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Abstract

Due to the accumulation of solar observational data and the development of data-driven algorithms, deep learning
methods are widely applied to build a solar flare forecasting model. Most of the works focus on how to design or
select proper deep networks for the forecasting task. Nevertheless, the influence of image resolution on the learning
based solar flare forecasting model has not been analyzed and discussed. In this Paper, we investigate the influence
of the resolution of magnetograms on the accuracy of solar flare forecasting. We study the active regions by the
Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) magnetograms from 2010 to 2019.
Then, we downsample them to get a database containing active regions with several resolutions. Afterwards, three
deep neural networks (i) AlexNet, (ii) ResNet-18, and (iii) SqueezeNet are implemented to evaluate the
performance of solar flare forecasting compared to different resolutions of magnetogram. In experiments, we first
did comparative experiments on our own simulated HMI database with different resolutions. Then we conducted
experiments on two selected actual overlapping databases, Hinode–HMI and Michelson Doppler Imager–HMI, to
reconfirm our conclusions. The experiment results show that all the selected deep learning networks are insensitive
to the resolution to a certain extent. We visualized the regions of interest of the network from an interpretable
perspective and found that the deep learning network pays more attention to the global features extracted from
active regions that are not sensitive to local information in magnetograms.

Unified Astronomy Thesaurus concepts: Solar physics (1476); Solar activity (1475); Convolutional neural
networks (1938)

Supporting material: animation

1. Introduction

A solar flare is an intense burst of radiation that occurs in the

lower solar atmosphere. In a case of an intense flare event, the

space environment is disturbed, and its fastest impact takes

around 20 minutes on the Earth. Therefore, a solar flare forecast

is an important topic in a solar activity forecast.
There are two types of approaches to forecasting solar flares,

the first one is the event-based approach, and the second one is

the source-region-based approach.
In the event-based approach, the forecasting model is based

on the law of historical flare events that obey Poisson

statistics in time and power-law statistics in size (Wheat-

land 2004; Hazra et al. 2020). If these statistical laws are

followed, then an event-based forecasting model could be

created (Wheatland 2005). Not only the statistical method but

also the machine-learning method has been applied to build

the event-based flare forecasting model. Stanislavsky et al.

(2020) built an event-based forecasting model by using the

hidden Markov model with two hidden states. The one hidden

state is a background dominated state, and the other hidden

state is a flare dominated state.
Most forecasting models are based on studying the source

regions of solar flares, namely the solar active regions (active

regions, ARs). The active regions are well-defined areas with

a strong magnetic field on the Sun. The properties of active

regions are parameterized to distinguish the flaring from the

quiet ones. The morphological (Lee et al. 2012; Kontogiannis

et al. 2018), magnetic (Ahmed et al. 2013; Bobra &

Couvidat 2015; Korsós et al. 2015; Domijan et al. 2019;

Wang et al. 2020a), and coronal features (Pagano et al. 2019)

are extracted from white-light images, magnetograms, and

extreme-ultraviolet images, respectively (Schrijver 2009;

Toriumi & Wang 2019). Bloomfield et al. (2012) calculate

the flare rates for McIntosh classifications of active regions

from solar cycles 21 and 22.
Cui et al. (2006, 2007) analyze the relationship between the

solar flares and magnetic parameters, for example, the

magnetic gradient, magnetic neutral line, and magnetic shear.

Raboonik et al. (2016) calculate the Zernike moments of

magnetograms that can be used to forecast large solar flares.

Aschwanden (2020) study the scaling relationships between

magnetic field parameters and solar flares. Kusano (2020)

present the k scheme, a physics-based model to forecast large

solar flares through a critical condition of magnetohydro-

dynamic instability triggered by magnetic reconnection.

