA-GM in two way: First, the edge attribute in-435

formation is taken into account and combined with node embedding. This is

used to produce a channel-independent embedding. Second, a Hungarian Atten-

tion module dynamically constructs a structured and sparsely connected layer.

This considers the most significant matching pair during training.

NGM/NHGM. (Neural Graph Matching Network (NGM) and Neural Hy-440

per Graph Matching Network, NHGM [11]). These are recognized as a learnable

solution to Lawler’s quadratic assignment problem (Lawler’s QAP [41]). This

first transforms Lawler’s QAP into an association graph and founds a solution,

which is equivalent to the vertex classification problem on the association graph.

Finally, a graph neural network is used to solve the vertex classification prob-445

lem. NGM considers the task of matching graph pairs, and can be regarded as

Lawler’s QAP solver using VGG16. On the other hand, NHGM is a hypergraph

matching solver with VGG16. Both of these methods are based on supervised

learning using permutation loss.

GANN-GM/GANN-MGM. (GANN-GM [8]) is self-supervised learn-450

ing graduated assignment neural network for matching graph pairs. (GANN-

MGM [8]) is a self-supervised learning graduated assignment neural network

for multi-graph matching. Both were proposed by Wang et al. [8]. GANN-GM

introduces a self-supervised learning framework by leveraging graph matching

solvers to provide pseudo labels to train the neural network module in a deep455

graph matching pipeline. A general graph matching solver is proposed for vari-

ous graph matching settings based on the classic Graduated Assignment (GA)

algorithm.

5.3. Experimental Settings

The experiments are conducted using two GeForce GTX 1080 Ti GPUs. We460

employ a batch size of 8 in training and evaluate our model in 2000 epochs

for each iteration. In terms of experimental settings, we employ the Adam [42]
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optimizer to train our models with a learning rate of 1×10−4. To overcome the

over-smoothing problem common to graph neural networks, which arises from

the transmission of information between nodes caused by deepening the network465

layer. This results in the representations of different nodes becoming similar

and causes ambiguities in matching. We adopt a two-layer graph embedding

and restrict the degree of smoothing in our experiments. The details of the

hyperparameter settings are summarized in Table 1.

Table 1: Summary of parameter settings for datasets under study.

Datasets Average Node Number K r δ α β

Pascal VOC 9.07 2 1 2 1× 10−4 1× 10−5

Willow ObjectClass 10.00 2 1 2 1× 10−4 1× 10−4

CUB 2011 12.00 2 1 2 1× 10−4 1× 10−5

IMC-PT-SparseGM 21.36 2 1 3 1× 10−4 1× 10−4

5.4. Performance Comparisons on Four Datasets470

In this experiment, the source graph Gs and target graph Gt are composed

of key points extracted from two different images. Both two graphs maintain

node consistency during the training and testing stages. We perform the same

operations on four datasets to convert the images into graphs. First, we filter

the outliers from the dataset. Next, we crop the images around their bounding475

boxes, which provide the pixel location of the object boundings in images. Their

image sizes are further resized to 256× 256. The preprocessed images are then

fed to VGG16 [23] to extract the node features. The graphs are constructed by

Delaunay triangulation [43] of the extracted feature points.

We evaluate the graph matching capacity of the proposed method using the480

matching accuracy, which is defined by accuracy =
∑

AND(Si,j , S
gt
i,j)/N from

[38, 39, 8]. Here, the AND operation is a logical operation. Note that Si,j is the

element of the predicted permutation matrix representing the correspondence

matching of node i and node j from two different graphs. Similarly, Sgt
i,j is the

correspondence of the ground truth between the two nodes, and N is the number485

of matching node pairs. We use ground truth node correspondences (which are
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set to one if two nodes are matched, and zero otherwise) for the image pairs,

and perform an averaging operation to compute the final matching accuracy.

Table 2: Matching accuracy on the Willow ObjectClass database(%).

Method Car Duck Face Motorbike Winebottle Mean accuracy

GMN 67.90 76.70 99.80 69.20 83.10 79.34

NGM 84.20 77.60 99.40 76.80 88.30 85.30

NHGM 86.50 72.20 99.90 79.30 89.40 85.50

CIE-H 82.20 81.20 100.00 90.00 97.60 90.20

PIA-GM 88.60 87.00 100.00 70.30 87.80 86.74

PCA-GM 87.60 83.60 100.00 77.60 88.40 87.44

IPCA-GM 90.40 88.60 100.00 83.00 88.30 90.06

PCA-GM+Position+Structure 92.90 90.80 100.00 79.00 94.40 91.42

IPCA-GM+Position+Structure 92.70 88.70 100.00 80.20 94.90 91.30

The experimental results on the Willow ObjectClass, Pascal VOC, CUB

and IMC-PT-SparseGM datasets are shown in Table 2, Table 3, Table 4, and490

Table 5, respectively. We also compare the proposed methods (i.e. PCA-

GM+Position+Structure and IPCA-GM+Position+Structure) with the alter-

native methods introduced in Section 5.2. Specifically, our methods achieve the

best performance in the classification accuracy of three different categories on

the Willow ObjectClass dataset, while the CIE-H method outperforms on the495

Motorbike and Wine bottle classes. Note that the CIE-H method also achieves

good results on the VOC and CUB datasets. However, it performs poorly on

the IMC-PT-SparseGM dataset. The VOC dataset contains 20 object sub-

categories and four major categories. It is therefore much more complicated

than the remaining datasets under study. As observed from Table 3, many500

methods perform better than others in one or several specific categories. Our

method performs slightly lower than the highest average accuracy. For the CUB

and IMC-PT-SparseGM datasets, our method achieves the highest mean accu-

racy performance compared with the alternatives. It can therefore be concluded

that our model performs well on all four datasets under study, while the alter-505

natives generally fail to perform well on at least one of the datasets. This also

clearly demonstrates the advantage of our method in terms of robustness.
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Table 3: Matching accuracy on the Pascal VOC database(%).

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motorbike Person Plant Sheep Sofa Train TV Mean accuracy

GMN 31.90 47.20 51.90 40.80 68.70 72.20 53.60 52.80 34.60 48.60 72.30 47.70 54.80 51.00 38.60 75.10 49.50 45.00 83.00 86.30 55.30

NGM 50.10 63.50 57.90 53.40 79.80 77.10 73.60 68.20 41.10 66.40 40.80 60.30 61.90 63.50 45.60 77.10 69.30 65.50 79.20 88.20 64.13

NHGM 52.40 62.20 58.30 55.70 78.70 77.70 74.40 70.70 42.00 64.60 53.80 61.00 61.90 60.80 46.80 79.10 66.80 55.10 80.90 88.70 64.58

CIE-H 49.94 63.13 70.65 52.98 82.43 75.36 67.66 72.30 42.35 66.88 69.90 69.52 70.74 61.96 46.67 85.04 70.00 61.75 80.23 91.78 67.56

PIA-GM 41.50 55.80 60.90 51.90 75.00 75.80 59.60 65.20 33.30 65.90 62.80 62.70 67.70 62.10 42.90 80.20 64.30 59.50 82.70 90.10 63.00

PCA-GM 40.90 55.00 65.80 47.90 76.90 77.90 63.50 67.40 33.70 65.50 63.60 61.30 68.90 62.80 44.90 77.50 67.40 57.50 86.70 90.90 63.80

IPCA-GM 53.78 66.22 67.14 61.20 80.39 75.27 72.55 72.52 44.55 65.24 54.30 67.24 67.90 64.21 47.93 84.35 70.79 63.98 83.80 90.83 67.70

PCA-GM+Position+Structure 49.34 68.51 63.32 56.37 81.34 75.81 65.8 70.93 42.90 66.15 70.46 64.21 66.78 65.05 42.31 85.06 67.60 67.25 86.87 90.06 67.31

IPCA-GM+Position+Structure 48.72 65.52 56.08 52.86 78.76 73.66 64.4 66.18 39.73 65.18 63.15 61.90 66.06 62.68 42.21 82.89 64.46 60.8 86.40 89.45 64.56
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Table 4: Matching accuracy on the CUB database(%).

Method Mean accuracy

GANN-GM 48.44

GANN-MGM 78.32

CIE-H 92.06

PIA-GM 88.56

PCA-GM 92.17

IPCA-GM 92.18

PCA-GM+Position+Structure 91.46

IPCA-GM+Position+Structure 92.34

Table 5: Matching accuracy on the IMC-PT-SparseGM (%).

Method Reichstag Sacre coeur St peters square Mean accuracy

GANN-GM 76.02 44.15 50.49 56.89

GANN-MGM 67.41 42.72 44.42 51.52

CIE-H 42.24 28.47 30.78 33.83

PIA-GM 71.46 41.31 42.64 51.80

PCA-GM 69.38 39.86 42.10 50.40

IPCA-GM 72.96 43.80 44.93 53.89

PCA-GM+Position+Structure 96.28 75.93 81.66 84.63

IPCA-GM+Position+Structure 95.71 74.12 82.06 83.96

5.5. Ablation Study

Here we conduct an ablation study to demonstrate that our novel method for

embedding the positional and structural arrangement information can be effec-510

tive in improving variants of the methods of the performance of graph matching.

To this end, we construct three models based on the graph matching methods

PCA-GM and IPCA-GM. The three variants are a) the original method com-

bined with position-aware embedding, b) the original method combined with

structure embedding, and c) the original method combined with complete po-515

sition and structure embedding. Considering that our method has the alterna-

tive best performance on the IMC-PT-SparseGM data set compared with other

methods, we conduct the ablation study on the IMC-PT-SparseGM dataset.

The experimental results are shown in Table 6.
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Table 6: Matching accuracy of ablation study on IMC-PT-SparseGM (%).

Method Reichstag Sacre coeur St peters square Mean accuracy

PCA-GM 69.38 39.86 42.10 50.40

PCA-GM+Position 92.02 69.07 78.80 79.96

PCA-GM+Structure 93.83 70.44 78.78 81.02

PCA-GM+Position+Structure 96.49 72.01 83.00 83.83

IPCA-GM 72.96 43.80 44.93 53.89

IPCA-GM+Position 93.03 65.37 77.24 78.55

IPCA-GM+Structure 92.79 62.66 76.98 77.48

IPCA-GM+Position+Structure 95.71 74.12 82.06 83.96

The proposed position-aware node embedding and subgraph-based structure520

embedding greatly improve the classification accuracy of the original method in

each category. Note that the IMC-PT-SparseGM dataset consists of tourist at-

tractions, of which many (especially the buildings) are symmetrical, indicating

that the semantic information of the key points is usually ambiguous. There-

fore, the incorporation of position information for the graph matching methods525

can effectively assist the classification task. The high-order subgraph-based

structural arrangement information is also valuable, since the global structural

features of the tourist attractions can provide more comprehensive information

than just local features alone.

5.6. Cross-category Generalization Study530

To verify the robustness and generalization capability of our methods on

different types of categories, we construct the confusion matrix for the training

and testing instances from the different categories. The experimental results are

presented in Fig. 6 and Fig. 7. We first train each of the five classes separately

for the Willow dataset. We then use the distinct training classes to validate the535

generalization capabilities for all five object classes.

The confusion matrix for the dataset illustrating transfer learning among the

five object categories is given in Fig. 6. The models are trained on the object

categories in the rows and then tested on the object categories in the columns.

The diagonal of the matrix shows the classification ability of the method on each540
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(a) (b)

(c) (d)

Figure 6: Cross-category generalization study represented by confusion matrix on Willow

ObjectClass dataset. Each column of the matrix represents one category of images used for

model training, while each row represents one class of testing samples. a) and b) show the

matching accuracy of comparison methods in different category generalizations, respectively.

c) and d) are obtained from the proposed methods.

object class. The darker the grid color in the figure, the higher the matching

accuracy. We compare each element in Fig. 6 (a) with Fig. 6(c), and Fig. 6(b)

with Fig. 6(d). The proposed graph matching method combined with position

and structural arrangement information has improved the generalization ability

for all classes compared with the original methods. Furthermore, the accuracy545

of the model in the face category reaches 100% in Fig. 6(c), and is also high

in both Fig. 6(b) and Fig. 6(d). It may be related to the simplicity and lower

noise in the face samples.

In Fig. 7, we re-color Fig. 6 by sorting all the matching results obtained

by the four different methods from large to small. The larger the value, the550
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(a) (b)

(c) (d)

Figure 7: Cross-category generalization study method ranking on Willow ObjectClass dataset.

The re-color figure from Fig. 6 by sorting all the matching results obtained by four different

methods from large to small.

darker the color. This is also a reflection of the generalization ability of the

model. Moreover, it gives the priority to the proposed position and structure

framework based on higher accuracy scores in the confusion matrix. The gen-

eralization ability of the models provided in this study is substantially greater

than the alternative methods due to the addition of position information and555

the correlation connection of the subgraph structure. Furthermore, IPCA-

GM+Position+Structure has greater diagonal accuracy, indicating that it is

more suitable for the training category.

6. Conclusion

In this paper, we propose a novel deep learning framework for graph match-560

ing, which combines a relative position-aware node embedding and subgraph-
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based structure embedding into node-wise embedding between graphs. The

experiments include comparisons with alternatives, an ablation study and the

cross-category generalization study to demonstrate the robustness and effec-

tiveness of the proposed method with its embedding modules. Specifically, the565

matching accuracy on several real-world datasets compared with peer methods

demonstrate the state-of-the-art performance of our method.

In future work, we intend to employ different relative positions and sub-

graph relational strategies to further improve the graph matching performance.

Besides, from a problem-solving perspective, we can further evaluate the per-570

formance of the proposed method in multi-graph matching and unsupervised

learning fields.
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Abstract

Graph matching refers to the process of establishing node correspondences
based on edge-to-edge constraints between graph nodes. This can be formu-
lated as a combinatorial optimization problem under node permutation and
pairwise consistency constraints. The main challenge of graph matching is to
effectively find the correct match while reducing the ambiguities produced by
similar nodes and edges. In this paper, we present a novel end-to-end neural
framework that converts graph matching to a linear assignment problem in a
high-dimensional space. This is combined with relative position information
at the node level, and high-order structural arrangement information at the
subgraph level. By capturing the relative position attributes of nodes be-
tween different graphs and the subgraph structural arrangement attributes,
we can improve the performance of graph matching tasks, and establish re-
liable node-to-node correspondences. Our method can be generalized to any
graph embedding setting, which can be used as components to deal with
various graph matching problems answered with deep learning methods. We
validate our method on several real-world tasks, by providing ablation stud-
ies to evaluate the generalization capability across different categories. We
also compare state-of-the-art alternatives to demonstrate performance.
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1. Introduction

Graph matching aims to establish the correspondence between two or
more graphs based on their structural information [1]. It is widely used in
combinatorial optimization, machine learning and computer vision due to
its natural representation and convenient coding of the relationship between
abstract data. Specifically, many applications can be implemented using
the graph matching technique, such as image registration in medical image
analysis, linking user accounts in social network analysis, image extrapolation
in computer vision, finding coherent motions and semantic regions in crowd
scenes [2].

