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Abstract: While the move towards Industry 4.0 has motivated a re-evaluation of how a manufacturing
organization should operate in light of the availability of a new generation of digital production
equipment, the new emphasis is on human worker inclusion to provide decision making activities or
physical actions (at decision nodes) within an otherwise automated process flow; termed by some
authors as Industry 5.0 and seen as related to the earlier Japanese Society 5.0 concept (seeking to
address wider social and environmental problems with the latest developments in digital system,
artificial Intelligence and automation solutions). As motivated by the EU the Industry 5.0 paradigm
can be seen as a movement to address infrastructural resilience, employee and environmental concerns
in industrial settings. This is coupled with a greater awareness of environmental issues, especially
those related to Carbon output at production and throughout manufactured products lifecycle. This
paper proposes the concept of dynamic Life Cycle Assessment (LCA), enabled by the functionality
possible with intelligent products. A particular focus of this paper is that of human in the loop
assisted decision making for end-of-life disassembly of products and the role intelligent products can
perform in achieving sustainable reuse of components and materials. It is concluded by this research
that intelligent products must provide auditable data to support the achievement of net zero carbon
and circular economy goals. The role of the human in moving towards net zero production, through
the increased understanding and arbitration powers over information and decisions, is paramount;
this opportunity is further enabled through the use of intelligent products.

Keywords: intelligent products; smart products; Industry 4.0; Industry 5.0; Society 5.0; circular
economy; human centric manufacturing; human in the loop; Life Cycle Assessment (LCA)

1. Introduction

From a paradigm shift that began in 2011 the move towards Industry 4.0 has motivated
a re-evaluation of how a manufacturing organization should operate in light of the availabil-
ity of a new generation of digital production equipment and computer-based systems [1].
The big data revolution has wrought significant change in the service sector, allowing
greater understanding of customer needs and additional insights for the development of
new products. In an industrial context big data coupled with Internet of Things (IoT) com-
munication technology and the availability of low-cost miniaturized sensors have provided
the potential for a new level of awareness on the current status of shop floor machine and
robot operation and the establishment of a real time picture of production status available
to workers and management alike. Advances in production machine and industrial robot
control through the use of Artificial Intelligence have led to new automation solutions for
the production line, with some authors forecasting the prospect of the fully autonomous
‘lights out’ factory to become the norm rather than the exception (moving beyond the
automation of low complexity repetitive processes). This paper highlights a new emphasis
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in the use of technology, specifically intelligent products, for automation solutions that
include humans in the loop of decision making, the enablement of knowledge skills and
the facilitation of creativity throughout the manufacturing organization.

In noting a move from Intelligent Manufacturing to Smart Manufacturing (both
paradigms are in use in Industry 4.0 implementations) the utilization of AI to integrate
‘human intelligence/wisdom in manufacturing’ is seen as lacking by [2] in the former
paradigm. Wang et al. [3] highlight a need for further consideration of human skills in
both Smart and Intelligent Manufacturing paradigms, these authors suggest that humans
can work alongside robots rather than being replaced by automated systems. The EU
(European Union) [4] highlights this refocusing from current manufacturing automation
to more human inclusive technology as a major paradigm shift, that has been collec-
tively named Industry 5.0. They go onto identify three major focus areas that may fea-
ture heavily in the manufacturing research and development landscape over the next
10–15 years: (1) Sustainability—reductions in energy consumption, reduced CO2 out-
put, waste reduction and greater reuse and recycling of materials in a circular economy;
(2) Resilience—more robust processes and plant to be developed and employed in industry,
more resilient supply chains; (3) Human centric approach—human interests are the core
focus of production, technology enables workers in industry aiding and advancing their
skills and knowledge [2]. Xu. et al. [5] highlight the shift from a technology focus to that of
values in the Industry 5.0 concept, noting its ambition to “achieve societal goals beyond
jobs and growth. . . ” placing “the wellbeing of the industry worker at the center of the
production process”. Mourtzis et al. [6] make the point that technology use in Industry 5.0
must enable the “physical to digital to physical loop. . . ” which is necessary to “ensure the
long-term growth of a society centered on people”. It is clear that Industry 5.0, as a concept,
is now forming and attracting the attention of both industry and wider society [4,6–8].
Human centricity and environmental sustainability issues are the focus of Nahavandi [7] in
their research on the emerging Industry 5.0 agenda. This author argues that AI in combina-
tion with human participation can have the power to address many of the environmental
issues associated with product production whilst focusing on human needs [4]. The topic
of human centricity in artificial/digital systems is also expressed as ‘human in the loop’,
where people are actively engaged in decision making activities or physical actions (at
decision nodes) within an otherwise automated process flow. Human in the loop has much
relevance within the Industry 5.0 agenda and has been explored by a number of authors
with regard to its relevance within a manufacturing setting [9–13].

Many of the Industry 4.0 technologies, currently used for automation, can in many
cases be further adapted to aid human workers in more efficient production practices whilst
unlocking their knowledge and creativity and addressing gaps they may have in their
personal skillset (shown in Figure 1). Whilst acknowledging the increased prominence
workers may take in high technology and automated manufacturing scenarios of the future
the same digitally enabled systems can also address human centricity and sustainability
goals in terms of the customer base in the way products are produced. The design of
production line robots and machinery is now receiving attention from interests in the human
factors field, where robots are designed to cooperate with humans in the completion of
tasks [14–21]. A particular area of growing interest within this field is that of Collaborative
robots or Cobots [22–24].

Mass customization is very much an established trend in manufacturing and its
sophistication and achieved levels of efficiency have been made possible in no small part
through the use of technologies described by the Industry 4.0 paradigm. An evolution of
this trend can be found in mass personalization or the ‘market of one’, whereby products
are developed to suit individual customers parameters and may even involve the customer
in the design process for the product (co-creation) [25,26]. Mass personalization also has
the aim of addressing issues of sustainability though the reduction of waste and material
used in the production process.