Cicogna et al. (2021) develop a new algorithm to compute
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the R value (Aschwanden 2020) of an active region and
estimate the topological complex of an AR. The relationships
between features of flow field and subsurface flow fields in
ARs and solar flares are discussed in Welsch et al. (2009) and
Gao et al. (2014), respectively. Deshmukh et al. (2020)
compute the topology and geometry of the ARs on the
magnetograms. Korsós et al. (2020) identify an optimal height
range in a three-dimensional extrapolated magnetic field of an
AR for an earlier solar flare forecast. Jonas et al. (2018)
capture the precursors of solar flares from solar images of
various wavelengths. Krista & Chih (2021) propose the
detection and extreme-ultraviolet flare tracking algorithm to
identify flare signatures and their precursors.

Based on features extracted from source regions, different
modeling methods, for example, statistics (Barnes et al. 2007),
expert system (Miller 1988), and traditional machine learning
(Hazra et al. 2020; Benvenuto et al. 2020), are applied to build
the solar flare forecasting model. Cinto et al. (2020a) propose a
framework that involves a modeling algorithm, feature
selection, hyperparameter optimization, data resampling, and
performance evaluation, to build a solar flare forecasting
model. Chen et al. (2021) apply K-Nearest Neighbors, Random
Forest, and XGBoost to build a flare forecasting model. An
ensemble learning technique could combine multiple base
forecasting models (Guerra et al. 2015) or fuse short-, mid-,
and long-term properties of ARs (Lim et al. 2019). In the data
set of a solar flare forecast, the number of flaring samples is far
less than the number of nonflaring samples. This is called the
class imbalance problem. Generative adversarial networks are
used to balance samples for different flare classes in Deng et al.
(2021). The decision-making boundary is determined to treat
the class imbalance problem in Park et al. (2017). Wan et al.
(2021) compare three strategies (resampling the training
samples, changing the decision-making boundary, and assign-
ing weights to the training samples) in the class imbalance
problem of a solar flare forecast.

Because deep learning has a stronger automatic feature
extraction ability and nonlinear relationship learning ability,
recently, it has been widely used to discover the precursors and
build the forecasting model (Abduallah et al. 2021). Huang
et al. (2018) constructed a convolutional neural network (CNN)

to automatically extract the flare forecasting patterns from the
magnetograms of active regions. A convolutional neural
network and long short-term memory are applied to build flare
forecasting models in Li et al. (2020) and Wang et al. (2020b),
respectively. Tang et al. (2021) propose an ensemble learning
model, which fuses a deep neural network, convolutional
neural network, and bidirectional long short-term memory
neural network for a solar flare forecast. Nishizuka et al. (2020)
propose deep flare net-reliable (DeFN-R) to build a reliable
probabilistic solar flare forecasting model. Usually, a deep
learning model is considered a black box. Synthetic magneto-
grams (Bhattacharjee et al. 2020) or gradient-weighted class
activation mapping (Yi et al. 2021) can be used to improve the
interpretability of the flare forecasting model.

Deep learning models are data-driven techniques. The
resolution of magnetograms is different for different monitor-
ing instruments, and the input of the deep learning model is
usually resized to a specified fixed size. Therefore, it is a crucial
problem how the forecasting model responds to the change in
magnetogram resolution. For the first time, we analyze the
influence of magnetogram resolution on the forecasting model

built by using deep learning algorithms. We published our code
on https://github.com/whirgrunt/the-influence-of-resolution-
on-flare-forecast. Our databases are available at http://
QuickConnect.cn/DeepSolar/sharing/VS1LKoxEp.
This Paper is organized as follows: Section 2 describes the

database. Section 3 introduces three popular CNNs. The
influences of the magnetogram resolution on simulated and
actual databases are evaluated in Section 4. Conclusions are
provided in Section 5.

