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ARTICLE OPEN

Adaptive working memory training does not produce transfer

effects in cognition and neuroimaging
Isabelle Ripp 1,2, Mónica Emch2,3, Qiong Wu 2,3,4, Aldana Lizarraga1, Robert Udale5, Claudia Christina von Bastian 5,

Kathrin Koch 2,3 and Igor Yakushev 1,2✉

© The Author(s) 2022

Despite growing interest in cognitive interventions from academia and industry, it remains unclear if working memory (WM)

training, one of the most popular cognitive interventions, produces transfer effects. Transfer effects are training-induced gains in

performance in untrained cognitive tasks, while practice effects are improvements in trained task. The goal of this study was to

evaluate potential transfer effects by comprehensive cognitive testing and neuroimaging. In this prospective, randomized-

controlled, and single-blind study, we administered an 8-week n-back training to 55 healthy middle-aged (50–64 years) participants.

State-of-the-art multimodal neuroimaging was used to examine potential anatomic and functional changes. Relative to control

subjects, who performed non-adaptive WM training, no near or far transfer effects were detected in experimental subjects, who

performed adaptive WM training. Equivalently, no training-related changes were observed in white matter integrity, amplitude of

low frequency fluctuations, glucose metabolism, functional and metabolic connectivity. Exploratory within-group comparisons

revealed some gains in transfer tasks, which, however, cannot be attributed to an increased WM capacity. In conclusion, WM

training produces transfer effects neither at the cognitive level nor in terms of neural structure or function. These results speak

against a common view that training-related gains reflect an increase in underlying WM capacity. Instead, the presently observed

practice effects may be a result of optimized task processing strategies, which do not necessarily engage neural plasticity.

Translational Psychiatry          (2022) 12:512 ; https://doi.org/10.1038/s41398-022-02272-7

INTRODUCTION
Working memory (WM) is the ability to retain temporary access to
a limited amount of information in the service of ongoing
cognitive processing [1]. The amount of accessible information is
determined by WM capacity, which varies considerably between
individuals [2]. WM capacity is closely correlated with other
higher-order cognitive functions such as fluid intelligence, abstract
reasoning, and reading comprehension [3]. This association
motivated the development of cognitive training interventions
targeting WM capacity in order to broadly improve general
cognitive performance [4–7] and to counteract cognitive deficits
in patient populations [8–10]. Moreover, WM training is a common
component of cognitive training programmes that attract an
increasing attention of major industry [11].
In the context of WM training, the concept of cognitive transfer

is of key importance. Transfer effects are training-induced gains in
performance in untrained cognitive tasks. Most previous theore-
tical accounts attributed transfer effects to training-induced
increases in WM capacity, that is, a gain in the number of
information elements that can be held accessible at the moment.
Thus, transfer effects are an index of the putative effectiveness of
WM training [12]. Transfer is categorized through the similarity
between training and transfer tasks; the more similar the transfer

task to the training task, the “nearer” the transfer. Hereafter, we
refer to cognitive improvements in the trained task as practice
effects, improvements in contextually highly similar WM tasks as
nearest (sometimes also referred to as direct) and gains in
dissimilar WM tasks as near transfer effects. Improvements in
other yet related cognitive domains such as reasoning is referred
to as far transfer. The main goal of WM training is to produce far
transfer effects that could manifest in improved skills of daily
functioning.
The prospect of broadly improving cognitive performance

through WM training has given rise to an increasing number of
WM training studies published each year (Fig. 1). Meta-analyses
averaging effects of training on WM tasks with varying similarity
have reported significant near transfer effects, e.g., [13, 14].
However, more recent meta-analyses that distinguished between
nearest and near transfer effects found significantly greater effect
sizes for the former, suggesting that WM training may mainly yield
task-specific transfer rather than a general improvement in WM
[5, 15]. Regarding far transfer, meta-analyses have yielded
inconsistent conclusions. For example, the meta-analysis of Au
et al. [16] reported a small, but significant positive transfer effect
on fluid intelligence in healthy young adults. However, subse-
quent meta-analyses did not find any significant far transfer
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effects [5, 13, 17], especially when the effects of WM training were
compared with an active control group, that is, a group practicing
tasks with little WM demands. The presence or absence of an
active control group has been proposed as a key reason of the
discrepant findings [6]. Furthermore, differences in the classifica-
tion of cognitive tasks, training intensity, and type of training tasks
have been discussed as potential reasons of the inconsistencies in
previous findings (for a more detailed discussion, see von Bastian
& Oberauer [7]). In addition to variations across training regimes,
the validity of the assessment of cognitive outcomes has been
criticized, too (e.g., [18]). Specifically, measurement noise and
impurity of cognitive tasks may mimic or obscure true underlying
changes in cognitive abilities.
Whereas a passive (or no-contact) control group accounts for

test-retest effects, only an active control group accounts for non-
specific training effects such as engaging regularly in a
computerized task, expectancy, and placebo effects [7]. Moreover,
practicing WM tasks can also trigger cognitive changes in domains
different to WM capacity, such as attention and visual integration
[19], or the development of task- or material-specific expertise
[20]. Therefore, to resolve the controversies around the effective-
ness of WM training, it is essential to discriminate between
transfer driven by increased capacity in the trained domain such
as WM capacity, and by enhanced use of the existing capacity [7].
This distinction is possible by including an active control group.
Neuroimaging complimentary to cognitive assessments has the

potential to pick up training-induced neural plasticity, which can
be assumed to constitute the basis of sustained cognitive
improvement. Specifically, neuroimaging might depict evidence
of neural plasticity that precedes measurable changes in cognition
[21]. Furthermore, acquisition of both neuroimaging and cognitive
markers potentialy offers a more comprehensive picture of the
process under the study. Neural plasticity is a blanket term for
acquired or learned changes in neural oscillations, myelin
reformation, and synaptogenesis [22–24]. These processes can
be indirectly measured, for example using functional magnetic
resonance (fMRI), diffusion tensor imaging (DTI), and positron
emission tomography with F18-fluordesoxyglucose (FDG-PET). The
different forms of neural plasticity may occur simultaneously, and
neuroimaging methods can provide only rough proxies of these
changes at the macroscopic level [25]. Because it is still unknown
which neuroimaging modality is most sensitive to training-
induced neural plasticity, we followed an exploratory multi-
modal approach in this study.
So far, most imaging studies of the neural substrates of