Sustainability 2022, 14, 14847 3 of 21

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 23 
 

has the aim of addressing issues of sustainability though the reduction of waste and ma-
terial used in the production process. 

SustainabilityIndustry 4.0 
Technology

Human 
Centric 

Production

Internet of Things 
(IoT)

Artificial Intelligence

Cloud Computing/ 
manufacturing

5G / Wireless 
connectivity

Edge 
Computing

Co-creation of 
products

Collaborative robotics 
(Cobots) Human in the 

loop

Circular Economy

Zero Carbon Products

Extended product 
lifecycle

Full lifecycle 
consideration 

of products

Industry 5.0 
Intersection

Human centric 
manufacturing 

(workers)

Personalised production
(consumers)

Zero Carbon 
production

 
Figure 1. Human Centric Manufacturing: Industry 5.0 Intersection of research areas. 

It is argued by authors such as Rojas et al. [27] and Marcon et al. [28] that the move-
ment to the use of pervasive digital technology as demonstrated in Industry 4.0 for the 
enhancement of human inclusive industrial tasks can be utilized to address wider societal 
challenges. This paradigm shift has been called Society 5.0, originating from an initiative 
of the government of Japan Society 5.0 aims to utilize digital and Cyber Physical Systems 
(CPS) to address issues of sustainability, the management of energy and transportation 
infrastructure systems and inclusiveness of social policy issues within wider society [28–
31]. 

The quantification of the improvements or changes with respect to environmental 
impacts, resource usage, waste and/or economic costs, is a key contributor to the imple-
mentation of a successful Circular Economy (CE) strategy. The CE concept was initially 
defined by Pearce and Turner [32] as an economy where waste produced from one process 
is used or recycled as feedstock for another process. In later work Geissdoerfer et al. [33] 
examine the Circular Economy in relation to industrial practice highlighting the factors 
‘long-lasting design, maintenance, repair, reuse, remanufacturing, refurbishing, and recy-
cling’ as important in the application of this concept within the sector. Life Cycle Analysis 
(LCA) has also been proposed as a tool for the long-term holistic assessment of the effec-
tiveness and impacts associated with CE strategies and it can help identify unintended 
consequences associated with a change in different processes [34]. As sustainability de-
mands increase, there is a greater need for transparency and a harmonization of method-
ologies for LCAs to assess if any given CE output does fulfil the goal of reducing environ-
mental and social impacts [35]. LCA is an important basis and addition for CE. It offers an 
analysis of the advantages or disadvantages of CE on a product or service level, then it 
identifies the possible development alternatives along the life cycle. Based on the LCA 
results, it is possible to determine the business strategy goal with the aim of moving to-
wards a circular economy [36]. 

Figure 1. Human Centric Manufacturing: Industry 5.0 Intersection of research areas.

It is argued by authors such as Rojas et al. [27] and Marcon et al. [28] that the move-
ment to the use of pervasive digital technology as demonstrated in Industry 4.0 for the
enhancement of human inclusive industrial tasks can be utilized to address wider societal
challenges. This paradigm shift has been called Society 5.0, originating from an initiative
of the government of Japan Society 5.0 aims to utilize digital and Cyber Physical Systems
(CPS) to address issues of sustainability, the management of energy and transportation
infrastructure systems and inclusiveness of social policy issues within wider society [28–31].

The quantification of the improvements or changes with respect to environmental
impacts, resource usage, waste and/or economic costs, is a key contributor to the implemen-
tation of a successful Circular Economy (CE) strategy. The CE concept was initially defined
by Pearce and Turner [32] as an economy where waste produced from one process is used
or recycled as feedstock for another process. In later work Geissdoerfer et al. [33] examine
the Circular Economy in relation to industrial practice highlighting the factors ‘long-lasting
design, maintenance, repair, reuse, remanufacturing, refurbishing, and recycling’ as im-
portant in the application of this concept within the sector. Life Cycle Analysis (LCA) has
also been proposed as a tool for the long-term holistic assessment of the effectiveness and
impacts associated with CE strategies and it can help identify unintended consequences
associated with a change in different processes [34]. As sustainability demands increase,
there is a greater need for transparency and a harmonization of methodologies for LCAs
to assess if any given CE output does fulfil the goal of reducing environmental and social
impacts [35]. LCA is an important basis and addition for CE. It offers an analysis of the
advantages or disadvantages of CE on a product or service level, then it identifies the
possible development alternatives along the life cycle. Based on the LCA results, it is
possible to determine the business strategy goal with the aim of moving towards a circular
economy [36].

The disassembly process plays a key role in the sustainable End-Of-Life (EOF) treat-
ment of Waste Electrical and Electronic Equipment (WEEE) [37]. As the manual disassembly
of products is time-consuming, robotic disassembly has been widely utilized in manufac-
turing for improving the efficiency of recycling, and each workstation is usually assigned
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for one single task. However, there exist significant differences in product volumes and lot
sizes between different manufactured products as well as product variants with different
lifespans [38]. An adaptive and robust automation line is required instead of the traditional
rigid design which is independent of human knowledge [39].

The Ellen McArthur Foundation [40] makes the case for the use of intelligent assets
in achieving circular economy objectives. In Morlet et al. [40] the case is made for the
use of sensor systems to provide information on how assets are performing along with
the compilation of data on materials use and potential for recycling. The extension of
this aim to intelligent products is compelling, especially in light of the increasing need to
decarbonize manufacturing. In this paper a number of topics, methods and acronyms have
been used, Table 1 below provides a summary explanation of the notions and terms that
are central to this research.

Table 1. Summary of terms used in the paper.

