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Abstract. Lockdowns to avoid the spread of COVID-19
have created an unprecedented reduction in human emis-
sions. While the country-level scale of emissions changes
can be estimated in near real time, the more detailed, grid-
ded emissions estimates that are required to run general cir-
culation models (GCMs) of the climate will take longer to
collect. In this paper we use recorded and projected country-
and-sector activity levels to modify gridded predictions from
the MESSAGE-GLOBIOM SSP2-4.5 scenario. We provide
updated projections for concentrations of greenhouse gases,
emissions fields for aerosols, and precursors and the ozone
and optical properties that result from this. The code base to
perform similar modifications to other scenarios is also pro-
vided.

We outline the means by which these results may be
used in a model intercomparison project (CovidMIP) to in-
vestigate the impact of national lockdown measures on cli-
mate, including regional temperature, precipitation, and cir-
culation changes. This includes three strands: an assessment
of short-term effects (5-year period) and of longer-term ef-
fects (30 years) and an investigation into the separate effects
of changes in emissions of greenhouse gases and aerosols.
This last strand supports the possible attribution of observed
changes in the climate system; hence these simulations will

also form part of the Detection and Attribution Model Inter-
comparison Project (DAMIP).

1 Introduction

Climate change research routinely uses emissions scenarios
to explore potential future impacts of climate change. These
scenarios are developed with integrated assessment models
(IAMs) that project internally consistent evolutions of green-
house gases based on socioeconomic and technological as-
sumptions for the 21st century (Weyant, 2017; Riahi et al.,
2017; Rogelj et al., 2018). Scenarios are projections, not pre-
dictions, and by design reality will differ from the precise
evolutions contained in their description. However as we re-
ceive more information, the greenhouse gas emission path-
ways of IAM scenarios can be modified to more accurately
reflect their historical evolution or societal changes. This pos-
sibility has gained acute interest in the context of the current
COVID-19 pandemic.

Societal lockdown measures to contain the spread of
COVID-19 have resulted in unprecedented global changes
to the emissions of greenhouse gases (GHGs) and aerosols
(Le Quéré et al., 2020a; Venter et al., 2020; Forster et al.,
2020a). There are reports of a 36 % reduction in population-
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averaged global NO2 concentrations (Venter et al., 2020) for
34 countries prior to 15 May, and CO2 emissions are esti-
mated to have fallen by 4 %–8 % in 2020 (Le Quéré et al.,
2020b; IEA, 2020; Liu et al., 2020; Le Quéré et al., 2021).
Shorter-duration and localised changes have been even more
extreme (Bauwens et al., 2020; Yang et al., 2020) but show
nonlinear changes in air chemistry that simple, globally aver-
aged climate models will miss (Le et al., 2020). Estimates of
the immediate impact of this change on global temperature
have already been quantified as small using simple climate
models (Forster et al., 2020a), but these models do not cap-
ture complex chemistry, regional temperatures, or precipita-
tion effects with any confidence, which are also more uncer-
tain and sensitive to small changes. The unexpected changes
in emissions are potentially enough to raise questions about
the relevance of projections made only years before. Existing
gridded emissions scenarios are too poorly designed to even
represent realistic emissions changes on less than a 10-year
basis.

It is therefore desirable to explore the impact of these
changes on climate change projections, both to establish to
what extent simulations ignoring the effects so far need up-
dating due to short-term changes and to investigate poten-
tial impacts of the lockdown in the long term. This is chal-
lenging because country-level emissions estimates are often
generated only on a yearly basis, missing the variations be-
tween months or weeks. Moreover, detailed climate simu-
lations require emission statistics to be broken down on a
higher-resolution uniform grid, and these are typically only
estimated several years after the emissions have occurred
(Feng et al., 2020; Meinshausen et al., 2020).

This paper uses data from near-simultaneous “nowcast-
ing” methods based on open-access data on mobility, energy
grids, and aviation to modify a pre-existing gridded projec-
tion by country- and sector-specific factors. By expressing
our scenario as a modification of a pre-existing scenario, we
have an estimation of sector emissions on a grid that simu-
lation teams know how to handle. We can also use the pre-
existing runs of the baseline scenario as our point of compar-
ison and to provide the initialisation condition for the mod-
ified run. This reduces the computational load of running a
complete new model when rapid results are desired.

The country-level analysis of Forster et al. (2020a) pro-
vided a means to assess the level of lockdown affecting dif-
ferent sectors. It used sector-specific changes in Google mo-
bility data, supplemented by an analysis of the legally im-
posed degree of confinement from Le Quéré et al. (2020a), to
produce an up-to-date assessment of the emissions changes
in 142 countries. We use updated data following the same
technique and add a new methodology for aviation data, then
use this to estimate the short-term impact on emissions from
COVID-19. The impact of lockdown itself on emissions is
likely to be only short-term, since most financial crashes to
date have provided only a temporary fall in annual emissions
(Le Quéré et al., 2021). However the impact of changes in

government investment, towards either the fossil fuel econ-
omy or green infrastructure, can have much longer-term im-
pact (Gillingham et al., 2020; Andrijevic et al., 2020). We
therefore supplement the short-term emissions modifications
with several possible global emissions trends. These diverge
from each other only in the future, unlike the pre-existing
SSP scenario sets (which diverge after 2015). This prevents
us ascribing any retrospective improvements to the effects of
the pandemic.