There are many methods and matching solvers developed for addressing
the graph matching problem [3, 4]. These can be divided into different cat-
egories depending on the specific perspectives adopted. For example, based
on the number of graphs included, there are graph-to-graph matching and
multi-graph matching methods [5]. Since graph-to-graph matching is the
basis of multi-graph matching, improving the matching ability between two
graphs can also be extended to improve multi-graph matching. Therefore,
this paper focuses on the matching of pairs of graphs. Based on match-
ing content, they can be divided into a) structure information-based graph
matching and b) semantic information-based graph matching [6]. Note that
in graph matching, especially for image-generated graphs, semantic features
based on structural information have been proved to be important for clas-
sifying nodes [7]. In this way, the graph matching problems studied in this
paper are based on both node feature information and structural information
from the graphs. On the other hand, graph matching methods can also be
divided into a) learning-based methods and b) learning-free methods [8].
Notably, learning-free methods generally seek approximate solutions for a
given fixed affinity model, which is usually cast in the form of simple param-
eters and is approximately solved by the joint similarity of individual entities
together with their mutual relationships [9]. However, their time complexity
is often too high to satisfy and solve large-scale real-world problems.

In the case of deep learning-based graph matching solvers, the common
feature of most methods is that they compromise in their evidence-combining
strategy in the sense that the resulting unclear combinatorial element would
not be competitive in a purely combinatorial setup [10]. However, these meth-
ods can only calculate the similarity score of the entire graph, and heavily
rely on inefficient global matching procedures. Additionally, they only con-
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sider the embedding of local information for nodes in the graph, which tend
to ambiguously match similar nodes in different regions of the graph in an
inconsistent manner [10]. Fig. 1 illustrates an example of the main idea of
our relative position-aware information embedding strategy. Here it is shown
that it fails to match the cats’ ear positions correctly, since the node embed-
ding information usually relies only on node semantic information, and the
local structure information lacks effective discrimination ability. Therefore
it is difficult to unambiguously distinguish the left and right ears of a cat.
In this example, the relative position information is critical to graph match-
ing, especially when both the semantic and structural information are very
similar in the two regions of the graphs.

Figure 1: An exemplar failure case to establish the correct match of cat ears between two
images, which are selected from the Pascal VOC dataset [11].

To address the above-mentioned challenges, here we propose a novel ap-
proach to solve the graph matching problem. We commence by utilizing
node features extracted from the images to attribute the nodes, and design
a position-aware node embedding algorithm to capture the relative position
information of nodes in the graph. We further enhance the representation of
local information of the nodes by merging a structural arrangement informa-
tion representation of the subgraph in which the node is located. With the
graph node-wise embedding to hand, we aim to obtain the required graph
node permutations for node-to-node correspondence from raw pixel inputs.
To our best knowledge, there are no methods that consider embedding both
position and structural information for the graph matching problem.

The main contributions of our works are as follows:
1. Relative position information has not been considered in the existing
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process of graph matching, which hampers their applications in terms of
reducing the ambiguity of matching accuracy. We propose to construct an
anchor set for small graphs extracted from images, and fully consider the
relative position information related to the matching of keypoints, which is
also proved to be effective in experiments.

2. We propose a novel subgraph detection and graph representation
method, and extract subgraph structural arrangement information for im-
proved node embedding. Previous graph matching studies only match using
node level and edge level information, but ignore the higher-order neigh-
borhood structure information. Here we introduce subgraph arrangement
structure information into the graph matching task, by capturing it using
the subgraph structure. This arrangement procedure combines node and
edge level information with relative position information. We can therefore
implement a hierarchical and comprehensive extraction of image features,
which further improves the matching accuracy.

3. We demonstrate in our experiments that our method outperforms al-
ternative work on several widely-studied real-world datasets. In the ablation
study, we also show the effectiveness of the introduced components of our new
method of graph matching on these datasets. We show that our position-
aware node embedding module and subgraph-based structural embedding
module can be added to existing deep learning graph matching methods, to
further boost their classification performance.

The remainder of the paper is organized as follows: Section 2 provides a
brief review of the related work on image feature extraction, graph embed-
ding, and combinatorial optimization. Section 3 defines the specific graph
matching problem that we intend to resolve in this work. Section 4 provides
the details of our method, and the corresponding experiments to validate our
new method are presented in Section 5. Finally, we conclude the paper and
provide an extended discussion of potential future work in Section 7.

2. Related Work

In this section, we review existing deep learning solvers in dealing with
graph matching problems.

2.1. Image Feature Extraction

Feature extraction refers to the computation of higher-level features from
the original pixels in an image. It can capture the differences between pixels
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of various object classes. Conventional feature extraction usually proceeds in
an unsupervised manner, and no image category labels are used when extract-
ing information from the pixels. Commonly used traditional features include
GIST (Generalized Search Trees), SIFT (Scale-Invariant Feature Transform),
and LBP (Local Binary Patterns) [12].

However, these hand-crafted feature extraction methods can not be opti-
mized according to the training from images and their labels. However, they
fail to provide more comprehensive feature information to better represent
important image information. The method based on deep learning overcomes
this shortcoming using a soft-coded feature extractor [13]. Recently, the CNN
model has been developed and enhanced in detail. For example, Szegedy et

al. [14] significantly increase the depth of the CNN in their GoogleNet with
three different types of convolution operation. He et al. [15] have proposed
the residual neural network (ResNet) which includes a cross-layer connection
that passes information from the input across deeper layers. It also adds to
the result of convolution by introducing shortcut connections to solve the
problem of vanishing loss gradient.

In this paper, we use VGG-16 [16] as the backbone architecture for im-
age feature extraction, and which also closely follows the previous graph-
matching works described in [5, 8, 10, 17]. This guarantees equity in the
comparisons performed in our experiments. It can adapt to different sizes
of the convolutional kernel to capture more discriminative decision functions
with fewer parameters. It has been proved effective in deep visual feature
extraction.

2.2. Graph Embedding

At present, most studies related to graph embedding focus on static
graphs, which can be divided into (a) spectral-based and (b) spatially-based
methods.

2.2.1. Spectral Methods for Graph Embedding

The earliest graph embedding method provides local convolutions of graph
structure data in the spectral frequency domain. The Fourier transform of
the graph is used to transform the time domain data into a frequency domain
signal. Then the frequency domain signal is convolved with local features.
Finally, the frequency domain signal is transformed back into the time do-
main.
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Although spectral frequency-based methods can effectively avoid the cross-
influence of data in the time domain, it needs to calculate the Laplace matrix
eigendecomposition and a representation of the graph structure correspond-
ing to the sample of the graph structure. This makes it difficult to apply
in real scenes due to the large computational overheads. To solve the prob-
lem of high computational complexity, Defferrard et al. [18] proposed to use
Chebyshev polynomials instead of the exact calculation of graph eigenvalues
and eigenvectors. In addition, Kifp and Welling [19] simplified the algorithm
with first-order polynomials and used it to solve the task of semi-supervised
node classification.

In general, spectral methods have suffered from the following three de-
fects: a) The generalization ability to new unseen and variable graph struc-
tures is poor. If any node or edge in the graph changes, the spectral domain
of the graph will also change rapidly, so that the filter learned from the orig-
inal graph can not be well matched to the new graph. b) The alignment of
Fourier patterns is difficult. It is challenging to align graphs with different
typologies in the spectral domain, especially when the difference between
graphs is large. Such differences in the spectral domain will be magnified,
making it harder to align the Fourier modes. c) Spectral methods can only
solve the problem for undirected graphs. This means it is limited to satisfying
the constraint of a symmetric transformation matrix.

2.2.2. Spatial Methods for Graph Embedding

Spatial approaches have an advantage over spectral approaches in that
they can operate on problems where the graph structure varies significantly
in the dataset being studied [20]. However, they generally require sophisti-
cated data transformations to enable effective learning. For example, given
the strong hypothesis that the existence of node-connected edges is based
on sometimes ad-hoc and contrived or artificial settings, Zhang et al. [21]
extracted local subgraphs around each target link. They use this to learn
the functional mapping of subgraph patterns to infer the existence of links,
and to automatically learn heuristic algorithms.

In addition, the graph neural network method based on a message pass-
ing architecture is also considered to be a spatial method. It uses different
aggregation schemes to aggregate the characteristic messages of neighbors in
a graph. The message passing neural network further integrates edge infor-
mation in the aggregation process. The graph attention network proposed
by Velikovic et al. can aggregate neighborhood information according to
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the weights derived from a trainable attention mechanism [22]. However, all
these methods focus on just learning node embeddings to capture the local
network structure around a given node. Such models are at most as pow-
erful as the Weisfeiler-Leman graph isomorphism test [23], but they cannot
distinguish nodes in symmetric or isomorphic positions in the network.

In this paper, we develop a novel graph embedding method to extract
high-level information combined with the relative position of nodes, which
can greatly assist graph matching.

2.3. Combinatorial Optimization

In combinatorial optimization problems, enumeration and exhaustive meth-
ods are not practical. The solution strategies are either discrete or are ef-
fectively reduced to a discrete set. Many traditional algorithms for solving
combinatorial optimization problems involve the use of manually constructed
heuristic algorithms. However, due to the difficulty of problem-solving, it is
usually not the optimal solution.

Mathematically, the graph matching problem can be considered a com-
binatorial optimization problem, which is also an NP-Hard problem. Using
mathematical methods to solve graph matching problems can be divided into
relaxation optimization and matrix decomposition methods [24]. For the
spectral relaxation optimization method, the computation speed is relatively
fast, but the constraints on the obtained solution are often over-relaxed. Of
course, the input discrete variables can also be converted into continuous vari-
ables to make the solution more compact. However, the following problems
generally exist in these methods: First, they are not robust to outliers and
noise. Second, they usually have high computational overheads. Besides, the
optimal approximate solution obtained by traditional mathematical methods
may be locally optimal solutions different from the ground truth.

With the rise of deep learning, the use of reinforcement learning and
neural networks to solve combinatorial optimization problems has become a
topical trend. The Sinkhorn network [25] can solve the linear assignment
problem, by performing the doubly stochastic normalization operations of
row normalization and column normalization on all non-negative matrices
to minimize the cost. Furthermore, it is an approximate Hungarian algo-
rithm [26] that can optimize polynomial complexity. Recently, Patrini et
al. [27] proposed a Sinkhorn autoencoder to achieve the target of minimiz-
ing distance, and utilizing reinforcement learning to solve the combinatorial
optimization problem. Furthermore, a novel and simple end-to-end training
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framework was proposed by Roĺınek et al. [10], which incorporates the most
advanced graph matching combinatorial solver.

In this paper, we develop a novel subgraph detection and graph repre-
sentation method to solve the combinatorial optimization problem. It can
effectively reduce the dimensionality of the quadratic assignment problem for
combinatorial optimization to a linear assignment problem.

3. Problem Definition and Notations

In this paper, we consider the graph G = (V,A,X) which is consist of a
finite set of nodes V , an adjacency matrix A, and a set of attributes X for the
nodes, which originate from images using various CNN models [16, 28, 29].
The goal of graph matching is to establish a correspondence between two
attributed graphs, which minimizes the sum of local and geometric costs of
assignment between the vertices of the two graphs.

Let Gs = (Vs, As, Xs) be a source graph, with |Vs| = n, As ∈ {0, 1}n×n,
and feature matrixXs ∈ R

n×F , where F represents the F -dimensional feature
vector of nodes in graph stacked to columns. The target graph to be matched
is Gt = (Vt, At, Xt), with |Vt| = m, At ∈ {0, 1}m×m, and feature matrix
Xt ∈ R

m×F , whose w.l.o.g. n ≤ m. We also construct a vector of length
nm. The element v ∈ {0, 1}nm×1 indicates the match of vertices in two
graphs, where vi,j = 1 if vertex i ∈ Vs is matched to vertex j ∈ Vt and
vi,j = 0 if otherwise. It is worth noting that all the vertex matches are
subject to the one-to-one mapping constraints, i.e.

∑

j∈Vt
vi,j = 1 ∀i ∈ Vs

and
∑

i∈Vs
vi,j ≤ 1 ∀j ∈ Vt.

Furthermore, we construct a square symmetric positive matrix M ∈
R

nm×nm referred to as the affinity matrix, to encode the edge-to-edge affin-
ity between two graphs by their off-diagonal elements. Specifically, Mip;jq

measures how well edge (i, j) in graph Gs matches with edge (p, q) in graph
Gt with {i! = p} ∪ {j! = q}. The diagonal entries of the affinity matrix
can also indicate the node-to-node affinity between two graphs. Therefore,
the pairwise graph matching between Gs and Gt can be formulated as the
edge-preserving, quadratic assignment programming (QAP) [30] problem:

argmax
v

v⊤Mv

s.t.
∑

j∈Vt

vi,j = 1 ∀i ∈ Vs,
∑

i∈Vs

vi,j ≤ 1 ∀j ∈ Vt,
(1)
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Table 1: Notations and Description

Symbol Definition
G original graph
V nodes-set of graph
|V| node number of nodes-set
r maximum shortest path distance
K network layer
P anchor-set
p anchor number
qv,u relative position coefficient between pair of nodes v and u

dv,u shortest path distance between pair of nodes v and u

I(k)(v, u)
information aggregation function
between node v and u in k-th layer

W (k) trainable weight matrix in k-th layer

hv
(k) hidden representation of node v in k-th layer

N t(v) t-hop neighbor of node v
Pv(v) path from node v to u
δ leaf node threshold
α hyper-parameter to balance the position information
β hyper-parameter to balance the structure information

T
transform matrix of the original graph
to the subgraph relation graph

Hs final hidden representation of source graph
Ht final hidden representation of target graph

where v ∈ {0, 1}nm×1 and M ∈ R
nm×nm. In this work, we intend to resolve

the graph matching problem based on the supervised matching of graphs, and
we aim to learn an end-to-end model which can effectively extract graph in-
formation and match through given pair-wise ground-truth correspondences
for a set of graphs, and generalize to unseen graph pairs. The notation used
in this paper is summarized in Table 1.

4. Methods

In this section, we provide details of the proposed end-to-end position-
aware and structure-based graph matching method, The overall pipeline is
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shown in Figure 2. In the figure, the blue source graph Gs are extracted
together with their node-wise high-level graph feature representations. This
is done using position-aware node embedding and subgraph based structure
embedding. The graph features are matched using a matrix product oper-
ation and the Sinkhorn activation function. The result is compared with
the available ground truth. The final output of the model is the matching
accuracy of the pair of nodes between the source graph and the target graph.
Note that the deep feature extractor of the proposed method can be any
CNN model, such as VGG-16 [16], which is adapted to convert images into
graphs with features. These graphs are the source and target graphs, which
are the paired input of our model.
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Figure 2: Overview of the end-to-end position and structure embedding networks for deep
graph matching.

The model consists of three main components, namely a) a position-aware
node embedding module, b) a subgraph-based structure embedding module,
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Figure 3: Procedure of Position Embedding.

and c) a graph feature matching module. The aim of the position-aware node
embedding step, as described in Section 4.1, is to consider the information
available from the relative structure. The second step is to iteratively com-
bine the subgraph structure information described in Section 4.2, and the
final part is the matching of two graphs with extracted graph representation
described in Section 4.3.