Term Explanation

IoT
Internet of Things—The Internet protocol is used to provide interoperability

between physical computer processor and equipped objects and distributed digital
information systems, often realized through wireless connectivity

Cobot Collaborative Robot—robots that work alongside humans in a safe collaborative
capacity to achieve partial automation [22]

CPS
Cyber Physical System—A combination of digital systems, services and machines

(including industrial robots) to provide intelligent and automated control of
physical assets (though the use of IoT and Artificial Intelligence technologies)

Digital Twin

Digital representation of a physical asset, such as a machine, produced by utilizing
sensor data streams provided by the asset and displayed to the user in a form a
static or animated graphics based visual representation detailing the assets real

time functioning

Circular Economy
A paradigm that encourages industry and society to move away from the current

‘take, make, dispose’ model of production through reuse, remanufacture or
recycling of materials [40]

LCA Life Cycle Analysis—a method used to estimate the potential environmental
impacts of a given product or a service [36].

Dynamic LCA An LCA in digital form, connected in real time to physical assets that are being
monitored

WEEE Waste Electrical and Electronic Equipment

Intelligent Products A product equipped with an ability to monitor, assess and reason about its current
or future state [41]

RFID
Radio Frequency Identification—functionality provided though RFID tags,

allowing digital information to ‘read’ by radio transmitter-receivers (used to
describe objects that the tag is attached to)

Edge Computing
Processors and sensors that are incorporated or mounted on assets to be monitored,

capable of processing data locally before transmitting the results to remote and
distributed data hubs for the generation of further consolidated analytics

HRC Human Robot Collaboration—a robot that requires collaboration from a co-worker
to achieve partial automation

GHG Greenhouse Gas—such as Carbon Dioxide CO2 contributing to global increases in
temperature (Global Warming)

In Section 2 of this paper the research methodology is set out, describing the range of
literature consulted in the formation of the proposed model of dynamic LCA for Intelligent
Products and pertinent research questions that have led to the development of the afore-
mentioned model. Section 3 provides an overview of intelligent products and illustrates
sustainability focused extensions to the functionality they provide. Section 4 details meth-
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ods to support human robot collaboration for product disassembly. In Section 5 the use
of LCA in formalizing the sustainable through life consideration of Intelligent Products
is outlined. The paper concludes with the proposal of an ambitious research agenda to
further the development of intelligent products and embed their role in delivering a new
generation of decarbonized manufactured goods.

2. Research Methodology Utilized

This work has been produced in accordance with a structured process involving an
evaluation of existing research literature. The initial questions that this research set out to
explore and investigate focus on the roles that Intelligent Products could play in realization
of sustainable human centric manufacturing. Research questions posed were:

RQ1: What is the current definition of intelligent products today and what functionality
might they provide in the near future?

This question considers the current functionality exposed by intelligent products
currently available on the market and how the functionality set can be further developed.
The potential for the addition of new data parameters, sensing capabilities and human
interactivity possibilities are sub questions that are also in scope.

RQ2: What forms of sustainable, circular and human centric manufacturing and main-
tenance processes may emerge through the utilization of intelligent product functionality?

Can Intelligent products aid the emergence of new sustainable methods for mainte-
nance and the improved utilization of both human and machine inputs?

RQ3: Is it possible to envision a model for dynamic LCA utilizing the current and
future functionality of Intelligent Products?

Can a holistic view of manufactured products carbon value and environmental impact
from a full lifecycle perspective be provided? With sub questions to be considered such
as: Can intelligent products take an active role in their end-of-life treatments?; What
additional functionality and information would such products need to dynamically share
with machines and humans and in what form?

In the completion of this research the literature review process shown in Figure 2 was
followed to arrive at the final set of papers to be analyzed. A number of search terms were
used for the identification of relevant papers (as shown in Table 2). The search terms were
derived from an initial review of the current topics in manufacturing automation. This was
then focused to the topics seen as most relevant by the authors and informed by literature.
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Table 2. Paper keywords and time periods considered.

Keyword Selected Time Period

Collaborative Robotics for Disassembly Year 2010–2022

Intelligent Products Year 2000–2022

Smart Products Year 2000–2022

Human in the loop Manufacturing Year 2010–2022

Human Centric Manufacturing Year 2010–2022

Life Cycle Analysis in Manufacturing Year 2000–2022

Circular Maintenance Year 2010–2022
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The publication database consulted was Scopus with relevant papers indexed between
2000 and 2022. In addition, the Web of Science and Scholar databases were used as
comparators to identify additional works not found by Scopus. Table 3 shows the search
terms and the peak paper publishing year followed by the number of publications in 2021.

Table 3. Papers returned after first filtering stage.

Search Term Peak Year Published in 2021 Total

Collaborative
Robotics for
Disassembly

(2021) 7 7 21

Intelligent Products (2021) 61 61 575

Smart Products (2021) 148 148 895

Human in the Loop
Manufacturing (2016) 8 4 25

Human Centric
Manufacturing (2020) 6 4 35

Life Cycle Analysis in
Manufacturing (2021) 7 7 45

Circular Maintenance (2021) 15 15 63

In order to limit results to just relevant papers the ‘PRE/’ term was used with a
combination of 0 to 10 intervening words allowed between the searched for terms (to
ensure the two search terms were found in contiguous fashion):

TITLE-ABS-KEY (Intelligent PRE/10 Products) AND PUBYEAR > 1999.
The only exception to this was ‘Collaborative Robotics for Disassembly’ where the

AND operator was sufficient.
This first filtering of the papers helped to establish which works were most relevant to

the questions posed in this study. A second stage involved further filtering with additional
attention given to papers that were more likely to contribute to the development and/or
use of intelligent/smart products as active contributors to sustainable production and
consumption. It was also the case that additional weighting was given to more recent papers
(post 2015 publication date) leading to a predominance of such works in the completed
review. As can be seen in Figure 2 certain subject areas contain a higher proportion of
recently published papers than others. This stage involved the rapid analysis of abstract,
introduction and conclusions (including findings and future research) for each paper. This
second stage reduced the overall total amount of papers from 1659 to 206. The final stage
of the literature review commenced with the full reading of the remaining papers reducing
the total to just over 100 relevant works for inclusion. At this stage, in-depth analysis of
the remaining papers involved an assessment of the contribution and relevance of the
publication and its impact factor rating (as rated by Clarivate).

