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1  |  BACKGROUND

Chemical- induced skin irritancy or sensitivity to topically applied 

dermatological agents, cosmetics, skin- care products, detergents 

or other compounds is a common problem. Skin sensitivity relates 

only to those individuals who are susceptible to a particular chem-

ical, whereupon it produces paresthetic sensations, whereas skin 

irritation is related to the characteristics of a chemical that, when 

applied, will induce irritation on all subjects.1 Several patient or 

animal- based assays have been used to identify potentially irritant 

chemicals, but none of these tests provide a clear standardised 

measurable outcome and are not compatible with high- throughput 

testing that is required by industry, particularly for first- pass drug 

screening. This, along with the legislative move toward non- animal 

testing, has prompted the development of several in vitro assays for 

skin irritation.
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Abstract
Skin irritancy to topically applied chemicals is a significant problem that affects mil-

lions of people worldwide. New or modified chemical entities must be tested for po-

tential skin irritancy by industry as part of the safety and toxicity profiling process. 

Many of these tests have now moved to a non- animal- based format to reduce ex-

periments on animals. However, these tests for irritancy potential often rely on mon-

olayer cultures of keratinocytes that are not representative of the skin architecture 

or tissue- engineered human skin equivalents (HSE) using complex multi- gene expres-

sion panels that are often cumbersome and not amenable for high throughput. Here, 

we show that human skin equivalents increase abundance of several phosphorylated 

kinases (c- Src, c- Jun, p53, GSK3α/β) in response to irritant chemical stimulation by 

phosphokinase array analysis. Specific phosphorylation of c- SrcY419 was confirmed 

by immunoblotting and was plasma membrane- associated in basal/spinous cells by 

phospho- specific immunohistochemistry. Moreover, c- SrcY419 phosphorylation in re-

sponse to the irritants lactic acid and capsaicin was inhibited by the c- Src inhibitors 

KB- SRC and betaine trimethylglycine. These data provide the first evidence for c- Src 

specific activation in response to chemical irritants and point to the development of 

new modes of rapid testing by immunodetection for first- pass screening of potential 

irritants.

K E Y W O R D S
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Examples based on monolayer keratinocyte luciferase reporter- 

based assay systems include KeratinoSens™2,3 and LuSens,4 where 

chemically induced activation of the transcription factor, nuclear 

factor erythroid 2 (Nrf2) mediates its translocation to the nucleus, 
where it heterodimerises with other transcription factors (Mif/c- Jun) 

and binds to the antioxidant response element (ARE) in the promoter 
region, driving reporter luciferase expression. However, these tests 

are based on monolayer culture, whereas skin is comprised of a 

stratified squamous epithelium containing keratinocytes which dis-

play increasing levels of differentiation and keratinisation that play 

a major role in skin permeability to topically applied chemicals. The 

deficiencies of simple monoculture assays can be overcome by the 

use of tissue- engineered human skin equivalents (HSE) that accu-

rately mimic the structure of human skin for skin irritancy testing.

A number of studies have used HSE to identify increased ex-

pression of several genes in response to many chemicals and known 

irritants.5– 8 However, these gene signature sets are often large com-

prising of between 7 and 25 genes that would be cumbersome for 

high- throughput screening. Analysing the immediate up- stream sig-

nalling cascade events upon treatment with a chemical irritant may 

not only identify activation of specific kinases in the epidermis that 

are important in irritant- response pathways but may also ascertain 

markers of irritancy that could be tested in more rapid assay formats.

2  |  QUESTION ADDRESSED

Do chemicals that cause skin irritancy induce common intracellu-

lar signalling events such as protein kinase phosphorylation and can 

these cellular events be used as biomarkers for chemicals with skin 

irritancy potential?

3  |  E XPERIMENTAL DESIGN

See Supporting Information.

4  |  RESULTS

Phosphokinase array analysis of HSE protein extracts showed a 

dramatic and significant increased abundance of phospho- c- SrcY419 

when the known skin irritant, lactic acid (LA), was topically applied 

to HSE for 15 minutes, in comparison to the non- irritants methyl-
paraben (MP) and cocamide diethanolamine (Co- DEA), or water 
applied as carrier control (Figure 1). In our previous study, we identi-

fied a seven- gene signature panel to identify chemical irritant from 

non- irritant.8 Four of the genes identified in this panel (IL- 6, PTGS2, 

MAP3K8, MMP- 3) are regulated by activation of the transcription 

factors AP- 1 (c- Fos/c- Jun) and p65/NFκB. In line with these data, 

we found increased phosphorylation of both c- JunS63 (Figure 1) and 

p65S536 (Figure S1) in response to irritants but not non- irritants. In 

addition to phospho- c- SrcY419, increased abundance of other phos-

phorylated kinases including phospho- glycogen synthase kinase- 3 

(GSK3)- α/β and phospho- p53 were also markedly increased in the 

array compared with both non- irritants and water control (Figure 1). 