We use this analysis to generate five scenarios of grid-
ded emissions and concentrations incorporating the effects
of lockdown and various different recoveries. We also pro-
cess the emissions fields through an atmospheric chemistry
model to provide the ozone field, often required as an input
for general circulation models (GCMs). We finally describe
a protocol for a model intercomparison project (MIP) assess-
ing the impact of national lockdown measures. Based on dis-
cussions between several modelling groups, this activity aims
to establish the scope of changes in climate results to be ex-
pected from the direct impacts of lockdown and the potential
impact of changes to investment structure resulting from the
recovery packages. Since the changes being investigated are
likely rather small, the use of a common protocol for mod-
elling groups to perform makes both optimal use of the effort
to produce the emissions data and also increases the ability
to make a robust assessment of the results. We emphasise the
importance of both as an initial condition ensemble as possi-
ble, and we also use of “nudging” techniques for improving
the signal-to-noise ratio and for establishing a sufficient body
of simulations for the different parts of the MIP.

2 Data sources

For this exercise, we change the concentration of the three
main greenhouse gases (GHGs) – CO2, CH4, and N2O – and
emissions of the main aerosols and aerosol and ozone pre-
cursors: black carbon (BC), CO, NH3, non-methane volatile
organic compounds (NMVOCs) as an aggregate, NOx , or-
ganic carbon (OC), and SO2. For aviation emissions, only
changes in CO2 and NOx are modelled. Other emissions
(such as HFCs) are assumed not to change from their base-
line behaviour, since either no change in these emissions is
expected or the total impact of these emissions on the climate
is so small that a small change in the emissions is likely to
have negligible effects.

The baseline dataset for our analysis is the MESSAGE-
GLOBIOM model SSP2-4.5 (Fricko et al., 2017), taken from
the gridded CMIP6 data Input4MIPs (Feng et al., 2020). This
choice is made for several reasons. Firstly, it is a CMIP6
ScenarioMIP tier 1 scenario, meaning that all groups in-
volved in CMIP6 ScenarioMIP have run the baseline sce-
nario O’Neill et al. (2016). Of these, it is the most middle-
of-the-road in terms of assumptions, both about future polit-
ical and economic developments, because it is SSP2 (Riahi
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et al., 2017) and because it has intermediate long-term forc-
ing (4.5 W m−2). This amount of forcing is consistent with
the global level of warming implied by countries’ current
nationally determined contribution (NDC) pledges (Climate
Action Tracker, 2021) and has projected values closest to the
most recently measured emissions (Pedersen et al., 2021).
SSP2-4.5 is also used in decadal predictions and is therefore
of relevance to near-term climate forecasts. We emphasise
that the code that generates the data that follows can be ap-
plied to other scenarios as well.

This baseline scenario is then modified to match
the country-and-sector-specific emissions or concentration
trends supplied using the methodology of Forster et al.
(2020a) for times after 2020, updated where such data are
available. This technique projects the emissions change for
the most recently measured month to continue at two-thirds
of its value, in most scenarios until the end of 2021. In the
4-year blip scenario we continue this until the end of 2023.
In all scenarios we then expect recovery back to the base-
line over the following year. This is not necessarily the time
for the virus to have been completely eliminated or habitu-
ated to but merely the time for countries to no longer con-
sider lockdowns an effective intervention. After that, we no
longer make country-specific modifications but instead mod-
ify global emissions by a constant factor, indicating four dif-
ferent styles of recovery from lockdown to have either no
difference from the baseline (the “2-year blip” and “4-year
blip” scenarios), a transition to an increased use of fossil fu-
els (“fossil fuel development”), or either moderate or large-
scale increases in the investment in a green recovery (“mod-
erate green” and “strong green”). The nature of these sce-
narios is summarised in Table 2 and most are described in
Forster et al. (2020a), although the 4-year blip is new here.
The impact of these paths is felt on different emissions to a
different extent (and often with a different sign, for instance
greener scenarios emit more NH3 but less SO2), but we do
not break down this effect by sector.

As discussed in Forster et al. (2020a), data are not avail-
able for several regions and sectors, notably including China
and all aviation and shipping. In these instances, emissions
modifications are taken instead from Le Quéré et al. (2020a),
except for aviation emissions, which are instead modified us-
ing data obtained from Flightradar24 (2021).

A minor complication of combining these data sources is
that the SSP2-4.5 data use 365 d years, whereas we also have
real data from the leap day in February 2020. To ensure com-
patibility with climate models, data from the leap day are in-
corporated into the monthly averages but the output file will
not include a day for it.

As this was an evolving project with different amounts of
data available at different stages, several versions of the data
were released. The details of the code changes involved can
be found in Table 1.