4.1. Position-aware Node Embedding

We establish our position-aware node embedding procedure with two key
components: First, before the node embedding process, we propose a sim-
ple but effective strategy to construct an anchor-set for each graph which
is used throughout the entire learning process. Here, we refer to the nodes
used as reference position coordinates as anchors, and the set of these nodes
as the Anchor-set. We aggregate the information of the node and each an-
chor in the anchor-set, in this way we replace the original graph embedding
method that relies on message passing between local network neighborhoods.
Second, we design an information aggregation mechanism for message aggre-
gation between nodes and anchors in the anchor-set. With the addition of
position-aware node embedding, we can effectively eliminate the ambiguity-
prone mismatching of similar nodes in different positions.

4.1.1. Anchor-set Construction for Small Graph

The position anchor framework is motivated by PGNN [31] which em-
phasizes large graphs (i.e. those consisting of at least thousands of nodes).
However, in this paper, we further study the anchor mechanism and focus on
small graphs constructed from images. Specifically, the anchor-sets first pro-
posed for large graphs are completely randomly chosen subsets of all nodes
from the graph. They are intended to sample multiple anchor-sets P =
{Pi,j}, where the number of anchor-sets |P | = log2 |V |, i = 1, 2, ..., log |V |,

11



j = 1, 2, ...c log |V |. Here, |V | is the number of nodes in the graph and c is
a hyper-parameter. Each node is sampled independently and randomly with
a probability of 1/2i. The idea central to our method is that the anchor-
sets can include each node or any of its one-hop neighbors. Large anchor
sets have low position information with a large sampling probability. Small
anchor sets have high position information with low sampling probability.
The balance of these different sizes of anchor-sets may lead to efficient em-
beddings. However, this random sampling operation can result in the final
anchor sets sampling almost all nodes in the graph. The proof is as follows:

The sampling probability for each node in the anchor-set Pi,j is 1/2
i, and

the number of anchors in each anchor-set Pi,j is

pi =
|V |

2i
∀i ∈ [1, log |V |], (2)

where |V | is the number of nodes in the graph.

Since the number of anchor points pi in the anchor-set Pi,j is only related

to element i, the construction of anchor-sets P = {Pi,j|(i ∈ [1, log |V |], j ∈
[1, c log |V |])} is actually the repeated construction of anchor-sets P = {Pi,j|(i ∈
[1, log |V |], j = 1)} for c log |V | multiplied by the uniform sampling probabil-

ity for each anchor in each anchor set construction step. Hence, we consider

each anchor in a non-repetitive operation, i.e. the anchors in anchor-sets

P = {Pi|(i ∈ [1, log |V |])}. Therefore, the number of anchors p in the entire

set of anchor-sets P = {Pi|(i ∈ [1, log |V |])} is given by:

p =

log|V |
∑

i=1

pi = |V | − 1. (3)

The anchor sets obtained through fair non-repetitive sampling operation

contain |V |−1 anchors for a |V | node graph and the sampling probability for

each anchor is (|V | − 1)/|V |, which tends to unity for large graphs.

Based on the derivation above, we propose an effective strategy to con-
struct an anchor set P consisting of all nodes in the graph, denoted by P = V ,
and serving as a stable reference for all nodes. According to our central idea
in this paper, when all nodes in a graph become an anchor in an anchor-set,
each node aggregates information with anchors based on a relative position
relation. This is equivalent to each target node being subject to a rela-
tive position-based attention mechanism based on the global arrangement of
nodes in the graph.
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4.1.2. Aggregation of Node Embedding

With the anchor-set selected, we continue to compute the position-aware
node embedding through the information aggregation between the nodes, in
which each anchor cooperates with its relative position attributes. Here, we
first compute the relative position coefficient qv,u between a pair of nodes v
and u as:

qv,u =
e−dv,u

∑

i∈V e−dv,i
, (4)

where dv,u is the shortest path distance between the two nodes. Considering
the time complexity of calculating the shortest path, we stipulate that the
maximum shortest path distance is not more than r, otherwise, the value is
infinite. In this way, we can effectively eliminate the interference of anchors
that are too far away from the node when the coefficient qv,u equals zero. We
define the information aggregation function I(v, u)(k) for k-th layer between
nodes v and u as:

I(v, u)(k) = qv,uCONCAT(h(k−1)
v , h(k−1)

u ), (5)

where qv,u is the relative position coefficient between node u and v, h
(k−1)
v

and h
(k−1)
u are hidden representations containing the position information in

(k − 1)-th layer. The message aggregation function CONCAT concatenates

the hidden representations h
(k−1)
v and h

(k−1)
u .

We further aggregate the information of each pair of nodes and the anchor
with a non-linear transformation applied after the aggregation to achieve
higher expressive power. The hidden representation passed to the next layer
is:

h(k)
v = σ(AGG(I(v, u)(k)| ∀u ∈ V )W (k)), (6)

where AGG is a permutation-invariant function (e.g., the sum), and W (k) is
a learnable weight vector for the k-th layer.

The general position-aware node embedding framework is summarized in
Algorithm 1.

4.2. Subgraph-based Structure Embedding

In addition to the relative structural information, we further introduce
subgraph structure embedding during the feature extraction and the infor-
mation aggregation for each node. The subgraph-based structure embedding
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Algorithm 1: Position-aware node embedding framework.

Input: input original graph G = (V,A,X), anchor-set:S = V ,
relative position coefficient q, trainable weight in k-th layer
W (k), network layer k ∈ [1, K]

Output: Position-aware node embedding hp

1 hv = Xv

2 for k ∈ [1, K] do
3 for v ∈ V do

4 I(v, u)(k) = qv,uCONCAT(h
(k−1)
v , h

(k−1)
u )

5 h
(k)
v = σ(AGG(I(v, u)(k))W (k)), ∀u ∈ V

6 end

7 end

8 return h
(K)
v

can be split into two steps: a) We first divide the original graph into dif-
ferent subgraphs according to the pre-defined structure. Each subgraph can
be regarded as a new supernode, and the edges between new nodes are de-
termined by the relationships between the nodes in each subgraph, thus we
can construct a so-called subgraph relation graph. b) In the second step,
we aggregate the structural arrangement information of the subgraphs in the
subgraph relation graph and merge them with the relevant nodes in the orig-
inal graph while concurrently aggregating the local information at the node
level of the original graph.

4.2.1. Subgraph Construction

Here we retain the global structural arrangement information from the
original graph to the greatest extent, and extract the key representative
structural features for the subgraphs. Note that it is particularly important
to select the nodes of the subgraph relation graph, i.e. pre-defined subgraphs
in original graphs. In this paper, we define three different types of subgraph
structures, namely a) paths, b) trees, and c) circuits. Combinations of these
three basic subgraph types can be used to construct any required graph
structure.

Since the search for all subgraphs in a graph is NP-hard, we propose
a novel searching method to detect the t-hop neighbors of nodes to find
subgraphs, and then save the search path in real-time to reduce the time
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complexity. The corresponding detection Algorithm 2 is designed to handle
how to find the three different types of subgraph structures.

For tree structure detection, we first initialize two sets: N t(v) to store the
t-hop neighbor of node v, where t ∈ [1, D] and D is the maximum neighbor
depth of the graph, and Pv(u) stores the path from node v to node u. We
traverse the adjacency matrix to find all edges, and store the 1-hop neighbor
set of each node. The tree-structural subgraph is selected for further pro-
cessing if the number of leaf nodes exceeds the preset threshold δ. For the
path and circuit subgraphs, we continue the search for the t-hop neighbors
of each node through the combination of several existing t-hop neighbors. If
a path from node v to node u already exists in the set Pv(u) and there is no
repeating node in the path, we identify the path as a circuit subgraph. The
searching progress for three different types of subgraph structure is shown in
Fig. 4.
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Figure 4: The searching progress for three different types of subgraph structure.

After obtaining these three different types of different subgraphs, we con-
struct the so-called subgraph relation graph to capture the internal rela-
tionship between different subgraph types. This process is shown in Fig. 5:

Definition 1: Subgraph Relation Graph. Let an undirected graph
Ĝ = (V̂ , Â, T ) constructed from the original graph G, in which the node
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Algorithm 2: The searching algorithm for the three different types
of subgraph structure.

Input: input original graph G = (V,A,X), max neighbor depth D,
min node leaf δ

Output: output subgraph set S
1 initialize subgraph set S = {Si}, neighbor set {N

t(v)}, path set

{Pv(u)}, subgraph relation graph Ĝ with |V̂ | vertices
2 for t ∈ [1, D] do
3 for v ∈ V do
4 if t == 1 then
5 for u ∈ V do
6 Add u, v into N1(v), N1(u)
7 Add v, u into Pv(u), Pu(v)
8 if |N1(v)| ≥ δ then
9 add (N1(v) + [v]) as Tree Subgraph into S

10 end

11 end

12 else
13 for u ∈ N i(v)|2i < t ≤ 2i+1 do

14 for r ∈ N t−2i do
15 if Pv(r) ∈ {Pv(u)}and r /∈ Pv(u) then
16 Add Pv(u) as Circuit Subgraph into S
17 else
18 Add r, v into N t(v), Pv(r)
19 Add {Pv(u), Pu(r)} to Pv(r)
20 Add Pv(r) to Pr(v)

21 end

22 end

23 end

24 end

25 end

26 end
27 Add Pv(u) as Path Subgraph into S
28 return S
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set V̂ contains |V̂ | nodes, each denoting a different subgraph identified in
the original graph. The adjacency matrix element of Â equals one if two
nodes share the same node in the original graph. The transformation matrix
T ∈ R

|V |∗|V̂ | represents the matrix that transforms the original graph into
the subgraph relation graph.

Let node vi belong to node-set V of the source graph, and node v̂j belong

to node-set V̂ in the target graph corresponding to subgraph Sj in the source
graph. In this way, the transformation matrix T has the element:

Tij =

{

1 vi ∈ Sj,
0 else .

(7)

Algorithm 3 gives an overview of the subgraph relation graph construction
procedure.

4.2.2. Merged Structure Embedding

We augment the graph affinity embedding to better fuse the high-order in-
formation from the nodes by developing a merged structure message-passing
scheme. We commence by aggregating the structural arrangement informa-
tion of the subgraph relation graph at the subgraph level with the classical
embedding procedure:

h
(k)
v̂i

= COMBINE(h
(k−1)
v̂i

,AGG{h
(k−1)
v̂j

|v̂j ∈ N(v̂i)})), (8)
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Algorithm 3: Construction of the subgraph relation graph.

Input: input subgraph set S
Output: output subgraph relation graph Ĝ = (V̂ , Â, T )

1 Create a new subgraph set Ŝ by combining one of the longest path
subgraphs, one of the tree subgraphs, and the circuit subgraphs
from subgraph set S.

2 for all Si in subgraph set Ŝ do
3 Assign Si to each node v̂i
4 if ∃v ∈ Si ∩ Sj then

5 Add edge Âij between node v̂i and v̂j
6 end
7 if vi ∈ Sj then
8 Tij = 1
9 else

10 Tij = 0
11 end

12 end

13 return Ĝ

where N(v̂i) denotes the set of neighbors of node v̂i (i.e. which corresponds
to subgraph Si in the original graph) in the subgraph relation graph. Here,
the functions AGG and COMBINE are sometimes folded into a single aggre-
gation update. Specifically, AGG is a function that aggregates all neighbor
features of the node Si, and COMBINE updates the representation of node
Si according to the output of AGG. We perform information aggregation and
combination at the structural level. We then further merge them with the
position-aware node embedding extracted from the original graph using the
following procedure:

h(k)
v = COMBINEM(h

(k)
v ,AGGM(h

(k)
v̂i
|∀v ∈ Si)), (9)

where h
(k)
v̂i

denotes the hidden representation of subgraph node Si extracted

using Eq. 8, h
(k)
v represents the hidden node embedding combined with struc-

ture and position in the k-th layer. The function is the sum over all subgraph
embeddings that contain the node v and is computed as AGGM(hS) = T ∗hS.
We define as COMBINEM(hv, hs) = αhs+βhv where α and β are two hyper-

18



parameters that can be used to balance the weight of position relationships
and structural arrangement information.

The position-aware node embedding algorithm is summarized in Algo-
rithm 4.

Algorithm 4: Merge structure embedding framework.

Input: input original graph G = (V,A,X), subgraph relation graph
Ĝ = (V̂ , Â, T ), position-aware node embedding hp, trainable
weight W , network layer k ∈ [1, K]

Output: Subgraph-based Structure embedding hs

1 hv = Xv

2 for k ∈ [1, K] do
3 for v ∈ V do

4 h
(k)
v̂i

= COMBINE(h
(k−1)
v̂i

,AGG{h
(k−1)
v̂j

|v̂j ∈ N(v̂i)}))

5 h
(k)
v = COMBINEM(h

(k)
v ,AGGM(h

(k)
v̂i
|∀Si ⊃ v))

6 end

7 end

8 return h
(K)
v

4.3. Graph Feature Matching

With the proposed position-aware node embedding framework and subgraph-
based structural embedding framework to hand, we encode each node with
high-order graph structure information and position information and con-
struct a high-level embedding space. Such an embedding scheme allows us
to simplify the second-order affinity matrix to a linear one.

With the final hidden representation of the source graph Hs ∈ R
n∗F ′

and the target graph Ht ∈ R
m∗F ′

to hand, we can obtain a soft corre-
spondence between these graphs using the corresponding affinity matrix
Haffinity = exp (HsΓH

T
t ). Each element in the affinity matrix Haffinity ∈ R

n∗m

represents the affinity between a pair of nodes in two graphs considering
node features, position-aware information, and high-order subgraph infor-
mation in the graph, with Γ as a learnable weight matrix. We further apply
the Sinkhorn normalization [32] to obtain a rectangular doubly-stochastic
correspondence matrix to fulfill the constraints on injectivity from the orig-
inal graph Gs to the target graph Gt. Here, the Sinkhorn operation works
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iteratively by iterative row-wise and column-wise normalization,

Hr
affinity = Hc

affinity ⊘ (Hc
affinity1m1m

T )

Hc
affinity = Hr

affinity ⊘ (1n1n
THr

affinity)
(10)

where ⊘ indicates element-wise division, and 1m ∈ R
m∗1, 1n ∈ R

n∗1 are col-
umn vectors whose elements are all ones, Hr

affinity and Hc
affinity are the inter-

mediate results of row normalization and column normalization respectively.
We simplify these two iterative processes giving a continuous relaxation of
the permutation matrix:

S = Sinkhorn(Haffinity) (11)

We further employ the cross-entropy loss function as the permutation loss
between the predicted permutation matrix and the ground truth:

L =−
∑

i∈Vs,j∈Vt

(

Sgt
i,j logSi,j +

(

1− Sgt
i,j

)

log (1− Si,j)
)

, (12)

where Sgt is the ground truth permutation matrix with each element as the
ground truth node-to-node correspondence, and S is the predicted permuta-
tion matrix given by Eq. 11. In this way, our cross-entropy loss can directly
learn the permutation loss based on linear allocation cost in an end-to-end
fashion, no matter how the number of nodes and edges in the graph change.