cognitive gains induced by WM training have used task-related
fMRI. However, many such studies focused on neural correlates of
practice rather than transfer effects (for a review, see ref. [26]).
Moreover, to the best of our knowledge, only one study has

investigated effects of WM training on the magnitude of intrinsic
neural activity at rest [27]. The authors found increased activity in
the right dorsolateral prefrontal cortex, frontopolar area, and
medial prefrontal cortex. Recently, the focus of neuroimaging
studies has moved from voxel-wise analyses of signal amplitude to
network-wise analyses, with resting-state networks (RSN) becom-
ing particularly popular. Yet, only two fMRI studies have
investigated resting-state functional connectivity changes in
relation to WM training [28, 29]. Using a priori defined ROIs or
networks of interest, these two studies reported connectivity
changes, both increases and decreases, within and between
regions of the frontal parietal and the default mode network
(DMN). However, neither of these studies used an active control
group nor did their analyses cover the whole brain. Similarly, only
a few studies have investigated changes in structural connectivity,
that is, neural tracts, following WM training [30–33]. Results
indicated training-associated changes in frontal and parietal white
matter tracts [30, 33] or the corpus callosum [31]. Takeuchi et al.
[32] reported that WM training increased the mean diffusivity in
regions of the dopaminergic system. Finally, although some FDG-
PET studies investigated neural correlates of mental exercise
[34–36], no such PET study exists in conjunction with WM training.
This is surprising given that the concept of neurometabolic
coupling underlying FDG-PET [37] is thought to be mediated by
changes in neuro-glial energy pathways that support synaptogen-
esis or synaptic plasticity (for a review see ref. [38]).
The goal of this study was to investigate cognitive and neural

effects of an 8-week adaptive n-back training intervention in
healthy middle-aged participants. N-back training is one of the
most extensively studied forms of WM training [5]. Importantly, a
meta-analysis reported a trend for n-back being the most efficient
WM training [13]. We focused on middle age due to the clinical
relevance of this age group. Specifically, middle age directly
precedes aging that is associated with a number of cognitive
disorders such as Alzheimer’s disease. Yet, different to older
adults, healthy middle-aged subjects typically have no significant
atrophy or vascular pathology that might otherwise interfere with
WM-related neural plasticity [39]. Therefore, should the current
WM training programme prove effective, it might serve as an
intervention in older adults to delay subsequent age- or disease-
associated cognitive decline. To control for expectancy and non-
specific cognitive intervention effects, we compared n-back
training to an active control training with low cognitive demand.
We used state-of-the-art hybrid PET/MRI equipment for simulta-
neous acquisition of MRI and PET data at baseline and after WM
training. All neuroimaging data were analyzed at the whole-brain
level using both voxel- and network-wise approaches.
Given the above literature, we expected to find at least near

transfer effects and to detect changes at least in fMRI-RSNs as

Fig. 1 Number of studies published annually in the past decade. The studies were retrieved from PubMed using key words « “working
memory”, training ».
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temporarily most dynamic/plastic and energetically least consum-
ing imaging marker.

PARTICIPANTS AND METHODS
Participants
The study was approved by the Federal Office for Radiation Protection and
the local ethics review board (project number 399/13). Participants were
recruited via advertisements in the internet and on hospital bulletin boards.
Participants were right-handed, 50–64 years old, and free of cognitive
deficits, neurological and psychiatric diseases. Further inclusion criteria
were the absence of contraindications for MRI and no brain anomalies on
structural MRI images. All participants provided written, informed consent.
They were randomly assigned single-blinded to an experimental or an
active control group. Among initially recruited participants 7 were excluded:
two due image artefacts from large falx ossifications on MRI, one due to
excessive head motion, one due to a failure to follow the instructions of the
training programme; imaging data of two subjects were saved incomple-
tely; one participant dropped out for personal reasons after the first
neuroimaging session. Finally, data of 55 participants (30 males) with a
mean age of 55.9 years (SD= 4.2 years) were available for further analyses:
28 in the experimental and 27 in the active control group.

Working memory training
All participants underwent supervised training on a personal computer at
home. Training in both the experimental and the active control group
consisted of variants of visual and verbal n-back tasks. In these tasks,
participants were presented a sequence of stimuli and were asked to
identify a target stimulus. Targets were stimuli matching the stimulus
shown n positions back (Fig. 2). Each stimulus was presented for 500ms
followed by a 2000 ms interstimulus interval. Participants were instructed
to press the “A” key in response to target stimuli.
The experimental group performed adaptive visual and verbal n-back

tasks adapted from Jaeggi et al. [40]. In each training session, participants
completed 9 blocks per task (18 training blocks in total). Each block
included a randomized sequence of 6 targets and 14 non-target stimuli.
Task difficulty (i.e., the n positions that targets had to be matched against)
was adapted to the individual performance based on the proportion of
correct responses computed as a sum score of hits (i.e., correctly detected
targets) and correct rejections of non-targets. The n-back level of the
subsequent block increased if the proportion of correct responses was
greater than 90% and decreased if it was lower than 80%. Otherwise the n-
back level remained the same. The adaptive level of n ranged from 1 to a
maximum difficulty level of 9. Only one participant reached the 9-back
level, indicating the absence of a ceiling effect at the group level.
The active control group performed a non-adaptive low-level training

intervention with visual (X-back) and verbal (1-back) tasks with task

structures and stimuli equivalent to the adaptive n-back training tasks. In
the X-back task, participants had to press the “A” key whenever a target
shape was presented. Hence, the X-back task demanded primarily
attentional processing but no working memory. The same target shape
was shown at the beginning of each block in all training sessions. The
verbal 1-back task was identical to the adaptive verbal n-back task except
that the level of n remained at 1 regardless of individual performance. Like
the experimental group, the active control group completed 9 blocks of
each task in each session, with each block consisting of sequences of 6
target and 14 non-target stimuli for the visual X-back task, and 6 targets
and 14 non-target stimuli in the verbal 1-back task.
The order of tasks trained (visual or verbal) was counterbalanced

between participants within each group. Each training session took
approximately 20min. Participants were instructed to complete four
training sessions per week and one training session per day. After each
training session, logfiles were automatically uploaded to the Millisecond
Software website (https://www.millisecond.com/). Based on information
saved in the logfiles, a weekly training progress report was sent via email
to all participants. In case of irregularities in training behaviour, e.g.,
incompleteness of training sessions, we reminded the participant to follow
the training instructions carefully.