3 Concentration data

Most GCMs use global or hemispherically averaged lev-
els for well-mixed GHGs. These were directly calculated
in Forster et al. (2020a) using the FaIR v1.5 reduced-
complexity climate model (Smith et al., 2018). To make this
consistent with the general emissions trends found in SSP2-
4.5, we calculate the ratio of the concentrations between the
baseline and the specific COVID-19 scenarios in the Forster
data and apply that multiplier to the global and hemispheric
trends in the SSP2-4.5 data to produce the corresponding
concentration trends.

A few GCM models use CO2 emissions data, which they
put through their own carbon cycle representation. These
data are available as described in the “Emissions data” sec-
tion below. We remark that the results of the two approaches
do not necessarily coincide, since the emissions in Forster
et al. (2020a) differ from the emissions in this paper in three
ways. Firstly, the baseline country emissions in 2020 are
based on more recent data than the baseline in SSP2-4.5. Sec-
ondly, Forster et al. (2020a) use aviation data based on the Le
Quéré et al. (2020a) rather than on more recent Flightradar24
data. Thirdly, Forster et al. (2020a) assume that CO2 emis-
sions from agriculture, forestry, and other land use (AFOLU)
are reduced by the same amount as the average CO2 emis-
sions change from industry, whereas here we assume no dif-
ference in AFOLU emissions. This is due to the finding that
global deforestation has not slowed down due to lockdown
(Saavedra, 2020; Daly, 2020), and we expect that agricultural
output will remain broadly consistent with pre-lockdown lev-
els.

4 Emissions data

4.1 Interpolating additional times

Many gridded IAM models do not report emissions monthly
but only on a 5- or 10-year average basis, and climate models
simply interpolate these data for the remaining years. Typi-
cally, emissions changes are smooth and the amount of data
lost in this way is therefore low. However, when a particu-
larly strong trend occurs suddenly this is difficult to represent
on this timescale. Because 2020 is a year normally reported
by IAMs, if the emissions for this year were simply corrected
without changing anything else, then the effects of lockdown
would also be felt in the interpolated years before it started as
well as in following years when it is expected to have ended.
It is therefore necessary to interpolate additional years into
all datasets with lockdown effects in them – we interpolate
2019, 2021, and 2023. We require data for 2019 to ensure no
emissions reduction in the years before lockdown starts. We
similarly interpolate 2023 before modifications are made to
ensure long-term effects only happen when the model dic-
tates. Since the years 2020 and 2021 are expected to be very
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Table 1. Table of noteworthy difference between versions of data. The first digit of the version number is incremented by both additional
months of complete data and by major coding developments. The second digit represents significant coding changes or additional data use
within the same final month of data – these data are broadly inter-compatible. The third decimal place denotes changes in the times at which
data are reported or minor bug fixes.

Version no. Data date Notes

1.0 14/05/2020 First available data
3.0 17/06/2020 Major bug fix – data before this point should not be used
4.0 14/07/2020 Pixels whose four corners are in the sea use internationally averaged shipping

factors
5.0 25/01/2020 Substantial update of data to cover 2020; bug fix affecting aerosol values on

December 2021

Table 2. Summary table for the differences between scenarios. For more details on how these were constructed, see Forster et al. (2020a).
More details on the calculation of the emissions values themselves can be found in the file “InfillingCovidResponse.ipynb” in Lamboll
(2020a).

Scenario Assumptions

Baseline SSP 2-4.5 data are used without modification.

Two-year blip Data are modified for all of 2020 and 2021 in accordance with observed activity levels in the sectors of different
countries. This is projected to continue at two-thirds of the activity reduction value for the latest month available
for the rest of the 2-year period. Activity is interpolated, month for month, back towards the baseline over 2022
and is equal to the baseline thereafter.

Four-year blip As for 2-year blip, except the projected activity reduction, of two-thirds of the last month available, is continued
until 2023. Activity is interpolated, month for month, back towards the baseline over 2024 and is equal to the
baseline thereafter.

Fossil fuel Follows 2-year blip until 2023. Thereafter, the effects of additional investment in fossil fuels during recovery are
included in a globally uniform way. Financial modelling produced estimated global Kyoto gas emissions totals
consistent with 10 % higher emissions than the path met if countries meet their nationally determined contribu-
tions (NDCs). We used the open-source package Silicone (Lamboll et al., 2020a) to find a linear combination
of MESSAGE-GLOBIOM SSP2 scenarios that gave the same total Kyoto emissions. We use the global relative
emissions level of each aerosol and precursor in this composite scenario to rescale the 2D emissions maps. The
relative concentration change arising from this scenario is used to rescale global greenhouse gas concentrations.

Moderate green Follows 2-year blip until 2023. Thereafter, the effects of small additional investment in green technology are
included in a globally uniform way. Financial considerations as to what emissions change is plausible with
moderate ambition (in keeping with results in McCollum et al., 2018) produced a Kyoto emissions total in
2030 of 35 % lower than the NDCs, which we resolve into a linear combination of MESSAGE-GLOBIOM
SSP2 scenarios. We then set a global net-zero CO2 trajectory for 2060 and resolve this CO2 total into a linear
combination of MESSAGE-GLOBIOM SSP2 scenarios again using Silicone. The relative difference between
this scenario and the baseline is used to rescale emissions and concentrations as in the fossil fuel case.