From the review stage it was clear that the rise of Intelligent products has provided a
new and potentially extensive source of detailed usage and status data for manufacturers.
In utilizing this information for improved product lifecycle aims and maintenance practice,
consistent with Circular Economy goals, the need for the integration of human skills and
knowledge has become evident in order to deliver a step change in the manufacture,
maintenance and end of life treatment of products such that they exhibit a vastly reduced
carbon footprint, The position established by the review stage demonstrates the need for
a dynamic system of holistic assessment of products throughout their lifespan, it is put
by this research that the Dynamic LCA concept can play a vital role in the achievement of
this goal.
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3. Intelligent Products

A range of definitions are available for the concept of an Intelligent product. McFarlane
et al. [41,42] asserts that ‘an intelligent product is equipped with an ability to monitor,
assess and reason about its current or future state and if necessary influence its destiny.
McFarlane et al. [42] go onto describe the Intelligent product being permanently associated
with self-describing information, which may be read via electronic sensing (in the case
of [42] this is enabled through the use of wireless RFID (Radio Frequency Identification
tags). Meyer et al. [43] identify three particular dimensions: (1) the intelligence capability
of the product; (2) the location of the intelligence; (3) whether the product is a single
entity or part of an aggregate. Meyer et al. [43] underline the importance of defining
how intelligence is enabled through embedded processing and utilized throughout the
product lifecycle. Yang et al. [44] note that the intelligence of products may be leveraged
throughout their life, with their information stored in or accessible to distributed data
repositories. In describing the types of data provided by intelligent products as a set of
discrete ‘services’, Yang et al. [44] motivate a spectrum of added value support systems that
may be provided alongside; ranging from remote diagnostic services, relating to product
health, to in-use data, and end of life treatments. Sallez et al. [45] also give focus to the
potential recycling stage of an intelligent product, finding that augmenting products with
information can assist in detailing their material composition (which can also be leveraged
by remanufacturing and reverse logistics processes).

The circular economy provides a wider context and outlines a framework for sustain-
ability considerations for manufactured products in a move away from the current ‘take,
make, dispose’ model of production [40]. The rise of the Internet of Things (IoT) has led
to greater interoperability between physical products and distributed digital information
systems, often realized through wireless protocols [46]. Morlet et al. [40] suggest that
the actual lifespan of an intelligent product (or asset) may be extended by knowing its
current health and allowing it to decide its own maintenance needs and schedule; this
can be taken further with the use of artificial intelligence to predict when maintenance
may be required in the future [13]. The decision process of when to take a product out
of service and select an appropriate treatment can also be enhanced through intelligent
product knowledge; decision options may include a choice of: product re-use in other
less demanding role; remanufacture of the product; product recycling [40]. Intelligent
products may be offered in combination with services, such as maintenance contracts, in a
process known as Product Service Systems (PSS) [47]. Alcayaga et al. [48] provide an initial
exploration of intelligent product and PSS combination to aid a lifecycle consideration of
the product in terms of its sustainable treatment. In the design stage of new products, the
performance of existing products ‘in use’ can inform the development process along with
data regarding its end-of-life treatment or further reuse cycles [49]. The employment of
Digital Twin representations can be used to investigate and facilitate the reconfiguration of
products. Abramovici et al. [50,51] employ a Digital Twin to enable reconfiguration of a
product based on its ‘in use’ data and provide real time adaptations. Kerin and Pham [52]
explore the process of remanufacturing and the changing nature of technology use in this
sector; in employing smart robotic cells for remanufacturing this paper sets an agenda
that may be complimentary to the movement towards intelligent product development,
potentially allowing communication between products being worked on and the machines
performing the work.

Intelligent products are also referred to as Smart Products by some authors [46,48,53–57].
Intelligent or Smart products may take part as components of a Cyber Physical System, due
to their IoT ‘connected’ capability [58–60]. An argument could be made that in achieving
greater use of electronics with manufactured products as a whole will lead to increased
resource use at the production stage and additional waste at the end of life. In terms of
electronic waste Li et al. [61] envisage a unified set of standards towards the treatment and
recycling of WEEE (Waste Electrical and Electronic Equipment) in order to eliminate the
‘dumping’ of such potentially highly polluting materials in 3rd party countries. Though



Sustainability 2022, 14, 14847 8 of 21

perhaps it is through the redesign of existing electronic products that the most gain can be
made in this direction. Meloni et al. [62] make the point that the design of consumer elec-
tronics products must take account repair and recyclability of the internal components and
consider the potential for modularity in the design. Yang et al. [63] explore the possibility
for foldable paper-based electronics that are less demanding of raw materials and hold the
potential to be easier to recycle. In addressing the aforementioned concerns reference must
be made to progress in both the material composition and nature of electronics for sensing
and processing within intelligent products.

As can be seen in Table 4 the timeline for intelligent products takes in many of the
major technological developments in sensing, processing and wireless internet connectivity
over the past 20 years. It is the opinion of the authors of this paper that while technology
will continue to advance in terms of processing power and miniaturization (among other
factors) it is the ability for such products to play an active role in meeting sustainability
goals that is perhaps one of the greater opportunities over the next 5–10 years. While being
able to monitor energy use many intelligent products functionality could be extended
to provide a dynamic carbon footprint calculation. It is also the case that such products
are capable of taking an active part in the management of their own lifecycle such as:
advising on repairs and the need for replacement parts; end of life treatment of parts to be
replaced or whole product itself; energy use monitoring and reporting to users/consumers
and manufacturer; advising on process(s) to be used by maintenance operatives with
live feedback.