Cognitive test battery
A test battery was administered one week before the start and one week
after the end of the WM training intervention. Before the first cognitive
assessment, each task was explained by an experimenter, and the
participants completed a few practice trails in the presence of an
experimenter. Each cognitive assessment lasted approximately 80min.
Three tests were used to assess nearest transfer effects to untrained WM
measures: Digit Span test for verbal WM (forward and backward version;
subtest from HAWIE-R); Simple Visual Reaction Time (SVRT) task for motor
response velocity and attention [41], and Corsi-Block Tapping test for visual
WM [42]. Performance assessment was based on scores for each subtest of
the Digit Span test, on a mean latency value from the SVRT task, and a
block span of the Corsi-Block Tapping test [43].
Near transfer effects to tasks measuring attention and learning were

assessed using visual Simon task (VST, [44]) and Colour Word Stroop task
(CWST, [45]). For both near transfer tasks, we recorded correct responses
for incongruent and congruent trials separately. Simon task trials were
categorized as congruent if location of the stimulus was equivalent to
location of the response key on the laptop and incongruent if locations of
the stimulus and the response key were opposite. Colour Word Stroop task
trials were categorized as congruent if meaning of the word and its colour
aligned and incongruent otherwise. In addition, we administered a short-
term memory test (Verbaler Lern- und Merkfähigkeitstest, VLMT, [46]) and a
sustained attention test (Rapid Visual Information Processing, RVIP, [47]).
For the VLMT, we analyzed three dependent variables: difference in the
number of correct answers between the recall before and after

Fig. 2 Example of a verbal 3-back level (top) and a visual 3-back level (bottom). ISI interstimulus interval.
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presentation of the interference list (Dg5-Dg6), difference in the number of
correct answers between the recall before and 20–30min after presenta-
tion of the interference list (Dg5-Dg7), and scores from the Word
Recognition List (WR). For the RVIP, we analyzed the proportion of correct
target detections.
To assess far transfer effects to fluid intelligence and decision-making,

we used a short version of the Raven’s Advanced Progressive Matrices Test
(short-APM, [48], and the Iowa Gambling Task [49], respectively.
Performance in the short-APM was scored by the number of correct
responses, whereas performance in the Iowa Gambling Task was ranked by
the net score (good play–bad play).
The Digit Span task and VLMT were presented orally, whereas the other

tests were administered on a PC with an in-house adaptation of the
Millisecond website test library (Inquisit 5; retrieved from: https://
www.millisecond.com). The short-APM was coded in the Inquisit program-
ming language. The Digit Span forward requires the participant to repeat
digits in the same order as presented by the examiner. A minimum length
of three and a maximum length of nine digits are presented. The Digit
Span backward requires the participant to repeat the digits in the reverse
order as presented by the examiner. Here, a minimum of two and a
maximum of eight digits is presented. The number of digits increases
when the participant correctly repeats at least one out of two trials.

Imaging data acquisition
Imaging data were acquired on a 3T hybrid PET/MR Siemens Biograph
mMR scanner with a vendor-supplied 16-channel head coil. The subjects
were instructed to fast for six hours prior to each of two PET/MR sessions.
Around 100 MBq FDG were injected intravenously to participants sitting in
a quiet, dimly lit room, after confirming normal blood glucose levels. The
following MR sequences were acquired over the first 30 min of imaging
(i.e., 30–60min post injection, p.i.): localizer, μ-map, structural T1-weighted,
FLAIR, echo-planar imaging (EPI) 2D diffusion for diffusion tensor imaging
(DTI) and EPI- Prospective Acquisition Correction sequence for resting state
functional MRI (rsfMRI). For rsfMRI participants were instructed to close
their eyes and think of nothing in particular. Task fMRI underlying visual
and verbal n-back task was acquired 60–90min p.i. These data were
published previously [50]. For each subject, we reconstructed a single
frame FDG-PET summation image for 30–60min p.i. Detailed parameters of
PET acquisition and MR sequences are described in Supplementary
Material. The same imaging protocol was used in both sessions. The
presence of significant microangiopathic lesions and incidental findings
were excluded upon visual assessment of structural MRI images.

Imaging data analysis
DICOM files were converted to 3D-NIFTI volumes using the dcm2niix tool
(https://github.com/neurolabusc/dcm2niix), except for the fMRI data, for
which we used dm2nii. FMRI and FDG-PET data were pre-processed using
SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and MATLAB
v2017b (The MathWorks Inc., Natick, Massachusetts, USA). DTI data were
pre-processed using the University of Oxford’s Centre for Functional
Magnetic Resonance Imaging of the Brain Software Library (FSL) version 6
(http://www.fmrib.ox.ac.uk/fsl/index.html). PET images were spatially nor-
malized into the MNI space using a study-specific FDG-PET template,
followed by smoothing with an 8mm isotropic Gaussian filter. The first
three images of the fMRI data were discarded. Data preprocessing included
motion correction, coregistration of the subjects’ T1-weighted image to the
functional images, spatial normalization to the MNI space using DARTEL,
and smoothing with an 8mm isotropic Gaussian filter. Excessive head
motion was defined as translation >3mm or rotation >3° [51].
The amplitude of low frequency fluctuations (ALFF) analysis was carried

out using Data Processing Assistant for Resting-state fMRI (http://rfmri.org/
dpabi) and SPM12. The pre-processed and smoothed rsfMRI data (see
above) were further processed using linear de-trending, nuisance
regression (i.e., white matter signal, cerebrospinal fluid signal, 6 motion
parameters and their first derivatives) and band-pass filtering
(0.01–0.08 Hz) to remove low-frequency drifts and other high-frequency
physiological noises. Then, ALFF maps were calculated as described
previously [52]. In brief, the filtered time series were transformed into the
frequency domain with fast-Fourier transform. Then, the square root of the
power spectrum was computed and averaged at each voxel.
Following a visual inspection, passed DTI images were corrected for

susceptibility-induced distortions, eddy currents, subject movement, and
signal dropout using the tool Eddy [53]. Brain tissue was derived using the
brain extraction tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET). Images of

four subjects, three experimental and one control, had to be excluded
from further DTI analyses due to an incorrect phase encoding direction. To
obtain eigenvalues L1 (axial diffusivity, AD), L2, and L3 with corresponding
eigenvectors, as well as maps of fractional anisotropy (FA) and mean
diffusivity (MD), a diffusion tensor model was fitted at each voxel using
FSL’s DTIFIT https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT. Additionally, radial
diffusivity (RD) maps were created by averaging the L2 and L3 maps.
Individual FA maps were spatially normalized to the MNI space. A mean FA
map was used to compute an average white matter tract skeleton using a
threshold of FA > 0.2. Finally, Tract-Based Spatial Statistics as implemented
in FSL was conducted for FA, MD, AD, and RD maps.