Phosphorylated heat shock proteins 27 and 60 were abundant in 

the control, LA and MP but not Co- DEA (Figure 1). The majority of 

kinases displayed no difference in phosphorylation status between 

treatments.

Phospho- specific immunoblot analysis for c- SrcY419 confirmed 

the array data, showing significantly increased abundance of 

phospho- c- SrcY419 for the irritant LA, and even more so in response 
to cinnamaldehyde (CIN) and capsaicin (CA) stimulation, when com-

pared with MP, Co- DEA and water control. However, this difference 
was not as apparent as observed in the array, with the non- irritant 

MP displaying levels of phospho- c- SrcY419 similar to the control and 

Co- DEA displaying similar levels to LA (Figure 1J,K). This is likely due 

to differences in the binding affinity of the two anti- phospho- c- Src 

specific antibodies used in the two immunoblot methods.

To our knowledge, this is the first observation of c- Src- induced 

phosphorylation in response to irritants by HSE. Moreover, phos-

phorylation was at tyrosine 419, the main site of phosphorylation 

within the activation loop that results in Src autophosphorylation 

and activation status.9 c- Src is a ubiquitously expressed non- receptor 

protein tyrosine kinase that is phosphorylated and activated by 

other protein kinases (e.g., activated epidermal growth factor recep-

tor, adhesion and cytokine receptors as well as several G- protein- 

coupled receptors). Upon activation c- Src acts by phosphorylating 

other proteins involved in regulating cell morphology, adhesion, 

motility, apoptosis, proliferation and survival.10 There is currently no 

evidence for a role of c- Src in skin irritancy, although this signalling 

molecule does appear to be important in hyperproliferative epider-

mal disorders and epidermal wound healing.11,12

Histological analysis of HSE sections showed no difference in 

skin structure between the treatments (Figure 2). Consistent with 

F I G U R E  1  Phosphokinase array analysis of human skin equivalents (HSE). Representative array immunoblots showing levels of 
phosphorylated kinases in the total protein extracts of HSE following 15 minutes treatment with H2O as control (A), LA (B), MP (C) or Co- 
DEA (D). Colour code for highlighted boxes is: , , , , ,   . Densitometry analysis 

of array immunoblots showing fold- change abundance of phosphokinases in LA, MP or CO- DEA treated HSE relative to water controls 
for SrcY419 (E), GSK3α/βS21/S9 (F), p53S15 (G), p53S46 (H) and c- JunS63 (I) (n = 2 independent experiments). Immuno- blot analysis of HSE for 

phospho- c- SrcY419 abundance compared with total c- Src upon stimulation with water control (con), LA, MP, Co- DEA, CIN or CAP for 15 min 
(J). Densitometric analysis showing fold change in phospho- c- SrcY419 relative to total c- Src (K). Data are mean ± SD for n = 3 independent 

experiments *p < 0.05, **p < 0.01 by one- way ANOVA with Tukey's multiple comparison post hoc test. The map accompanying the 
phosphokinase array is shown in Figure S2.
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the immunoblotting data, immunohistochemical staining of tissue 

sections for phospho- c- SrcY419 showed that the activated kinase 

was present in the cytoplasm of basal cells and predominant in the 

membrane- associated regions of supra- basal keratinocytes. Weak 

and sporadic phospho- c- Src- positive staining was observed in the 

nuclear and cytoplasmic regions of basal and supra- basal kerat-

inocytes in MP and Co- DEA- treated HSE while no staining was 
observed in the water control treated HSE (Figure 2). Previous 