2. Database

The input of the flare forecasting model is the magnetogram
of an active region, and its output is whether a flare will happen
or not in this region. We obtain the magnetograms of active
regions from Solar Dynamics Observatory/Helioseismic and
Magnetic Imager (SDO/HMI). The routine observation of
SDO/HMI began on 2010 April 30, and the magnetograms of
active regions can be downloaded from the Joint Science
Operations Center database.8 The cadence of the downloaded
magnetograms for ARs is 96 minutes, and its spatial resolution
is 0 5 pixel−1.
To study the impact of resolution changes on flare forecasts,

we first reduce the resolution to 1/2, 1/4, 1/8, 1/32, 1/64,
1/128, 1/256, 1/384, 1/512 of the original resolution. Then,
three CNNs are trained for solar flare forecasting at different
resolutions separately. ARs as the resolution changes are
shown in Figure 1.
The solar flare data are obtained from the website of NOAA

National Centers for Environmental Information (NCEI).9

When at least one flare of a given or greater flare occurs
within a given forecasting time window from the time the
magnetogram was observed, we define this corresponding
magnetogram as a flaring sample. Otherwise, it is considered to
be a nonflaring sample.
Here, the forecasting time window is 48 hr. The data of

active regions and solar flares spans from 2010 May 4 to 2019
January 26. The database contains 2988 positive images and
70822 negative images. The data distribution for each year is
shown in Table 1.

3. Methods

With the massive accumulation of solar data and the
development of big data algorithms, deep learning techniques
are widely used in solar flare forecasting. Considering the
amount of active region data and the generality of the model.
We select three widely used CNNs: AlexNet (Krizhevsky et al.
2012), ResNet-18 (He et al. 2016), and SqueezeNet (Iandola
et al. 2016) to forecast flaring. The parameter of networks is
shown in Table 2.

3.1. AlexNet

The architecture of AlexNet is shown in Figure 2. AlexNet
consists of five convolutional layers and three FC layers. Each
convolutional layer is followed by a rectified linear unit (ReLU;
Glorot et al. 2011), which is proposed for improving training
efficiency and first used in CNN models. Local response
normalization is imposed on the activity of neurons to aid

8
http://jsoc.stanford.edu/ajax/lookdata.html

9
https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/

solar-flares/x-rays/goes/xrs/
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generalization. The neighborhoods summarized by adjacent
pooling units do not overlap in traditional pooling operations.
In order to better integrate the characteristics of neighbors,
overlapping max pooling is applied, which is proven to reduce
the error rates in many databases. The details of the network are
introduced as follows.

Convolutional Layer. Convolutional layers are the central
network module used in CNNs. Stacking convolutional layers

in deep models allows layers close to the input to learn low-
level features (e.g., lines), and layers deeper in the model to
learn more abstract features, like shapes or specific objects.
One convolution operation uses a filter (kernel) sliding on the
input, resulting in a feature map. One filter indicates a kind of
attribute since we apply many filters to extract the different
specific features. These filters can be learned automatically
during the network training. Many optimization algorithms are
proposed (e.g., gradient descent optimization (Ruder 2016) to
adjust the parameters of the filter and to obtain the local optimal
network. Then we can get good classification or forecast results
using the trained network. Assuming the input image size is
W×W, the formula for calculating the size of the feature map
after convolution is as follows:

( )=
- +

+N
W F P

S

2
1, 1

where F× F is kernel size, P is the padding size, and S is the

stride of sliding windows.
Pooling Layer. One limitation of feature maps after the

convolutional layer is that they record the precise location of
the feature in the input. A slight movement of the feature
position in the input image will result in a different feature map
when recropping, rotating, shifting, and other minor changes
are made to the input image. We expect the results to be more
robust. The common method to solve this problem from signal
processing is downsampling. The feature map after compres-
sion and integration is obtained through the sliding window.
Three common pooling methods are listed below.

(1) Average pooling calculates the average value for each
sliding window on the feature map. (2) Maximum pooling (or
max pooling) calculates the maximum value for each feature
map sliding window, which summarizes the most activated
presence. (3) Global pooling; on a two-dimensional feature
map, the first two pooling methods are typically applied in
2× 2 patches of the feature map with a stride of (2, 2). Instead

Figure 1. Examples for the magnetograms of ARs with different resolutions. This AR is NOAA 12497 on 2016 February 12. We artificially reduce the resolution of
active regions to construct several databases. The resolution scale is marked in the upper right corner of the image. “1/1” represents the original magnetogram, “1/n”
means downsampling the image to one nth of the original magnetogram.