Independent component analysis
We applied a spatial independent component analysis (ICA) to the rsfMRI
data and a spatially constrained ICA to the FDG-PET data using GIFT
toolbox v3.0b (Medical Imaging Analysis Lab, The Mind Research Network;
http://mialab.mrn.org/software/gift). Individual fMRI time-series images
were concatenated for the group ICA using the Infomax algorithm [54]. We
chose a 30 component ICA model, as this intermediate model order
delivers robust and coherent RSNs [55]. We applied the resulting spatial
maps as reference templates for the spatially constrained ICA applied to
the FDG-PET data. Hereby, a concatenation of one PET image per
participant was used for the group ICA [56–58], while employing the same
brain mask as for fMRI ICA. Further details on the spatially constrained ICA
for the FDG-PET data can be found in the Supplementary Materials. We
focused our analyses on the following (neurocognitive) networks of
interest a priori: anterior and posterior DMN, salience network (SN), and left
and right central executive network (CEN). The auditory network was
chosen as reference network, as it was assumed to be unaffected by visual
and verbal n-back training.

Indices of network integrity
Indices were calculated both for fMRI- and FDG-PET-based RSNs. For the
fMRI data, we calculated a multiple regression against the group-derived
component maps using the function “icatb_multipleRegression” of the
GIFT toolbox. This analysis returned a beta-coefficient (β) value for each
component of interest in each participant, reflecting the degree to which
the spatial pattern of each participant’s particular network explained the
spatial pattern of the equivalent group-derived network. For this
computational step, we used a z-threshold of 1 for the reconstructed
participant-specific component maps [59]. For the FDG-PET data, we
extracted so called loading coefficients [58, 59]. These are the mixing-
matrix entries of A from the generative model x = As that separate
different signals [60, 61]. These values were read out from the estimated
“timecourse” file, with each timepoint representing one participant (see
above). Loading coefficients close to zero represent a high spatial overlap
between each participant’s RSN and the equivalent group-derived RSN.
Finally, indices of network integrity were available for each participant,
network, and imaging modality [59]. Potential WM training effects on
network integrity were analyzed with a two-way mixed-effects analysis of
variance (ANOVA) for repeated measures using the between-subjects
factor group (CON, EXP) and the within-subjects factor time (T1, T2) in SPSS
19.0 (IBM Corporation, Somers, NY). We considered results as statistically
significant at p < 0.05 after Bonferroni correction, i.e., 0.05/6= 0.008 for six
networks of interest.

Statistical analyses of the training data
We used in-house written Python 3 scripts to analyze the training data. In
the experimental group, we studied the mean n-back level achieved in
each session (experimental group only) and the d prime (both training
groups). Based on signal detection theory, d prime is calculated as the
difference between the hit rate and the false alarm rate [62]. For the
control group, we analyzed only d prime, since those participants
performed at the same low n-back level throughout training. Because
the last three sessions of one participant in the experimental group and
two last sessions of one participant in the control group were lost, we
interpolated the missing data with their own previous training data using a
forward linear method. Assumptions of normality were rejected for the n-
back training data (all p-values < 0.05 in Kolmogorov–Smirnov test).
Therefore, to assess practice effects, we performed a two-sided Wilcoxon
signed-rank test between the mean of the first four and the mean of
the last four training sessions for d prime, separately for each group and
WM training modality (i.e., visual and verbal). In addition, we computed a
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two-sided Wilcoxon signed-rank test between the mean of the first four
and the mean of the last four sessions for n-back level values for the
experimental group separately for each training modality (i.e., visual and
verbal).

Statistical analyses of the cognitive test battery
Assumptions of normality were tested using a one-sample
Kolmogorov–Smirnov test. As primary analysis, we conducted a group
(CON, EXP) by time (T1, T2) multivariate ANOVA for each transfer category
(i.e., nearest, near, far). In case of a significant group x time interaction per
category, we performed a post hoc ANOVA for this category. Results were
considered as statistically significant at p < 0.05 with Bonferroni correction,
that is, 0.05/4= 0.0125; 0.05/15= 0.003; 0.05/2= 0.025 for 4, 15, and 2
tests for nearest, near and far transfer, respectively. ANOVA is known to be
robust to not normally distributed data with an equal sample size [63]. In
addition, we computed two-sided paired t-tests or Wilcoxon signed-rank
tests (depending on the distribution) for all cognitive tests within the
experimental and control group (Table 3). Results were considered as
statistically significant at p < 0.05 with Bonferroni correction, that is, 0.05/
21= p < 0.002 (for 21 tests). All statistical analyses were performed using
SPSS 19.0 (IBM Corporation, Somers, NY). Moreover, we analyzed cognitive
data assessing transfer effects with Bayesian statistics. The Bayesian
analysis quantifies confidence in a model in the face of the data. The Bayes
factor is the comparison of posterior likelihoods of competing models.
Bayes factors are the relative posterior likelihood of the data under one
model (such as the null) against a competing model (such as the
alternative). The advantage of this approach is that, unlike null-hypothesis
significance testing, Bayes factors are informative about whether there is
sufficient evidence to accept or reject one model over the other, or
whether further data collection is needed [64]. The Bayes factor is a ratio
with its magnitude (ranging from 0 to ∞) providing a continuous measure
of the strength of evidence in favour of the numerator model over the
denominator model. Taking the reciprocal of a Bayes factor gives the
strength of evidence in favour of the denominator model. A Bayes factor of
1 reflects perfectly ambiguous evidence (i.e., the data is not sufficiently
sensitive to distinguish between the two hypotheses), with larger Bayes
factors representing stronger evidence. Conventionally, Bayes factors
below 3 are deemed as reflecting ambiguous evidence. We replicated the
frequentist analysis with Bayesian t-tests and ANOVAs where appropriate.
The null and alternative models were specified with prior probability
distributions, which quantify one’s beliefs under the model over different
effect sizes before observing the data. We used a set of widely accepted
default priors for t-tests [65] and ANOVAs [66]. For ANOVAs these were:
fixed effects: r= 0.5, random effects: r= 1, scale covariates: r= 0.354. For t-
tests, the priors were: Cauchy prior with scale = 0.707. The analysis was run
using JASP (JASP team, 2021). We reported the model averaged Bayes
factors across matched models, with subscripts indicating which model
was the numerator (1= alternative, 0 = null). Evidence for or against
transfer was assessed using the model-averaged Bayes factor for the two-
way interaction between group and time.