Strong green Follows 2-year blip until 2023. Thereafter, the effects of large additional investment in green technology are
assumed to push the scenario towards an IMAGE SSP1 world. In 2030 we are assumed to reach the emissions
rate of SSP1-19, around 52 % lower than following current NDCs, and thereafter follow a global net-zero CO2
target for 2050. The other emissions are formed by a linear combination of IMAGE SSP1 scenarios that give
the closest total CO2 match to this pathway. (This composite pathway is always close to the SSP1-19 pathway
after 2023.)

different from the surrounding years, they are both interpo-
lated and modified by the effects of lockdown. The year 2022
is defined as exactly equalling the value interpolated, month
for month, between the effects of lockdown and the base-
line behaviour. This is the normal default infilling method of
climate simulators, so explicit values are not usually needed

here. By request from certain groups, monthly data with ev-
ery year from 2015 to 2025 are available, as are weekly data
for 2020 used by Gettelman et al. (2020). Since emissions
change on a seasonal basis, interpolated years are interpo-
lated between the same months of the years with available
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data on either side. This is done before imposing the effects
of lockdown, except when we add data for 2022.

4.2 Relative emissions factors

The process for handling emissions is more complicated than
concentrations and was subject to a significant change be-
tween version 3 and version 4 for shipping. The different
versions are described in Table 1.

The baseline SSP2-4.5 data contain emissions for nine
sectors: AFOLU; energy; industrial processes; surface trans-
portation; residential, commercial, and other; solvent pro-
duction and application; waste; international shipping; and
aviation. Aviation emissions are subdivided by altitude and
handled separately. These mostly map well onto the sec-
tors whose activity levels were investigated by Forster et al.
(2020a), with two exceptions. Firstly Forster et al. (2020a)
model residential and public/commercial buildings sepa-
rately, so we will use the emissions-weighted mean of these
for each country. Secondly, Forster et al. (2020a) did not
have sector-specific estimates for emissions changes from
solvents, waste, or AFOLU (although CO2 emissions from
AFOLU are implicitly assumed to scale with the industrial
emissions reduction, as discussed above). We will assume
that no changes occurred to these sectors. This is because
we do not expect these sectors to be directly affected by
lockdown, and the reductions in the general economic level
will be partly offset by a reduction in regulatory oversight,
as has been documented in deforestation changes (Saavedra,
2020; Daly, 2020). We similarly assume that the small is-
land nations and regions like Antarctica not included in the
143 nations estimated by Forster et al. (2020a) experience no
change in emissions, for convenience.

Emissions in the SSP2-4.5 data are broken down by lati-
tude and longitude, so we must classify each emissions pixel
as belonging to a single country. We assign each pixel using
the reverse_geocoder python module (Thampi, 2015) to the
centre of the pixel, which identifies the country that pixel be-
longs to. It assigns areas of sea to the nearest country. We
then check whether the four corners of the pixel are all in
the sea using the global_land_mask python module (Karin,
2020). If all four corners are sea, the pixel is instead classi-
fied as international waters and is therefore modified by the
internationally averaged change in shipping activity rather
than the national change in shipping level. Using this defini-
tion, only shipping emissions are found in international wa-
ters. We emphasise that this classification scheme is purely
for emissions calculations and should not be interpreted as a
statement of political designation. This treatment of the seas
began in version 4 – prior to this, all sea activity used the
national shipping activity level of the closest country. Exam-
ples of this analysis for April can be found in Fig. 2, and the
globally averaged emissions reduction factors can be found
in Fig. 3. An animation of the global distribution is available

in the emissions modification GitHub repository, stored in
Zenodo; see “Code availability” section.

4.3 Aviation emissions – monthly, versions up to 4

The aviation activity level is always treated globally. The
daily number of flights is taken from Flightradar24 free data.
This is available from 6 January 2020 up to the time the ver-
sion is defined. The “null flights” level is calculated as the av-
erage number of flights per day in January, and activity level
is then expressed as the daily number of flights divided by
this. After the end of the available data, we project a linear
trend, fitted to data collected after 1 May 2020 (not inclu-
sive), until it reaches the long-term level. This is defined as
two-thirds of the reduction factor of the last complete month
of data. In equation form, with angular brackets indicating
the mean over the subscript period, f (t) representing flights
on the date t days past 1 January and a(t) representing activ-
ity level, f0 = 〈f 〉Jan and

a(t)=

{
f (t)/f0 if data exists

min
(
mt + c, 1− 2

3 〈a〉latest month

)
otherwise

(1)

for constants m and c that are fit to the data from dates after
1 May 2020. For some versions of the data, the flight activity
level is already at the two-thirds reduction level by the end of
the period of collected data so no linear interpolation is seen.
The monthly average of these data is then taken to produce
the activity level of aviation. This is assumed to be globally
uniform and the same across all altitudes. See the graphical
illustration in Fig. 4a.