studies have shown activated c- Src localisation in the nucleus, 

where it is proposed to play a role in several cellular processes 

such as regulation of gene transcription, interaction with other 

nuclear proteins or in mechanotrasnduction, although experi-

ments on nuclear- located c- Src have mainly been performed on 

cancer cells.13

The presence of membrane- associated phospho- c- SrcY419 in 

irritant- treated HSE suggests that c- Src is recruited to up- stream 

membrane- bound kinases where it is phosphorylated as part of 

the irritant response process. Activated phospho- c- SrcY419 is then 

likely to mediate its actions by phosphorylating down- stream 

signalling proteins involved in a number of key pathways in skin 

keratinocytes. For example, phospho- c- Src is known to target 

cell membrane- associated signalling factors such as β- catenin for 

phosphorylation at cell– cell adheren junctions. Phosphorylation 

of β- catenin by phospho- c- Src reduces its ability to associate with 

membrane- bound E- cadherin, thereby adversely affecting cell– cell 

adhesion and epithelial integrity.14 Increased abundance of cyto-

plasmic β- catenin available for Wnt signalling might be increased 

further by the elevated levels of phospho- GSK3α/βS21/S9 that were 

also observed in irritant- stimulated skin models. This is because 

phosphorylation at serine 9 and 21 inhibits GSK3α/β activity, 

preventing β- catenin degradation via the ubiquitin/proteasome 

pathway and allowing β- catenin to enter the nucleus to alter gene 

transcription.15 Src activation also phosphorylates the gap junc-

tion protein, connexin 43, triggering gap junction closure that pre-

vents cell to cell transfer of material, thereby attenuating damage 

to surrounding cells16,17; a process which may also occur in chemi-

cally challenged keratinocytes. Further experiments examining the 

consequences of irritant- stimulated phospho- c- Src activation in 

terms of downstream cell signalling events is warranted. It will be 

also important to determine if the weak and sporadic nuclear lo-

calisation of phospho- c- Src upon stimulation with MP and Co- DEA 
is a common feature to other non- irritant chemical entities or is a 

non- specific phenomenon.

KB- SRC is a potent and selective inhibitor of c- Src phosphor-

ylation and activation with a Ki of 44 nM.18 Pretreatment of HSE 

for 1 hour with KB- SRC completely abrogated the phosphoryla-

tion of c- SrcY419 in response to 15- min stimulation with the irri-

tants LA and CAP (Figure 3A,B), confirming the specificity of the 

c- SrcY419 phosphorylation response. Interestingly, similar inhibi-

tion data was observed when HSE were preincubated with the 

methyl donor betaine trimethylglycine, a molecule known for its 

role in DNA methylation, oxidative stress and inhibition of the NF- 
κB and NLRP3 pathway19 (Figure 3C,D). Incubation with betaine 

trimethylglycine markedly reduced irritant- induced phosphoryla-

tion of c- SrcY419 in a similar manner to that found previously in 

hepatocytes.20

F I G U R E  2  Abundance of phospho- c- SrcY419 in tissue- engineered 

human skin equivalents (HSE) in response to irritants. HSE were 

generated by culturing N/TERT- 1 immortalised keratinocytes 
on top of a human dermal fibroblast- populated collagen scaffold 

before treatment with water control, LA, MP, Co- DEA, CIN, 
or CAP for 15 min. Histological (haematoxylin and eosin, H&E) 
and immunohistochemical analysis for phospho- c- SrcY419. 

Representative images are from three independent experiments. 

Scale bar = 50 μm.
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The activity of c- Src is increased in response to several genotoxic 

chemicals and oxidative stress molecules where it links with down- 

stream activation of mitogen- activated protein kinases (MAPKs).21 

Indeed, constitutive activation of c- Src is linked to tumorigenesis in 

skin cancer where it is highly expressed.22 Moreover, activated c- 

Src is involved in the regulation of PTGS2 expression,23 linking it to 

the up- regulation of the genes identified in our seven gene signature 

panel for irritant potential.8 It is possible the rapid phosphorylation 

of c- Src by skin irritants is a central step in response to such sub-

stances. If so, this opens up potential therapeutic or preventative 

intervention by topical application of c- Src inhibitors.

The advantage of searching for up- stream phosphorylated sig-

nal transduction targets is that activation is quick –  within min-

utes; additionally, the activity is largely restricted to the epidermis 

so the cell lysate can be subjected to rapid testing formats such 

as immuno- based rapid antigen tests, rather than rely of complex 

multi- gene panel analysis. Further screening against a large panel 

of irritant/non- irritant chemicals is now required to verify these 

findings.

5  |  CONCLUSIONS AND PERSPEC TIVES

This study demonstrates that specific kinases, in particular c- Src, are 

activated in HSE in response to chemical irritants. c- Src has been im-

plicated in maintaining skin health, in particular wound healing and 

keratinocyte proliferation, but its actions in response to chemical 

insult is unknown. The rapid increase in specific phosphorylated 

signal transduction molecules or transcription factors upon expo-

sure to irritants may prove ideal targets to rapidly identify and dif-

ferentiate potential chemical irritants from non- irritants. They may 

also lend themselves to more rapid analytical techniques such as 

antibody- mediated lateral flow tests.
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