Table 1

Data Distribution from 2010 to 2019

Year Positive Numbers Negative Numbers

2010 51 3637

2011 377 9209

2012 475 9762

2013 615 12684

2014 791 10862

2015 528 10715

2016 67 6769

2017 84 5133

2018 0 1964

2019 0 87

Table 2

Parameter of Three Networks

Network

Layer

Number FC Number FLOPS

Parameter

Number

AlexNet 8 3 1.82G 11.69M

ResNet-18 18 1 714.69M 61.10M

SqueezeNet 10 0 351.91M 1.24M

Note. “Layer number” represents the number of network layers. “FC number”

represents the number of fully connected (FC) layers the network has.

“FLOPS” means the amount of floating point operations. “Parameter number”

represents the total number of parameters of the network.
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of downsampling the input feature map, global pooling
downsamples the entire feature map to a single value, so the
output vector dimension of this method is the channel numbers
of the input feature map. The average pooling layer is always
applied before FC, which is used to extract global features. This
layer is parameterless and has a lesser amount of floating point
operations (FLOPs).

Activation Function. Activation functions are inspired by
the response of neurons to stimuli in biology. Our brains try to
sort incoming information into “useful” and “not-so-useful”
categories all the time. An activation function determines
whether the neuron should be activated. This means that it will
use simpler mathematical operations to determine whether the
neuron’s input to the network is essential in the current process.
Many activation functions are proposed to increase the
nonlinearity of the neural network. We apply a ReLU, which
is defined in Equation (2):

( ) ( ) ( )=ReLU x max x0, . 2

Fully Connected Layer. All input units from the last layer
are connected to all units in the next layer in the fully
connected layer. In the most popular deep learning models, the
last few layers are FC layers, which compile the global
information extracted from the previous layers to form the final
output. It is the second most time-consuming layer after the
convolutional layer, which can be written as Equation (3):

( ) ( )= +FC x wx b, 3

where w and b are learnable parameters.

3.2. ResNet-18

We can train deeper networks that express more complex
and general models with the increasing amount of data. When
networks go deeper, there emerge some problems with gradient
transfer, which we call vanishing gradient and exploding
gradient. In order to avoid these phenomena that hamper
convergence in training, He et al. (2016) propose a residual
module to train a deeper network (up to 152 layers) and get
better classification results. Considering the limited amount of
data, we choose ResNet-18, which has 18 layers to forecast
flaring. The architecture is illustrated in Figure 3.

Residual Module. Instead of stack layers directly, the
residual module adds mapping to maintain the original features.
There are two residual operations designed: (1) The identity
shortcuts in Equation (4) can be directly used when the input

and output are of the exact dimensions. (2) The projection
shortcut in Equation (5) is used to match dimensions that are
done by 1× 1 convolution:

( ) ( )= +y F x W x, 4i

( ) ( )= +y F x W W x, . 5i s

Global Pooling. Global pooling is used to aggressively
summarize a feature’s presence in an image that can replace the
FC layer to decrease the amount of calculation.