Statistical analyses of the imaging data
For the ALFF and FDG-PET data we conducted ANOVA with the between-
subjects factor group (CON, EXP) and the within-subjects factor time (T1,
T2) using the full factorial model in SPM12. For the FDG-PET data grand-
mean scaling and global calculation using SPM’s global mean were
applied. A p < 0.05 familywise error corrected at a voxel-level was set as the
significance threshold. To analyze the DTI data voxel-wise, we applied
permutation-based statistics using the randomize function in FSL [67]. The
random permutation number was set at 5000, and we considered results
as statistically significant at p < 0.05 threshold-free cluster enhancement,
again corrected for multiple comparisons at a voxel-level. Two-way mixed-
effect ANOVA for repeated measures was conducted with the between-

subjects factor group (CON, EXP) and the within-subjects factor time (T1,
T2) for FA, MD, AD, and RD maps. For explorative reasons, we also present
all results with an uncorrected p < 0.001 with a cluster extent threshold of
50 for the voxel wise analyses of the ALFF, FDG-PET data, and TBSS.

RESULTS
Demographics
Demographic characteristics of the participants are summarized in
Table 1. There was no significant difference for age (p= 0.92), sex
(p= 0.70), BMI (p= 0.19), or years of education (p= 0.38) between
the experimental and the active control groups. Thus, no
correction for these variables was applied [68].

Working memory training
The experimental group showed significant practice effects both
in verbal n-back training (Z= 7, p= 8.07e−6) and visual n-back
training (Z= 13, p= 1.51e−05), Fig. 3A. It also showed a
significant improvement in the n-back level achieved in verbal
n-back training (Z= 21, p= 3.34e−05) and in visual n-back
training (Z= 18.5, p= 6.51e−05), Fig. 3B. In the active control
group, d prime did not significantly differ between the beginning
and the end of verbal n-back training or visual n-back training.
In the multivariate ANOVA, a significant group × time interaction

was found only for the nearest transfer effect category (F(4,50) =
5.3, p < 0.013). Follow-up univariate analysis of variance revealed a
significant group × time interaction for the Digit Span forward test,
Table 2. The experimental group showed a significant improve-
ment in the Digit Span forward test at T2 compared to T1, Table 3.
Subjects in both groups showed quicker reaction times in the
Visual Simon task (VST) at T2 compared to T1. Here, the
experimental group improved in the incongruent trials (RT-
incong), whereas the control group improved both in congruent
and incongruent trials.
Based on the Bayesian statistics, we found decisive evidence for

nearest transfer effects to the forward digit span (BF10= 182.42).
Strong evidence from simple-effects analysis suggests that this
was driven by a change in the experimental group (BF10= 18.53)
rather than in the control group (BF10= 1.87). There was relatively
weak evidence against transfer to the Corsi task (BF01= 3.77). For
near transfer, there was relatively weak evidence against transfer
to the VLMT (BFs01: 2.75–3.66). For the RVIP, there was weak
evidence against transfer in accuracy (BF01= 3.71), and ambig-
uous evidence for transfer in RTs (BF01= 1.98). For all measures of
the VST and Stroop task, there was at least ambiguous evidence in
support of the null (all BFs01 > 1.54). Finally, there was ambiguous
evidence against transfer to the short-APM (BF01= 1.78) and weak
evidence against transfer in the Iowa Gambling Task (BF01= 3.99).

Voxel-wise analyses of the ALFF and PET data
The group × time interaction was not significant in both analyses.
Explorative analyses with uncorrected thresholds (p < 0.001, k > 50
voxels) are shown in Supplemental Fig. S1. In brief, there were no
plausible findings.

Network analyses of the resting state fMRI and PET data
Figure 4 shows the RSNs of interest as extracted from the fMRI and
PET data. ANOVAs revealed no significant group × time interaction

Table 1. Demographics.

N M/F Age BMI YoE

Experimental 28 16/12 56.00 ± 4.23 25.83 ± 4.15 16.79 ± 3.14

Active control 27 14/13 55.88 ± 4.23 24.49 ± 3.33 16.01 ± 3.21

M male, F female, BMI body mass index, YoE years of education; data presented as mean ± standard deviation; two-sided two sample t-tests was applied for

age, body-mass index, and years of education; chi-squared test was applied for sex.
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for any network neither in the fMRI nor in the PET data. At an
uncorrected threshold of p < 0.05, there was a change for the SN
and aDMN in the fMRI data (Table 4 and Fig. 5), but not in the PET
data (Table 5 and Supplemental Fig. S2).

Tract-based spatial statistics
The two-way mixed-effect ANOVA for repeated measures showed
no significant group × time interaction in any DTI map. Analyses
with uncorrected thresholds p < 0.001 and k > 50 voxels did not
reveal any significant clusters in any DTI map.

DISCUSSION
Following 8-week n-back training, neither near nor far transfer
effects were detected in middle-aged adults, despite the presence
of significant practice effects. Consistently, there were no
significant changes in comprehensive analyses of multimodal
neuroimaging data.
Given the inconsistent literature about transfer effects, we

designed our study to address common limitations of the previous
studies. To the best of our knowledge, the present work provides
the most comprehensive assessment of neural correlates of WM
training and transfer effects reported so far. Specifically, instead of
relying on a single surrogate index of neural plasticity, we
assessed five neuroimaging-based markers, at a voxel and
network level. Along with testing cognitive changes with a broad
test battery, this comprehensive and consistent pattern of results
allows for stronger inferences than the previous studies. Second,
as the mechanisms of transfer are still unclear, we isolated WM
transfer effects from non-specific intervention effects by including
an active control group. Specifically, because the control training
was a non-adaptive version of the experimental WM training
paradigm, we were able to distinguish transfer effects driven by
training-induced WM gains from performance gains due to the
acquisition of task-specific or stimuli-specific expertize, including
material-specific strategies and learning. Third, we tested and
closely supervised a larger-than average sample [69] of a typically
neglected age group using an intensive, adaptive home-based
intervention. Fourth, we evaluated transfer effects in cognition by
combining two statistical approaches, frequentist and Bayesian
statistics, thereby providing not only dichotomous information

about the significance of effects, but also a continuous measure
for the strength of evidence. Fifth, to reduce the likelihood of false
positives, we rigorously corrected for multiple testing. Finally, with
explorative purposes, we also analyzed the neuroimaging data
using liberal significance thresholds without correction for
multiple tests.