4.4 Aviation emissions – weekly or version 5

Most analyses do not use any higher resolution than monthly,
but for one project (Gettelman et al., 2020), weekly data are
investigated for the 2020 data. For this project, using open-
source data was not required, so we obtained previous years
of flight data from FlightRadar24 to better control for sea-
sonal changes. We can then use the weekly-averaged data
from 2018 and 2019 for the corresponding day as the base-
line instead of the January values:

a(t)=
2 〈f2020(j)〉j=t :t+7

〈f2018(j)+ f2019(j)〉j=t :t+7
, (2)

where the subscript on the f indicates the year the flight data
are taken from. This produces a weekly-averaged rather than
actual daily factor, since it is not possible to decouple sea-
sonal/holiday and weekday effects. Using weekly averages
both removes the weekday effects and reduces the intrinsic
variability in the data. This analysis reveals that there are sig-
nificant seasonal effects and implies that later versions of the
code should also attempt to correct for this – see Fig. 4b.
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Figure 1. Concentrations for the three persistent GHGs: (a) CO2, (b) CH4, and (c) N2O. In each case the baseline data are very similar to 2-
and 4-year blips, hence the difficulty distinguishing between the lines.

Figure 2. Difference in emissions between the baseline and the 2-year blip COVID-19 scenario during April 2020. White regions indicate
that the emissions change was zero (often due to emissions being zero in the first place) or emissions increased. Species are (a) BC, (b)
NMVOC, (c) CO, and (d) NOx .

After the end of the data, we use a linear trend to reach
two-thirds of the last month’s average factor as before. As
of 8 October 2020, the data for 2019 have also been released
open-source, so for version 5 of the data and onwards this ap-
proach (with either weekly or monthly averaging) is used for
all outputs. We also stop the linear interpolation to the base-
line for monthly behaviour, since this made little difference

to the output with recent results but required the introduction
of new parameters to define where the linear trend began.

5 Data for aerosol optical properties and associated
effects on clouds

Data for the anthropogenic aerosol optical properties and an
associated effect on clouds are available via the MACv2-
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Figure 3. Monthly global emissions reduction estimates for 2020 in
version 5 of the data.

Figure 4. Aviation data for (a) monthly calculation of activity level
– this is normalised to the January data, as data from previous years
were not available in open-source format – and (b) workings to-
wards weekly activity level, using closed-source data from previ-
ous years too. This approach is used from version 5 onwards for
monthly data too.

SP parameterisation (Fiedler et al., 2017; Stevens et al.,
2017). Models using MACv2-SP can obtain the necessary
input data from the supplementary material of Fiedler et al.
(2021) for participating in the model intercomparison project
(CovidMIP) experiments. A detailed assessment of the new
MACv2-SP data suggests that the global aerosol radiative
forcing from CovidMIP will fall within the original spread
in the CMIP6 scenarios (Fiedler et al., 2021).

All scenarios from Forster et al. (2020a) have been used
to create consistent MACv2-SP data (Fiedler et al., 2021).
To this end, annual scaling factors for MACv2-SP have been
calculated from the SO2 and NH3 emissions from all sectors

by following the method previously applied to other gridded
emissions data from CMIP6 (Fiedler et al., 2019a). The re-
sults for the anthropogenic aerosol optical depth, τa, point
to a global decrease by 10 % due to the pandemic in 2020
relative to the baseline. First estimates of the effective radia-
tive forcing associated with anthropogenic aerosols in 2020
point to a less negative global mean by+0.04 W m−2 relative
to the baseline. Such small effective radiative forcing (ERF)
differences are difficult to determine due to the large impact
of model-internal variability (e.g. Fiedler et al., 2019b). We
therefore propose to run ensembles of simulations for partic-
ipating in CovidMIP. The post-pandemic recovery of emis-
sions is associated with a global τa increase in two out of four
scenarios until 2030 and reductions in all scenarios there-
after (Fiedler et al., 2021). In 2050, the τa spread is 0.012
to 0.02. This is a decrease in τa relative to 2005 and rela-
tive to four out of nine of the original CMIP6 scenarios for
2050 (Fiedler et al., 2019a). Using the new MACV2-SP data
in EC-Earth3 suggests an associated ERF spread of−0.38 to
−0.68 W m−2 for 2050 relative to the pre-industrial period,
which falls within the present-day uncertainty of aerosol ra-
diative forcing (Fiedler et al., 2021).

6 Ozone data

For models without ozone chemistry schemes, ozone fields
are generated using the OsloCTM3 model (Søvde et al.,
2012; Skeie et al., 2020). The OsloCTM3 is a chemistry
transport model driven by 3-hourly meteorological fore-
cast data by the Open Integrated Forecast System (Open
IFS, cycle 38 revision 1) at the European Centre for
Medium-Range Weather Forecasts. The horizontal resolution
is ∼ 2.25◦× 2.25◦ with 60 vertical layers ranging from the
surface up to 0.1 hPa. Here, the meteorological data for the
year 2014 are used in the simulations.