3.3. SqueezeNet

SqueezeNet is proposed by Iandola et al. (2016), which is
less overhead and efficient while maintaining competitive
accuracy. SqueezeNet achieves AlexNet-level accuracy on
ImageNet with 50 times fewer parameters. Network architec-
ture is illustrated in Figure 4. Solid and dashed arrows represent
the two residual operations that are the same as ResNet-18.
To achieve the objective of efficiency and accuracy. There

are three strategies when designing SqueezeNet.
Reduce Parameters. To reduce the convolution filter

numbers. We first choose a 1× 1 filter size with nine times
fewer parameters than a 3× 3 filter. Then, we replace the
average pooling layer with the FC layer to reduce the FLOPs
and filter parameters.
The Fire Module. We consider a traditional convolution

layer in which filter sizes are all 3× 3. The quantity of
parameters is proportional to the number of input channels, the
number of filters, and the filter size. The fire module is shown
in Figure 5, which is comprised of a squeeze layer (which has
only 1× 1 filters) and an expand layer (which has a mix of
1× 1 and 3× 3 filters). The design of this module is carried out
in both decreasing the number of 3× 3 filters and the number
of input channels to the 3× 3 filters. There are three
hyperparameters in a fire module: (i) S: the number of filters
in the squeeze layer (all 1× 1), (ii) E1: the number of 1× 1
filters in the expand layer, (iii) E2: the number of 3× 3 filters in
the expand layer. When we use fire modules, we set S to be less
than (E1+ E2), so the squeeze layer helps to limit the number
of input channels to the 3× 3 filters.
Downsample Strategy. He & Sun (2014) make a point that

delaying the downsampling layers will improve the accuracy.
Since downsampling in early layers will lead to small
activation maps that contain insufficient features. Meanwhile,
downsampling can reduce the feature map size to control the
number of calculations. SqueezeNet applies max pooling after

Figure 2. AlexNet structure. AlexNet contains eight layers. Blue rectangle denotes operations and layers. Among them, “Conv” stands for convolution layer, “Max
pool” stands for overlapping max-pooling operation, “FC” stands for fully connected layer. Orange cube represents feature maps. Network output is a two-dimensional
one-hot vector, which indicates the forecast result of input magnetogram image.
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Figure 3. ResNet-18 structure. ResNet-18 contains 18 layers—a convolution layer, max-pooling layer, average pooling layer, and FC layer. Among the convolution
layers, there are solid arrows and dashed arrows representing the two residual operations corresponding to Equation (4) and Equation (5).

Figure 4. SqueezeNet structure. SqueezeNet contains 10 layers. The basic modules are almost the same as AlexNet and ResNet-18. Introduced is a new module called
the “Fire module,” which is explained in Figure 5.

Figure 5. Fire module. This module consists of “Squeeze” and “Expand” two convolutional layers that both connect a ReLU activation function. In this example, the
number of filters is set as S = 3, E1 = 4, and E2 = 4.
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the first convolutional layer and before the last fire module to
balance the pros and cons of downsampling time.

4. Experiments

The flow chart of the forecasting network is shown in
Figure 6. In order to evaluate the influence of different
resolution magnetograms on solar flare forecasting, we first
trained the models on different resolution databases, respec-
tively. The model output is the forecasting results of whether a
flare will occur in the active region within 48 hr. Then, we
calculate the corresponding evaluation indexes and synthesize
the forecasting results of different networks at different
resolutions.

4.1. Evaluation Indexes

The output of the model is a two-dimensional vector
representing the model’s forecast of whether a flare will occur
within the time window. Table 3 shows metrics in four forecast
situations that are true positives (TPs), false positives (FPs),
false negatives (FNs), and true negatives (TNs). TPs represent
the number of positive instances that are classified as positive.
FPs indicate the number of negative instances that are classified
as positive. FNs indicate the number of positive instances that
are classified as negative. TNs indicate the number of negative
instances that are classified as negative. P= TP+ FN repre-
sents the total number of positive samples; N= FP+ TN
represents the total number of negative samples.