To illustrate in detail the complete framework adopted in our method,
we provide an illustration of the processing steps involved in obtaining an
embedding commencing from an image input through to the final output.
Also shown is an illustration of the network structure used in each layer. In
the example we take the batch size as 8, the number of key points as 12, and
the number of motifs as 21. The complete data analysis workflow schematic
is shown in Figure 6. The steps are as follows. Firstly, the resized image is
input to a pre-trained VGG-16 model, and we compute the outputs of the
Relu4 2 and Relu5 1 operations to extract node features and edge features.
We align the keypoints with the guidance of the keypoint coordinates to
obtain graph features. This also forms the input of the proposed position
and structure embedding network. The operation of image feature extrac-
tion closely follows previous graph matching methods [5, 8, 10, 17] so as to
guarantee equity in comparison. Then, for position-aware node embedding,
the network concatenates the representation of each node with the anchor
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representation multiplied by a weighting coefficient. A sum operator and one-
layer non-linear transformation are performed to obtain the position embed-
ding. For subgraph-based structure embedding, after constructing the motif
graph, a single graph convolutional layer is applied to obtain the high dimen-
sional structural embedding. The graph embedding can be computed using
the combination of the position embedding and the corresponding structure
embedding. We compute the affinity matrix using the paired graph embed-
dings combined with a learnable weight. The final accuracy of the method is
computed by utilizing the available ground truth and a permutation matrix
obtained from the affinity using the Sinkhorn activation function.
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Figure 6: The entire data analysis workflow example with batch size as 8, the number of
key points as 12, and the number of motifs as 21.

5. Experiments

In this section, we verify our method in three different tasks: We first
perform our experiments in real-world tasks of supervised keypoint matching
in four different kinds of natural images. Then, we further demonstrate the
effectiveness of each procedure in our framework in an ablation study. Finally,
we conduct the experiment on transfer learning across different categories,
to evaluate the generalization capability of our methods.

5.1. Datasets

Willow ObjectClass. The Willow Object Class dataset [33] contains
five object categories including faces, cars, ducks, motorbikes, and wine bot-
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tles. This dataset is a benchmark used to measure the ability of image clas-
sification and recognition. There are 9963 images in total, including 24640
labeled objects. In the experiment, we select a small subset for each category
for training and use the remainder for testing. Each category has at least 40
images.

Pascal VOC 2011. The Pascal Visual Object Classes (VOC) 2011
dataset [11] contains 20 object sub-categories and four major categories in
total, which are vehicles, indoors, animals, and people. Each image in the
dataset has three annotations including category labels, attributes, locations,
and bounding boxes. Note that most images in this dataset contain compli-
cated component scenes.

CUB-200-2011. The Caltech-UCSD Birds-200-2011 (CUB-200-2011)
dataset [34] contains 11788 images with 200 categories of birds. Each image
has clear annotations containing 1 subcategory label, 15 part locations, 312
binary attributes, and 1 bounding box.

IMC-PT-SparseGM. The IMC-PT-SparseGM dataset [35] contains 16
categories and about 25061 images. This dataset gathers data from 16 tourist
attractions around the world. Compared with the datasets mentioned above,
the number of images in this dataset is the largest.

5.2. Alternative for Comparison

The state-of-art benchmark methods used for comparison experiments
are:

GMN. (Graph Matching Network, GMN) Zanfir et al. [10] developed
the deep graph matching method employing an end-to-end deep learning
framework. To extract image features, this framework adopts VGG-16 [16]
networks, with first-order and second-order features extracted from the shal-
lower layer (relu4 2) and deeper layer (relu5 1) of VGG-16, respectively. It
also uses Delaunay triangulation to build graphs. Factorized Graph Match-
ing (FGM) has been used to construct the affinity matrix efficiently. The
method is based on supervised learning using a loss function on the offset
loss. Although this method is relatively simple, it pioneered the use of deep
learning to solve graph-matching problems.

PIA-GM/PCA-GM. Permutation loss and intra-graph affinity-based
graph matching (PIA-GM) and permutation loss and cross-graph affinity-
based graph matching (PCA-GM) [17] replace the offset loss on GMN with
the permutation loss. This can improve the learning process. The image
preprocessing of PIA-GM is the same as GMN. It employs 3 GNN layers to
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perform intra-graph convolution. The feature dimension of the GNN layer is
2048. The main difference between PIA-GM and the original GMN architec-
ture is that it introduces graph neural networks to learn the node embedding
of the graph. The difference between PCA-GM and PIA-GM is that the for-
mer changes the method of graph convolution, from intra-graph convolution
to cross-graph convolution. The aim is to achieve better extraction of infor-
mation for similar nodes between two input graphs and better generation of
the node embedding.

IPCA-GM. (Iterative Permutation loss and cross-graph affinity-based
graph matching, IPCA-GM [36]). To better combine combinatorial opti-
mization with a deep learning solution, IPCA-GM considers the iterative
interaction between the Sinkhorn layer and the GCN layer to learn a better
feature embedding. This approach fully considers the embedding information
for nodes, and reduces the original two-dimensional QAP problem to a one-
dimensional one, thus reducing the complexity and improving the learning
efficiency.

CIE-H. (Channel-Independent Embedding and Hungarian attention, CIE-
H [37]). This follows the CNN-GNN-metric-Sinkhorn pipeline proposed by
PCA-GM and improves PCA-GM in two ways: First, the edge attribute in-
formation is taken into account and combined with node embedding. This is
used to produce a channel-independent embedding. Second, a Hungarian At-
tention module dynamically constructs a structured and sparsely connected
layer. This considers the most significant matching pair during training.

NGM/NHGM. (Neural Graph Matching Network (NGM) and Neu-
ral Hyper Graph Matching Network, NHGM [8]). These are recognized as
a learnable solution to Lawler’s quadratic assignment problem. This first
transforms Lawler’s QAP into an association graph and founds a solution,
which is equivalent to the vertex classification problem on the association
graph. Finally, a graph neural network is used to solve the vertex classifica-
tion problem. NGM considers the task of matching graph pairs, and can be
regarded as Lawler’s QAP solver using VGG-16. On the other hand, NHGM
is a hypergraph matching solver with VGG-16. Both of these methods are
based on supervised learning using permutation loss.

GANN-GM/GANN-MGM. (GANN-GM [5]) is self-supervised learn-
ing graduated assignment neural network for matching graph pairs. (GANN-
MGM [5]) is a self-supervised learning graduated assignment neural network
for multi-graph matching. Both were proposed by Wang et al. [5]. GANN-
GM introduces a self-supervised learning framework by leveraging graph

23



matching solvers to provide pseudo labels to train the neural network mod-
ule in a deep graph matching pipeline. A general graph matching solver is
proposed for various graph matching settings based on the classic Graduated
Assignment (GA) algorithm.

5.3. Experimental Settings

The experiments are conducted using two GeForce GTX 1080 Ti GPUs.
We employ a batch size of 8 in training and evaluate our model in 2000
epochs for each iteration. In terms of experimental settings, we employ the
Adam [38] optimizer to train our models with a learning rate of 1 × 10−4.
To overcome the over-smoothing problem common to graph neural networks,
which arises from the transmission of information between nodes caused by
deepening the network layer. This results in the representations of differ-
ent nodes becoming similar and causes ambiguities in matching. We adopt a
two-layer graph embedding and restrict the degree of smoothing in our exper-
iments. When we perform experimental comparisons and ablation studies,
we train and test each dataset independently. For the cross-category general-
ization study on the Willow ObjectClass dataset, we train the model on the
Pascal VOC dataset excluding the car and motorbike classes, as these images
overlap with the Willow dataset, and then test on the Willow ObjectClass
dataset afterward. To guarantee equity, the splits between the training and
testing datasets are identical for all of the methods compared [5, 8, 10, 17].
The details of the hyperparameter settings are summarized in Table 2.

Table 2: Summary of parameter settings for datasets under study.
Datasets Average Node Number K r δ α β
Pascal VOC 9.07 2 1 2 1× 10−4 1× 10−5

Willow ObjectClass 10.00 2 1 2 1× 10−4 1× 10−4

CUB 2011 12.00 2 1 2 1× 10−4 1× 10−5

IMC-PT-SparseGM 21.36 2 1 3 1× 10−4 1× 10−4

5.4. Performance Comparisons on Four Datasets

In this experiment, the source graph Gs and target graph Gt are composed
of keypoints extracted from two different images. Both two graphs maintain
node consistency during the training and testing stages. We perform the
same operations on four datasets to convert the images into graphs. First,
we filter the outliers from the dataset. Next, we crop the images around their
bounding boxes, which provide the pixel location of the object boundings in
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images. Their image sizes are further resized to 256× 256. The preprocessed
images are then fed to VGG-16 to extract the node features. The graphs are
constructed by Delaunay triangulation [39] of the extracted feature points.

We evaluate the graph matching capacity of the proposed method using
the matching accuracy, which is defined by accuracy =

∑

AND(Si,j, S
gt
i,j)/N

from [5, 17, 36]. Here, the AND operation is a logical operation. Note
that Si,j is the element of the predicted permutation matrix representing the
correspondence matching of node i and node j from two different graphs.
Similarly, Sgt

i,j is the correspondence of the ground truth between the two
nodes, and N is the number of matching node pairs. We use ground truth
node correspondences (which are set to one if two nodes are matched, and
zero otherwise) for the image pairs, and perform an averaging operation to
compute the final matching accuracy.

Table 3: Matching accuracy on the Willow ObjectClass database(%).
Method Car Duck Face Motorbike Winebottle Mean accuracy
GMN [10] 67.90 76.70 99.80 69.20 83.10 79.34
NGM [8] 84.20 77.60 99.40 76.80 88.30 85.30
NHGM [8] 86.50 72.20 99.90 79.30 89.40 85.50
CIE-H [37] 82.20 81.20 100.00 90.00 97.60 90.20
PIA-GM [17] 88.60 87.00 100.00 70.30 87.80 86.74
PCA-GM [17] 87.60 83.60 100.00 77.60 88.40 87.44
IPCA-GM [36] 90.40 88.60 100.00 83.00 88.30 90.06
PCA-GM+Position+Structure 92.90 90.80 100.00 79.00 94.40 91.42
IPCA-GM+Position+Structure 92.70 88.70 100.00 80.20 94.90 91.30

The experimental results on the Willow ObjectClass, Pascal VOC, CUB
and IMC-PT-SparseGM datasets are shown in Table 3, Table 4, Table 5,
and Table 6, respectively. We also compare the proposed methods(i.e. PCA-
GM+Position+Structure and IPCA-GM+Position+Structure) with the al-
ternative methods introduced in Section 5.2. Specifically, our methods achieve
the best performance in the classification accuracy of three different cate-
gories on the Willow ObjectClass dataset, while the CIE-H method outper-
forms the Motorbike and Wine bottle classes. Note that the CIE-H method
also achieves good results on the VOC and CUB datasets. However, it per-
forms poorly on the IMC-PT-SparseGM dataset. The VOC dataset contains
20 object sub-categories and four major categories. It is therefore much more
complicated than the remaining datasets under study. As observed from Ta-
ble 4, many methods perform better than others in one or several specific
categories. Our method performs slightly lower than the highest average ac-
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Table 4: Matching accuracy on the Pascal VOC database(%).

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motorbike Person Plant Sheep Sofa Train TV Mean accuracy

GMN [10] 31.90 47.20 51.90 40.80 68.70 72.20 53.60 52.80 34.60 48.60 72.30 47.70 54.80 51.00 38.60 75.10 49.50 45.00 83.00 86.30 55.30

NGM [8] 50.10 63.50 57.90 53.40 79.80 77.10 73.60 68.20 41.10 66.40 40.80 60.30 61.90 63.50 45.60 77.10 69.30 65.50 79.20 88.20 64.13

NHGM [8] 52.40 62.20 58.30 55.70 78.70 77.70 74.40 70.70 42.00 64.60 53.80 61.00 61.90 60.80 46.80 79.10 66.80 55.10 80.90 88.70 64.58

CIE-H [37] 49.94 63.13 70.65 52.98 82.43 75.36 67.66 72.30 42.35 66.88 69.90 69.52 70.74 61.96 46.67 85.04 70.00 61.75 80.23 91.78 67.56

PIA-GM [17] 41.50 55.80 60.90 51.90 75.00 75.80 59.60 65.20 33.30 65.90 62.80 62.70 67.70 62.10 42.90 80.20 64.30 59.50 82.70 90.10 63.00

PCA-GM [17] 40.90 55.00 65.80 47.90 76.90 77.90 63.50 67.40 33.70 65.50 63.60 61.30 68.90 62.80 44.90 77.50 67.40 57.50 86.70 90.90 63.80

IPCA-GM [36] 53.78 66.22 67.14 61.20 80.39 75.27 72.55 72.52 44.55 65.24 54.30 67.24 67.90 64.21 47.93 84.35 70.79 63.98 83.80 90.83 67.70

PCA-GM+Position+Structure 49.34 68.51 63.32 56.37 81.34 75.81 65.8 70.93 42.90 66.15 70.46 64.21 66.78 65.05 42.31 85.06 67.60 67.25 86.87 90.06 67.31

IPCA-GM+Position+Structure 48.72 65.52 56.08 52.86 78.76 73.66 64.4 66.18 39.73 65.18 63.15 61.90 66.06 62.68 42.21 82.89 64.46 60.8 86.40 89.45 64.56

26



Table 5: Matching accuracy on the CUB database(%).
Method Mean accuracy
GANN-GM [5] 48.44
GANN-MGM [5] 78.32
CIE-H [37] 92.06
PIA-GM [17] 88.56
PCA-GM [17] 92.17
IPCA-GM [36] 92.18
PCA-GM+Position+Structure 91.46
IPCA-GM+Position+Structure 92.34

Table 6: Matching accuracy on the IMC-PT-SparseGM (%).
Method Reichstag Sacre coeur St peters square Mean accuracy
GANN-GM [5] 76.02 44.15 50.49 56.89
GANN-MGM [5] 67.41 42.72 44.42 51.52
CIE-H [37] 42.24 28.47 30.78 33.83
PIA-GM [17] 71.46 41.31 42.64 51.80
PCA-GM [17] 69.38 39.86 42.10 50.40
IPCA-GM [36] 72.96 43.80 44.93 53.89
PCA-GM+Position+Structure 96.28 75.93 81.66 84.63
IPCA-GM+Position+Structure 95.71 74.12 82.06 83.96

curacy. For the CUB and IMC-PT-SparseGM datasets, our method achieves
the highest mean accuracy performance compared with the alternatives. It
can therefore be concluded that our model performs well on all four datasets
under study, while the alternatives generally fail to perform well on at least
one of the datasets. This also clearly demonstrates the advantage of our
method in terms of generalization ability.