The emissions fields described in Sect. 4 are used as input
to the model as monthly fields. Natural emissions including
biomass burning emissions are kept constant, and the ozone-
depleting substances are kept the same in all simulations. The
surface methane concentrations are scaled by the increase in
concentration since 2019 provided in Sect. 3.

Time slice simulations for the years 2020, 2021, 2023,
2030, 2040, and 2050 are performed using emissions from
the four scenarios as well as the baseline scenario SSP2-4.5
(Feng et al., 2020). The ozone in the 2-year blip scenario is
equal to that in the other scenarios for 2020 and 2021 and
equal to that of the baseline simulation for the remaining
years. The changes in ozone in the 2-year blip compared to
the baseline scenario are shown in Fig. 5a for April 2020
with a decrease of up to 6 % in the Northern Hemisphere
troposphere. Figure 5b shows the change in total ozone in
the different scenarios from 2019 and up to 2050 from the
OsloCTM3 simulations relative to the baseline. For 2020 and
2021 the total ozone decreased by 1 Dobson unit (DU) in the
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2-year blip compared to the baseline. In 2023 all scenarios
are similar. For the fossil fuel scenario, the ozone changes are
positive relative to the baseline scenario but less than 1 DU.
The largest change in ozone is for the strong green scenario,
with a decrease of 6 DU in 2050 compared to the baseline
scenario.

The modelled absolute difference in ozone between the
scenario and the baseline are added to the CCMI SSP2-4.5
v1.0 ozone dataset prepared for input4MIPs (Hegglin et al.,
2020). The absolute ozone changes are horizontally and ver-
tically interpolated to the same grid as the input4MIPs fields,
and the monthly mean values are linearly interpolated for the
years in between the years simulated.

7 Protocol for CovidMIP

The emissions and concentrations described above are used
in CMIP6 Earth system models to simulate the climatic im-
pacts of lockdown. There are three focuses or strands to this
MIP. The first is to address the short-term response to the
emissions reductions, and the second is to address the longer-
term response to alternative recovery scenarios. There are
sufficient differences in design and groups interested to make
this split pragmatic. The third focus is on understanding pro-
cesses and separating out the role of individual forcing com-
ponents in contributing to changes in radiative forcing and
climate.

Some model groups also have the ability to perform
“nudged” simulations which force their model’s physical
state towards a pre-defined meteorology. This can reduce
signal-to-noise issues and help identify aspects of atmo-
spheric composition which might not be apparent in “free-
running” model simulations. This is preferred where models
have this capacity.

It is assumed that model groups have performed the SSP2-
4.5 scenario simulations, and we use this as a reference set of
simulations (baseline) against which we will compare Covid-
MIP results. Any forcing or aspect of simulation not explic-
itly defined in this protocol (for example HFCs or land +use)
should be kept unchanged from the SSP2-4.5 simulation.

7.1 Strand-1: near-term impact of COVID-lockdown
emissions reductions

The goal of these simulations is to assess the impact of
COVID-induced lockdown emissions reductions on climate,
atmospheric composition, and air quality in the near term. To
achieve this, we use emissions reductions as close as possi-
ble to real emissions as reconstructed from activity data de-
scribed above. A recovery to baseline emissions is assumed
by either (for the tier 1 emissions case) 2023 or (tier 2) 2025,
and simulations should run for 5 years (although longer is
also accepted – see Sect. 6.2). For the tier 1 case, we use
the 2-year blip forcing, and for the tier 2 case we use the 4-

year blip forcing. This will be an initial condition ensemble,
with model-by-model choice how to arrive at perturbed ini-
tial conditions. Note the requirement that parallel SSP2-4.5
simulations already exist, so we anticipate that the same en-
semble technique and initial conditions can be used.

Protocol details can be found in Table 3.

7.2 Strand-2: longer-term impact of recovery scenarios

This strand uses the three recovery scenarios derived by
Forster et al. (2020a): strong and moderate green stimulus re-
covery and a fossil-fuel rebound economic recovery scenario.
We place the highest priority (tier 1) on the strong green stim-
ulus recovery as it will likely have the highest signal. As ex-
pansion work (tier 3), it includes the short-term lockdown
impacts (2-year and 4-year blip scenarios). The experiments
are tabulated in Table 3. For full details of the scenarios, see
Forster et al. (2020a), but results are summarised in Table 2.

7.3 Strand-3: separation of forcing

COVID lockdown has led to reduced emissions across a wide
range of sectors and species. Some of these have compet-
ing or offsetting effects on atmospheric composition, radia-
tive forcing, and climate. For example, Forster et al. (2020a)
show that at a global level the near-term warming due to re-
duced aerosols may be at least partially offset by reduced
greenhouse forcing from ozone. Only on longer timescales
does the climate effect of CO2 reductions become significant.

In this strand we use both detection and attribution tech-
niques and fixed-SST (sea-surface temperature) diagnosis
techniques to isolate and compare the ERF from individual
emission types or categories and their full implications for
regional and global climate evolution.