4.1.1. True Positive Rate, False Negative Rate, True Negative Rate,

and False Positive Rate

The true positive rate (TPR) is the percentage of positive
instances correctly classified. On the contrary, the false
negative rate represents the proportion of negative samples
being classified incorrectly;

( )=
+

TPR
FP

TN FP
6

( )= - =
+

FNR 1 TPR
FP

TN FP
. 7

The true negative rate (TNR) is the percentage of negative
instances that are correctly classified. On the contrary, the false

positive rate (FPR) represents the proportion of positive
samples being classified incorrectly;

( )=
+TN FP

TNR
TN

8

( )= - =
+

FPR 1 TNR
FP

TN FP
. 9

4.1.2. True Skill Score

The true skill score (TSS) is used to estimate the whole
model’s performance considering both positive and negative
classes;

( )= -TSS TPR FPR. 10

In actual situations, flaring samples are far less than nonflaring

samples. Consider the imbalance of positive and negative

samples in the database. If a model judges all input active

regions with flaring, it can also get good TPR performance, but

the FPR index will be huge, and the TSS will get worse.

4.1.3. Receiver Operating Characteristic and Area Under the Curve

A receiver operating characteristic (ROC) curve is a
graph showing the performance of a forecast model at all
forecast thresholds. This curve has two parameters: TPR and
FPR. We can get a ROC curve by increasing the threshold from
zero to one. If the threshold is set to zero, all samples are
forecasted to be positive. At this time, TPR and FPR are both
one. If the threshold is equal to one, then all samples are
forecasted to be negative; at this time TPR And FPR are both
zero. The Area Under the Curve (AUC) score is the area below
the ROC curve and is a general index to evaluate the two-class
classification model. The larger the value of AUC, the better
the model’s performance. This score is between zero and one.

4.2. Experimental Setup

In an actual situation, flaring samples are much smaller than
nonflaring samples. The number of positive samples of the data
is small, and the positive and negative samples are unbalanced.
To solve this two issue. We first apply three data augmentation
methods, horizontal flip, random vertical flip, and random
rotation, to augment the positive samples and enhance the

Figure 6. Flow chart of forecasting network. AlexNet, ResNet-18, and SqueezeNet: three convolutional neural networks (CNNs) are selected to forecast the flaring.
The input of each CNN is a magnetogram of different resolution. The output of each CNN is the forecast result on whether a flare will burst in the next 48 hr. We
evaluate the performance by synthesizing the forecast results of different networks at different resolutions.
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robustness of the model. Data augmentation can help expand
the data set. Image enhancement is a simple deformation of the
image, which is used to deal with the deformation of the picture
caused by different camera angles. In the face of the insufficient
data volume of small databases on the solar deep learning task,
through data enhancement, the data set becomes larger, the
training data increase, and the robustness of the model is also
enhanced. Second, we keep the quantity of positive and
negative samples consistent during training to solve the
problems caused by data imbalance.

We use the pretrained model provided by the PyTorch
package to initialize the network parameters. We choose the
cross-entropy loss function, a widely used optimization method
in training networks. The stochastic gradient descent algorithm
is applied to train the model. We train each network for about
30 epochs. Throughout training, we use an initial learning rate
of 0.01, a batch size of 128, and a momentum of 0.9.

4.3. Experimental Results

In order to accurately verify our conclusions, we will introduce
two groups of experiments: the simulated databases and the actual
databases. The simulated databases are obtained by artificially
downsampling the HMI magnetogram; the actual databases are
the part of Hinode and Michelson Doppler Imager (MDI), which
we selected, which overlap with the HMI.

4.3.1. Experiments on Simulated HMI Databases

After training the models with different resolutions, we
calculate the above evaluation indicators. We first draw AUC
and TSS graphs to analyze the influence of resolution. Then,
we evaluate forecasting models by the tenfold cross-validation
method. Meanwhile, train and test loss in different resolutions
are retained. Finally, we visualize the regions of interest of the
trained network.

AUC and TSS Results. Figure 7 shows the ROC curve of
initial resolution. The animation shows that as the resolution
decreases, the area under the ROC curve gradually becomes
smaller. An AUC and TSS curve is shown in Figure 8. From
Figure 8, the following three points can be concluded: (1) The
capability of these three networks are comparable, with
AlexNet slightly outperforming the other two networks. (2)
At the beginning, as the resolution decreases, these two
indicators remain at a high level. (3) Until the resolution is
reduced to 1/64, indicators begin to decrease significantly.