5.5. Ablation Study

Here we conduct an ablation study to demonstrate that our novel method
for embedding the positional and structural arrangement information can
be effective in improving variants of the methods of the performance of

Table 7: Matching accuracy of ablation study on IMC-PT-SparseGM (%).
Method Reichstag Sacre coeur St peters square Mean accuracy
PCA-GM 69.38 39.86 42.10 50.40
PCA-GM+Position 92.02 69.07 78.80 79.96
PCA-GM+Structure 93.83 70.44 78.78 81.02
PCA-GM+Position+Structure 96.49 72.01 83.00 83.83
IPCA-GM 72.96 43.80 44.93 53.89
IPCA-GM+Position 93.03 65.37 77.24 78.55
IPCA-GM+Structure 92.79 62.66 76.98 77.48
IPCA-GM+Position+Structure 95.71 74.12 82.06 83.96
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Table 8: CNN backbone of ablation study on IMC-PT-SparseGM (%).
Method Reichstag Sacre coeur St peters square Mean accuracy Time (min)

PCA-GM+Position+Structure (VGG-16) 96.49 72.01 83.00 83.83 1173

PCA-GM+Position+Structure (VGG-19) 96.35 72.07 83.21 83.87 1358

PCA-GM+Position+Structure (ResNet-50) 96.45 71.84 83.08 83.79 979

PCA-GM+Position+Structure (MobileNet-v3) 96.31 71.45 83.24 83.67 815

IPCA-GM+Position+Structure (VGG-16) 95.71 74.12 82.06 83.96 1434

IPCA-GM+Position+Structure (VGG-19) 95.53 73.76 81.79 83.69 1706

IPCA-GM+Position+Structure (ResNet-50) 95.78 74.15 82.07 84.00 1179

IPCA-GM+Position+Structure (MobileNet-v3) 95.62 74.00 81.93 83.85 1068

graph matching. To this end, we construct three models based on the graph
matching methods PCA-GM and IPCA-GM. The three variants are a) the
original method combined with position-aware embedding, b) the original
method combined with structure embedding, and c) the original method
combined with complete position and structure embedding. Considering that
our method has the alternative best performance on the IMC-PT-SparseGM
data set compared with other methods, we conduct the ablation study on the
IMC-PT-SparseGM dataset. The experimental results are shown in Table 7.

The proposed position-aware node embedding and subgraph-based struc-
ture embedding greatly improve the classification accuracy of the original
method in each category. Note that the IMC-PT-SparseGM dataset consists
of tourist attractions, of which many (especially the buildings) are symmet-
rical, indicating that the semantic information of the keypoints is usually
ambiguous. Therefore, the incorporation of position information for the
graph matching methods can effectively assist the classification task. The
high-order subgraph-based structural arrangement information is also valu-
able, since the global structural features of the tourist attractions can provide
more comprehensive information than just local features alone.

Furthermore, in this paper we make use of VGG-16 to extract image
features. Note that the proposed method is not designed to be critically de-
pendent on VGG-16, and the chosen feature extractor step can be replaced
by any of the other available CNN models. Furthermore, we conduct an
ablation study that compares the different CNN backbones applied in the
proposed method, both in terms of performance and also computation time.
Specifically, we include VGG-19, ResNet-50, and MobileNet-v3 in addition
to VGG-16. Each of these backbone models is sourced from the TorchVision
library [40]. The results are shown in Table 8, from which it can be con-
cluded that using the choice of different backbone models has little effect on
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the performance. Although there are minor differences in the initial feature
extraction capability, the high-order feature extraction and matching algo-
rithm do have a major influence on the final graph matching outcome. As far
as time consumption is concerned, MobileNet-v3 shows clear advantages in
terms of computation time due to its lightweight design. However, this is at
the cost of sacrificing some accuracy. Here, we are at pains to ensure fairness
of comparison with alternative methods. Based on these considerations we
opt to use VGG-16 as the backbone architecture in image feature extraction.
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Figure 7: Cross-category generalization study represented by confusion matrix on Willow
ObjectClass dataset. Each column of the matrix represents one category of images used
for model training, while each row represents one class of testing samples. a) and b)
show the matching accuracy of comparison methods in different category generalizations,
respectively. c) and d) are obtained from the proposed methods.

5.6. Cross-category Generalization Study

To verify the generalization capability of our methods on different types
of categories, we construct the confusion matrix for the training and testing
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instances from the different categories. The experimental results are pre-
sented in Fig. 7 and Fig. 8. We first train each of the five classes separately
for the Willow dataset. We then use the distinct training classes to validate
the generalization capabilities for all five object classes.
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Figure 8: Cross-category generalization study method ranking on Willow ObjectClass
dataset. The re-color figure from Fig. 7 by sorting all the matching results obtained by
four different methods from large to small.

The confusion matrix for the dataset illustrating transfer learning among
the five object categories is given in Fig. 7. The models are trained on the
object categories in the rows and then tested on the object categories in the
columns. The diagonal of the matrix shows the classification ability of the
method on each object class. The darker the grid color in the figure, the
higher the matching accuracy. We compare each element in Fig. 7 (a) with
Fig. 7(c), and Fig. 7(b) with Fig. 7(d). The proposed graph matching
method combined with position and structural arrangement information has
improved the generalization ability for all classes compared with the original
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methods. Furthermore, the accuracy of the model in the face category reaches
100% in Fig. 7(c), and is also high in both Fig. 7(b) and Fig. 7(d). It may
be related to the simplicity and lower noise in the face samples.

In Fig. 8, we re-color Fig. 7 by sorting all the matching results obtained
by the four different methods from large to small. The larger the value, the
darker the color. This is also a reflection of the generalization ability of the
model. Moreover, it gives the priority to the proposed position and structure
framework based on higher accuracy scores in the confusion matrix. The gen-
eralization ability of the models provided in this study is substantially greater
than the alternative methods due to the addition of position information and
the correlation connection of the subgraph structure. Furthermore, IPCA-
GM+Position+Structure has greater diagonal accuracy, indicating that it is
more suitable for the training category.

6. Limitations

This work aims to address the issue of ambiguous matching that results
from the absence of discriminability based on local structure and the seman-
tic similarity of different nodes. We therefore focus on the feature extraction
problem during the graph-matching task. However, we do not consider issues
arising from the fact that the image itself may contain noise and other abnor-
malities. Our position-aware node embedding module and subgraph-based
structural embedding module are adaptive plug-ins that can boost the per-
formance of other methods too. However, this is at the expense of additional
computing time consumption and memory usage.

Future work will aim to investigate the noisy image-matching task so that
it can be made more practically applicable. In addition, and from a problem-
solving perspective, we can consider how to deal with matching graphs that
have more complicated structural relations. These include hypergraphs and
directed graphs or using various relative position and subgraph relational
strategies.

7. Conclusion

In this paper, we propose a novel graph matching method, which combines
and incorporates a relative position-aware node embedding and together with
a subgraph-based structure embedding into the node-wise embedding be-
tween graphs. The experiments include comparisons with alternatives, an
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ablation study and the cross-category generalization study to demonstrate
the effectiveness of the proposed method with its embedding modules. Specif-
ically, the matching accuracy on several real-world datasets compared with
peer methods demonstrate the state-of-the-art performance of our method.
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1. Introduction

Graph matching aims to establish the correspondence between two or
more graphs based on their structural information [1]. It is widely used in
combinatorial optimization, machine learning and computer vision due to
its natural representation and convenient coding of the relationship between
abstract data. Specifically, many applications can be implemented using
the graph matching technique, such as image registration in medical image
analysis, linking user accounts in social network analysis, image extrapolation
in computer vision, finding coherent motions and semantic regions in crowd
scenes [2].

There are many methods and matching solvers developed for addressing
the graph matching problem [3, 4]. These can be divided into different cat-
egories depending on the specific perspectives adopted. For example, based
on the number of graphs included, there are graph-to-graph matching and
multi-graph matching methods [5]. Since graph-to-graph matching is the
basis of multi-graph matching, improving the matching ability between two
graphs can also be extended to improve multi-graph matching. Therefore,
this paper focuses on the matching of pairs of graphs. Based on match-
ing content, they can be divided into a) structure information-based graph
matching and b) semantic information-based graph matching [6]. Note that
in graph matching, especially for image-generated graphs, semantic features
based on structural information have been proved to be important for clas-
sifying nodes [7]. In this way, the graph matching problems studied in this
paper are based on both node feature information and structural information
from the graphs. On the other hand, graph matching methods can also be
divided into a) learning-based methods and b) learning-free methods [8].
Notably, learning-free methods generally seek approximate solutions for a
given fixed affinity model, which is usually cast in the form of simple param-
eters and is approximately solved by the joint similarity of individual entities
together with their mutual relationships [9]. However, their time complexity
is often too high to satisfy and solve large-scale real-world problems.

In the case of deep learning-based graph matching solvers, the common
feature of most methods is that they compromise in their evidence-combining
strategy in the sense that the resulting unclear combinatorial element would
not be competitive in a purely combinatorial setup [10]. However, these meth-
ods can only calculate the similarity score of the entire graph, and heavily
rely on inefficient global matching procedures. Additionally, they only con-
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sider the embedding of local information for nodes in the graph, which tend
to ambiguously match similar nodes in different regions of the graph in an
inconsistent manner [10]. Fig. 1 illustrates an example of the main idea of
our relative position-aware information embedding strategy. Here it is shown
that it fails to match the cats’ ear positions correctly, since the node embed-
ding information usually relies only on node semantic information, and the
local structure information lacks effective discrimination ability. Therefore
it is difficult to unambiguously distinguish the left and right ears of a cat.
In this example, the relative position information is critical to graph match-
ing, especially when both the semantic and structural information are very
similar in the two regions of the graphs.

Figure 1: An exemplar failure case to establish the correct match of cat ears between two
images, which are selected from the Pascal VOC dataset [11].

To address the above-mentioned challenges, here we propose a novel ap-
proach to solve the graph matching problem. We commence by utilizing
node features extracted from the images to attribute the nodes, and design
a position-aware node embedding algorithm to capture the relative position
information of nodes in the graph. We further enhance the representation of
local information of the nodes by merging a structural arrangement informa-
tion representation of the subgraph in which the node is located. With the
graph node-wise embedding to hand, we aim to obtain the required graph
node permutations for node-to-node correspondence from raw pixel inputs.
To our best knowledge, there are no methods that consider embedding both
position and structural information for the graph matching problem.

The main contributions of our works are as follows:
1. Relative position information has not been considered in the existing
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process of graph matching, which hampers their applications in terms of
reducing the ambiguity of matching accuracy. We propose to construct an
anchor set for small graphs extracted from images, and fully consider the
relative position information related to the matching of keypoints, which is
also proved to be effective in experiments.

2. We propose a novel subgraph detection and graph representation
method, and extract subgraph structural arrangement information for im-
proved node embedding. Previous graph matching studies only match using
node level and edge level information, but ignore the higher-order neigh-
borhood structure information. Here we introduce subgraph arrangement
structure information into the graph matching task, by capturing it using
the subgraph structure. This arrangement procedure combines node and
edge level information with relative position information. We can therefore
implement a hierarchical and comprehensive extraction of image features,
which further improves the matching accuracy.

3. We demonstrate in our experiments that our method outperforms al-
ternative work on several widely-studied real-world datasets. In the ablation
study, we also show the effectiveness of the introduced components of our new
method of graph matching on these datasets. We show that our position-
aware node embedding module and subgraph-based structural embedding
module can be added to existing deep learning graph matching methods, to
further boost their classification performance.

The remainder of the paper is organized as follows: Section 2 provides a
brief review of the related work on image feature extraction, graph embed-
ding, and combinatorial optimization. Section 3 defines the specific graph
matching problem that we intend to resolve in this work. Section 4 provides
the details of our method, and the corresponding experiments to validate our
new method are presented in Section 5. Finally, we conclude the paper and
provide an extended discussion of potential future work in Section 7.

2. Related Work

In this section, we review existing deep learning solvers in dealing with
graph matching problems.

2.1. Image Feature Extraction

Feature extraction refers to the computation of higher-level features from
the original pixels in an image. It can capture the differences between pixels
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of various object classes. Conventional feature extraction usually proceeds in
an unsupervised manner, and no image category labels are used when extract-
ing information from the pixels. Commonly used traditional features include
GIST (Generalized Search Trees), SIFT (Scale-Invariant Feature Transform),
and LBP (Local Binary Patterns) [12].

However, these hand-crafted feature extraction methods can not be opti-
mized according to the training from images and their labels. However, they
fail to provide more comprehensive feature information to better represent
important image information. The method based on deep learning overcomes
this shortcoming using a soft-coded feature extractor [13]. Recently, the CNN
model has been developed and enhanced in detail. For example, Szegedy et

al. [14] significantly increase the depth of the CNN in their GoogleNet with
three different types of convolution operation. He et al. [15] have proposed
the residual neural network (ResNet) which includes a cross-layer connection
that passes information from the input across deeper layers. It also adds to
the result of convolution by introducing shortcut connections to solve the
problem of vanishing loss gradient.

In this paper, we use VGG-16 [16] as the backbone architecture for im-
age feature extraction, and which also closely follows the previous graph-
matching works described in [5, 8, 10, 17]. This guarantees equity in the
comparisons performed in our experiments. It can adapt to different sizes
of the convolutional kernel to capture more discriminative decision functions
with fewer parameters. It has been proved effective in deep visual feature
extraction.

2.2. Graph Embedding

At present, most studies related to graph embedding focus on static
graphs, which can be divided into (a) spectral-based and (b) spatially-based
methods.

2.2.1. Spectral Methods for Graph Embedding

The earliest graph embedding method provides local convolutions of graph
structure data in the spectral frequency domain. The Fourier transform of
the graph is used to transform the time domain data into a frequency domain
signal. Then the frequency domain signal is convolved with local features.
Finally, the frequency domain signal is transformed back into the time do-
main.
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Although spectral frequency-based methods can effectively avoid the cross-
influence of data in the time domain, it needs to calculate the Laplace matrix
eigendecomposition and a representation of the graph structure correspond-
ing to the sample of the graph structure. This makes it difficult to apply
in real scenes due to the large computational overheads. To solve the prob-
lem of high computational complexity, Defferrard et al. [18] proposed to use
Chebyshev polynomials instead of the exact calculation of graph eigenvalues
and eigenvectors. In addition, Kifp and Welling [19] simplified the algorithm
with first-order polynomials and used it to solve the task of semi-supervised
node classification.

In general, spectral methods have suffered from the following three de-
fects: a) The generalization ability to new unseen and variable graph struc-
tures is poor. If any node or edge in the graph changes, the spectral domain
of the graph will also change rapidly, so that the filter learned from the orig-
inal graph can not be well matched to the new graph. b) The alignment of
Fourier patterns is difficult. It is challenging to align graphs with different
typologies in the spectral domain, especially when the difference between
graphs is large. Such differences in the spectral domain will be magnified,
making it harder to align the Fourier modes. c) Spectral methods can only
solve the problem for undirected graphs. This means it is limited to satisfying
the constraint of a symmetric transformation matrix.

2.2.2. Spatial Methods for Graph Embedding

Spatial approaches have an advantage over spectral approaches in that
they can operate on problems where the graph structure varies significantly
in the dataset being studied [20]. However, they generally require sophisti-
cated data transformations to enable effective learning. For example, given
the strong hypothesis that the existence of node-connected edges is based
on sometimes ad-hoc and contrived or artificial settings, Zhang et al. [21]
extracted local subgraphs around each target link. They use this to learn
the functional mapping of subgraph patterns to infer the existence of links,
and to automatically learn heuristic algorithms.