Lack of evidence for transfer effects
In line with the results of the numerous studies, we found
significant practice effects in the experimental group. Significant
transfer effects were present only in one subtest of the nearest
transfer category, the Digit Span forward. These effects were
accompanied by strong Bayesian evidence. There was no
corresponding improvement even in the Digit Span backward, a
closely related subtest with the same stimuli. Neither near nor far
transfer effects were detected. Of note, by transfer effects, we
explicitly refer to improvements in an experimental group relative
to an active control group. This definition allows the isolation of
any cognitive gains specifically due to adaptive n-back training.
Thus, WM training-related gains appear to generalize to perfor-
mance in other WM tasks only to a very limited degree. Moreover,
the gains are generalizable neither within the same domain nor to
other cognitive domains.

Lack of evidence for neuronal plasticity in the neuroimaging
data
To the best of our knowledge, this is the first study of WM using
multi-modal neuroimaging including PET. Surprisingly, there are
few investigations of the neural substrates of WM training.
Different from the present study, in which we did not detect
any changes in ALFF or glucose metabolism after WM training,
Takeuchi et al. reported increased brain activity in the dorsal
prefrontal cortex following WM training [27]. However, the authors
did not include an active control group and, therefore, these
changes could reflect test-retest or non-specific intervention
effects. So far, only two studies have explored an impact of WM
training on RSN connectivity, with findings of both increased and
decreased connectivity within the DMN, as well as between the
DMN and central executive network (CEN) [28, 29]. Here, we did
not find any robust training-induced changes in the DMN, CEN or
other established neurocognitive RSNs. Only exploratory post hoc

Fig. 3 Training results for the experimental group. A d prime mean values per session, B n-back level mean values per session; data are
shown as mean ± SEM.
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tests revealed reduced integrity of the aDMN in the experimental
group. However, this observation did not survive multiple
correction or contrasting against the active control group. Notably,
neither of the past studies included an active control group. While
there has been no TBSS study on the effects of WM training, a few
research groups have explored effects of this kind of training on
white matter integrity using voxel-based morphometry or an ROI
analysis [30–33]. They reported training associated-changes in
frontal and parietal white matter tracts [33], corpus callosum [31],
in regions of the dopaminergic system [32], and in the superior
and inferior longitudinal fasciculus [30]. However, in line with our
resting-state fMRI and FDG-PET results, we found no significant
effects of WM training on white matter integrity. Again, the above
studies included either no control group [33] or a passive control
group only [31, 32].

The need for an active control group
As discussed elsewhere (e.g., [7]), there are large methodological
differences between WM training and transfer studies, for

example, variations in training tasks (e.g., n-back vs. complex
span tasks), training conditions (duration and frequency), and age
of participants. However, the key factor contributing to the
inconsistent findings in previous behavioural and neuroimaging
studies is the presence and type of a control group (passive or
active). Critically, meta-analyses that explicitly distinguish between
the types of a control group typically report a lack of far,
sometimes also near, transfer effects [5, 15, 17].
Alternative interventions administered to active control groups

can either involve entirely different activities, such as completing
questionnaires rather than cognitive tasks (e.g., [70]), adaptive
cognitive tasks that differ from the experimental group but follow
the same adaptive procedures, such as adaptive visual search
training (e.g., [20]), or, as in the present study, non-adaptive
versions of the experimental training intervention. Adaptive
alternative interventions arguably control better for motivational
appeal and believability than non-adaptive alternative interven-
tions (see also ref. [18]); however, administering non-adaptive
active control training allows for keeping the tasks and materials

Table 2. Univariate ANOVA for all transfer categories.

WMT
effects

Tests WMT group Active control group Interaction group × time Bayes
factors
statistics

Pre M (SD) Post M (SD) Pre M(SD) Post M (SD) F P (η2) BF

Nearest
transfer (3)

Digit Span

Forward 7.79(2.15) 8.82(1.7) 7.52(2.2) 7.00(1.8) 16.97 <0.0001 (0.243)* 182.42a

Backward 6.75(1.3) 7.46(2.1) 7.11(2.4) 7.63(2.5) 0.11 0.75 (0.002) 3.46b

Corsi 46.1(16.5) 47.68(16.5) 44.1(19.1) 44.7(16.4) 0.04 0.85 (0.001) 3.77b

SVRT

M-latency 286.71(32.1) 306.32.(48.6) 292.64(50) 287.58(42.2) 6.16 0.02 (0.104) 3.31a

Near-
transfer (4)

VLMT

Dg5–6 1.68(1.7) 2.11(2.9) 1.04(1.8) 1.00(1.4) 0.38 0.54 (0.007) 3.13a

Dg5–7 1.25(1.6) 1.14(1.7) 0.70(1.5) 0.96(1.2) 0.64 0.43 (0.012) 2.75a

w-f 12.64(2.5) 12.93(2.3) 13.44(1.5) 13.89(1.5) 0.09 0.76 (0.002) 3.66a

RVIP

Accuracy 18.04(7.3) 20.79(5.0) 16.52(9.0) 19.89(5.7) 0.11 0.74 (0.002) 3.71b

RT 523.97(76.12) 531.44(66.7) 508.63(83.2) 493.3(66.5) 1.39 0.24 (0.026) 1.98b

CWST

RT-cong 1344.4(272.5) 1253.2(2643.) 1336.4(271.9) 1312.7(305.9) 1.21 0.28 (0.022) 2.16b

RT-incong 1600.1(286.7) 1506.1(320.2) 1531.1(292.9) 1537.4(304.9) 1.67 0.20 (0.031) 1.83b

RT-neutral 1266.5(221.7) 1191.3(233.3) 1228.8(237.2) 1234.9(265.5) 2.04 0.16 (0.037) 1.62b

%-cong 0.996(0.01) 0.988(0.03) 0.994(0.02) 0.996(0.01) 1.86 0.18 (0.034) 1.55b

%-incong 0.939(0.07) 0.931(0.07) 0.950(0.06) 0.948(0.05) 0.09 0.76 (0.002) 3.99b

%-neutral 0.983(0.04) 0.990(0.03) 0.998(0.01) 0.995(0.01) 1.14 0.29 (0.021) 2.39b