As can be seen in Figure 3 below an outline of an intelligent product, in the form of an
electric vehicle, is given. Figure 3 shows that the constituent components of an intelligent
product may also be intelligent and able to communicate with each other in a product wide
wireless network. Such a system may further aid the maintenance operative by performing
a root cause analysis, utilizing onboard AI algorithms to autonomously diagnose faults uti-
lizing the internal network communication. The traditional Fishbone or Ishikawa diagram
utilized in root cause analysis may be generated and reproduced in completed form for
the maintenance operative as part of the reasoning for the fault diagnosis. This approach
utilizes the notion of Explainable AI (XAI), where automated systems additionally ‘employ
machine intelligence and learning techniques to provide explanations in order to justify the
trust Humans are required to invest in such software-based entities’ [67]. It may also be
seen in Figure 3 that capacity is given to the intelligent product to attempt self-repair or in
some mode also ‘take part in’ or assist with a manual repair. Radio Frequency Identification
(RFID) tagging of components is still possible in this model, to identify and also detail
recycling and end of life treatments for individual components, along with communica-
tion of ‘in use’ data to remote 3rd party Cloud datastores for further processing/use by
manufacturers and other agents. The use of miniaturized and wireless connected Edge
processing units allow this additional level of dynamic interactivity as described to take
place on an individual product and component level.
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Table 4. A Timeline of Intelligent Products Development.

Timeline Concepts Developed Key Papers

RFID 2000–

• Product can retain self-describing information and is capable of
communication

• First generation of product driven manufacturing control
concept—product communication with production process

• Smart products
• Ambient Intelligence (AmI)
• Products as services

McFarlane et al. [41] provided an initial definition of an intelligent product and lay the
foundations for RFID integration and use with such products.

Mühlhäuser [53] provides a definition of smart products in this work along with the
term ‘active knowledge’ referring to the capability to exhibit autonomous behaviours
when such products are in use by humans.

Allmendinger and Lombreglia [64] describe connected products being able to
communicate their status and send, receive and perform basic data processing actions; a
discussion is also presented on product and service combinations.

Cloud/IoT
2010–

• Coordination of product data with cloud-based data
sources—Product history is available and distributed
processing of data

• Semantic technology use with intelligent products
• Sensor networks and IoT technology use
• Embedded processing
• Artificial intelligence integration
• Personalization
• Intelligent product Lifecycle consideration

McFarlane et al. [42] revisit the term ‘product intelligence’ in the light of technology
changes in supply chain and logistics operations.

Sabou et al. [65] examine semantic technology use with the smart product concept and
the notion of ambient intelligence.

Kiritsis [49] provided an in-depth study of product lifecycle management (PLM) with
intelligent products and proposed a standard in the form of a semantic ontology
for PLM.

Sallez et al. [45] examine intelligent products and PLM from ‘design, manufacturing,
distribution, use and recycling’ stages and introduce the concept of the active product.

Meyer et al. [43] describe the distributed nature of data processing possible with
intelligent products

In Yang et al. [44] the acquisition of lifecycle data through a service based infrastructure
is put forward, this author highlights the importance of the knowledge base of past
activity to this approach.

Anderl et al. [54] describe the use of embedded systems and products as part of Cyber
Physical Systems.
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Table 4. Cont.

Timeline Concepts Developed Key Papers

Edge and Sensing
2020–

• Human centric production
• Edge computing—integrated information sensing and processing
• Cyber Physical Systems and Intelligent Products
• Digital Twin Integration
• Circular Economy

Barbosa et al. [59] propose a combining of the intelligent product concept with that of
Cyber Physical Systems (CPS) and provide an illustrative case study from the white
goods industry.

Romero and Noran [57] propose the notion of the ‘Green Sensing Virtual Enterprise’
bringing together Circular Economy Cyber physical Systems and Smart products and
intelligent assets, emphasizing the dynamic nature of sensing possible with
IoT technology.

Alcayaga et al. [48] envisage integrated smart products and circular product service
systems, highlighting the need to link into a wider range of end-of-life options such as
remanufacturing and re-use.

Abramovici et al. [50] introduce the notion of a virtual twin (Digital Twin) of a smart
product allowing dynamic reflection of changes between physical and digital
representations, pointing to the need for semantic standards to enable further levels of
product service system based interoperability.

Sustainable Products
2025–

• Dynamic LCA for intelligent products and their manufacture
• Dynamic Carbon footprint calculation
• Recyclable electronics for Sustainable intelligent products (full

circular lifecycle of intelligent products)

Kerin and Pham [52] explore the process of remanufacturing and the changing nature of
technology use in this sector, employing smart robotic cells for remanufacturing.

Ren et al. [66] provide an extensive review of data analytic approaches to current and
future product lifecycle challenges.
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4. Human Robot Collaboration for Disassembling Products at End of Life

Human–Robot Collaboration (HRC), whereby the robot requires collaboration from
a co-worker to achieve partial automation, provides a new direction for disassembly
operations. A human in the loop scenario in which the system becomes more capable of
performing diverse tasks through the facilitation of workers cognitive and physical abilities;
while taking advantage of the capability of the robot to perform repetitive tasks [67].