In addition, the graph neural network method based on a message pass-
ing architecture is also considered to be a spatial method. It uses different
aggregation schemes to aggregate the characteristic messages of neighbors in
a graph. The message passing neural network further integrates edge infor-
mation in the aggregation process. The graph attention network proposed
by Velikovic et al. can aggregate neighborhood information according to
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the weights derived from a trainable attention mechanism [22]. However, all
these methods focus on just learning node embeddings to capture the local
network structure around a given node. Such models are at most as pow-
erful as the Weisfeiler-Leman graph isomorphism test [23], but they cannot
distinguish nodes in symmetric or isomorphic positions in the network.

In this paper, we develop a novel graph embedding method to extract
high-level information combined with the relative position of nodes, which
can greatly assist graph matching.

2.3. Combinatorial Optimization

In combinatorial optimization problems, enumeration and exhaustive meth-
ods are not practical. The solution strategies are either discrete or are ef-
fectively reduced to a discrete set. Many traditional algorithms for solving
combinatorial optimization problems involve the use of manually constructed
heuristic algorithms. However, due to the difficulty of problem-solving, it is
usually not the optimal solution.

Mathematically, the graph matching problem can be considered a com-
binatorial optimization problem, which is also an NP-Hard problem. Using
mathematical methods to solve graph matching problems can be divided into
relaxation optimization and matrix decomposition methods [24]. For the
spectral relaxation optimization method, the computation speed is relatively
fast, but the constraints on the obtained solution are often over-relaxed. Of
course, the input discrete variables can also be converted into continuous vari-
ables to make the solution more compact. However, the following problems
generally exist in these methods: First, they are not robust to outliers and
noise. Second, they usually have high computational overheads. Besides, the
optimal approximate solution obtained by traditional mathematical methods
may be locally optimal solutions different from the ground truth.

With the rise of deep learning, the use of reinforcement learning and
neural networks to solve combinatorial optimization problems has become a
topical trend. The Sinkhorn network [25] can solve the linear assignment
problem, by performing the doubly stochastic normalization operations of
row normalization and column normalization on all non-negative matrices
to minimize the cost. Furthermore, it is an approximate Hungarian algo-
rithm [26] that can optimize polynomial complexity. Recently, Patrini et
al. [27] proposed a Sinkhorn autoencoder to achieve the target of minimiz-
ing distance, and utilizing reinforcement learning to solve the combinatorial
optimization problem. Furthermore, a novel and simple end-to-end training
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framework was proposed by Roĺınek et al. [10], which incorporates the most
advanced graph matching combinatorial solver.

In this paper, we develop a novel subgraph detection and graph repre-
sentation method to solve the combinatorial optimization problem. It can
effectively reduce the dimensionality of the quadratic assignment problem for
combinatorial optimization to a linear assignment problem.

3. Problem Definition and Notations

In this paper, we consider the graph G = (V,A,X) which is consist of a
finite set of nodes V , an adjacency matrix A, and a set of attributes X for the
nodes, which originate from images using various CNN models [16, 28, 29].
The goal of graph matching is to establish a correspondence between two
attributed graphs, which minimizes the sum of local and geometric costs of
assignment between the vertices of the two graphs.

Let Gs = (Vs, As, Xs) be a source graph, with |Vs| = n, As ∈ {0, 1}n×n,
and feature matrixXs ∈ R

n×F , where F represents the F -dimensional feature
vector of nodes in graph stacked to columns. The target graph to be matched
is Gt = (Vt, At, Xt), with |Vt| = m, At ∈ {0, 1}m×m, and feature matrix
Xt ∈ R

m×F , whose w.l.o.g. n ≤ m. We also construct a vector of length
nm. The element v ∈ {0, 1}nm×1 indicates the match of vertices in two
graphs, where vi,j = 1 if vertex i ∈ Vs is matched to vertex j ∈ Vt and
vi,j = 0 if otherwise. It is worth noting that all the vertex matches are
subject to the one-to-one mapping constraints, i.e.

∑

j∈Vt
vi,j = 1 ∀i ∈ Vs

and
∑

i∈Vs
vi,j ≤ 1 ∀j ∈ Vt.

Furthermore, we construct a square symmetric positive matrix M ∈
R

nm×nm referred to as the affinity matrix, to encode the edge-to-edge affin-
ity between two graphs by their off-diagonal elements. Specifically, Mip;jq

measures how well edge (i, j) in graph Gs matches with edge (p, q) in graph
Gt with {i! = p} ∪ {j! = q}. The diagonal entries of the affinity matrix
can also indicate the node-to-node affinity between two graphs. Therefore,
the pairwise graph matching between Gs and Gt can be formulated as the
edge-preserving, quadratic assignment programming (QAP) [30] problem:

argmax
v

v⊤Mv

s.t.
∑

j∈Vt

vi,j = 1 ∀i ∈ Vs,
∑

i∈Vs

vi,j ≤ 1 ∀j ∈ Vt,
(1)
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Table 1: Notations and Description

Symbol Definition
G original graph
V nodes-set of graph
|V| node number of nodes-set
r maximum shortest path distance
K network layer
P anchor-set
p anchor number
qv,u relative position coefficient between pair of nodes v and u

dv,u shortest path distance between pair of nodes v and u

I(k)(v, u)
information aggregation function
between node v and u in k-th layer

W (k) trainable weight matrix in k-th layer

hv
(k) hidden representation of node v in k-th layer

N t(v) t-hop neighbor of node v
Pv(v) path from node v to u
δ leaf node threshold
α hyper-parameter to balance the position information
β hyper-parameter to balance the structure information

T
transform matrix of the original graph
to the subgraph relation graph

Hs final hidden representation of source graph
Ht final hidden representation of target graph

where v ∈ {0, 1}nm×1 and M ∈ R
nm×nm. In this work, we intend to resolve

the graph matching problem based on the supervised matching of graphs, and
we aim to learn an end-to-end model which can effectively extract graph in-
formation and match through given pair-wise ground-truth correspondences
for a set of graphs, and generalize to unseen graph pairs. The notation used
in this paper is summarized in Table 1.

4. Methods

In this section, we provide details of the proposed end-to-end position-
aware and structure-based graph matching method, The overall pipeline is
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shown in Figure 2. In the figure, the blue source graph Gs are extracted
together with their node-wise high-level graph feature representations. This
is done using position-aware node embedding and subgraph based structure
embedding. The graph features are matched using a matrix product oper-
ation and the Sinkhorn activation function. The result is compared with
the available ground truth. The final output of the model is the matching
accuracy of the pair of nodes between the source graph and the target graph.
Note that the deep feature extractor of the proposed method can be any
CNN model, such as VGG-16 [16], which is adapted to convert images into
graphs with features. These graphs are the source and target graphs, which
are the paired input of our model.

Ground truth
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Figure 2: Overview of the end-to-end position and structure embedding networks for deep
graph matching.

The model consists of three main components, namely a) a position-aware
node embedding module, b) a subgraph-based structure embedding module,
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Figure 3: Procedure of Position Embedding.

and c) a graph feature matching module. The aim of the position-aware node
embedding step, as described in Section 4.1, is to consider the information
available from the relative structure. The second step is to iteratively com-
bine the subgraph structure information described in Section 4.2, and the
final part is the matching of two graphs with extracted graph representation
described in Section 4.3.

4.1. Position-aware Node Embedding

We establish our position-aware node embedding procedure with two key
components: First, before the node embedding process, we propose a sim-
ple but effective strategy to construct an anchor-set for each graph which
is used throughout the entire learning process. Here, we refer to the nodes
used as reference position coordinates as anchors, and the set of these nodes
as the Anchor-set. We aggregate the information of the node and each an-
chor in the anchor-set, in this way we replace the original graph embedding
method that relies on message passing between local network neighborhoods.
Second, we design an information aggregation mechanism for message aggre-
gation between nodes and anchors in the anchor-set. With the addition of
position-aware node embedding, we can effectively eliminate the ambiguity-
prone mismatching of similar nodes in different positions.

4.1.1. Anchor-set Construction for Small Graph

The position anchor framework is motivated by PGNN [31] which em-
phasizes large graphs (i.e. those consisting of at least thousands of nodes).
However, in this paper, we further study the anchor mechanism and focus on
small graphs constructed from images. Specifically, the anchor-sets first pro-
posed for large graphs are completely randomly chosen subsets of all nodes
from the graph. They are intended to sample multiple anchor-sets P =
{Pi,j}, where the number of anchor-sets |P | = log2 |V |, i = 1, 2, ..., log |V |,
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j = 1, 2, ...c log |V |. Here, |V | is the number of nodes in the graph and c is
a hyper-parameter. Each node is sampled independently and randomly with
a probability of 1/2i. The idea central to our method is that the anchor-
sets can include each node or any of its one-hop neighbors. Large anchor
sets have low position information with a large sampling probability. Small
anchor sets have high position information with low sampling probability.
The balance of these different sizes of anchor-sets may lead to efficient em-
beddings. However, this random sampling operation can result in the final
anchor sets sampling almost all nodes in the graph. The proof is as follows:

The sampling probability for each node in the anchor-set Pi,j is 1/2
i, and

the number of anchors in each anchor-set Pi,j is

pi =
|V |

2i
∀i ∈ [1, log |V |], (2)

where |V | is the number of nodes in the graph.

Since the number of anchor points pi in the anchor-set Pi,j is only related

to element i, the construction of anchor-sets P = {Pi,j|(i ∈ [1, log |V |], j ∈
[1, c log |V |])} is actually the repeated construction of anchor-sets P = {Pi,j|(i ∈
[1, log |V |], j = 1)} for c log |V | multiplied by the uniform sampling probabil-

ity for each anchor in each anchor set construction step. Hence, we consider

each anchor in a non-repetitive operation, i.e. the anchors in anchor-sets

P = {Pi|(i ∈ [1, log |V |])}. Therefore, the number of anchors p in the entire

set of anchor-sets P = {Pi|(i ∈ [1, log |V |])} is given by:

p =

log|V |
∑

i=1

pi = |V | − 1. (3)

The anchor sets obtained through fair non-repetitive sampling operation

contain |V |−1 anchors for a |V | node graph and the sampling probability for

each anchor is (|V | − 1)/|V |, which tends to unity for large graphs.

Based on the derivation above, we propose an effective strategy to con-
struct an anchor set P consisting of all nodes in the graph, denoted by P = V ,
and serving as a stable reference for all nodes. According to our central idea
in this paper, when all nodes in a graph become an anchor in an anchor-set,
each node aggregates information with anchors based on a relative position
relation. This is equivalent to each target node being subject to a rela-
tive position-based attention mechanism based on the global arrangement of
nodes in the graph.
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4.1.2. Aggregation of Node Embedding

With the anchor-set selected, we continue to compute the position-aware
node embedding through the information aggregation between the nodes, in
which each anchor cooperates with its relative position attributes. Here, we
first compute the relative position coefficient qv,u between a pair of nodes v
and u as:

qv,u =
e−dv,u

∑

i∈V e−dv,i
, (4)

where dv,u is the shortest path distance between the two nodes. Considering
the time complexity of calculating the shortest path, we stipulate that the
maximum shortest path distance is not more than r, otherwise, the value is
infinite. In this way, we can effectively eliminate the interference of anchors
that are too far away from the node when the coefficient qv,u equals zero. We
define the information aggregation function I(v, u)(k) for k-th layer between
nodes v and u as:

I(v, u)(k) = qv,uCONCAT(h(k−1)
v , h(k−1)

u ), (5)

where qv,u is the relative position coefficient between node u and v, h
(k−1)
v

and h
(k−1)
u are hidden representations containing the position information in

(k − 1)-th layer. The message aggregation function CONCAT concatenates

the hidden representations h
(k−1)
v and h

(k−1)
u .

We further aggregate the information of each pair of nodes and the anchor
with a non-linear transformation applied after the aggregation to achieve
higher expressive power. The hidden representation passed to the next layer
is:

h(k)
v = σ(AGG(I(v, u)(k)| ∀u ∈ V )W (k)), (6)

where AGG is a permutation-invariant function (e.g., the sum), and W (k) is
a learnable weight vector for the k-th layer.

The general position-aware node embedding framework is summarized in
Algorithm 1.

4.2. Subgraph-based Structure Embedding

In addition to the relative structural information, we further introduce
subgraph structure embedding during the feature extraction and the infor-
mation aggregation for each node. The subgraph-based structure embedding
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Algorithm 1: Position-aware node embedding framework.

Input: input original graph G = (V,A,X), anchor-set:S = V ,
relative position coefficient q, trainable weight in k-th layer
W (k), network layer k ∈ [1, K]

Output: Position-aware node embedding hp

1 hv = Xv

2 for k ∈ [1, K] do
3 for v ∈ V do

4 I(v, u)(k) = qv,uCONCAT(h
(k−1)
v , h

(k−1)
u )

5 h
(k)
v = σ(AGG(I(v, u)(k))W (k)), ∀u ∈ V

6 end

7 end

8 return h
(K)
v

can be split into two steps: a) We first divide the original graph into dif-
ferent subgraphs according to the pre-defined structure. Each subgraph can
be regarded as a new supernode, and the edges between new nodes are de-
termined by the relationships between the nodes in each subgraph, thus we
can construct a so-called subgraph relation graph. b) In the second step,
we aggregate the structural arrangement information of the subgraphs in the
subgraph relation graph and merge them with the relevant nodes in the orig-
inal graph while concurrently aggregating the local information at the node
level of the original graph.

4.2.1. Subgraph Construction

Here we retain the global structural arrangement information from the
original graph to the greatest extent, and extract the key representative
structural features for the subgraphs. Note that it is particularly important
to select the nodes of the subgraph relation graph, i.e. pre-defined subgraphs
in original graphs. In this paper, we define three different types of subgraph
structures, namely a) paths, b) trees, and c) circuits. Combinations of these
three basic subgraph types can be used to construct any required graph
structure.

Since the search for all subgraphs in a graph is NP-hard, we propose
a novel searching method to detect the t-hop neighbors of nodes to find
subgraphs, and then save the search path in real-time to reduce the time
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complexity. The corresponding detection Algorithm 2 is designed to handle
how to find the three different types of subgraph structures.

For tree structure detection, we first initialize two sets: N t(v) to store the
t-hop neighbor of node v, where t ∈ [1, D] and D is the maximum neighbor
depth of the graph, and Pv(u) stores the path from node v to node u. We
traverse the adjacency matrix to find all edges, and store the 1-hop neighbor
set of each node. The tree-structural subgraph is selected for further pro-
cessing if the number of leaf nodes exceeds the preset threshold δ. For the
path and circuit subgraphs, we continue the search for the t-hop neighbors
of each node through the combination of several existing t-hop neighbors. If
a path from node v to node u already exists in the set Pv(u) and there is no
repeating node in the path, we identify the path as a circuit subgraph. The
searching progress for three different types of subgraph structure is shown in
Fig. 4.
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Figure 4: The searching progress for three different types of subgraph structure.

After obtaining these three different types of different subgraphs, we con-
struct the so-called subgraph relation graph to capture the internal rela-
tionship between different subgraph types. This process is shown in Fig. 5:

Definition 1: Subgraph Relation Graph. Let an undirected graph
Ĝ = (V̂ , Â, T ) constructed from the original graph G, in which the node
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Algorithm 2: The searching algorithm for the three different types
of subgraph structure.