VST

RT-cong 454.63(59.1) 426.72(57.2) 447.49(63.0) 406.56(80.0) 0.99 0.32 (0.018) 2.42b

RT-incong 505.13(64.9) 471.1(59.6) 492.74(71.8) 451.43(76.0) 0.56 0.46 (0.010) 2.97b

%-cong 0.98(0.04) 0.99(0.02) 0.96(0.1) 0.98(0.02) 0.67 0.42 (0.012) 2.7b

%-incong 0.963(0.04) 0.966(.03) 0.953(0.1) 0.943(0.06) 0.31 0.58 (0.006) 3.63b

Far-
transfer (2)

Short- APM 5.64(2.30) 6.79(2.44) 5.26(2.49) 5.67(2.47) 1.99 0.16 (0.036) 1.78b

IGT 6.21(8.32) 11.43(10.88) 5.46(3.19) 9.91(16.74) 0.03 0.87 (0.000) 3.99b

Notes: WMT working memory training, M (SD), mean (standard deviation), Corsi Corsi-block Tapping test; SVRT simple visual reaction time task, M-latency mean

latency, RVIP the rapid visual information processing task, Accuracy= hits − FA; RT (ms), mean reaction time for correct responses in millisecond, CWST the

colour-word stroop task, RT-cong mean reaction time for congruent condition, RT-incong mean reaction time for incongruent condition, RT-neutral mean

reaction for neutral condition, %-cong percent correct for congruent condition, %-incong, percent correct for incongruent condition, %-neutral percent correct

for neutral condition, VST visual Simon task, Short-APM, the short version of Raven’s Advanced Progressive Matrices Test; IGT Iowa Gambling Task, independent

variable here is net score. *significant at p < .05 Bonferroni corrected, BF bayes factors; abayes factor in favour of H1 over H0; bbayes factor in favour of H0

over H1.

The bold values indicate a statistically significant difference.
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consistent across training groups. Specifically, the higher the
similarity between active control and experimental group training,
the more stringent the control of transfer gains driven by task- or
material-specific expertize when contrasting the groups over time
(see also ref. [71]). In the present study, we chose a non-adaptive
control group to allow for isolating transfer effects due to training-
induced increases in WM capacity from improvements in WM
efficiency due to the acquisition of task- or material-specific
expertise.
In a recent meta-analysis by Sala at el. [4] 8 out of 43 reviewed

studies assessed transfer and included a control group performing
the same tasks as the experimental group. Critically, no transfer
effects were observed in 3 out of 8 studies [72–74], and only
nearest transfer effects as measured with digit span forward and/
or backward were observed by three other studies [19, 75, 76].
Near and far transfer effects were reported only by Brehmer et al.
[77] for the PASAT task requiring sustained attention and by
Simon et al. [78] for the Digit Symbol task requiring psychomotor
ability, sustained attention, processing speed and, to a lesser
degree, WM. Of note, these are two transfer tasks that we did not

include. Similar findings were reported by Aksayli et al. [79], who
evaluated the effects of adaptive Cogmed WM training, a
commercial training programme, relative to non-adaptive
Cogmed training. The authors reported a consistent lack of far
transfer, small to medium effects sizes for near transfer and that
these transfer effects depended on the similarity of the transfer
tasks to the WM training paradigm. This is in line with our results,
supporting the view that WM training-related gains appear to
generalize to performance in other WM tasks only to a very limited
degree. Indeed, when exploring within-group changes from pre-
test to post-test, we observed significant gains in all three transfer
categories, including far transfer, although these did not survive
correction for multiple tests. Importantly, however, the experi-
mental group did not improve over and above the changes
observed in the control group. Surprisingly, we also observed a
decline in the Digit Span Forward (nearest transfer) in the control
group, which may have contributed to the only significant transfer
effect in the main analysis. This implies that both training
interventions, no matter how specific they have been designed,
can trigger performance improvements which are not due to an

Table 3. Comparisons within each group for all cognitive tests.

Tests EXP (T1 vs. T2) CON (T1 vs. T2)

T p BF10 T p BF10

Nearest transfer Digit Span

Forward T=−3.48 0.002** 20.97 T= 2.27 0.03* 1.78

Backward T=−1.54 0.14 0.57 T=−1.37 0.18 0.47

Corsi-Block Tapping Z=−0.16 0.25 0.22 Z=−0.30 0.76 0.21

SVRT

Mean latency T=−2.39 0.02* 3.45 T= 0.40 0.69 0.27

Near transfer VLMT

Dg5–6 Z=−0.16 0.13 0.25 Z=−0.21 0.83 0.21

Dg5–7 T= 0.31 0.76 0.21 T=−0.85 0.40 0.28

w-f T=−0.72 0.48 0.26 T=−1.35 0.19 0.46

RVIP

Accuracy T=−2.93 0.007* 6.34 T=−2.03 0.05 1.20

RT T=−0.54 0.59 0.23 T= 1.14 0.26 0.37

CWST

RT-cong T= 1.80 0.08 0.83 T= 0.70 0.49 0.25

RT-incong T= 1.43 0.17 0.50 T=−0.16 0.87 0.21

RT-neutral T= 1.67 0.11 0.68 T=−0.18 0.86 0.21

%-cong Z=−1.52 0.13 0.48 Z=−0.67 0.50 0.22

%-incong Z=−0.26 0.80 0.22 Z=−0.061 0.95 0.21

%-neutral Z=−0.76 0.45 0.27 Z=−0.56 0.56 0.32

VST

RT-cong T= 2.66 0.01* 3.99 T= 4.47 0.0001** 202.02

RT-incong T= 3.47 0.002** 11.93 T= 4.68 0.0001** 328.53

%-cong Z=−1.13 0.26 0.45 Z=−1.24 0.24 0.40

%-incong Z=−0.07 0.94 0.21 Z=−1.77 0.08 0.23

Far transfer Short-APM T=−2.95 0.006* 6.66 T=−1.17 0.25 0.38

IGT T=−2.00 0.056 1.12 T=−1.15 0.26 0.37

Corsi Corsi-Block Tapping test, SVRT simple visual reaction time task, RVIP the rapid visual information processing task, Accuracy= number of correct hits − FA,