Cross-validation Results in 10 yr. The basic idea of cross
validation is to group the whole data set into k parts. The cross-
validation method uses one part as a training set and other k− 1
parts as a test set. This evaluation method trains k times in turn
and gets average indicator values to eliminate the instability
caused by data set division and to increase the model’s
credibility. Inspired by this method, since our data have natural
time-division characteristics, we split our database into 10

parts, each part contains active region data that spans a year.
The results are shown in Table 4; we calculated AUC and TSS
in the test set. We list TPR and TNR in both training and
testing. Since the 2018 and 2019 yr have no positive samples,
“⧹” indicates that this index cannot be calculated because the
function’s denominator is zero.
Train and Test Loss. We use ResNet-18 as an example to

observe the trend of loss. Figure 9 shows the train and test loss
curve. We focus on the loss at the later epochs because it is
more stable than the former. Loss began to gradually increase
when the resolution of input drops by more than 1/64 and
remains at the same level when the resolution is reduced to less
than 1/64 of the original image.
Visualization. Saliency methods can aid in understanding

deep neural networks that link a deep neural network’s prediction
to the inputs that most influence that prediction. A saliency map
indicates which input regions provide the most predictive power.
To visualize the region of interest of networks, we use Grad-CAM
++ (Chattopadhyay et al. 2017), which draws the saliency map
using gradients of the output over the input. The results are shown
in Figure 10. When the resolution reduction is not so significant,
the area that the network pays attention to does not change much.
The network cannot extract the critical region when the image is
too blurred. This result can also explain why the network
performance does not decrease when the resolution is reduced
very little. It is probably because the network forecasts a sample
depending on an area. A slightly blurred magnetogram does not
affect the network’s feature extraction for this whole area.
We can conclude from these three experiments that before the

resolution drops to 1/64, the performance of CNNs can be
maintained at a good level. As the resolution continues to drop,
the input magnetogram loses too much information for the
network to extract, so the network performance begins to decrease
significantly. A possible reason for this is that CNNs are
introduced to extract a global feature. It is difficult for CNNs to
capture detailed features, which may affect the flaring. A suitably
blurred image does not affect the network’s comprehension of the
whole magnetogram. When the resolution is reduced too much,
the magnetogram loses too much information for the network to
extract so that the performance will be degraded significantly.

4.3.2. Experiments on Hinode–HMI and MDI–HMI Databases

In order to further verify the impact of resolution on the deep
learning prediction model, we chose actual data at different
resolutions for experiments. By screening Hinode (high
resolution), MDI (low resolution), and HMI (middle resolution)
overlapping data, we prepare Hinode–HMI and HMI–MDI,
which are two contrasted databases. We then study the
resolution effect using deep learning models on two actual
databases. The databases’ overviews are shown in Table 5.
For the Hinode–HMI database, HMI observes the full disk

with 0 5 resolution and Hinode has a better spatial resolution
of 0 3 per pixel. The overlapping time of Hinode and HMI is
from 2010 to 2015 and their magnetograms cannot correspond
in time and space. Temporally, we choose the image closest to
time as an alternative. Spatially, we use “label-me” to crop
HMI to correspond to Hinode’s magnetograms visually. Since
the magnetograms are used to extract features for deep models,
slight deviations in the visual have little effect on the model
performance. The results are shown in Table 6. Even though
Hinode’s data resolution is higher, the performance of the

Table 3

Confusion Matrix for Binary Solar Flare Forecasting

Forecasted Classes
Total Instances

Positive Negative

Actual Classes Positive TP FN P

Negative FP TN N
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models trained from the two resolution magnetograms is

comparable.
For HMI–MDI database, we select a total of 271

magnetograms overlapping with HMI from 2010 May to

2010 October. We align with the HMI magnetograms

according to the processing method in Huang et al. (2018).