Input: input original graph G = (V,A,X), max neighbor depth D,
min node leaf δ

Output: output subgraph set S
1 initialize subgraph set S = {Si}, neighbor set {N

t(v)}, path set

{Pv(u)}, subgraph relation graph Ĝ with |V̂ | vertices
2 for t ∈ [1, D] do
3 for v ∈ V do
4 if t == 1 then
5 for u ∈ V do
6 Add u, v into N1(v), N1(u)
7 Add v, u into Pv(u), Pu(v)
8 if |N1(v)| ≥ δ then
9 add (N1(v) + [v]) as Tree Subgraph into S

10 end

11 end

12 else
13 for u ∈ N i(v)|2i < t ≤ 2i+1 do

14 for r ∈ N t−2i do
15 if Pv(r) ∈ {Pv(u)}and r /∈ Pv(u) then
16 Add Pv(u) as Circuit Subgraph into S
17 else
18 Add r, v into N t(v), Pv(r)
19 Add {Pv(u), Pu(r)} to Pv(r)
20 Add Pv(r) to Pr(v)

21 end

22 end

23 end

24 end

25 end

26 end
27 Add Pv(u) as Path Subgraph into S
28 return S
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Figure 5: An example of the Subgraph Relation Graph.

set V̂ contains |V̂ | nodes, each denoting a different subgraph identified in
the original graph. The adjacency matrix element of Â equals one if two
nodes share the same node in the original graph. The transformation matrix
T ∈ R

|V |∗|V̂ | represents the matrix that transforms the original graph into
the subgraph relation graph.

Let node vi belong to node-set V of the source graph, and node v̂j belong

to node-set V̂ in the target graph corresponding to subgraph Sj in the source
graph. In this way, the transformation matrix T has the element:

Tij =

{

1 vi ∈ Sj,
0 else .

(7)

Algorithm 3 gives an overview of the subgraph relation graph construction
procedure.

4.2.2. Merged Structure Embedding

We augment the graph affinity embedding to better fuse the high-order in-
formation from the nodes by developing a merged structure message-passing
scheme. We commence by aggregating the structural arrangement informa-
tion of the subgraph relation graph at the subgraph level with the classical
embedding procedure:

h
(k)
v̂i

= COMBINE(h
(k−1)
v̂i

,AGG{h
(k−1)
v̂j

|v̂j ∈ N(v̂i)})), (8)
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Algorithm 3: Construction of the subgraph relation graph.

Input: input subgraph set S
Output: output subgraph relation graph Ĝ = (V̂ , Â, T )

1 Create a new subgraph set Ŝ by combining one of the longest path
subgraphs, one of the tree subgraphs, and the circuit subgraphs
from subgraph set S.

2 for all Si in subgraph set Ŝ do
3 Assign Si to each node v̂i
4 if ∃v ∈ Si ∩ Sj then

5 Add edge Âij between node v̂i and v̂j
6 end
7 if vi ∈ Sj then
8 Tij = 1
9 else

10 Tij = 0
11 end

12 end

13 return Ĝ

where N(v̂i) denotes the set of neighbors of node v̂i (i.e. which corresponds
to subgraph Si in the original graph) in the subgraph relation graph. Here,
the functions AGG and COMBINE are sometimes folded into a single aggre-
gation update. Specifically, AGG is a function that aggregates all neighbor
features of the node Si, and COMBINE updates the representation of node
Si according to the output of AGG. We perform information aggregation and
combination at the structural level. We then further merge them with the
position-aware node embedding extracted from the original graph using the
following procedure:

h(k)
v = COMBINEM(h

(k)
v ,AGGM(h

(k)
v̂i
|∀v ∈ Si)), (9)

where h
(k)
v̂i

denotes the hidden representation of subgraph node Si extracted

using Eq. 8, h
(k)
v represents the hidden node embedding combined with struc-

ture and position in the k-th layer. The function is the sum over all subgraph
embeddings that contain the node v and is computed as AGGM(hS) = T ∗hS.
We define as COMBINEM(hv, hs) = αhs+βhv where α and β are two hyper-

18



parameters that can be used to balance the weight of position relationships
and structural arrangement information.

The position-aware node embedding algorithm is summarized in Algo-
rithm 4.

Algorithm 4: Merge structure embedding framework.

Input: input original graph G = (V,A,X), subgraph relation graph
Ĝ = (V̂ , Â, T ), position-aware node embedding hp, trainable
weight W , network layer k ∈ [1, K]

Output: Subgraph-based Structure embedding hs

1 hv = Xv

2 for k ∈ [1, K] do
3 for v ∈ V do

4 h
(k)
v̂i

= COMBINE(h
(k−1)
v̂i

,AGG{h
(k−1)
v̂j

|v̂j ∈ N(v̂i)}))

5 h
(k)
v = COMBINEM(h

(k)
v ,AGGM(h

(k)
v̂i
|∀Si ⊃ v))

6 end

7 end

8 return h
(K)
v

4.3. Graph Feature Matching

With the proposed position-aware node embedding framework and subgraph-
based structural embedding framework to hand, we encode each node with
high-order graph structure information and position information and con-
struct a high-level embedding space. Such an embedding scheme allows us
to simplify the second-order affinity matrix to a linear one.

With the final hidden representation of the source graph Hs ∈ R
n∗F ′

and the target graph Ht ∈ R
m∗F ′

to hand, we can obtain a soft corre-
spondence between these graphs using the corresponding affinity matrix
Haffinity = exp (HsΓH

T
t ). Each element in the affinity matrix Haffinity ∈ R

n∗m

represents the affinity between a pair of nodes in two graphs considering
node features, position-aware information, and high-order subgraph infor-
mation in the graph, with Γ as a learnable weight matrix. We further apply
the Sinkhorn normalization [32] to obtain a rectangular doubly-stochastic
correspondence matrix to fulfill the constraints on injectivity from the orig-
inal graph Gs to the target graph Gt. Here, the Sinkhorn operation works
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iteratively by iterative row-wise and column-wise normalization,

Hr
affinity = Hc

affinity ⊘ (Hc
affinity1m1m

T )

Hc
affinity = Hr

affinity ⊘ (1n1n
THr

affinity)
(10)

where ⊘ indicates element-wise division, and 1m ∈ R
m∗1, 1n ∈ R

n∗1 are col-
umn vectors whose elements are all ones, Hr

affinity and Hc
affinity are the inter-

mediate results of row normalization and column normalization respectively.
We simplify these two iterative processes giving a continuous relaxation of
the permutation matrix:

S = Sinkhorn(Haffinity) (11)

We further employ the cross-entropy loss function as the permutation loss
between the predicted permutation matrix and the ground truth:

L =−
∑

i∈Vs,j∈Vt

(

Sgt
i,j logSi,j +

(

1− Sgt
i,j

)

log (1− Si,j)
)

, (12)

where Sgt is the ground truth permutation matrix with each element as the
ground truth node-to-node correspondence, and S is the predicted permuta-
tion matrix given by Eq. 11. In this way, our cross-entropy loss can directly
learn the permutation loss based on linear allocation cost in an end-to-end
fashion, no matter how the number of nodes and edges in the graph change.

To illustrate in detail the complete framework adopted in our method,
we provide an illustration of the processing steps involved in obtaining an
embedding commencing from an image input through to the final output.
Also shown is an illustration of the network structure used in each layer. In
the example we take the batch size as 8, the number of key points as 12, and
the number of motifs as 21. The complete data analysis workflow schematic
is shown in Figure 6. The steps are as follows. Firstly, the resized image is
input to a pre-trained VGG-16 model, and we compute the outputs of the
Relu4 2 and Relu5 1 operations to extract node features and edge features.
We align the keypoints with the guidance of the keypoint coordinates to
obtain graph features. This also forms the input of the proposed position
and structure embedding network. The operation of image feature extrac-
tion closely follows previous graph matching methods [5, 8, 10, 17] so as to
guarantee equity in comparison. Then, for position-aware node embedding,
the network concatenates the representation of each node with the anchor
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representation multiplied by a weighting coefficient. A sum operator and one-
layer non-linear transformation are performed to obtain the position embed-
ding. For subgraph-based structure embedding, after constructing the motif
graph, a single graph convolutional layer is applied to obtain the high dimen-
sional structural embedding. The graph embedding can be computed using
the combination of the position embedding and the corresponding structure
embedding. We compute the affinity matrix using the paired graph embed-
dings combined with a learnable weight. The final accuracy of the method is
computed by utilizing the available ground truth and a permutation matrix
obtained from the affinity using the Sinkhorn activation function.

VGG16

Graph 
Convolution Layer

8 × 21 × 2048Structure 
Embedding: ℎ

8 × 21 × 12

Motif Adjacent Matrix8 × 21 × 21
Motif Feature Matrix8 × 21 × 2

8 × 12 × 12 × 1Coefficient Matrix Transform Matrix: 𝑇

Position 
Embedding8 × 12 × 2048 Graph Embedding8 × 12 × 2048

Affinity Matrix8 × 12 × 12

Ground Truth8 × 12 × 12

8 × 256 × 256 × 3Target Image

Image Feature Extraction

Graph Embedding8 × 12 × 2048

Graph Embedding8 × 12 × 2048
Permutation 

Matrix8 × 12 × 12
Sinkhorn

8 × 12 × 1024Anchor Matrix

Information 
Embedding8 × 12 × 12 × 2048

(AGG, COMBINE)

AGG
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Image Feature Extraction Position-aware and Structure-based Feature Extraction

VGG16 8 × 32 × 32 ×512

8 × 16 × 16 × 512

Relu4_2 

Relu5_1 8 × 12 × 1024
Edge feature

Node feature
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8 × 12 × 2Keypoint Coordinates

Graph Feature

Align Keypoint

Accuracy

Figure 6: The entire data analysis workflow example with batch size as 8, the number of
key points as 12, and the number of motifs as 21.

5. Experiments

In this section, we verify our method in three different tasks: We first
perform our experiments in real-world tasks of supervised keypoint matching
in four different kinds of natural images. Then, we further demonstrate the
effectiveness of each procedure in our framework in an ablation study. Finally,
we conduct the experiment on transfer learning across different categories,
to evaluate the generalization capability of our methods.

5.1. Datasets

Willow ObjectClass. The Willow Object Class dataset [33] contains
five object categories including faces, cars, ducks, motorbikes, and wine bot-
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tles. This dataset is a benchmark used to measure the ability of image clas-
sification and recognition. There are 9963 images in total, including 24640
labeled objects. In the experiment, we select a small subset for each category
for training and use the remainder for testing. Each category has at least 40
images.

Pascal VOC 2011. The Pascal Visual Object Classes (VOC) 2011
dataset [11] contains 20 object sub-categories and four major categories in
total, which are vehicles, indoors, animals, and people. Each image in the
dataset has three annotations including category labels, attributes, locations,
and bounding boxes. Note that most images in this dataset contain compli-
cated component scenes.

CUB-200-2011. The Caltech-UCSD Birds-200-2011 (CUB-200-2011)
dataset [34] contains 11788 images with 200 categories of birds. Each image
has clear annotations containing 1 subcategory label, 15 part locations, 312
binary attributes, and 1 bounding box.

IMC-PT-SparseGM. The IMC-PT-SparseGM dataset [35] contains 16
categories and about 25061 images. This dataset gathers data from 16 tourist
attractions around the world. Compared with the datasets mentioned above,
the number of images in this dataset is the largest.

5.2. Alternative for Comparison

The state-of-art benchmark methods used for comparison experiments
are:

GMN. (Graph Matching Network, GMN) Zanfir et al. [10] developed
the deep graph matching method employing an end-to-end deep learning
framework. To extract image features, this framework adopts VGG-16 [16]
networks, with first-order and second-order features extracted from the shal-
lower layer (relu4 2) and deeper layer (relu5 1) of VGG-16, respectively. It
also uses Delaunay triangulation to build graphs. Factorized Graph Match-
ing (FGM) has been used to construct the affinity matrix efficiently. The
method is based on supervised learning using a loss function on the offset
loss. Although this method is relatively simple, it pioneered the use of deep
learning to solve graph-matching problems.

PIA-GM/PCA-GM. Permutation loss and intra-graph affinity-based
graph matching (PIA-GM) and permutation loss and cross-graph affinity-
based graph matching (PCA-GM) [17] replace the offset loss on GMN with
the permutation loss. This can improve the learning process. The image
preprocessing of PIA-GM is the same as GMN. It employs 3 GNN layers to
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perform intra-graph convolution. The feature dimension of the GNN layer is
2048. The main difference between PIA-GM and the original GMN architec-
ture is that it introduces graph neural networks to learn the node embedding
of the graph. The difference between PCA-GM and PIA-GM is that the for-
mer changes the method of graph convolution, from intra-graph convolution
to cross-graph convolution. The aim is to achieve better extraction of infor-
mation for similar nodes between two input graphs and better generation of
the node embedding.

IPCA-GM. (Iterative Permutation loss and cross-graph affinity-based
graph matching, IPCA-GM [36]). To better combine combinatorial opti-
mization with a deep learning solution, IPCA-GM considers the iterative
interaction between the Sinkhorn layer and the GCN layer to learn a better
feature embedding. This approach fully considers the embedding information
for nodes, and reduces the original two-dimensional QAP problem to a one-
dimensional one, thus reducing the complexity and improving the learning
efficiency.

CIE-H. (Channel-Independent Embedding and Hungarian attention, CIE-
H [37]). This follows the CNN-GNN-metric-Sinkhorn pipeline proposed by
PCA-GM and improves PCA-GM in two ways: First, the edge attribute in-
formation is taken into account and combined with node embedding. This is
used to produce a channel-independent embedding. Second, a Hungarian At-
tention module dynamically constructs a structured and sparsely connected
layer. This considers the most significant matching pair during training.

NGM/NHGM. (Neural Graph Matching Network (NGM) and Neu-
ral Hyper Graph Matching Network, NHGM [8]). These are recognized as
a learnable solution to Lawler’s quadratic assignment problem. This first
transforms Lawler’s QAP into an association graph and founds a solution,
which is equivalent to the vertex classification problem on the association
graph. Finally, a graph neural network is used to solve the vertex classifica-
tion problem. NGM considers the task of matching graph pairs, and can be
regarded as Lawler’s QAP solver using VGG-16. On the other hand, NHGM
is a hypergraph matching solver with VGG-16. Both of these methods are
based on supervised learning using permutation loss.

GANN-GM/GANN-MGM. (GANN-GM [5]) is self-supervised learn-
ing graduated assignment neural network for matching graph pairs. (GANN-
MGM [5]) is a self-supervised learning graduated assignment neural network
for multi-graph matching. Both were proposed by Wang et al. [5]. GANN-
GM introduces a self-supervised learning framework by leveraging graph
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matching solvers to provide pseudo labels to train the neural network mod-
ule in a deep graph matching pipeline. A general graph matching solver is
proposed for various graph matching settings based on the classic Graduated
Assignment (GA) algorithm.