RT (ms) mean reaction time of correct target, in millisecond, CWST the colour-word Stroop task, RT-cong mean reaction time for congruent condition, RT-incong

mean reaction time for incongruent condition, RT-neutral mean reaction in neutral condition, %-cong proportion correct for congruent condition, %-incong

proportion correct for incongruent condition, %-neutral,proportion correct for neutral condition, VST visual Simon task, Short-APM the short version of Raven’s

Advanced Progressive Matrices Test, IGT Iowa Gambling Task, independent variable here is net score. For all measures except RT and VLMT (Dg5-Dg6, Dg5-

Dg7) negative T-values represent improvements in performance from T1 to T2. T-values for two-sided paired t-tests, Z-value for two sided Wilcoxon signed-

rank test *Significant at p < 0.05 uncorrected; **significant at p < 0.05 Bonferroni corrected (p < 0.002 uncorrected); BF10, bayes factors.
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increased WM capacity, but most likely due to non-specific
cognitive training effects, such as improved attentional processing
[19], or due to the acquisition of strategies such as chunking or
visualization [80]. These strategies are likely paradigm-specific and,
thus, could be applicable to both the experimental and active
control group, thereby also explaining the cognitive improve-
ments in the control group. In this context, we propose the term

pseudo-transfer effects to describe such gains that are unrelated to
increases in WM capacity and also not accompanied by strong
neuroplastic effects as measured by, for instance, DTI. This
explanation is in line with the only nearest transfer effect that
we observed in the experimental group contrasted against the
active control group. As there was no transfer to any other task, it
is highly unlikely that the effect was driven by increased WM

Table 4. ANOVA for integrity of fMRI-based networks.

Network EXP CON Interaction group
× time

T1 M (SD) T2 M (SD) T1 M (SD) T2 M (SD) F(1,53) p

Auditory 0.76 (0.29) 0.67 (0.25) 0.71 (0.19) 0.71 (0.23) 1.47 0.23

aDMN 0.85 (0.14) 0.77 (0.11) 0.81 (0.15) 0.82 (0.16) 5.05 0.03

pDMN 0.82 (0.17) 0.81 (0.16) 0.83 (0.14) 0.79 (0.15) 0.51 0.48

rCEN 0.81 (0.15) 0.82 (0.15) 0.78 (0.12) 0.77 (0.14) 0.13 0.72

SN 0.71 (0.18) 0.67 (0.17) 0.64 (0.11) 0.70 (0.13) 5.14 0.03

lCEN 0.77 (0.14) 0.75 (0.13) 0.78 (0.12) 0.75 (0.20) 0.10 0.75

M (SD)mean (standard deviation), aDMN anterior default mode network, pDMN posterior default mode network: lCEN left central executive network, rCEN right

central executive network, SN salience network, uncorrected p-values.

Fig. 4 Resting state networks of interest in the PET data. Overlay of independent component maps onto the T1 template in the Montreal
Neurologic Institute space at a threshold of z > 2.0. Colour bar represents z-values. A anterior default mode network, B posterior default mode
network, C left central executive network, D right central executive network, E salience network, F auditory network.
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capacity. Instead, we argue that the observed improvement in the
forward Digit Span, a measure of verbal short-term memory, more
likely is a pseudo-transfer effect imparted by co-engagement of
short-term memory and acquisition of effective strategies during
adaptive n-back training. As transfer effects within and between
cognitive domains were shown to be of equivalent magnitude
when comparing different WM training paradigms (e.g., n-back
training and complex span training) [81], it is reasonable to
assume that our results are generalizable to other WM training
paradigms.
Overall, the present results, in particular on the neuroimaging

side, may serve as a useful reference for future cognitive training
studies not only in healthy individuals, but also in patients with
neuropsychiatric disorders. While patients with affected WM and
neuroimaging indices of brain health at baseline might potentially
have more space for gains then healthy subjects, commonly co-
existing attention deficits and disease-related deterioration of
neural plasticity may limit efficiency of WM training in patients. We
suggest that future training studies should target multiple
cognitive domains beyond WM and include neuroimaging
techniques beyond fMRI, DTI, and FDG-PET.

CONCLUSION
In this prospective, randomized, actively controlled, and single-
blind study, we provide strong and consistent evidence for the
absence of near and far transfer effects following 8-weeks of
adaptive WM training in healthy middle-aged adults, despite a
pronounced improvement in the n-bask training task.
Repeated multimodal imaging revealed no training-induced
changes in resting state fMRI, DTI, and FDG-PET data. More
specifically, comprehensive analyses of putative markers of
neuronal plasticity in terms of white matter integrity, BOLD
signal, and glucose metabolism, at a voxel and network level,
failed to discover significant alterations. We propose the term
“pseudo-transfer effects” to characterize gains in a trained task,
resulting from co-engagement of non-targeted cognitive
domains and/or improved efficiency in using the targeted
cognitive capacity due to acquisition of new strategies.
Critically, we argue that such pseudo-transfer effects do not
reflect increases in WM capacity. Instead, the presently
observed practice effects may be a result of optimized task
processing strategies, which do not necessarily engage neural
plasticity.

Fig. 5 Integrity of fMRI-based networks. Distribution of integrity indices is shown as boxplots. Con 1: active control group at T1 (before
training), Con 2: active control group at T2 (after training), Exp 1: experimental group at T1 (before training), Exp 2: experimental group at T2
(after training).

Table 5. ANOVA for intergrity of FDG-PET-based networks.

Network EXP CON Interaction
group × time

T1 M (SD) T2 M (SD) T1 M (SD) T2 M (SD) F(1,53) p

Auditory −0.04 (0.90) 0.00 (1.11) −0.06 (0.91) 0.10 (1.04) 0.57 0.45

aDMN −0.09 (0.94) −0.04 (1.13) 0.01 (0.82) 0.13 (1.05) 0.10 0.75

pDMN −0.22 (0.80) −0.17 (0.98) 0.19 (1.07) 0.21 (1.03) 0.03 0.85

rCEN −0.26 (0.89) −0.11 (0.93) 0.13 (0.97) 0.25 (1.10) 0.01 0.91

SN −0.13 (0.92) −0.13 (1.08) −0.02 (0.85) 0.29 (1.06) 3.87 0.06

lCEN −0.12 (0.94) −0.07 (1.02) 0.09 (0.97) 0.11 (1.03) 0.04 0.84

M (SD) mean (standard deviation), aDMN anterior default mode network, pDMN posterior default mode network: lCEN left central executive network, rCEN right

central executive network, SN salience network, uncorrected p-values.
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functions are stated at an appropriate location in the manuscript in the “Methods”
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