Two detection and attribution simulations are proposed to
parallel ssp245-covid and allow the separation of the effects
of aerosols and well-mixed greenhouse gas perturbations on
climate, similar to the way that hist-aer and hist-GHG sim-
ulations in DAMIP allow the separation of the effects of
these forcings over the full historical period (Gillett et al.,
2016). The ssp245-cov-aer simulation is identical to ssp245-
covid, except that only aerosol and aerosol precursor emis-
sions (BC, OC, SO2, SO4, NOx , NH3, CO, NMVOCs) follow
ssp245-covid, while greenhouse gas concentrations, ozone,
and all other forcings follow ssp245. Similarly the ssp245-
cov-GHG simulation is identical to ssp245-covid, except that
only the concentrations of the well-mixed greenhouse gases
follow ssp245-covid, while all other forcings follow ssp245.
We suggest that groups run as large ensembles of these sim-
ulations as possible, but no minimum size is required.

7.3.1 ERF calculations

The most commonly used methodology for estimating ERF
is to utilise simulations with fixed sea-surface temperatures
(fSST) and prescribed emissions (Richardson et al., 2019;
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Figure 5. (a) The relative difference in ozone zonal concentration between the 2-year blip and the baseline in April 2020 (%) in the
OsloCTM3. The vertical coordinates in OsloCTM3 are hybrid sigma–pressure levels. The field is plotted for the model levels and indi-
cated by approximate pressure levels on the y axis. (b) The difference in annual total ozone (DU) between the scenarios and the baseline
simulations in the OsloCTM3.

Table 3. Table of experiments for CovidMIP. All experiments branch from SSP2-4.5 on 1 January 2020. Emissions/concentrations not
specified come from the baseline data.

Strand Name Tier Run length Recommended ensemble size scenarios

1 ssp245-covid 1 5 years or more As large as possible, 10+ members 2-year blip
1 ssp245-covid4yr 2 5 years or more As large as possible, 10+ members 4-year blip
2 ssp245-cov-strgreen 1 31 years 10 members Strong green
2 ssp245-cov-modgreen 2 31 years 10 members Moderate green
2 ssp245-cov-fossil 2 31 years 10 members Fossil fuel
2 ssp245-cov-2yr 3 31 years 10 members 2-year blip
2 ssp245-cov-4yr 3 31 years 10 members 4-year blip
3 ssp245-cov-aer 1 5 years or more As large as possible, 10+ members 2-year blip for aerosols
3 ssp245-cov-GHG 1 5 years or more As large as possible, 10+ members 2-year blip for GHGs
3 ssp245-cov-fsst 1 52 years As large as possible, 10+ members All baseline
3 ssp245-cov-fsst-aer 1 52 years As large as possible, 10+ members 2-year blip for SOx , BC, and OC
3 ssp245-cov-fsst-ozone 1 52 years As large as possible, 10+ members 2-year blip for NOx , CO, and NMVOC
3 ssp245-cov-fsst-bc 2 52 years As large as possible, 10+ members 2-year blip for BC
3 ssp245-cov-fsst-sox 2 52 years As large as possible, 10+ members 2-year blip for SOx
3 ssp245-cov-fsst-oc 2 52 years As large as possible, 10+ members 2-year blip for OC

Pincus et al., 2016; Myhre et al., 2013). This allows the at-
mospheric conditions to rapidly equilibrate, and rapid ad-
justments to play out, but broadly avoid the feedbacks as-
sociated with a change in surface temperature. For example,
Forster et al. (2016) found 30 years of fSST simulations suf-
ficient to reduce the global 5 %–95 % confidence interval to
0.1 W m−2, superior to other methods.

As CovidMIP aims to quantify ERFs that are likely to be
relatively weak, on the order of 0.01–0.1 W m−2, the recom-
mended protocol is to run 52-year simulations, where the first
2 years are spinup and the last 50 years are used for analysis.
Quantification requires a baseline simulation and one dedi-
cated simulation for each component to be quantified. Emis-
sions are taken from the year 2021 of the “baseline” and 2-
year blip scenarios from Forster et al. (2020a). For GHG con-
centrations, we use the prescribed value for 1 January 2021

(CO2, CH4, N2O) for all years. For the SST pattern, we pre-
fer repeated year 2021 values, taken from a coupled simu-
lation, but if this is challenging then another recent year is
acceptable so long as the baseline and signal have the same
SSTs. Meteorology can vary according to internal variability
but should be representative of the year 2021.

CovidMIP defines simulations for diagnosing ERF as fol-
lows. For tier 1, to quantify the forcing from aerosols and
ozone, we request

– ssp245-cov-fsst: all emissions from the baseline, year
2021;

– ssp245-cov-fsst-aer: aerosol emissions (SOx , BC, OC)
from the 2-year blip and all other emissions from the
baseline;
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– ssp245-cov-fsst-ozone: ozone precursor emissions
(NOx , CO, NMVOC) from the 2-year blip and all other
emissions from the baseline.

For tier 2, to quantify the forcing from individual aerosol
species, we request runs with only a single emission species
different from the baseline value. The three species for which
we want these experiments run are BC, SOx , and OC emis-
sions from the 2-year blip. More details can be found in Ta-
ble 3.