5.3. Experimental Settings

The experiments are conducted using two GeForce GTX 1080 Ti GPUs.
We employ a batch size of 8 in training and evaluate our model in 2000
epochs for each iteration. In terms of experimental settings, we employ the
Adam [38] optimizer to train our models with a learning rate of 1 × 10−4.
To overcome the over-smoothing problem common to graph neural networks,
which arises from the transmission of information between nodes caused by
deepening the network layer. This results in the representations of differ-
ent nodes becoming similar and causes ambiguities in matching. We adopt a
two-layer graph embedding and restrict the degree of smoothing in our exper-
iments. When we perform experimental comparisons and ablation studies,
we train and test each dataset independently. For the cross-category general-
ization study on the Willow ObjectClass dataset, we train the model on the
Pascal VOC dataset excluding the car and motorbike classes, as these images
overlap with the Willow dataset, and then test on the Willow ObjectClass
dataset afterward. To guarantee equity, the splits between the training and
testing datasets are identical for all of the methods compared [5, 8, 10, 17].
The details of the hyperparameter settings are summarized in Table 2.

Table 2: Summary of parameter settings for datasets under study.
Datasets Average Node Number K r δ α β
Pascal VOC 9.07 2 1 2 1× 10−4 1× 10−5

Willow ObjectClass 10.00 2 1 2 1× 10−4 1× 10−4

CUB 2011 12.00 2 1 2 1× 10−4 1× 10−5

IMC-PT-SparseGM 21.36 2 1 3 1× 10−4 1× 10−4

5.4. Performance Comparisons on Four Datasets

In this experiment, the source graph Gs and target graph Gt are composed
of keypoints extracted from two different images. Both two graphs maintain
node consistency during the training and testing stages. We perform the
same operations on four datasets to convert the images into graphs. First,
we filter the outliers from the dataset. Next, we crop the images around their
bounding boxes, which provide the pixel location of the object boundings in

24



images. Their image sizes are further resized to 256× 256. The preprocessed
images are then fed to VGG-16 to extract the node features. The graphs are
constructed by Delaunay triangulation [39] of the extracted feature points.

We evaluate the graph matching capacity of the proposed method using
the matching accuracy, which is defined by accuracy =

∑

AND(Si,j, S
gt
i,j)/N

from [5, 17, 36]. Here, the AND operation is a logical operation. Note
that Si,j is the element of the predicted permutation matrix representing the
correspondence matching of node i and node j from two different graphs.
Similarly, Sgt

i,j is the correspondence of the ground truth between the two
nodes, and N is the number of matching node pairs. We use ground truth
node correspondences (which are set to one if two nodes are matched, and
zero otherwise) for the image pairs, and perform an averaging operation to
compute the final matching accuracy.

Table 3: Matching accuracy on the Willow ObjectClass database(%).
Method Car Duck Face Motorbike Winebottle Mean accuracy
GMN [10] 67.90 76.70 99.80 69.20 83.10 79.34
NGM [8] 84.20 77.60 99.40 76.80 88.30 85.30
NHGM [8] 86.50 72.20 99.90 79.30 89.40 85.50
CIE-H [37] 82.20 81.20 100.00 90.00 97.60 90.20
PIA-GM [17] 88.60 87.00 100.00 70.30 87.80 86.74
PCA-GM [17] 87.60 83.60 100.00 77.60 88.40 87.44
IPCA-GM [36] 90.40 88.60 100.00 83.00 88.30 90.06
PCA-GM+Position+Structure 92.90 90.80 100.00 79.00 94.40 91.42
IPCA-GM+Position+Structure 92.70 88.70 100.00 80.20 94.90 91.30

The experimental results on the Willow ObjectClass, Pascal VOC, CUB
and IMC-PT-SparseGM datasets are shown in Table 3, Table 4, Table 5,
and Table 6, respectively. We also compare the proposed methods(i.e. PCA-
GM+Position+Structure and IPCA-GM+Position+Structure) with the al-
ternative methods introduced in Section 5.2. Specifically, our methods achieve
the best performance in the classification accuracy of three different cate-
gories on the Willow ObjectClass dataset, while the CIE-H method outper-
forms the Motorbike and Wine bottle classes. Note that the CIE-H method
also achieves good results on the VOC and CUB datasets. However, it per-
forms poorly on the IMC-PT-SparseGM dataset. The VOC dataset contains
20 object sub-categories and four major categories. It is therefore much more
complicated than the remaining datasets under study. As observed from Ta-
ble 4, many methods perform better than others in one or several specific
categories. Our method performs slightly lower than the highest average ac-
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Table 4: Matching accuracy on the Pascal VOC database(%).

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motorbike Person Plant Sheep Sofa Train TV Mean accuracy

GMN [10] 31.90 47.20 51.90 40.80 68.70 72.20 53.60 52.80 34.60 48.60 72.30 47.70 54.80 51.00 38.60 75.10 49.50 45.00 83.00 86.30 55.30

NGM [8] 50.10 63.50 57.90 53.40 79.80 77.10 73.60 68.20 41.10 66.40 40.80 60.30 61.90 63.50 45.60 77.10 69.30 65.50 79.20 88.20 64.13

NHGM [8] 52.40 62.20 58.30 55.70 78.70 77.70 74.40 70.70 42.00 64.60 53.80 61.00 61.90 60.80 46.80 79.10 66.80 55.10 80.90 88.70 64.58

CIE-H [37] 49.94 63.13 70.65 52.98 82.43 75.36 67.66 72.30 42.35 66.88 69.90 69.52 70.74 61.96 46.67 85.04 70.00 61.75 80.23 91.78 67.56

PIA-GM [17] 41.50 55.80 60.90 51.90 75.00 75.80 59.60 65.20 33.30 65.90 62.80 62.70 67.70 62.10 42.90 80.20 64.30 59.50 82.70 90.10 63.00

PCA-GM [17] 40.90 55.00 65.80 47.90 76.90 77.90 63.50 67.40 33.70 65.50 63.60 61.30 68.90 62.80 44.90 77.50 67.40 57.50 86.70 90.90 63.80

IPCA-GM [36] 53.78 66.22 67.14 61.20 80.39 75.27 72.55 72.52 44.55 65.24 54.30 67.24 67.90 64.21 47.93 84.35 70.79 63.98 83.80 90.83 67.70

PCA-GM+Position+Structure 49.34 68.51 63.32 56.37 81.34 75.81 65.8 70.93 42.90 66.15 70.46 64.21 66.78 65.05 42.31 85.06 67.60 67.25 86.87 90.06 67.31

IPCA-GM+Position+Structure 48.72 65.52 56.08 52.86 78.76 73.66 64.4 66.18 39.73 65.18 63.15 61.90 66.06 62.68 42.21 82.89 64.46 60.8 86.40 89.45 64.56
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Table 5: Matching accuracy on the CUB database(%).
Method Mean accuracy
GANN-GM [5] 48.44
GANN-MGM [5] 78.32
CIE-H [37] 92.06
PIA-GM [17] 88.56
PCA-GM [17] 92.17
IPCA-GM [36] 92.18
PCA-GM+Position+Structure 91.46
IPCA-GM+Position+Structure 92.34

Table 6: Matching accuracy on the IMC-PT-SparseGM (%).
Method Reichstag Sacre coeur St peters square Mean accuracy
GANN-GM [5] 76.02 44.15 50.49 56.89
GANN-MGM [5] 67.41 42.72 44.42 51.52
CIE-H [37] 42.24 28.47 30.78 33.83
PIA-GM [17] 71.46 41.31 42.64 51.80
PCA-GM [17] 69.38 39.86 42.10 50.40
IPCA-GM [36] 72.96 43.80 44.93 53.89
PCA-GM+Position+Structure 96.28 75.93 81.66 84.63
IPCA-GM+Position+Structure 95.71 74.12 82.06 83.96

curacy. For the CUB and IMC-PT-SparseGM datasets, our method achieves
the highest mean accuracy performance compared with the alternatives. It
can therefore be concluded that our model performs well on all four datasets
under study, while the alternatives generally fail to perform well on at least
one of the datasets. This also clearly demonstrates the advantage of our
method in terms of generalization ability.

5.5. Ablation Study

Here we conduct an ablation study to demonstrate that our novel method
for embedding the positional and structural arrangement information can
be effective in improving variants of the methods of the performance of

Table 7: Matching accuracy of ablation study on IMC-PT-SparseGM (%).
Method Reichstag Sacre coeur St peters square Mean accuracy
PCA-GM 69.38 39.86 42.10 50.40
PCA-GM+Position 92.02 69.07 78.80 79.96
PCA-GM+Structure 93.83 70.44 78.78 81.02
PCA-GM+Position+Structure 96.49 72.01 83.00 83.83
IPCA-GM 72.96 43.80 44.93 53.89
IPCA-GM+Position 93.03 65.37 77.24 78.55
IPCA-GM+Structure 92.79 62.66 76.98 77.48
IPCA-GM+Position+Structure 95.71 74.12 82.06 83.96
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Table 8: CNN backbone of ablation study on IMC-PT-SparseGM (%).
Method Reichstag Sacre coeur St peters square Mean accuracy Time (min)

PCA-GM+Position+Structure (VGG-16) 96.49 72.01 83.00 83.83 1173

PCA-GM+Position+Structure (VGG-19) 96.35 72.07 83.21 83.87 1358

PCA-GM+Position+Structure (ResNet-50) 96.45 71.84 83.08 83.79 979

PCA-GM+Position+Structure (MobileNet-v3) 96.31 71.45 83.24 83.67 815

IPCA-GM+Position+Structure (VGG-16) 95.71 74.12 82.06 83.96 1434

IPCA-GM+Position+Structure (VGG-19) 95.53 73.76 81.79 83.69 1706

IPCA-GM+Position+Structure (ResNet-50) 95.78 74.15 82.07 84.00 1179

IPCA-GM+Position+Structure (MobileNet-v3) 95.62 74.00 81.93 83.85 1068

graph matching. To this end, we construct three models based on the graph
matching methods PCA-GM and IPCA-GM. The three variants are a) the
original method combined with position-aware embedding, b) the original
method combined with structure embedding, and c) the original method
combined with complete position and structure embedding. Considering that
our method has the alternative best performance on the IMC-PT-SparseGM
data set compared with other methods, we conduct the ablation study on the
IMC-PT-SparseGM dataset. The experimental results are shown in Table 7.

The proposed position-aware node embedding and subgraph-based struc-
ture embedding greatly improve the classification accuracy of the original
method in each category. Note that the IMC-PT-SparseGM dataset consists
of tourist attractions, of which many (especially the buildings) are symmet-
rical, indicating that the semantic information of the keypoints is usually
ambiguous. Therefore, the incorporation of position information for the
graph matching methods can effectively assist the classification task. The
high-order subgraph-based structural arrangement information is also valu-
able, since the global structural features of the tourist attractions can provide
more comprehensive information than just local features alone.

Furthermore, in this paper we make use of VGG-16 to extract image
features. Note that the proposed method is not designed to be critically de-
pendent on VGG-16, and the chosen feature extractor step can be replaced
by any of the other available CNN models. Furthermore, we conduct an
ablation study that compares the different CNN backbones applied in the
proposed method, both in terms of performance and also computation time.
Specifically, we include VGG-19, ResNet-50, and MobileNet-v3 in addition
to VGG-16. Each of these backbone models is sourced from the TorchVision
library [40]. The results are shown in Table 8, from which it can be con-
cluded that using the choice of different backbone models has little effect on
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the performance. Although there are minor differences in the initial feature
extraction capability, the high-order feature extraction and matching algo-
rithm do have a major influence on the final graph matching outcome. As far
as time consumption is concerned, MobileNet-v3 shows clear advantages in
terms of computation time due to its lightweight design. However, this is at
the cost of sacrificing some accuracy. Here, we are at pains to ensure fairness
of comparison with alternative methods. Based on these considerations we
opt to use VGG-16 as the backbone architecture in image feature extraction.
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Figure 7: Cross-category generalization study represented by confusion matrix on Willow
ObjectClass dataset. Each column of the matrix represents one category of images used
for model training, while each row represents one class of testing samples. a) and b)
show the matching accuracy of comparison methods in different category generalizations,
respectively. c) and d) are obtained from the proposed methods.

5.6. Cross-category Generalization Study

To verify the generalization capability of our methods on different types
of categories, we construct the confusion matrix for the training and testing
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instances from the different categories. The experimental results are pre-
sented in Fig. 7 and Fig. 8. We first train each of the five classes separately
for the Willow dataset. We then use the distinct training classes to validate
the generalization capabilities for all five object classes.
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Figure 8: Cross-category generalization study method ranking on Willow ObjectClass
dataset. The re-color figure from Fig. 7 by sorting all the matching results obtained by
four different methods from large to small.

The confusion matrix for the dataset illustrating transfer learning among
the five object categories is given in Fig. 7. The models are trained on the
object categories in the rows and then tested on the object categories in the
columns. The diagonal of the matrix shows the classification ability of the
method on each object class. The darker the grid color in the figure, the
higher the matching accuracy. We compare each element in Fig. 7 (a) with
Fig. 7(c), and Fig. 7(b) with Fig. 7(d). The proposed graph matching
method combined with position and structural arrangement information has
improved the generalization ability for all classes compared with the original
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methods. Furthermore, the accuracy of the model in the face category reaches
100% in Fig. 7(c), and is also high in both Fig. 7(b) and Fig. 7(d). It may
be related to the simplicity and lower noise in the face samples.

In Fig. 8, we re-color Fig. 7 by sorting all the matching results obtained
by the four different methods from large to small. The larger the value, the
darker the color. This is also a reflection of the generalization ability of the
model. Moreover, it gives the priority to the proposed position and structure
framework based on higher accuracy scores in the confusion matrix. The gen-
eralization ability of the models provided in this study is substantially greater
than the alternative methods due to the addition of position information and
the correlation connection of the subgraph structure. Furthermore, IPCA-
GM+Position+Structure has greater diagonal accuracy, indicating that it is
more suitable for the training category.

6. Limitations

This work aims to address the issue of ambiguous matching that results
from the absence of discriminability based on local structure and the seman-
tic similarity of different nodes. We therefore focus on the feature extraction
problem during the graph-matching task. However, we do not consider issues
arising from the fact that the image itself may contain noise and other abnor-
malities. Our position-aware node embedding module and subgraph-based
structural embedding module are adaptive plug-ins that can boost the per-
formance of other methods too. However, this is at the expense of additional
computing time consumption and memory usage.

Future work will aim to investigate the noisy image-matching task so that
it can be made more practically applicable. In addition, and from a problem-
solving perspective, we can consider how to deal with matching graphs that
have more complicated structural relations. These include hypergraphs and
directed graphs or using various relative position and subgraph relational
strategies.

7. Conclusion

In this paper, we propose a novel graph matching method, which combines
and incorporates a relative position-aware node embedding and together with
a subgraph-based structure embedding into the node-wise embedding be-
tween graphs. The experiments include comparisons with alternatives, an

31



ablation study and the cross-category generalization study to demonstrate
the effectiveness of the proposed method with its embedding modules. Specif-
ically, the matching accuracy on several real-world datasets compared with
peer methods demonstrate the state-of-the-art performance of our method.
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