Current research in HRC applied to disassembly processes often considers the safety
of the human partner by fusing sensor features with the human in the loop concept. For
example, Büker et al. [69] integrated the vision-based control system with a force sensor
and custom-made unscrewing tool to build a safe robot system for wheel disassembly.
Gerbers et al. [38] also studied the safety measurement with 3D vision system for Lithium-
Ion Batteries disassembly. Roda-Sanchez et al. [70] compared the 3D vision system and
wearable Inertial Measurement Units (IMUs) based system for efficient and robust human
recognition. Moreover, another research direction is to make robust and flexible decision
process by integrating cyber-physical production system (CCPS) and Artificial-Intelligence
(AI) technology. Zussman and Zhou [71] proposed an adaptive planner utilizing a Petri
Net approach. Liu et al. [72] built a complete system by integrating CCPS with AI methods
including perception, cognition and decision making. In addition Prioli and Rickli [73]
proposed a cloud-based collaborative architecture for critical materials disassembly for
electronic devices. Huang et al. [74] adopted active compliance control for robot to dis-
mantle a press-fitted water pump. Another direction that is gaining in popularity is the
application of the Learning from Demonstrations (LfD) methodology. This methodology
can also improve the learning efficiency of the Collaborative robot (Cobot). Bdiwi et al. [75]
provided informative demonstrations from a supervisor perspective to a robot, enabling
the transfer of demonstrations and skills from a human to a robot for unknown parts
disassembly. This line of research is supported by Vongbunyong et al. [39], this research
enabled a skillful worker to demonstrate correct disassembly sequences to a robot for
replication, in effect transferring knowledge to the Cobot.
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Increasingly robot implementations exist within an ecosystem of automated produc-
tion machinery, often capable of data acquisition through advanced sensing and wireless
control from remote locations via. Cloud technologies, referred to as Cloud Manufacturing
by authors such as Liu et al. [76] and even Cloud Robotics [66,77–80]. Such a Cyber Physical
System (CPS) is often the realized outcome when implementing Industry 4.0 solutions
within modern factories. Grau et al. [81] set the scene for a future manufacturing environ-
ment where open questions remain about the role of humans and their ability to remain
‘in-the-loop’ of decision making in highly automated production lines. Romero et al. [82]
make the case for ‘Operator 4.0’, whereby human participation in industrial job roles are
enabled though cooperation with intelligent machine and robot systems. In proposing
a typology composed of 8 operator functionality aspects (Super-strength; Augmented;
Virtual; Healthy; Smarter; Collaborative; Social; Analytical), Operator 4.0 is seen as a way
to augment human skills rather than seek labor removal and fully automate complex
industrial tasks [82]. In addressing the emerging Industry 5.0 agenda Romero et al. [83]
identify that workforce resilience, where human worker needs are recognized, can co-exist
with the production system when realized as a ‘symbiosis’ of human–machine cooperation.
Clabaugh and Matarić [84] set an agenda for the personalization of human robot interac-
tions in the areas of medical, care provision and human learning. In recognizing the role
of Machine Learning Clabaugh and Matarić [84] highlight the role human can play in the
development of more assistive robots though interactive machine learning and a ‘human
in the loop’ approach to the machine-person relationship. Leng et al. [85] also highlight the
central aim of industry 5.0 as the recasting of industrial employment in terms of improved
well-being and empowerment of workers through assistive technology. This relationship is
also emphasized by Weiss et al. [86] who note, currently, that a lack of role clarity surrounds
such interactions in the context of Industry 4.0.

It is the opinion of the authors of this paper that intelligent products may play an
active part in their own disassembly. Utilizing inbuilt guidance and processes, Cobots and
humans can be informed on correct procedures. It is also the case that once end of life
and recycling information is provided by intelligent products enhanced procedures may
be followed in the act of disassembly to respect the optimal course of action in terms of
overall sustainability and carbon reduction goals. The question remains on what types of
recycling information an intelligent product should contain and the need for an overarching
methodology for the generic specification of parameters and holistic management of the
products lifecycle. In the next section the use of Life Cycle Analysis (LCA) is proposed
along with a model for its use with informated goods such as intelligent products.

5. LCA and Sustainable Intelligent Products

Sustainability, where there is ever more attention placed on the long-term impact of
manufacturing processes, is likely to be a major focus area of manufacturing and product
development over the next couple of decades [3]. Reducing Greenhouse gases (GHG) is a
core component of sustainability and is a key driver of activity in organizations seeking to
achieve net zero carbon emissions.

In 2021 there was a significant increase in global and national mandatory reporting
frameworks such as the Taskforce on Climate-related Financial Disclosure (TCFD) and the
European Sustainable Finance Disclosure Regulation (SFDR). In addition, in the run up to
and post COP26 in Glasgow in 2021, increasing numbers of global and local organizations
have been committing to reporting to voluntary frameworks such as the Carbon Disclosure
Project (CDP) and the Principles for Responsible Investment (PRI). Organizations are also
increasingly committing to set robust Science Based Targets accredited by the Science
Based Target initiative (SBTi). These all require an assessment of and reporting of all
greenhouse gases across not just the traditional scopes 1, 2 but also scope 3. Robust
scope 3 data gathering, calculations and reduction plans are therefore a new requirement
for many organizations (Scope 1 emissions are direct emissions normally produced by
fuel combustion; scope 2 emissions are indirect emissions produced by 3rd party energy
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providers such as the electricity providers of industrial organizations; Scope 3 emissions
are also indirect and produced as part of the value/supply chains of organizations). In
January 2022, post COP26, net zero carbon proposals, declarations, pledges and legally
binding commitments covered 90% of global GDP and 85% of the world’s population [87].

For most manufacturing companies, 70–80% of their overall carbon footprint is in
their scope 3 GHG emissions, and more specifically will reside in their ‘purchased goods
and services’ category, i.e., in their supply chain [88]. Therefore, industry 5.0 will have
an increasing focus on decarbonizing supply chains. This will impact decision making
at all stages of the industrial manufacturing process. Manufacturing organizations are
being asked by their clients to provide data on their GHG emissions and whilst the ma-
jority of the scope 1 and 2 data is known and accurate, the majority of scope 3 data is
currently estimated.

Moving from estimated to actual scope 3 GHG data for manufacturing organizations
initially requires engagement with suppliers to acquire their GHG data, and often will
require Life Cycle Assessments of key products.

Life Cycle Assessment (LCA) is a standardized analytical method (ISO 14040) [89,90]
designed principally to estimate potential environmental impacts associated with a product
or a service. The goal of the process is to evaluate the environmental burdens associated
with a product, process, or activity by identifying and quantifying energy and materials
used and wastes released to the environment; to assess the impact of those energy and
materials used and releases to the environment; and to identify and evaluate opportunities
to realize environmental improvements [91].