For all strands, we request that model groups produce the
same diagnostics as per their baseline SSP2-4.5 simulations,
reported for the ScenarioMIP.

As an alternative to fSST-based ERF diagnosis, some
models are able to run nudged simulations where meteo-
rological conditions (typically surface winds and temper-
atures) are forced to be comparable between signal and
baseline. This allows for a direct, time-evolving calculation
of ERF based on differences in top-of-atmosphere radia-
tive imbalance between the simulations (Chen and Gettel-
man, 2016; Liu et al., 2018). Although they may not cap-
ture the full range of atmospheric adjustments (Forster et al.,
2016), nudged ERF calculations are sufficiently comparable
to fSST-based calculations that they will be used in Covid-
MIP provided they have prescribed the same emissions as
described above.

7.4 Anticipated analysis

CovidMIP analysis will primarily start with analysis of 2-
year blip simulations up to 2025. The focus will be on main
climate outputs of surface temperature and rainfall, winds,
and basic circulation and also basic-level biogeochemical di-
agnostics such as carbon stores and fluxes. The first instance
of results are available at Jones et al. (2021). These show that
the reduction in aerosols is clear in the 2020–2025 period,
but the impact of this on temperature or precipitation does
not have a clear enough signal to be detectable in the aggre-
gated data. Some individual models have found clearer trends
using nudged analysis (Gettelman et al., 2020).

Similar analysis is planned but focusing on temperature
and precipitation extremes, with analysis based on maximum
daily air temperature (tasmax) and precipitation data and a
focus on regional aspects. Regionally specific analyses are
possible, with East Asia a particular focus region as this is
where the largest effects of emissions have been seen in sur-
face aerosols and air quality. The implications of this on local
rainfall and monsoon circulation patterns is of particular in-
terest. North Atlantic and European circulation changes will
also be investigated.

The effect of emissions reductions on CO2 concentrations
is also of interest and may be investigated by Earth system
models (ESMs) with the capability of performing emissions-
driven CO2 simulations. Similarly, ESMs with atmospheric
chemistry schemes will be investigated to see the role of
emissions reductions on surface ozone and different cate-

gories of particulate matter (PMs). This will allow us to esti-
mate the global impact of lockdown on health effects.

Model data will be made freely available via the Earth Sys-
tem Grid Federation (ESGF). Users of these data are encour-
aged to contact model group representatives and invite pos-
sible involvement in any resulting publications.

We expect this MIP will allow us to estimate the continued
relevance of climate projections that do not include the ef-
fects of lockdown. If results significantly deviate from base-
line projections, then the continued relevance of outdated
simulations is questioned; if results are broadly similar, old
projections can be used with more confidence. Initial results
indicate that the latter is the case.

8 Conclusions

We have demonstrated a novel way to combine data-rich
emissions nowcasting with long-term emissions projections
to create a dataset suitable for investigating the impact of the
large and unforeseen emissions reduction arising from lock-
down. This will form the basis for a model intercomparison
project to answer questions around how much climatic im-
pact we expect to observe from lockdown measures in both
the short and medium term. We also provide ozone fields
derived from these results for models that do not produce
their own estimates of this. Finally we provide a protocol
for how different simulation groups can run experiments on
un-initialised, coupled atmosphere–ocean general circulation
model (AOGCMs)/ESMs.

Code availability. The code to perform this analysis and
to generate an animation of the data is available at
https://doi.org/10.5281/zenodo.4736578 (Lamboll, 2021).

Old versions of the code and variants can be found at https:
//github.com/Rlamboll/modify_COVID19_netCDF_Emissions
(Lamboll, 2020b).

Data availability. The output of these protocols is available from
several Zenodo addresses. Each address carries the different itera-
tions of the same data where multiple versions are available.

– The main set of monthly aerosols emissions and GHG con-
centrations: https://doi.org/10.5281/zenodo.3957826 (Forster
et al., 2020b);

– Four-year blip files for version 4 of the data:
https://doi.org/10.5281/zenodo.4446200 (Lamboll et al.,
2021);

– CO2 emissions data, monthly, with data every year 2015–
2025: https://doi.org/10.5281/zenodo.3951601 (Lamboll et al.,
2020b);

– Aerosol emissions data, daily for 2020:
https://doi.org/10.5281/zenodo.3952960 (Lamboll et al.,
2020c);
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– NOx emissions from aviation, weekly in 2020:
https://doi.org/10.5281/zenodo.3956794 (Lamboll et al.,
2020d);

– Ozone fields: https://doi.org/10.5281/zenodo.4106460 (Skeie,
2020).

The underlying data for emissions modification terms are available
from https://github.com/Priestley-Centre/COVID19_emissions
(Forster, 2021).

Data required for the DAMIP component of this
MIP (ssp245-covid, ssp245-cov-aer and ssp245-cov-
GHG) are also available from the Input4MIPs site
at https://doi.org/10.22033/ESGF/input4MIPs.15901
(Lamboll and Jones, 2021a) and
https://doi.org/10.22033/ESGF/input4MIPs.15902 (Lamboll
and Jones, 2021b).
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