The amount of data are too small to support the data-driven

deep learning models, so we trained models on downsampled

Figure 7. ROC curve of three networks with initial resolution. An animation with changing resolution is available. The animation shows the changing process of ROC
from an initial resolution to low-resolution magnetogram. Each frame of animation corresponds to a different downsampling ratio. There are 11 frames in the
animation, and their downsample ratios are 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/384, 1/512, respectively. The real-time duration of the animation is
8 s.

(An animation of this figure is available.)

Figure 8. AUC and TSS curve with image resolution. The x-axis indicates the ratio of resolution reduction. Blue curve represents AlexNet, red curve represents
ResNet-18, and green curve represents SqueezeNet.

Table 4

Cross-validation Results in AlexNet

Test Year Train TPR Train TNR Test TPR Test TNR Test AUC Test TSS

2010 0.8947 0.8635 0.7443 0.8627 0.80 0.61

2011 0.8829 0.7908 0.8548 0.8780 0.86 0.73

2012 0.9049 0.8736 0.7453 0.8156 0.86 0.56

2013 0.8959 0.8656 0.8846 0.8319 0.92 0.72

2014 0.8962 0.8612 0.9204 0.7737 0.93 0.69

2015 0.8809 0.8467 0.9432 0.8621 0.96 0.81

2016 0.8956 0.8490 1.0000 0.9167 0.99 0.92

2017 0.8998 0.8598 0.7381 0.9456 0.95 0.68

2018 0.8849 0.8497 ... 0.9679 ... ...

2019 0.8976 0.8497 ... 0.7816 ... ...

Note. We use 1 yr from 2010 to 2019 as the test set in turn, and use the remaining years’ data as the training set. We compared AUC and TSS indicators in the test

database.
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HMI magnetograms and tested them on the overlapping MDI

magnetograms. The results are shown in Table 7. We can

conclude that lower resolution MDI magnetograms can also

have considerable prediction results on deep learning models.

The experiments on Hinode and MDI show that training on

the Hinode magnetograms with higher resolution does not get a

better model than HMI. Meanwhile, we can obtain a

comparable result with HMI using MDI magnetograms with

Figure 9. Loss curve with different epochs. Eight color curves represent different resolutions.

Figure 10. Visualization of network’s interest area. The first row is the input image of different resolutions. The second, third, and fourth rows are the visualization
results of different networks. The highlighted areas of the magnetogram, which were relevant for the classification. This active region sample is NOAA 12497 on 2016
February 12.
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lower resolution. The results in actual databases reconfirm our
conclusions that the three selected deep learning networks are
insensitive to changes in the resolution of Hinode, HMI, and
MDI magnetograms.

5. Conclusion

In order to study the influence of resolution to forecast
flaring, we prepared simulated databases with different
resolutions and reconfirmed our conclusions on Hinode–HMI
and MDI–HMI databases. Three deep learning models,
AlexNet, ResNet-18, and SqueezeNet, were selected, and we
trained models on different resolution databases, respectively.
The experiments show that before the resolution drops
significantly, the performance of CNNs can be maintained at
a good level. One possible explanation is that deep learning
networks are insensitive to high-resolution features. A certain
degree of blurring does not affect the network’s feature
extraction.

On the one hand, the resolution has little effect on deep
learning models and has a high tolerance for low-resolution
data. This is an exciting conclusion because high-resolution
space-based equipment is expensive. We can choose ground-
based equipment for the solar forecasting task because it is
good enough for a deep learning model, which will
significantly reduce the equipment construction cost. On the
other hand, deep learning models are insensitive to relative
high-resolution features on our simulated magnetograms. A
probable explanation is that when the network goes deeper, it
will focus on a broader area in the image and will ignore the
fine features that may cause flaring. Deep learning models can
get around 90% AUC performance. An attention module could
be used to extract local features of active regions that may
cause flaring if we want to achieve better performance.
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