The assessment includes the entire life cycle of the product, encompassing all the
resources required and pollutants emitted throughout all stages of its life cycle, “from cradle
to grave”, i.e., from raw material extraction, construction and use to waste management and
recycling or disposal [92]. It provides a complete view of connections between production
systems and the environment. The LCA method consists of four interrelated phases:
goal and scope definition, Life Cycle Inventory (LCI) analysis, impact assessment and
interpretation of results [90]. LCA could help reaching a variety of goals, from helping
short-term process engineering to supporting long-term strategic planning. LCA also
motivates process optimization and product improvement, and it allows a transparent
comparison between different product designs. A specific type of analysis, modelling
and data quality is required to achieve each of the goals. The environmental effects or
impact categories in an LCA represent the consequences of a physical interaction between
a system studied and the environment. The most used categories are: Global warming
potential; Ozone depletion; Acidification; Eutrophication; Resource depletion; Human
toxicity; Ecotoxicity; Photochemical oxidation; Land use.

The Dynamic LCA for Intelligent Products

Human consideration of LCA and embedded carbon value and output is necessary
as it is not possible at present to envisage a totally autonomous production system, let
alone one with additional capability to dynamically minimize or remove carbon emissions
in its operation. The ability to cascade environmental considerations and sustainable
processes throughout the manufacturing organization and customer base requires human
centric technology and visualization techniques to aid understanding and augment decision
making to achieve a circular and net zero carbon economy.

In Figure 4 the outline of a dynamic model for LCA utilizing intelligent products is
detailed. As can be seen in Figure 4 carbon emissions may be produced at the stage of
raw material extraction/processing, in manufacturing, in use and at the end of life of a
product. For an intelligent product, as described earlier in Figure 3, opportunities could
exist to utilize on board processing capabilities and Artificial Intelligence to provide data
relating to embedded carbon, emissions and energy use at every stage of the products life.
A dynamic LCA could be provided to manifest the carbon total of a product to date and
predicted end of life total.
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Table 5 shows the range of information that an intelligent product/component could
hold and actively communicate to other entities. In engaging with an LCA agenda the
Intelligent product would need to hold information on the materials it is made out of and
the carbon embedded in the product/component and released during its manufacture.
Similarly whist in production the amount of carbon emitted in production may be recorded
by the product produced. Whilst in use an intelligent product may report its energy
use patterns back to the manufacturer (not just the consumer) and estimates made of
carbon emissions produced. At end-of-life stage the product is able to provide a manifest
of constituent materials and their geographical origin, embedded carbon and lifetime
emissions estimate, along with suggested disassembly instructions.

For the human worker or manager in manufacturing the intelligent product can
communicate health data throughout its life (the capture and relay back the manufacturer of
such data is especially interesting for the new product development team). It can also relay
information about itself whist in the manufacturing stage and at end of life communicate
about its disassembly. In use fault data can also help inform maintenance actions and be
communicated through a smart component internal network which, through the addition
of artificial intelligence techniques and edge processing, may be capable of undertaking
basic route cause analysis to trace and describe internal faults more accurately. The ability to
perform dynamic root cause analysis may act as the basis for more accurate fault reporting to
the customer. The customer will also want to know about energy use of the product whist in
operation. At the end of a product’s life the imminent replacement need could be indicated
to the customer and the manufacturer, this is especially pertinent where the product is
rented out to the customer, in a product-service type arrangement, rather than sold to them.
In the manufacturing setting the Procurement manager also needs clear guidance on the
carbon content of materials and the emissions required for their extraction/manufacture so
that decision making on which component to purchase can be improved in the direction
of sustainability concerns. In summary, provision of the information required for Table 4
would address one of the main limitations experienced in current LCA implementations,
that of data access [34]. For the designer the understanding of the environmental impact
of individual materials can help in making decisions about product composition and may
lead to better decisions regarding dematerialization of products (regarding the number
and amount of raw materials used to manufacture a product). Material passports for
manufactured goods and components have been proposed for use in the construction
sector to create inventories of building components utilized in a given project [93,94]. The
notion of such a passport for general manufactured products have been put forward by
Spring and Araujo [95] in the form of a ‘product biography, describing a linked data set
recording how a product is ‘repaired, refurbished, upgraded’. . . ’dismantled, reassembled
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and discarded’. Adisorn et al. [96] take the view that the material passport is just one
of four information tools that are available to describe product parameters relating to
circular economy goals, comprised of: Energy Label; Material Passport; Cradle-to-Cradle
passport (C2C); Asset Administration Shell (AAS). Adisorn et al. [96] go onto define a
Digital Product Passport that seeks to both complement and streamline current models
for product descriptions and ease communication between actors such as repair facilities
and recyclers. Table 5 below demonstrates a parameter set that could be used in both the
immediate (short term) and long-term monitoring of parts relating to an electric vehicle;
the implications of the data they provide may be assessed within a Dynamic Life Cycle
Assessment (as described in Table 6 with parameters developed from the work of [97]).

Table 5. Intelligent Product Information provision for Life Cycle Analysis, Manufacturing Workers
and Customers.

NPD and Design
Manufacturing/
Assembly Stage

In-Use Stage End-of-Life Stage

LCA Need

Intelligent products to
report material content

and geographical
origin of materials

Dynamic calculation of
carbon emissions from

production process

Dynamic reporting of
carbon emissions to

manufacturer

Intelligent products to
report material content

and geographical
origin of materials

Human
worker/manager need

Embedded carbon
content of intelligent
components and fully
assembled intelligent

product

Components to report
health data and faults

to manufacturer

Intelligent components
report health data and

correct
assembly/integration

instructions to
production line

workers, production
supervisors and

managers

Dynamic root cause
analysis reported to

manufacturer–with full
reasoning availability

(utilizing XAI to
provide analysis and
decision reasoning in

the form of
text/process flow chart

Intelligent components
report health data and
faults to manufacturer

Dynamic root cause
analysis reported to

manufacturer–with full
reasoning availability

(utilizing XAI to
provide analysis and
decision reasoning in

the form of
text/process flow

chart)

Dynamic inventory
production of

end-of-life materials for
reverse logistics

disassembly (possibly
via. product service
style ‘rental’ contract

with between
manufacturer and

customer)

Customer/end user
need

Improved fault
communication and

display with faults to
be reported to customer

and manufacturer

Dynamic reporting
of energy

consumption/resource
needs for daily

operation

Dynamic root cause
analysis reported to

manufacturer–with full
reasoning availability

(utilizing XAI to
provide analysis and
decision reasoning in

the form of
text/process
flow chart)

Dynamic reporting of
carbon emissions to

customer and
manufacturer

Improved fault
communication and

display with dynamic
root cause analysis to

customer utilizing
plain text explanations
(made possible through

XAI)

Indication to
customer that

maintenance/repair of
intelligent product or

replacement is
imminent
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Table 6. Intelligent Product Information Parameters for an Electric Car.

Parameters Required Dynamic LCA Implications

Fault indicator
Fault warning system should be regularly
tested and replaced if faulty. Replace and

recycle option may be necessary

Part history Data from vehicle can inform long term trends
relating to the performance of specific parts

Model of average driving conditions

Vehicle in motion data combined with route
taken, road conditions and weather can assist
in developing usage models when mapped to

part maintenance needs.

Electric Current supplied by battery
Monitoring of current within battery pack can

provide early warning of drops in battery
performance and potential faults.

Temperature

High temperature may indicate a critical fault
with the battery pack, temperature trends

combined with driving conditions data could
provide early warning of faults developing

Acoustic emissions from major moving
part components

Part can be maintained (e.g., greased) to reduce
wear; if faulty the part can be replaced and

remanufactured or recycled if faulty.

Range and car recharging trends

On board processing showing ‘economy’
trends of vehicle when in motion may be

further analyzed to detect early warning signs
of reductions in battery performance

6. Discussion and Research Agenda

As large companies and global brands increasingly aim to meet more ambitious
greenhouse gas reduction targets and net zero goals, the demands they will put on their
suppliers to report and reduce greenhouse gasses will become greater. This supply chain
pressure is already in evidence in certain sectors such as food, fashion and construction,
and is likely to spread to all sectors and all manufacturers globally. Those manufacturing
organizations that are proactively decarbonizing both their own products and are active in
engaging with emissions removal programs in their own supply chain are likely to become
the low carbon suppliers of choice to their customers in the new net zero world. Therefore,
more research will be needed to determine which sectors and which supply chains are
under most pressure to decarbonize, and how human centric manufacturing and industry
5.0 can help solve the dual problems of a lack of reliable short- and long-term usage data
and a lack of strategic plans to decarbonize manufactured goods globally.

In Figure 5 the agenda for future research regarding the achievement of the Dynamic
LCA is summarized along with the current information streams that are possible from
many modern motor vehicles in production today. It is the opinion of the authors that
the ambition for intelligent product information provision (set out in Table 6) and the
dynamic LCA for intelligent products model (shown in Figure 4) can be achieved if a
generic parameter set can be formed and agreed on as a set of internationally accepted
standards. The outer ring shown in Figure 5 suggests the future functionalities that may
be provided through intelligent products. Using the illustrative case study of vehicles as
intelligent products the following research directions in terms of the Dynamic LCA are
especially pertinent:

• Development of component level Edge processing to aid evaluation of use and esti-
mated lifespan for dynamic and predictive maintenance, utilizing component embed-
ded end of life data for reuse /remanufacturing/recycling stage
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• Provision of a component level connected material inventory to aid the calculation of
an overall carbon footprint of production and energy consumption/emissions at ‘in
use’ stage of the product

• Collection and analysis of Connected Vehicle Monitoring Data utilizing a combination
of Edge and cloud data repository/offline processing.
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Cobots for use in end-of-life disassembly processes may become increasingly popular
as a combination of both repetitive robot and skilled human activities are required. Cobots
would need to be embedded with cognitive architectures that support them in achieving
this goal. Such an architecture would also include intelligence on how to address the
challenges of unstructured environments and the variations found within them. These
architectures would need to be supported by optimizing algorithms that adapt based on
conditions in the environment. Population based algorithms such as in [98,99] that do not
rely on pre-defined surrogate models could support this. Furthermore, a human in the loop
approach would be assisted with the addition of parameters and information sets made
possible by the dynamic LCA concept and active participation of intelligent products in
their end-of-life treatments.

7. Conclusions

While the move towards Industry 4.0 has motivated a re-evaluation of how a manu-
facturing organization should utilize the latest in digital production automation systems a
gap has emerged between performance and efficiency gains sought and actually achieved.
The big data revolution coupled with Internet of Things (IoT) communication technology
and the availability of low-cost miniaturized sensors has provided the potential for a new
level of awareness on the current status of shop floor machine and robot operation and
the establishment of a real time picture of production status available to workers and
management alike. However, the knowledge and skills of workers are still required and are
likely to be the missing link between promised gains and those achieved in the real world.
Industry 5.0 sets a new agenda for human centric and assistive technology development
and provides a shift in focus towards environmental goals.
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The increasing availability of data on materials use and potential for recycling can be
harnessed with the development of a new generation of products with built in sensing, pro-
cessing and intelligence. Through intelligent products the realization of circular economy
goals provides a compelling argument for human skills and knowledge to be combined
with automation technology for the realization of ambitious recycling targets, especially in
light of the increasing need to decarbonize manufacturing.

In the visualization of intelligent product material (recycling and re-use) manifests the
Digital Twin concept could play a role in the presentation and interaction with this increas-
ingly complex set of data and descriptions [100,101]. Many works exist on visualization for
worker communication and there is also a strong argument for a role for extended reality
and metaverse applications; viewable through headsets, Augmented Reality equipped
safety goggles or even tablet devices used on the shop floor.

The role of the human in moving towards net zero production, through the increased
understanding and arbitration powers over information and decisions, is paramount; this
opportunity is further enabled through the use of intelligent products.
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